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Abstract

We have used serverless AWS Lambda functions to align 640 million reads in less than 3
minutes, a speed-up of 500x over the single-threaded implementation. Using a hybrid cloud
architecture and software modified to optimize disk transfers, an entire RNA sequencing
workflow transforming multiplexed reads to transcript counts that originally took 29 hours can be
completed in 18 minutes. This is a 100x improvement over the original single threaded
implementation and 12x faster than an optimized cloud server-based implementation using 16
threads. The total cost of the analyses is $2.82 for 96 wells or 3 cents per multiplexed sample.
This approach can be used for human datasets that are generated for single experiments and
does not rely on processing large numbers of samples to achieve the performance gains. The

workflow is publicly available under a M.I.T. license (https://github.com/BioDepot/RNA-seq-

lambda).


https://github.com/BioDepot/RNA-seq-lambda
https://github.com/BioDepot/RNA-seq-lambda

Introduction

Cloud computing has become an essential resource in the analyses of big biomedical data by
offering massive scalable computing and storage, secure access to protected data, and on-
demand access to resources and applications 2. A major barrier to widespread adoption of the
cloud for large scale parallel bioinformatics jobs is the need to provision and configure virtual
servers before computation can proceed. Setting up the infrastructure requires expertise and
can consume more time than the actual computation. In contrast, code snippets can be easily
deployed to the cloud in the form of microservices using serverless function-as-a-service (FaaS)
platforms where resource provisioning, monitoring, scaling, 24/7 availability, and fault tolerance
are provided automatically *>#. The serverless function-as-a-service paradigm has emerged as
a simplified programming model that can be used to create scalable cloud applications with
reduced configuration and management overhead °. In addition to the ease of use, these
microservices, are inexpensive, can be launched in under a second and require no provisioning
or specification of instances. This is a true on-demand model: there are no compute resources
reserved and no cost to the user when a user’s function code is not being executed. Most major
public cloud vendors provide FaaS computing platforms including AWS Lambda ¢, Google

Cloud Functions 7, Microsoft Azure Functions & and IBM Cloud Functions °.

Our proof of concept case study is an RNA sequencing (RNA-seq) pipeline used by the Drug
Toxicity Signature Generation center (DToxS) at Mount Sinai '° to quantify gene expression.
Xiong et al. developed a 3’-end directed library approach that uses unique molecular identifiers
(UMI) to quantify gene expression of cell lines treated with drugs for 48 hours on 96 well plates
0. Their goal is to identify gene signatures for drug-induced cardiotoxicity by performing three
types of drug treatments: protein kinase inhibitors that can cause cardiotoxicity, non-cardiotoxic
drugs and vehicle control. This pipeline consists of 3 computational steps. The first step is a
de-multiplexing step that separates the reads from the 96 originating wells. These reads are
then aligned to the human transcriptome using the Burrows-Wheeler Aligner (BWA) . The
resulting alignments are merged and de-duped using Unique Molecular Identifiers (UMIs) to
compute the observed counts for each transcript. The de-multiplexing and merge steps of the
original pipeline were written in Python and took 29 hours on an AWS EC2 instance m4.4xlarge
to process a dataset consisting of 600 million reads. We have converted and optimized the
Python steps using C++ executables to reduce the total time of pipeline execution to 3.5 hours
when using 16 threads '2. By using AWS Lambda functions, we reduced the alignment time to 2

minutes, and the entire processing time to approximately 18 minutes.



Results

To take full advantage of the serverless computing approach (see Figure 1) we modified the
RNA-seq pipeline to function within the limitations of the Lambda functions (512MB of disk
space, 15 minutes maximum runtime, 3GB RAM, and 2 vCPUs) to minimize disk transfers to
and from the AWS Simple Storage Service (S3). The major set of files that need to be copied to
each Lambda function, other than the input fastq files, are the human reference files. BWA does
not actually use the sequence after the indices are generated but only requires the sequence
file name to infer the names of index files. To save space, we provided a dummy sequence file
for BWA. Since Lambda functions can retain their files after termination, we checked before
downloading whether the files already existed to save bandwidth. The Lambda handler script,
executables, and support files require 250 MB leaving 250 MB for the input and output files. The
pipeline was modified to produce smaller input and output files for the alignment step. The
demultiplex and split step was modified to produce input fastq files with a user-specified
maximum size. To save execution time transfer of these files to S3 proceeds as soon as the file
is created rather than waiting for all files to be generated. Instead of saving large SAM or BAM
files after alignment, we wrote a small executable to hash the alignment and UMI barcode of
each read into an 8-byte value. The resulting file takes up 50x less space than a SAM file. Not
only does this approach conserve disk space, but it also reduces the size of files transferred to
and from S3 before the final merge step. Before these modifications, execution required almost
3 hours, largely due to the time required for disk transfers to and from S3. The final optimized
pipeline can be executed in 18 minutes. See Table 1 for the detailed run time for each of the

steps shown in Figure 1 using an AWS EC2 instance (m4.4xlarge with 16 threads).
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Figure 1. RNA-seq pipeline using serverless computing.



The computational and data transfer steps involved in executing the RNA-seq pipeline are
shown. The pipeline begins with fastq files comprising 640 million reads (approximately 46 GB
total in size) in S3. The Python Lambda handler script, executables, and support files were also
on S3. The fastq files are copied to the local disk of an EC2 instance. The files are
demultiplexed and split into 150 MB chunks and copied back to S3. 878 Lambda functions, one
per fastq chunk were then launched simultaneously. Each Lambda function executes the
Python Lambda handler script which copies one of the split fastq files, as well as the
executables and support files to the Lambda local disk. The bwa aln executable is then called to
align the reads. The alignments are piped to a small C++ executable which extracts the
transcript ID, the mapping position, and the UMI barcode for each read and produces an 8-byte
hash value. These values are written to the local disk of the Lambda function when alignment is
performed, producing a file roughly 50x smaller than a SAM file. When the alignment completes
the hash file is copied to S3. The final merge step takes place on the EC2 instance. The hash
files are copied from S3 to the EC2 instance where the hash values are combined into a unique
set to compile the final transcript counts. The cost of the serverless component is $2.82, and the
cost of the entire analyses is $3.13 to $3.83 depending on the type of EC2 spot instance used.

This translates to a cost of 3 to 4 cents per multiplexed sample.

Data
Upload fastq transfer Data transfer
data from S3| Split [from EC2to| Align |[SAF files from| Merge
Run to EC2 (EC2) S3 (Lambda) S3 to EC2 (EC2) | Total
1 0:03:24 0:06:50 0:02:20 0:02:38 0:00:15 0:01:49 |0:17:16
2 0:03:24 0:07:34| 0:02:27 0:02:43 0:00:15 0:02:08 |0:18:31
3 0:03:23 0:07:07| 0:03:37 0:02:47 0:00:16 0:01:49 {0:18:59
Median| 0:03:24 0:07:07 | 0:02:27 0:02:43 0:00:15 0:01:49 |0:17:45

Table 1. Runtime of each of the steps in our hybrid cloud architecture. The split and merge
steps were performed on an AWS m4.4xlarge EC2 instance with a fast i01 SSD while the align
step was performed on AWS Lambda. Compared to our single threaded results using the same
optimized implementation on a m4.4xlarge from a slower General Purpose SSD (gp2) reported
in Hung et al 2, split time was reduced from 3 hours to 7 minutes, align times from 17 hours to
2.5 minutes, merge times 50 minutes to 2 minutes. The total pipeline time was reduced from
more than 21 hours to 18 minutes, a more than 70x speedup. The speedup vs the reported

execution times on 16 threads was still 12x.



Discussion

Our case study demonstrates how a computationally intensive bioinformatics workflow can
leverage a hybrid cloud architecture that incorporates serverless cloud computing to
dramatically speed up execution time at a low cost. Bioinformatics workflows typically consist of
multiple components. Compute bound tasks can leverage the highly scalable and performance
efficient Function-as-a-service cloud serverless platforms whereas the disk bound tasks can
benefit from instances with faster disks. In our case study, we used a hybrid cloud architecture
where the disk bound tasks (split and merge) are deployed on an AWS EC2 instance with a fast
SSD, while the parallelizable compute bound task (alignment using BWA) is deployed on AWS
Lambda. The pipeline that we have described is freely available
(https://github.com/BioDepot/RNA-seq-lambda) and applicable to any set of UMI RNA-seq data.
The RAM and memory limitations of Lambda functions are not impediments to some
computational bioinformatics applications, such as alignments to smaller references, or all-vs-all
calculations of Smith-Waterman mapping distance in a set of proteins. In general, tasks can be
split into smaller sub-tasks and distributed for execution (scattered) on Lambda functions and
results assembled (gathered) and merged (reduced) to obtain the final result. Fortunately, many
CPU-bound applications also have a GPU implementation, which involves a large task divided
into sub-tasks that are processed by small groups of GPU compute units with very limited
resources. Sequence alignment, protein-folding, and deep-learning are computationally
intensive bioinformatics tasks that can be potentially adapted to leverage a serverless
computing approach. With the capability of serverless cloud computing to quickly leverage
hundreds of CPU cores, the computational power that was once the exclusive domain of
supercomputers is now easily accessible, available on demand, and at low cost, to enable

solving many resource intensive bioinformatics problems.

Software and Data Availability

The code and workflow are publicly available under a M.I.T. license

(https://github.com/BioDepot/RNA-seg-lambda). The processed UMI RNA-seq data are publicly

available at https://martip03.u.hpc.mssm.edu/data.php and the raw fastq files are available upon

request.


https://github.com/BioDepot/RNA-seq-lambda
https://martip03.u.hpc.mssm.edu/data.php
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