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HIGHLIGHTS

NF-OSCs with optimal miscibility

are intrinsically stable against

demixing

Crystallization of NF-SMA needs

to be suppressed through proper

vitrification

Polymers and NF-SMA with high

Tg are needed to achieve long-

term OSCs stability
This research provides a structure-property relation that sheds light on

morphological stability of NF-OSCs by using the thermodynamic and the kinetic

perspectives. We show that NF-OSCs can suffer from excessive amorphous-

amorphous phase separation in the blends and crystallization of NF-SMA. The

former instability channel can be eliminated in systems with an optimal miscibility,

whereas the excessive phase separation in low miscibility systems and NF-SMA

crystallization need to be suppressed through the utilization of polymers or NF-

SMAs with low flexibility.
Ghasemi et al., Joule 3, 1328–1348

May 15, 2019 ª 2019 Published by Elsevier Inc.

https://doi.org/10.1016/j.joule.2019.03.020

mailto:harald_ade@ncsu.edu
https://doi.org/10.1016/j.joule.2019.03.020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.joule.2019.03.020&domain=pdf


Article
Delineation of Thermodynamic and Kinetic
Factors that Control Stability
in Non-fullerene Organic Solar Cells
Masoud Ghasemi,1,2 Huawei Hu,1,2 Zhengxing Peng,1,2 Jeromy James Rech,3 Indunil Angunawela,1,2

Joshua H. Carpenter,1,2 Samuel J. Stuard,1,2 Andrew Wadsworth,4 Iain McCulloch,4,5 Wei You,3

and Harald Ade1,2,6,*
Context & Scale

In recent years, the performance

of organic solar cells (OSCs) has

greatly improved with the

development of novel non-

fullerene small molecular

acceptors (NF-SMA). The rapid

increase in power conversion

efficiency, now surpassing 15%,

highlights an immediate and

increasing need to understand the

longevity and lifetime of NF-

OSCs. However, the field relies

mainly on a laborious trial-and-

error approach to select

polymer:NF-SMA pairs with

desirable device stability. Here,

we provide a structure-property

relation that explains the

morphological stability and burn-

in degradation due to excessive

demixing or crystallization. The

framework presented in our study

shows that a specific balance of

interactions between polymer and

NF-SMA can offer a short-term

solution against excessive

demixing. Long-term

morphological stability that also

suppresses crystallization can only

be achieved by freezing in the

initial quenched morphology

through the use of polymers and/

or NF-SMAs with low flexibility.
SUMMARY

Although non-fullerene small molecular acceptors (NF-SMAs) are dominating

current research in organic solar cells (OSCs), measurements of thermodynamics

drivers and kinetic factors determining their morphological stability are lacking.

Here, we delineate and measure such factors in crystallizable NF-SMA blends

and discuss four model systems with respect to their meta-stability and degree

of vitrification. We determine for the first time the amorphous-amorphous

phase diagram in an NF-SMA system and show that its deep quench depth

can result in severe burn-in degradation. We estimate the relative phase

behavior of four other materials systems. Additionally, we derive room-temper-

ature diffusion coefficients and conclude that the morphology needs to be sta-

bilized by vitrification corresponding to diffusion constants below 10�22 cm2/s.

Our results show that to achieve stability via rational molecular design, the ther-

modynamics, glass transition temperature, diffusion properties, and related

structure-function relations need to be more extensively studied and under-

stood.

INTRODUCTION

The performance of solution-processed organic solar cells (OSCs) based on bulk

heterojunction (BHJ) blends of a pair of donor and acceptor materials has greatly

improved with the development of novel non-fullerene small molecular acceptors

(NF-SMA).1–5 With the power conversion efficiency (PCE) now reaching 12%–14%

in many single-layer research devices,6–14 the principles governing operational

stability are becoming very important and need to be understood.15–19 The lifetime

of an OSC can be limited by various factors, such as exposure to humidity,20 photo-

oxidation of the BHJ layer,21 and morphological instability due to diffusion or

aggregation and, crystallization even at room temperature (RT).22 Because of the

dominance of fullerenes as acceptors for more than two decades,23–26 it is not sur-

prising that most stability investigations to date have been focusing on fullerene-

based OSCs. Given the clear difference in the molecular structure and size of the

non-fullerene and fullerene acceptors, the chemical and morphological stability of

the NF-SMA OSCs cannot be extrapolated from data on fullerene devices. The sta-

bility of NF-SMA OSCs and, importantly, its thermodynamic drivers and mechanical

or thermal factors that relate to vitrification, remain largely unexplored. To rationally

enhance the operational lifetime of NF-SMA-based OSCs, the factors that control

the morphological stability of the active layer need to be investigated and under-

stood in depth.
1328 Joule 3, 1328–1348, May 15, 2019 ª 2019 Published by Elsevier Inc.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.joule.2019.03.020&domain=pdf


1Department of Physics, North Carolina State
University, Raleigh, NC 27695, USA

2Organic and Carbon Electronics Lab (ORaCEL),
North Carolina State University, Raleigh, NC
27695, USA

3Department of Chemistry, University of North
Carolina at Chapel Hill, Chapel Hill, NC 27599,
USA

4Department of Chemistry, Imperial College
London, London SW7 2AZ, UK

5King Abdullah University of Science and
Technology (KAUST), KAUST Solar Center (KSC),
Thuwal 23955-6900, Saudi Arabia

6Lead Contact

*Correspondence: harald_ade@ncsu.edu

https://doi.org/10.1016/j.joule.2019.03.020
An efficiency loss in the first few hundred hours of the operation of an unstable OSC is

generally referred to as ‘‘burn-in’’ and can be caused by various factors such as trap

state formation,27 photo-oxidation and oligomerization,28 degradation of inter-

layers,29 and over-purification of the mixed domains.22 Among these factors, we

focus on the impact of morphological instabilities and refer to the impact on device

degradation simply as ‘‘burn-in’’ hereafter, mindful that other factors can in principle

also cause burn-in. Burn-in driven by over-purification of mixed domains and/or crys-

tallization have been extensively studied and linked to morphological instability in

fullerene-based systems,22,30–32 but these two main morphological instabilities

have just started to be investigated for NF-SMA-based devices, primarily in a

phenomenological manner without elucidating thermodynamics drivers and kinetic

factors and their relation to molecular design.33,34 In the BHJ solar cell, the actual

morphology typically comprises multiple phases depending on the materials

used.35,36 For an amorphous polymer donor and with suppression of the crystalliza-

tion of the small molecule acceptor (SMA), the phase diagram is asymmetric and there

are only two domains: the acceptor-rich small molecule domain that is almost pure in

sufficiently immiscible systems, and the donor rich, mixed amorphous domain.37 In

addition to these two domains, a semi-crystalline donor based device has an addi-

tional pure polymer crystalline domain. The crystallization of the SMA (fullerene or

NF-SMA) is usually prevented in fresh devices by quenching the acceptor into an

amorphous, vitrified state.15 This two- or three-phase morphology must be carefully

optimized to maximize the photon absorption, exciton separation, and charge trans-

portation and extraction simultaneously. Such an optimization often creates mixed

domains with an unstable composition (Figure 1).22,38–40 For crystallizable SMAs,

the meta-stable state of the amorphous domains is governed by the binodal compo-

sition, also referred to as the miscibility gap.41 The thermodynamically favored

(stable) state involves SMA crystals, a state described by the liquidus in the phase di-

agram. This state depletes themixed domains of SMA relative to the binodal because

of the extra chemical potential of the crystals. Please note that we will use the term

binodal or miscibility gap and liquidus for simplicity even in cases where the liquid

phases have vitrified to an amorphous glass below the glass transition temperature

Tg, and the phase boundaries correspond to solid-solid transitions. The binodal or

miscibility gap is governed by the miscibility limit of the donor or acceptor materials

in the majority phase, which can be parameterized in favorable cases by the effective

amorphous-amorphous Flory-Huggins (F-H) interaction parameter c.42,43 It has been

shown recently that the temperature-dependent c(T) is quantitatively related to the

domain purity and fill factor (FF) in a number of systems.37 A relatively high c is

needed for strong-enough phase separation and, thus, high device FF. However,

an excessive repulsive molecular interaction between donor and acceptor materials

can lead to over-purification of the mixed domains (i.e., with an SMA concentration

below the percolation threshold), which would negatively affect device

performance predominantly because of charge trapping and mono-molecular

recombination.37,40,44,45 Schematics of the possible scenarios of morphology

evolution in an upper critical solution temperature (UCST) polymer:

SMA blend with an amorphous donor and crystallizable SMA with a low and an

optimal miscibility are illustrated in Figure 1. Severe burn-in degradation can be

expected when the optimal morphology is quenched near the percolation threshold

and is far from the miscibility gap, referred to as a ‘‘low-’’ or ‘‘hypo-miscibility’’ system

(Figure 1A). On the other hand, a device with a miscibility gap close to the percolation

threshold (Figure 1B) during the normal device operation conditions is referred to as

‘‘optimal miscibility’’ and is expected to exhibit a relatively stable morphology and

thus lower or slower burn-in degradation. Hyper-miscibility systems typically

yield low performance37 and are not further considered. One example of a
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Figure 1. Motivational Illustrations of the Phase Diagrams and Schematic and Observed Morphologies of an Upper Critical Solution Temperature

Polymer:NF-SMA Blend

(A) A blend with miscibility that is too low (hypo-miscible). Note that solid lines, including the blue part of the y axis, correspond to thermodynamic

equilibrium, whereas dashed lines are only meta-stable states. Below Tg, which is composition and material dependent, the liquids are frozen into a

glass. Equilibrium can still be established by diffusion but is kinetically hindered. The points A, P, and B represent initial average D/A ratio, percolation

threshold of the SMA in the mixed domains, and the binodal composition at a given temperature, respectively. We note that the percolation threshold is

�25% of NF-SMA.45 Point C represents the crystallization of NF-SMAs in a blend. The system generally proceeds from point A to point C during casting

and aging, although initially, the presence of the solvent slightly alters the phase diagram. Processing conditions are typically chosen to reach the

vicinity of point P, where an optimal trade-off between charge creation, charge extraction, and charge recombination is achieved if the domain size can

be sufficiently controlled.

(B) A blend of an optimum amorphous-amorphous miscibility.
hypo-miscibility, high-performing polymer:SMA blend system (as illustrated in Fig-

ure 1A) is PffBT4T-2OD:PC71BM, with a PC71BM meta-stable equilibrium

concentration in the mixed domains well below the percolation threshold.38,40

Consequently, abnormally strong burn-in degradation is observed in PffBT4T-

2OD:PC71BM solar cells as [6,6]-phenyl C61 or C71 butyric acid methyl ester (PCBM)

readily diffuses even at RT.22 In contrast, PCDTBT:PC71BM is a near optimally miscible

system, which should provide improved shelf stability with regard to demixing of the

mixed domain when compared to PffBT4T-2OD:PC71BM.37 However,

PCDTBT:PC61BM blends, similar to other fullerene-based OSCs, are prone to crystal-

lization of the fullerene, and although these blends are thermodynamically stabilized

against amorphous demixing, they are only kinetically stabilized against degradation

by crystallization, the second main morphological degradation pathway.46,47

It is known that thermal annealing can boost the efficiency of many OSCs; however,

heating may accelerate the transition of the morphology from the meta-stable misci-

bility gap to the liquidus or directly and simultaneously lead to crystallization failure

as a result of nucleation or growth of SMA crystals.15 The propensity for this transi-

tion to occur will depend on Tg, which is an indicator of the degree of vitrification

at RT. Conceptually, there are three main classes of systems for crystallizable NF-

SMA: class I systems that are unstable as a result of demixing and crystallization

(low Tg case in Figure 1A), class II systems that have meta-stable mixed domains

but can crystallize (low Tg case in Figure 1B), and class III systems that are kinetically

stabilized irrespective of whether they are meta-stable or not (high Tg cases). Class III

can be subdivided into class IIIa when a hypo-miscibility system is vitrified and class

IIIb when an optimal miscibility, meta-stable system is vitrified.
1330 Joule 3, 1328–1348, May 15, 2019



In Figure 1, we measure the phase diagrams of NF-SMA OSC systems for the first

time at least partially and delineate thermodynamic drivers and kinetic factors for

stability in the three main classes of NF-SMA OSC systems delineated above. We

select and utilize the well-known, prototypical NF-SMAs (i.e., EH-IDTBR and ITIC)

selectively blended with the prototypical semiconductor polymers P3HT (semi-crys-

talline, ductile) and FTAZ (amorphous, ductile) to yield three different donor-

acceptor blend-based systems in this study (P3HT:EH-IDTBR, FTAZ:EH-IDTBR,

and FTAZ:ITIC) that systematically exemplify the characteristics of the different sce-

narios. We determine their device morphology and operational shelf-stability for

variable processing conditions. We also investigate the thermodynamic drivers

and kinetic factors of a previously reported relatively stable NF-SMA system based

on another prototypical amorphous donor, namely PTB7-Th:EH-IDTBR,19 as a

comparison (the 4th system). It is found that P3HT:EH-IDTBR-based OSCs suffer

from severe burn-in degradation in both as-cast and annealed samples. The severe

efficiency loss of P3HT:EH-IDTBR devices is more pronounced in annealed devices

compared to as-cast devices, even when these films are only briefly annealed at

moderately elevated temperatures (120�C for 10 min). Even short periods of anneal-

ing are sufficient to nucleate crystals of theNF-SMA, which then assert their presence

and negative influence over time. On the other hand, as-cast blend films based on

FTAZ:EH-IDTBR exhibit low burn-in loss, whereas strong burn-in degradation occurs

readily in annealed FTAZ:EH-IDTBR devices. In contrast, by substituting EH-IDTBR

with ITIC, the FTAZ:ITIC-based systems provide OSCs with reduced burn-in degra-

dation in both as-cast and low temperature annealed (120�C) devices, but

with severe burn-in in high T annealed (180�C) devices. We determine c(T) for

P3HT:EH-IDTBR, the liquidus for FTAZ:EH-IDTBR, and FTAZ:ITIC-based systems,

and the binodal at 110�C and 100�C for PTB7-Th:EH-IDTBR. In addition, we esti-

mated RT diffusion coefficients of 1.7 3 10�17, 2.0 3 10�18, and 4 3 10�20 cm2/s

for EH-IDTBR in P3HT, FTAZ, and PTB7-Th, respectively, and analyzed device

stability in light of the thermodynamic and kinetic knowledge gained. The diffusion

coefficient of EH-IDTBR in P3HT- and FTAZ-based systems is sufficiently high to

enable demixing and crystallization burn-in after low T annealing or even in as-cast

devices. The more robust morphology of PTB7-Th:EH-IDTBR devices is attributed to

the smaller diffusion coefficient of EH-IDTBR in PTB7-Th. These results indicate that

NF-SMA OSCs can be stabilized by employing an NF-SMA with a high Tg or a poly-

mer with lower ductility that suppresses the crystallization of the NF-SMA. In order

for NF-SMA-based OSCs to be a viable technology, the quenched morphology

that gives high performance has to be stabilized against demixing or crystallization

by a high degree of vitrification with low diffusion (�1 3 10�22 cm2/s) or systems

have to be meta-stable with a mixed composition near the percolation threshold,

and the crystallization of the NF-SMA has to be suppressed or intrinsically avoided

by novel molecular designs or blend formulation.
RESULTS

Devices

The photovoltaic properties of our NF-SMA-based devices are investigated in an

inverted device architecture as depicted in Figure 2A. The chemical structures of

the polymer donors (P3HT, FTAZ, and PTB7-Th) and NF-SMAs (EH-IDTBR, ITIC)

used in this work are shown in Figure 2B. The typical current density-voltage (J-V)

curves of the devices are presented in Figure 2C, and the averaged performance

parameters for at least 6 OSC devices are summarized in Tables S1 and S2. Overall,

the P3HT:EH-IDTBR solar cells achieved a PCE of 6.1%, which is comparable with

the reported data.48 The FTAZ:EH-IDTBR- and FTAZ:ITIC-based devices exhibit
Joule 3, 1328–1348, May 15, 2019 1331



Figure 2. Chemical Structures and Photovoltaic Performance of Model Systems

(A) Device architecture of organic solar cells fabricated in this work.

(B) Chemical structures of P3HT, FTAZ, and PTB7-Th as electron donors and EH-IDTBR and ITIC as electron acceptors.

(C) Representative current density-voltage (J-V) characteristics of optimized fresh devices based on P3HT:EH-IDTBR, FTAZ:EH-IDTBR, and FTAZ:ITIC

solar cells under 100 mW cm�2 simulated solar light. The thermally annealed samples were annealed at 120�C for 10 min. See also Table S1.
respectable efficiencies up to 10.2% and 10.6%, respectively. The devices employ-

ing FTAZ as the donor polymer give significantly improved performance compared

to P3HT-based NF-SMA solar cells, which is likely because of enhanced hole

mobility, better matched energy levels of the FTAZ polymer, and improved active

layer morphology.49,50
Device Stability and Crystallization

Upon device fabrication, all devices were stored in the dark under N2 atmosphere for

device shelf-life stability tests and only periodically measured to minimize any

possible impact of light and reveal just the morphology changes. Normalized PCE

of the devices versus time are shown in Figure 3. Evolution of the key device param-

eters JSC, VOC, and FF as a function of time are shown in Figure S1. First, we compare

the shelf-stability of the as-cast and annealed (120�C) devices of P3HT:EH-IDTBR,

which exhibit an efficiency loss of 35% and 45% over 30 days, respectively (Fig-

ure 3A). In contrast, the as-cast FTAZ:EH-IDTBR-based solar cells decreased only

2% of its initial efficiency after 30 days but decreased over 30% after 30 days

when thermally annealed for just 10 min at 120�C and subsequent dark storage at

RT (Figure 3B). On the other hand, as-cast and low T thermally annealed (120�C)
FTAZ:ITIC shows small burn-in degradation and only high T thermally annealing

(180�C) produces degradation.

To reveal a possible proximal phenomenological origin of some of the efficiency loss

observed, grazing incidence wide-angle X-ray scattering (GIWAXS) was used51 to

probe the impact of casting and thermal annealing on the nanoscale packing of

the blend films. The corresponding 2D patterns of the investigated blend films are

shown in Figures 3D–3I. 1D GIWAXS patterns of investigated blends are shown in

Figure S2. From the GIWAXS profiles, the as-cast P3HT:EH-IDTBR (Figure 3D) blend
1332 Joule 3, 1328–1348, May 15, 2019



Figure 3. Shelf Stability and 2D GIWAXS Patterns

(A–C) Normalized PCE of NF-SMA based solar cells after 30 days storage in dark. Dashed lines represent fitted linear or exponential decays.

(A) P3HT:EH-IDTBR, (B) FTAZ:EH-IDTBR, (C) FTAZ:ITIC.

(D–F) 2D GIWAXS patterns of as-cast films of (D) P3HT:EH-IDTBR, (E) FTAZ:EH-IDTBR, and (F) FTAZ:ITIC samples. The yellow shaded area refers to

deviations from the exponential decay fittings.

(G–I) 2D GIWAXS patterns of (G) P3HT:EH-IDTBR, (H) FTAZ:EH-IDTBR, and (I) FTAZ:ITIC samples annealed for 10 min at 120�C. The GIWAXS

measurements were done 5 days after films’ preparation. Insets are optical micrographs of the respective samples, except the samples were annealed

for 24 h to enhance the growth of crystals so they can be observed by optical microscopy.

See also Tables S1 and S2 and Figures S1–S3.
film reveals a (010) peak in both the in-plane and out-of-plane directions, suggesting

disordered texture. In addition, strong P3HT (100), (200), and (300) peaks are

observed for this blend film, primarily in the out-of-plane direction. FTAZ:EH-IDTBR

and FTAZ:ITIC (Figures 3E and 3F) blend films exhibit a well-defined and broad (010)
Joule 3, 1328–1348, May 15, 2019 1333



Table 1. Summary of the Stability and the Kinetic and Thermodynamic Properties of Materials and Blends

Blend Annealing T
(10 min)

T80 (Days)
a NF-SMA

X-tals
Meta-
stable

D (cm2/s) Tc (
�C)

NF-SMA
Tg (�C)
Polymerb

Vitrified
at RT

Class

P3HT:EH-IDTBR n/a 15 no no 1.7 3 10�17 121 �20 no I

P3HT:EH-IDTBR 120�C 7 yes no 3.1 3 10�11 121 �20 no I

FTAZ:EH-IDTBR n/a 190 no �yes 2.0 3 10�18 121 �20 no II

FTAZ:EH-IDTBR 120�C 8 yes �yes 3.0 3 10�12c 121 �20 no II

FTAZ:ITIC n/a 75 no �yes n/a 200 �20 partial IIIb

FTAZ:ITIC 120�C 65 no �yes n/a 200 �20 partial IIIb

FTAZ:ITIC 180�C 6 yes �yes n/a 200 �20 partial IIIb

PTB7-Th:EH-IDTBR n/a 320 no no 4 3 10�20 121 125 �yes IIIa

PTB7-Th:EH-IDTBR 120�C 206 no no 1.6 3 10�14 121 125 �yes IIIa

aT80 of low burn-in devices such as as-cast FTAZ:ITIC was estimated by linear fit and extrapolation of the data. For PTB7-Th-EH-IDTBR devices last three points of

normalized PCE versus time were used for linear fit and extrapolation.
bTg of P3HTwith 94 kDamolecular weight is calculated using the Flory-Fox equation presented byGomez and coworkers. Also, Tg of FTAZ is inferred to be similar

to P3HT because of the similar DSC results of the blends.52

cEstimated by assuming the activation energy is the same as that of EH-IDTBR into P3HT.
peak in the out-of-plane direction for both of the polymer donor and SMA and

arc-like (100) scattering peaks, indicating the face-on preferential orientation of

these materials. Most importantly, it is clear that there is essentially no observable

feature representing crystals of EH-IDTBR and ITIC in as-cast samples. However,

upon thermally annealing at 120�C for 10 min for the two EH-IDTBR-based

blend films (i.e., P3HT:EH-IDTBR and FTAZ:EH-IDTBR, Figures 3G and 3H, respec-

tively), clear crystal signature can be observed within these films, as the GIWAXS

patterns exhibit multiple peaks of the NF-SMA of these blend films as indicated.

Furthermore, optical microscopy images exhibit micrometer-sized crystals after

thermal annealing at 120�C for EH-IDTBR-based blend films for 24 h (see insets in

Figure 3), clearly supporting the conclusion that EH-IDTBR can crystallize readily

at that temperature while blended with P3HT and FTAZ. In contrast, the GIWAXS

pattern of FTAZ:ITIC annealed at 120�C (Figure 3I) does not show any small molecule

crystalline features. Only the high-temperature annealing of FTAZ:ITIC (180�C,
Figure S3) for 10 min leads to the formation of ITIC crystals and corresponding

burn-in degradation.

Considering these results as summarized in Table 1, the three systems investigated

fall clearly into three categories or classes of failure; (1) P3HT:EH-IDTBR failing

severely even the as-cast devices presumably due likely to demixing and crystalliza-

tion, (2) FTAZ:EH-IDTBR failing moderately only as a result of crystallization at low T

anneal, and (3) FTAZ:ITIC only failing because of crystallization with aggressive

annealing. For the remainder of our work, we investigate the underlying thermody-

namic and kinetic factors of the working hypothesis that the severe failure of

P3HT:EH-IDTBR can be retarded in the case of FTAZ:EH-IDTBR by eliminating the

demixing of the mixed domains and progressively and more completely in case of

FTAZ:ITIC by vitrifying the devices in accordance with the conceptual scenarios

outlined above. The explanatory parameters investigated are meta-stability, diffu-

sion coefficients, and thermal properties. These results are delineated in detail

below and are also listed in Table 1.

Thermodynamic Properties: Toward Uncovering of Underlying Factors

To investigate the underlying origin of the differences of burn-in of the NF-SMA-

based devices observed here and to be able to verify the framework as outlined in
1334 Joule 3, 1328–1348, May 15, 2019



Figure 4. SIMS Profiles and Phase Diagram of P3HT:EH-IDTBR System

(A) Normalized SIMS profiles of P3HT/EH-IDTBR annealed at different temperatures.

(B) Corresponding miscibility gap/binodal extracted from temperature-dependent interaction

parameter c(T), after being normalized by the degree of crystallinity of P3HT (�25%). Error bars

show the maximum and minimum volume fractions extracted from SIMS profiles at each

temperature.

(C–E) VLM images of (C) P3HT:EH-IDTBR with 90:10 D/A, (D) FTAZ:EH-IDTBR with 85:15 D/A, and

(E) FTAZ:ITIC with 85:15 D/A, after being thermally annealed at 160�C for 2 days, respectively. See

also Figure S4.
Figure 1, we measured the molecular amorphous miscibility, which controls the

phase separation and the limiting purity of the mixed domains in active layers.22,40,37

We use a bilayer inter-diffusion experiment53,54 (Figure 4A) and monitor with ToF-

SIMS the equilibrium volume fraction of the EH-IDTBR in the polymer-rich layer un-

der conditions where crystallization is sufficiently suppressed, thus mapping out the

amorphous-amorphous phase diagram of the P3HT:EH-IDTBR system (see Supple-

mental Information and Figure S4 for details). By parameterizing the phase boundary

within the F-H framework, the effective F-H amorphous-amorphous interaction

parameter (c) for P3HT:EH-IDTBR is derived to be c(T) = �1.17 + 953/T, where T

is the absolute temperature. The good fit indicates that F-H is a reasonable approx-

imation and reveals that P3HT:EH-IDTBR is a UCST system, for which increasing the

temperature of the film will increase the degree of the mixing in the blend (Fig-

ure 4B). The fit yields an extrapolated c = 2.03 at RT, which corresponds to a poly-

mer-rich mixed phase with 7 vol % EH-IDTBR in the polymer, a concentration well

below the percolation threshold of �25%.45

Unfortunately, SIMS, as a method sensitive to molecular fragments, is not able to

provide reliable inter-diffusion data for FTAZ:EH-IDTBR and FTAZ:ITIC as a result

of the formation of similar molecular fragmentation patterns between FTAZ and

these NF-SMAs. Consequently, we employed a recently introduced ultraviolet-

visible (UV-vis) method to monitor the relative thermodynamic behavior of these

blends.55 The temperature-dependent miscibility in the presence of the NF-SMA

crystals can be characterized by a combination of visible light microscopy and con-

ventional UV-vis absorption spectroscopy.55 Figure S5 shows the temperature
Joule 3, 1328–1348, May 15, 2019 1335



dependent UV-vis of the three systems used in this study. The presence of SMA crys-

tals leads to higher purity in the mixed domains compared to the miscibility gap (see

Figure 1).56 Assuming that no cocrystals are formed, we have found (see Figure S6)

that FTAZ:ITIC have mixed domains that are less pure than FTAZ:EH-IDTBR, which in

turn are less pure than the P3HT:EH-IDTBR blend.

To confirm the validity of the relative thermodynamic behavior of these three

different blends, we furthermore acquired visible light microscope (VLM) images

of these systems annealed at elevated temperatures with a D/A ratio near the

acceptor percolation threshold of the polymer:SMA blends. The P3HT:EH-IDTBR

with 90:10 D/A ratio and FTAZ:NF-SMA blends with 85:15 D/A ratio were thermally

annealed at 160�C for 2 days. VLM images show that there is no evidence of crystal

features in FTAZ:EH-IDTBR- and FTAZ:ITIC-based blends, indicating that the

equilibrium composition of the NF-SMA in the mixed phase of FTAZ:EH-IDTBR

and FTAZ:ITIC is >15 vol % NF-SMA at the annealing temperature. In contrast,

P3HT:EH-IDTBR blend film shows micron-sized crystals of EH-IDTBR even with a

D/A ratio of 90:10, suggesting the equilibrium composition of EH-IDTBR in the

mixed amorphous-amorphous phase is <10% EH-IDTBR, well below the acceptor

percolation threshold.

Traversing the Threshold that Defines the Optimal Mixed-Domain

Composition

The device stability data exhibit interesting details that warrant examination and

might, in conjunction with our framework and characterization data, reveal nuanced

information about the morphology evolution and underlying kinetic factors. Most

strikingly, the PCE increases at the beginning for both as-cast EH-IDTBR-based solar

cells (Figure 3). This is very likely because of the fact that the ideal morphology cor-

responding to the optimum percolation is located between the quenched

morphology created during casting and the miscibility gap, which means that during

the morphology evolution and demixing from the quenched morphology to the

meta-stable miscibility gap, the performance likely goes first up because of reduced

bimolecular recombination and then down because of trapping of charges and

monomolecular recombination as percolation is lost. At the optimum trade-off be-

tween total recombination and energy per charge, the performance goes through

the maximum. The concentration of NF-SMA in the mixed domains can be consid-

ered the optimum percolation for OPVs and must be a composition that is close

to the percolation threshold for charge transport.

Interestingly, the annealed P3HT:EH-IDTBR and both FTAZ:EH-IDTBR systems also

exhibit details in the stability data that we can relate to the crossing of the optimal

composition of the mixed domains. To make this traversing of the optimum compo-

sition evident, we fit an exponential decay to the data (Figures 3A–3C). ITIC-based

solar cells mainly evolve through a single exponential decay, most pronounced in

FTAZ:ITIC device annealed at 180�C. In contrast, the two EH-IDTBR-based ther-

mally annealed films and the as-cast FTAZ:EH-IDTBR do not decay with a clean

exponential decay as observed in ITIC, but all three cases clearly have a second

feature that can be described as an initial bump extending �6 days for annealed

P3HT:EH-IDTBR and �10 days for both cases of FTAZ:EH-IDTBR. The timescale

spanned by this feature is shorter in P3HT:EH-IDTBR than FTAZ:EH-IDTBR. The

best exponential fit for as-cast P3HT:EH-IDTBR has been achieved when t = 0 is

not included. The similarity of the data and the lack of other features in the device

decay data suggest that only two variables, the demixing and crystallization, control

this evolution.
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Beyond Traversing theOptimumComposition Threshold: Secondary Impact of

Demixing and Crystallization

Nuances of the detailed device stability data, particularly decreases observed in VOC

(see Figure S1), cannot be readily explained with local demixing of the mixed

domains beyond the optimal composition, irrespective of whether such over purifi-

cation is because of hypo-miscibility or crystallization. Other related secondary

morphological factors and their evolution facilitated by diffusion and reorganization

must be considered. Possible factors are the creation of a vertical stratification or

wetting layer due to preferential interaction with and thus segregation to an inter-

face, creation of large crystals that partially short the devices by penetrating the

active layer completely, and molecular reorientation either at the electrodes or

the D/A interfaces. Delineating which morphological factor precisely controls the

degradation is outside the scope of this work. The secondary impacts are still pred-

icated on the primary factors and their kinetics. To achieve some initial insight, we

monitor the change in VOC for P3HT:EH-IDTBR samples annealed at 80�C and

120�C at different timescales (Figure S7). As can be seen, annealing of EH-IDTBR-

based systems consistently leads to loss of VOC; the more severe the heat stress,

the higher the resulting nucleation density and growth kinetics of crystals. Further-

more, to monitor the effect of crystallization on devices and accelerate the degrada-

tion process, we annealed the P3HT:EH-IDTBR devices at 150�C for 24 h after

electrode deposition. The 150�C annealed devices show the largest VOC loss

(�45%) with visible large EH-IDTBR crystals forming on the film. This trend clearly

implies that it is the increased propensity to create crystals that leads to the VOC

loss. Even FTAZ:ITIC annealed at 180�C shows a VOC loss. It is thus likely that a

more substantial reorganization with crystals penetrating the whole film is the cause

of the VOC loss.
Diffusion Coefficients and Thermal Properties

The SIMS profiles of the P3HT:EH-IDTBR and the bump-feature in the device perfor-

mance of P3HT:EH-IDTBR and FTAZ:EH-IDTBR also provides rough estimates for

diffusion coefficients in these systems. The bumps in the device performance data

provide a timescale that when combined with estimates of the size of the mixed

domains from resonant soft X-ray scattering (R-SoXS), can be used to infer diffusion

constants at RT. Estimating that domains have reached local equilibrium within �6

and �10 days for P3HT:EH-IDTBR and FTAZ:EH-IDTBR, respectively, and using

domains spacing of 118 and 52 nm from R-SoXS (see Figure S8 for more informa-

tion), respectively, we estimate diffusion constants Ddemix at RT of 1.7 3 10�17 and

2.0 3 10�18 cm2/s for P3HT:EH-IDTBR and FTAZ:EH-IDTBR, respectively. The

following assumptions were made. Although the average domain size in BHJ blend

will depend on the details of the morphology even for fixed volume fraction, a rough

estimate of the maximum length over which diffusion has to occur to leave a domain

in any directions corresponds to roughly half the spacing of the domains for a D/A

volume fraction of �1/2. As a result, length scales of 59 and 26 nm were used

to calculate the diffusion constants of P3HT:EH-IDTBR and FTAZ:EH-IDTBR,

respectively. Furthermore, using the same diffusion length equation x = 2(D 3 t)0.5

where x, D, and t are diffused distance in cm, diffusion coefficient in cm2/s, and an-

nealing time in seconds, respectively; we calculate from SIMS a lower limit of the

diffusion coefficient of Dmix R 2.7 3 10�12 cm2/s at 100�C for EH-IDTBR diffusing

into P3HT. Assuming the usual Arrhenius-type diffusion for EH-IDTBR and using

the two diffusion constants of Dmix R 2.7 3 10�12 cm2/s at 100�C and Ddemix =

1.7 3 10�17 at RT, we can furthermore estimate the diffusion activation energy of

EH-IDTBR into P3HT matrix to be �35 kcal/mol.57 We should note that because

of the possible differences between the mixing and demixing diffusion properties
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Figure 5. DSC Thermograms of Polymer:NF-SMA Blends

(A–D) DSC thermograms of (A) P3HT, P3HT:EH-IDTBR (1:1), and EH-IDTBR, (B) FTAZ, FTAZ:EH-

IDTBR (1:1), and EH-IDTBR, (C) FTAZ, FTAZ:ITIC (1:1), and ITIC, and (D) PTB7-Th, PTB7-Th:EH-

IDTBR (1:1), and EH-IDTBR collected from first heat cycle with 10�C/min heating rate. It is worth

noting that, for the sake of comparison of the thermodynamic properties, the D/A ratios are kept at

1:1 for different blends. The thermograms were vertically shifted to improve visibility. To magnify

the crystallization and melting transition features in PTB7-Th the data are multiplied by five.
of an SMA into or out of a polymer matrix in the presence or absence of SMA aggre-

gate phases, the Ea calculated for P3HT:EH-IDTBRmight not reflect the exact Ea that

would be calculated when using solely a mixing or demixing dataset. Prior experi-

ments of mixing versus demixing in P3HT:PCBM have not revealed though a large

differences in D for these two scenarios.58,59

In order to elucidate the differences in temperature needed to readily cause

crystallization and understand the differences in diffusion properties, the thermal

proprieties of the neat polymers, NF-SMAs, and blends with device D/A ratios are

examined by differential scanning calorimetry (DSC). From the DSC data (as shown

in Figure 5), we can observe a cold crystallization peak at 121�C and 200�C for

EH-IDTBR and ITIC, respectively, suggesting the initially amorphous fraction in the

pure samples is reorganizing and crystallizing at these temperatures. We interpret

the cold crystallization to reflect the Tg of the material fraction that is in an

amorphous disordered state. Tg is difficult to observe unobstructed in the materials

systems in this study because of the strong tendency of these materials to crystallize

at a very similar temperature once the mobility increases at or near Tg. Furthermore,

the cold crystallization temperatures of both EH-IDTBR and ITIC shift to slightly
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lower temperatures upon mixing with P3HT or FTAZ, which is due to plasticization of

the NF-SMA mixed with a ductile, low Tg polymer.60 P3HT is known to be a ductile

polymer with a Tg of �20�C, which typically is a function of the polymer molecular

weight.52 The similar shift in cold crystallization temperature of 9�C and 12�C for

EH-IDTBR in P3HT and FTAZ blends, respectively, suggests a similar ductility and

Tg of these two polymers. We note that we were forced to observe the Tg indirectly,

as no direct signature can be observed for Tg in DSC for P3HT or FTAZ. Overall, the

DCS suggests that P3HT:EH-IDTBR and FTAZ:EH-IDTBR have similar diffusion prop-

erties. In contrast, the difference in Tg observed between the two NF-SMAs implies

vastly different diffusion constants at a given temperature for the two NF-SMAs and

thus a difference in vitrification.

Comparison to PTB7-Th:EH-IDTBR and Impact of Ductility and Tg of Donor

Polymer

To extend the generality of our findings of three primary classes, we investigate the

thermodynamic and kinetic factors of PTB7-Th:EH-IDTBR, a system that has recently

been shown to have promising long-term device stability.19 In order to understand

the morphological stability of PTB7-Th:EH-IDTBR devices, we also test the shelf

stability of these devices. PTB7-Th:EH-IDTBR devices provide promising shelf stabil-

ity with a T80 of 320 and 206 days for as-cast and low temperature annealed (120�C),
respectively (see Figure S9). In addition to the known and confirmed device

performance of this system, we use the known mechanical and thermal properties

of PTB7-Th to establish some structure-property relations.19 By using the bilayer

inter-diffusion method, we obtained diffusion profiles as shown in Figure 6A, which

have been fitted with the 1D Fickian diffusion equation.57,58 The quality of the fit

indicates that the composition of the profiles at the interface, i.e., the fitting param-

eter C(0), is a good estimate of the binodal. The similar SMA composition at the

interface (C120(0)z 38 vol %) for PTB7-Th/EH-IDTBR bilayer samples after annealing

at 120�C annealed for 3 and 10 min further confirms that SMA composition at the

interface should be considered as the equilibrium composition (see Figure S10).

Even without detailed parameterization of the phase behavior spanned by these

three data points, qualitatively extrapolating the 120�C, 110�C, and 100�C data

with equilibrium composition of 38, 29, and 15 vol % (see Figure 6A), respectively,

to RT indicates that PTB7-Th:EH-IDTBR is not meta-stable, as the binodal is already

below the percolation threshold at 100�C and should be declining further for

lower T. In order to asses kinetics, the temperature-dependent diffusion coefficient

D(T) was extracted from the SIMS profiles (Figure 6B) assuming Arrhenius type diffu-

sion. Our D(T) results show that EH-IDTBR diffuses into the PTB7-Th matrix with two

to three orders of magnitudes lower diffusion coefficient compared to diffusion into

P3HT and FTAZ. Additionally, the DSC thermograms of PTB7-Th (see Figure 4D)

shows small cold crystallization and melting peaks (Tm) at 125�C and 276�C, respec-
tively. Given that Tc is a proxy for the Tg, this indicates that PTB7-Th has a signifi-

cantly higher Tg than P3HT and FTAZ. The higher melting point of PTB7-Th

compared to P3HT also points to higher Tg of PTB7-Th, using the Tg/Tm ratio

rule.61 The DSC thermogram of PTB7-Th:EH-IDTBR also shows the crystallization

peak and subsequently melting peak suppression of EH-IDTBR compared to the

blends of EH-IDTBR with P3HT and FTAZ. Furthermore, it was also shown by Balar

and coworkers that PTB7-Th shows smaller ductility compared to P3HT,62 which is

consistent with the DSC results. We also acquired DSC data of EH-IDTBR blends

with a 3:7 D/A ratio (see Figure S11). Similar to the 1:1 D/A ratio data, EH-IDTBR

blended with FTAZ shows the largest drop in Tc, whereas EH-IDTBR blended with

PTB7-Th does not experience a Tc drop. The higher Tg for PTB7-th leads to a

more vitrified system with lower diffusion of EH-IDTBR into or out of the PTB7-Th
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Figure 6. Temperature-Dependent Diffusion Coefficient D(T) and 2D GIWAXS Patterns

(A) Diffusion profiles of reference and annealed PTB7-Th/EH-IDTBR bilayers. The black dotted lines

are the fits to diffusion profile using 1D Fick’s second law solution for diffusion. Zero of the x axis

represents the vacuum and polymer interface. The first 10–20 data points of the SIMS profiles were

removed because of the instability of the sputtering and detecting beam in first 10–20 s. Assuming

Arrhenius-type diffusion, activation energy Ea of 31.6 kcal/mol was extracted for diffusion of EH-

IDTBR into PTB7-Th matrix. The profiles are horizontally shifted to align the polymer/SMA interface

at 50% of EH-IDTBR yield.

(B) Temperature dependence diffusion coefficient of EH-IDTBR into PTB7-Th matrix.

(C and D) 2D GIWAXS patterns of (C) as-cast and (B) annealed (120�C for 10 min) PTB7-Th:EH-IDTBR

blend films with 1:1.2 D/A ratio.

See also Figures S9 and S10.
matrix. The impact of lower ductility of PTB7-Th compared to P3HT and FTAZ is

further explored using GIWAXS measurement. In contrast to the annealed

P3HT:EH-IDTBR and FTAZ:EH-IDTBR systems, the as-cast (Figure 6C) and 120�C
annealed (Figure 6D) PTB7-Th:EH-IDTBR films with 1:1.2 D/A ratio show no sign of

EH-IDTBR crystalline features. Since the EH-IDTBR content in a 1:1.2 D/A blend is

above the 38 vol % equilibrium composition of PTB7-Th:EH-IDTBR at 120�C, the
lack of EH-IDTBR crystalline features in PTB7-Th:EH-IDTBR annealed samples is

because of the vitrification of the morphology achieved by the lower ductility of

PTB7-Th. The stability of the PTB7-Th:EH-IDTBR can be well explained by the low

diffusion coefficient and the vitrification of EH-IDTBR in PTB7-Th. The combination

of GIWAXS, DSC, and ToF-SIMS allow us to monitor and distinguish the effects of

thermal annealing on a meta-stable system with relatively large diffusion coefficient

(e.g., FTAZ:EH-IDTBR) from a hypo-miscible system with low diffusion coefficient

(e.g., PTB7-Th:EH-IDTBR). For instance, in a meta-stable system with a relatively
1340 Joule 3, 1328–1348, May 15, 2019



large diffusion coefficient such as FTAZ:EH-IDTBR the annealing leads to nucleation

and crystallization of EH-IDTBR. While in a hypo-miscible system with a relatively low

diffusion coefficient such as PTB7-Th:EH-IDTBR, the crystallization is suppressed

because of vitrification of the morphology.

A summary of the thermodynamic properties, the diffusion constants and thermal

properties of all systems investigated are summarized in Table 1 to provide a

comprehensive overview in one place of the device stability and the underlying

materials’ parameters.

DISCUSSION

In order to analyze and discuss commonalities and differences between our mate-

rials systems and relations to the three primary stability scenarios, we first summarize

the most salient aspects of the materials systems, their relations to demixing and

crystallization burn-in, then delineate commonalities, and return to structure-func-

tion relations and implications for the future.

Performance and Morphology Evolution and Their Classification

The P3HT:EH-IDTBR systems clearly corresponds to class I, exhibiting strong degra-

dation due to crystallization and lack of meta-stability. The lack of meta-stability was

directly confirmed by mapping out the phase diagram with SIMS and extracting c(T).

The extrapolated RT composition at the binodal was only 7 vol % EH-IDTBR, well

below the percolation threshold. Additionally, rapid crystallization could be induced

by mild annealing at 120�C for 10 min. The FTAZ:EH-IDTBR systems corresponds to

Class II, exhibiting the highest T80 among the three primary model systems. Given

that rapid crystallization and strong device performance degradation could be

induced by mild annealing at 120�C for 10 min and that the estimated diffusion

coefficient is not drastically different from that of P3HT:EH-IDTBR, we infer that

this system is not kinetically stabilized and that the high T80 is due at least in part

to FTAZ:EH-IDTBR being a system close to meta-stability. Various estimates of the

phase behavior with optical methods have confirmed that FTAZ:EH-IDTBR should

be closer to meta-stability than P3HT:EH-IDTBR.

The FTAZ:ITIC system is close to a class IIIb model system, exhibiting moderate T80
for as-cast devices and requiring high T annealing to induce crystallization. The

system is clearly kinetically stabilized against crystallization and spinodal burn-in,

although the direct confirmation by measuring a diffusion constant with SIMS was

not possible. FTAZ:ITIC is the only system not showing an obvious initial increase

or ‘‘bump.’’ This implies that FTAZ:ITIC is not traversing the optimal composition

near the percolation threshold within the experimental time frame.

PTB7-Th:EH-IDTBR is clearly close to a class IIIa model system, with a binodal

EH-IDTBR concentration well below the percolation threshold and thus far from

meta-stability but kinetically stabilized with the lowest diffusion constants observed.

Common Aspects of the Device Morphology and Degradation Kinetics

All observations about the device stability data and GIWAXS results can be consis-

tently described with only three dominating variables: (1) the thermodynamic drivers

for demixing or lack thereof (i.e., meta-stability) of the amorphous mixed regions,

which is governing the evolution of the NF-SMA concentration from the as-cast,

possibly quenched state toward the binodal, (2) the propensity of the NF-SMA to

crystallize, which is governing the transition from the binodal to the liquidus, and

(3) kinetic stabilization due to low diffusion. The overlapping characteristics of the
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crystallization and demixing processes are clearly observed in the annealed devices

of P3HT:EH-IDTBR and FTAZ:EH-IDTBR, when the impact of crystallization creates

an exponential decay and the demixing a ‘‘bump’’ in the stability data. This clearly

shows that burn-in because of crystallization is proceeding at the same time as the

purification because of amorphous-amorphous interactions, possibly in different re-

gions of the devices. Even the exponential function fitted to the as-cast P3HT:EH-

IDTBR (Figure 3A) can be interpreted within this framework. The initial performance

increase in as-cast devices is a result of demixing from an excessively quenched state

to the optimum composition, whereas the exponential decay is dominated by de-

layed crystallization that happens even at RT after about 5 days. The definitive

answer about the relative timing and weight of these two processes is outside the

scope of the current study and would likely include analysis with higher data density

in time and temperature and additional characterization methods. These results

point out though that the evolution of the device performance has defined relations

to the underlying thermodynamics of the system.

The observation of an initial increase in performance or a ‘‘bump’’ on top of a well-

defined decay in three of the four systems investigated has interesting implications.

First, it indicates that these devices have not been optimized with the currently used

as-casting or post-processing procedures. Given this prevalence, this points

possibly to competing fabrication constraints of locking in a small-enough length

scale and the required quench to achieve small length scales is arresting the demix-

ing of the mixed domains to a composition that is not optimal. Post-processing

might be able to achieve improved performance by controlling the demixing to

evolve toward the optimum composition. Such post-processingmight require a judi-

cious choice of temperature and might be constraint by the phase diagram. For

example, annealing at elevated temperatures might allow the system to reach the

binodal at that temperature. If that binodal corresponds to a mixed-domain compo-

sition that is too far above the percolation threshold, the quench back down to RT

after the annealing step would lock-in this un-optimized composition. Consider,

for argument’s sake, an anneal of P3HT:EH-IDTBR at 200�C. It would produce a

mixed-domain composition with 50% EH-IDTBR (Figure 3), which is much too high

to give a good performance. There is thus a complex interrelation between process-

ing, annealing protocols, and stability that depends on the details of the phase

diagram. Second, a well-defined bump can be used in conjunction with measure-

ments of the domains’ size to estimate diffusion coefficients. In either case, the

shape of the performance evolutions contains valuable information about the misci-

bility and the diffusion coefficients of the system. The observation of a bump would

imply that there is sufficient mobility in the systems such that crystallizable NF-SMA

might eventually crystallize and thus destroy the devices, although maybe with a

delay similar to P3HT:EH-IDTBR. Additionally, deliberately creating mixed domains

that are too impure and subsequently monitoring the bump in the device stability

data might be an interesting method to infer diffusion coefficient in class I systems

that could be performed in almost any laboratory, without needing SIMS or other

complex measuring methods.

Kinetic Factors and Their Structure-Function Relations

The degree of vitrification and diffusion coefficients varies considerably between the

systems. This must be ultimately related to molecular structure that controls interac-

tions, flexibility, and thus various thermal and mechanical properties. Although our

final goal is to directly understand structure-function relations at the molecular level,

we have as a first step toward such understanding investigated proximal variables

such as Tg and ductility. Overall, the difference and similarities in shelf-stability for
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the two different NF-SMAs investigated and paired with FTAZ can be explained well

by the differences in the Tgs and crystallization behavior of these two SMAs.

Similarly, the ductility of the donor polymer could be linked to vitrification. Overall,

the results indicate that use of a high-Tg, low-ductility polymer donor (e.g., PTB7-Th),

or an SMA with a high Tg (e.g., ITIC) can suppress crystallization and demixing and

leads to more stable operation. However, little is known about the mechanical

and thermal properties for a number of donor polymers and NF-SMAs, even though

such properties clearly impact the stability. For example, measuring Tg of semi-con-

ducting polymers remains a challenge and which mechanical and thermal parameter

controls stability and diffusion properties remains unresolved. We note that activa-

tion energy for diffusion of EH-IDTBR in P3HT is larger than that of PCBM in P3HT.57

This is likely related to the shape and size of these two acceptor molecules.63 This

implies that the diffusion coefficient of NF-SMA of various shapes and possibly

flexibility should be investigated as a function of both donor polymer and NF-

SMA properties in order to more fully understand how devices can be vitrified and

stabilized in relation to their chemical structure. These results also suggest that

annealing protocols to boost efficiency have to be executed with caution in a system

where the NF-SMA can crystallize. A temperature well below the Tg/cold crystalliza-

tion temperature needs to be utilized to avoid the nucleation and crystallization of

the NF-SMA.

For a hypo-optimal, low miscibility system, we estimate that a diffusion coefficient

below 10�22 (cm2/s) is required to provide sufficient kinetic stabilization. This

corresponds to 20 nm diffusion over 10 years and is two orders of magnitude

lower than what we observed for the most stable system here. Since P3HT:EH-IDTBR

has a performance drop of 45% over 30 days because of a diffusion coefficient

five orders of magnitude larger than what is required for a morphologically stable

system and needs to have a quenched system for best performance, it is not an ideal

system for industrial applications. We note that one of the PCBM-based systems

with relatively good but not perfect morphological stability is PCDTBT:PC71BM.64

It is doubly stabilized with a binodal close to percolation37 and relatively high vitri-

fication because of a donor with Tg of �140�C, which is much higher than that of

P3HT.

Finally, the degradation of P3HT:EH-IDTBR is the highest among the three model

systems. This is in contrast to a previously reported study by Gasparini and co-

workers on an analog of EH-IDTBR, namely O-IDTBR with linear C8H17 side chains,

in which ‘‘burn-in’’ free operation was reported for 300-nm-thick, blade-coated sam-

ples34 but roughly in line with the thin, spin-cast P3HT:O-IDTBR devices reported by

the same group that exhibited a drop in performance of �25% over 50 days.48

Clearly, processing conditions or film thickness seem tomatter. Theminor difference

between the as-cast devices can have a number of causes, including differences in

the P3HT batches used or different thermodynamic properties of the two IDTBR var-

iants. Regarding the thermodynamics, DSC (Figure S12) reveals a larger depression

of the melting and crystallization temperature of P3HT upon mixing with O-IDTBR

compared to EH-IDTBR, suggesting a higher miscibility of P3HT:O-IDTBR compared

to P3HT:EH-IDTBR. The thermodynamic driver for amorphous demixing would thus

be smaller for P3HT:O-IDTBR and if small enough at RT to be a hyper-miscible or

optimally miscible system, indeed burn-in free operation would be expected if

crystallization is suppressed. Given that both IDTBR variants crystallize, the degrada-

tion of the spin-cast samples is likely because of crystallization induced by crystal

nuclei formed during casting, which are not formed in blade-coating thicker films.

The differences clearly warrants further study to better understand the differences
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and if suppression of crystallization in blade-coated devices can persist in a real

application environment with some thermal stress.

Conclusions

Considering the totality of the results, a coherent framework emerges that connects ther-

modynamics, kinetics, and fundamental thermal properties of the constituent materials.

Our work is the first to experimentally demonstrate such comprehensive relationships,

particularly in crystallizableNF-SMAsystems. It confirmsearlier inferences that low-misci-

bility NF-SMA systems have to be quenched for best performance45 into a state that is

thermodynamically unstable against demixing of the mixed domains. Furthermore, all

systems investigated are intrinsically unstable against crystallization, which lowers the

NF-SMA composition in the mixed domains further below the percolation threshold

and can also lead to large crystals that short devices. Although conceptually simple,

our work demonstrates explicitly that just three variables (demixing, crystallization, and

diffusion) dominate the morphological stability for the systems investigated, and there

is no indication that other factors such asmolecular reorientation relative to the substrate

or relative to thedonor-acceptor interfaceorchanges incharge transfer (CT)dockingsites

play a major role.65–67 The impact of the demixing and crystallization variables can have

similar timescales and can overlap in their impact. This is likely not accidental andmean-

ingful diffusion and crystallization of the NF-SMA are likely systematically coupled (non-

linearly) via their Tg when starting from quenched morphologies. We have for the first

time measured diffusion coefficients and outlined a new method to estimate at RT the

diffusion coefficient for NF-SMA by using the device data and the morphology data.

Comparisons to fullerene diffusion imply that NF-SMA are intrinsically more stable than

fullerene devices, likely on account of differences in the shape of the acceptor.

The lessons learned from the combined measurements regarding a robust

morphology are as follows: a system with optimal or hyper-optimal miscibility is

intrinsically stable against demixing beyond the percolation threshold. If the crystal-

lization can be controlled via entropic factors by using NF-SMA mixtures or by mo-

lecular design, an operationally stable system might be achieved. In all other cases,

kinetic control of demixing and crystallization via vitrification is required. In those

cases, the Tg of the NF-SMA and that of the donor polymer emerge as an important

parameter predicting stability. Since Tg and ductility are likely anti-correlated, a sta-

bility-ductility tension emerges as an engineering challenge: the most stretchable

and bendable devices are likely to be the most unstable. While that could have

been conceptually anticipated, we show this here explicitly. The results point to a

need for improved understanding of structure-function relations and the further

development of measurement and analysis methods to achieve a rational design.

Importantly, our results refine and extend the prior findings that tuning of enthalpic

molecular interactions is critical to achieving high performance.37 It was argued that

only systems with low-enough miscibility (i.e., high c) can have strong-enough phase

separation to yield high performance, in turn necessitating a quench of hypo-miscible

systems into a highly non-equilibrium morphology.38,40,37,45 We now relate the pro-

pensity for burn-in degradation of NF-SMA based OSCs not only directly to their

measured molecular miscibility but also to the degree of vitrification of the poly-

mer:NF-SMA blends and their diffusion properties. Importantly, we have shown that

using a polymer with low ductility, such as PTB7-Th, and an NF-SMA with high Tg,

such as ITIC, can lead to low diffusion coefficients, the vitrification of the OSC active

layer, and suppression of NF-SMA crystallization. Given that ductility, glass formation,

and diffusion properties are ultimately governed by complex molecular interactions,

our results dictate that the inter- and intra-molecular interactions and possibly other
1344 Joule 3, 1328–1348, May 15, 2019



molecular parameters such as stiffness need to be tuned more precisely by molecular

design than previously thought to either achieve optimum miscibility and thus at least

meta-stability or to achieve sufficient vitrification. The results indicate that further

extensive studies are warranted to delineate and control all molecular interactions

and related structure-function relationships across several dimensions so thatmaterials

can be rationally designed for high performance and high stability.
EXPERIMENTAL PROCEDURES

Materials

P3HT is provided by IainMcCulloch’s group withMnz 94 kDa and PDI = 1.6. FTAZ is

provided by Wei You’s group with Mn z 57.5 kDa and PDI z 1.6, which is synthe-

sized according to previous literature.68 PTB7-Th was purchased from Solarmer

with Mn > 25 kDa and PDI between 1.8 and 2.2. EH-IDTBR and ITIC were purchased

from 1-Material and Solamer, respectively. All the solvent and other materials were

purchased from commercial sources and used without further purification.
Fabrication and Testing of Polymer:SMA Devices

Thebest performance for the polymer:SMAdeviceswas achievedafter extensive optimi-

zationwith an inverted structure of ITO/ZnO/polymer:SMA/MoO3/Al, and the details are

as follows. Pre-patterned ITO-coated glass with a sheet resistance of �15U per square

was used as the substrate. It was cleaned by sequential sonication in soap deionized

(DI) water, DI water, acetone, and isopropanol for 15 min at each step. After ultravio-

let/ozone treatment for 20 min, a ZnO electron transport layer was prepared by spin

coating at 4,000 rpm from a ZnO nanoparticle solution. Active layers were spin coated

from the polymer:NF-SMA solution to obtain thicknesses of �100 nm. P3HT:EH-IDTBR

with 1:1 D/A active layers were spin cast from chlorobenzene (CB) solution with

12mg/mLpolymer concentration.FTAZ:NF-SMAactive layerswerecast fromtolueneso-

lution with 6 mg/mL polymer concentration and 1:1.5 and 1:1 D/A ratio for FTAZ:EH-

IDTBR and FTAZ:ITIC, respectively. PTB7-Th:EH-IDTBR active layers with 1:1.2 D/A ratio

were cast from CB solution with 10 mg/mL polymer concentration. The thermally an-

nealed polymer:NF-SMA films were then annealed at an elevated temperature for

10 min before being transferred to the vacuum chamber of a thermal evaporator inside

the glove box. Then, a thin layer (10 nm) ofMoO3 was deposited as the anode interlayer

under vacuum followed by 100 nmof Al as the top electrode. All cells weremeasured in-

side theglovebox. Fordevicecharacterizations,J-V characteristicsweremeasuredunder

AM1.5G light (100mWcm�2) using aClass AAANewport solar simulator. The light inten-

sitywascalibratedusinga standardSidiode (withKG5filter,purchased fromPVMeasure-

ment) tobring spectralmismatch tounity.J-V characteristicswere recordedusingaKeith-

ley 236 source meter unit.
Hard and Soft X-Ray Scattering

GIWAXS51 and R-SoXS69 measurements were performed at the beamlines 7.3.3 and

11.0.1.2, Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, as

described in detail in the Supplemental Information.
Secondary Ion Mass Spectroscopy Measurements

For depth profiles acquired in this study, ToF-SIMS experiments were conducted

using a TOF SIMS V (ION TOF, Inc. Chestnut Ridge, NY) instrument equipped with

a Bi3
+ liquid metal-ion gun, Cesium sputtering gun, and an electron flood gun for

charge compensation. Cs+ was used as the sputter source with a 10 keV energy

and 24 nA current. The sputter area was 50 by 50 mm. The analysis chamber pressure

was maintained below 5.0 3 10�9 mbar to avoid contamination of the surfaces to be
Joule 3, 1328–1348, May 15, 2019 1345



analyzed. The details of TOF-SIMS sample preparation are provided in the Supple-

mental Information.

DSC Measurements

The DSC samples were prepared by drop casting of the neat or blend materials dis-

solved in CB on glass slides with a total concentration of 15 mg/mL. After being

stored inside the glovebox overnight, the samples were transferred into a vacuum

chamber and kept under vacuum for 5 days to remove the residual solvent trapped

in the film. The dried samples then were scratched from the glass slides and moved

to aluminum pans to be used for DSC measurements. The DSC thermograms are

collected with the TA Instruments Discovery DSC. The heating/cooling rate was

10�C/min. Baseline and temperature were calibrated with sapphire and indium.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.joule.

2019.03.020.
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