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ABSTRACT
ESA and NASA are moving forward with plans to launch Laser Interferometer Space Antenna
(LISA) around 2034. With data from the Illustris cosmological simulation, we provide analysis
of LISA detection rates accompanied by characterization of the merging massive black hole
(MBH) population. MBHs of total mass ∼105–1010 M� are the focus of this study. We
evolve Illustris MBH mergers, which form at separations of the order of the simulation
resolution (∼kpc scales), through coalescence with two different treatments for the binary
MBH evolutionary process. The coalescence times of the population, as well as physical
properties of the black holes, form a statistical basis for each evolutionary treatment. From
these bases, we Monte Carlo synthesize many realizations of the merging MBH population
to build mock LISA detection catalogues. We analyse how our MBH binary evolutionary
models affect detection rates and the associated parameter distributions measured by LISA.
With our models, we find MBH binary detection rates with LISA of ∼0.5–1 yr−1 for MBHs
with masses greater than 105 M�. This should be treated as a lower limit primarily because
our MBH hole sample does not include masses below 105 M�, which may significantly add
to the observed rate. We suggest reasons why we predict lower detection rates compared to
much of the literature.

Key words: gravitational waves.

1 INTRODUCTION

With the selection of the Laser Interferometer Space Antenna
(LISA; Amaro-Seoane et al. 2017) by the European Space Agency
(ESA) for its L3 mission, the massive black hole (MBH) community
will gain an important tool for understanding the physics and
evolutionary history of MBHs. Following a galaxy merger, the two
MBHs from the galactic centres eventually form a bound pair and
become a binary. This evolving MBH pair radiates gravitational
waves at a range of low frequencies ∼1 nHz−1 mHz. At the higher
end of this range, when the two MBHs are nearer to coalescing, their
gravitational wave emission will make them a prime target for the
LISA mission. LISA is sensitive to MBH binaries of ∼103–109 M�
(Klein et al. 2016; Amaro-Seoane et al. 2017; Katz & Larson 2019)
at frequencies from 0.1 to 10 mHz corresponding to separations of
less than 103 Schwarzschild radii. Signals from these binaries will
allow the scientific community to study the origin and evolution of

� E-mail: mikekatz04@gmail.com

MBHs over cosmic time (eLISA Consortium 2013; Barausse et al.
2015; Amaro-Seoane et al. 2017). Additionally, MBH binary signals
have the potential to reach very high signal-to-noise ratios (SNR,
also referred to as ρ), unattainable for ground-based gravitational
wave detectors (eLISA Consortium 2013; Barausse et al. 2015).
This will allow for high precision measurements of cosmological
parameters as well as a greater understanding of fundamental
physics (Gair et al. 2013; Barausse et al. 2015).

In this paper, we use the Illustris large-scale cosmological
simulations (Genel et al. 2014; Vogelsberger et al. 2014a,b; Sijacki
et al. 2015) to analyse MBH binary populations, their dynamics,
and LISA detection prospects. A few papers have provided similar
studies. Blecha et al. (2016) performed an analysis on MBH recoil
kicks using Illustris data. Kelley, Blecha & Hernquist (2017a) and
Kelley et al. (2017b, 2018) performed a similar analysis to ours
in relation to Pulsar Timing Array (PTA) predictions. There have
been many papers predicting rates for LISA (e.g. Berti et al. 2016;
Klein et al. 2016; Salcido et al. 2016; Bonetti et al. 2019), as well as
new predictions for the TianQin gravitational wave observatory,
which is similar in construction to LISA (Wang et al. 2019).

C© 2019 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/491/2/2301/5614512 by N
orthw

estern U
niversity Library, Serials D

epartm
ent user on 28 January 2020

http://orcid.org/0000-0002-7605-5767
mailto:mikekatz04@gmail.com


2302 M. L. Katz et al.

Many rate prediction papers are built from semi-analytical models
(SAM). Most rate predictions with large seeds from SAMs, like
those in Klein et al. (2016) and Berti et al. (2016), use seeds of
the order of 104 M�. These masses are unresolved in the Illustris
simulations; therefore, our overall rate estimates will be lower than
those predicted in these papers. Similarly, as delays between galaxy
mergers and their central MBH mergers have been included in
SAMs, the predicted rates have lowered a bit from ∼20 yr−1 (Arun
et al. 2009; Sesana et al. 2011) to ∼8 yr−1 (Berti et al. 2016; Klein
et al. 2016). However, the inclusion of triple MBH interactions has
increased the rate to ∼20 yr−1 (Bonetti et al. 2019). In addition to
using MBH binaries from Illustris, we use improved prescriptions
for the MBH binary evolutionary process (delay prescriptions) from
Dosopoulou & Antonini (2017) and Kelley et al. (2017a,b).

Black holes with masses of ∼106–1010 M� are usually considered
MBHs. These MBHs are believed to exist in the centres of most
galaxies of considerable size (Soltan 1982; Kormendy & Richstone
1995; Magorrian et al. 1998). This stems from observations of
dynamics in the centre of other galaxies, as well as our own
Milky Way Galaxy. The MBH in the centre of the Milky Way
Galaxy has been constrained to a mass of ∼4.1 × 106 M� (Boehle
et al. 2016). Intermediate mass black holes (IMBH) with masses
of ∼102–105 M� have been theorized and observations of IMBHs
have been suggested (e.g. Lin et al. 2018; Bellovary et al. 2019),
but remain uncertain. However, electromagnetic observations are
beginning to find MBHs in between these ranges (105–106 M�) in
dwarf galaxies (Reines, Greene & Geha 2013; Moran et al. 2014;
Satyapal et al. 2014; Lemons et al. 2015; Sartori et al. 2015; Pardo
et al. 2016; Nguyen et al. 2018, 2019).

Within the �CDM paradigm (e.g. White & Frenk 1991), galactic
haloes merge. If conditions are right, the MBHs in their centres
can form a binary (Begelman, Blandford & Rees 1980). The pair
of MBHs will inspiral via interactions with surrounding gas and
stars until they reach close enough separations to emit detectable
gravitational waves (e.g. Sesana et al. 2004; Haiman, Kocsis &
Menou 2009; Sesana 2010; Roedig et al. 2011; Dosopoulou &
Antonini 2017; Rasskazov & Merritt 2017; Kelley et al. 2017a,b).
The only way to study MBHs to date is through electromagnetic
observations, which lead to a potential observational bias in the
MBH population measurements (Shen et al. 2008; McConnell &
Ma 2013; Shankar et al. 2016; Rasskazov & Merritt 2017). LISA
will add a strong and independent method for studying these
exotic objects. Additionally, the combined measurement of the
luminosity distance to a binary with LISA and the electromagnetic
measurement of a binary redshift can be used as a ‘standard siren’
to measure the Hubble parameter (Schutz 1986; Holz & Hughes
2005; Abbott et al. 2017). To perform this measurement, the host
galaxy of the binary will generally be needed to get the redshift
value. Many groups suggest that some periodic active galactic nuclei
could be MBH binaries (e.g. Graham et al. 2015; Charisi et al.
2016; Liu et al. 2016). This type of measurement can help identify
the host galaxy and therefore the redshift of the binary. However,
even without an electromagnetic counterpart, LISA measurements
can help constrain various cosmological parameters (Petiteau,
Babak & Sesana 2011). In addition to cosmological parameters,
EM counterparts of MBH binaries can help illuminate a variety
of astrophysical processes, including accretion physics and galaxy
evolution (Burke-Spolaor 2013; Bogdanović 2015).

Understanding formation channels of these large MBHs and how
they relate to galaxy formation models is an active area of research.
Leading theoretical ideas about MBH formation channels largely
differ in their considerations for the mass of MBH seeds at early

times in the evolution of the Universe. One such scenario involves
the direct collapse of pre-galactic haloes with a seed mass of the
order of 104–106 M� at redshifts of 10–20 (Loeb & Rasio 1994;
Begelman, Volonteri & Rees 2006; Latif et al. 2013; Habouzit et al.
2016; Ardaneh et al. 2018; Dunn et al. 2018). Another scenario
involves seeds of ∼103–104 M� from runaway cluster collapse
(Omukai, Schneider & Haiman 2008; Devecchi & Volonteri 2009;
Davies, Miller & Bellovary 2011; Katz, Sijacki & Haehnelt 2015).
For smaller seeds, MBH formation channels involve seeds from the
collapse of large Population III stars into black holes of the order
of 102 M�. This would occur at earlier times in cosmic history at
redshifts of 20–50 (Haiman, Abel & Rees 2000; Fryer, Woosley &
Heger 2001; Heger et al. 2003; Volonteri, Madau & Haardt 2003;
Alvarez, Wise & Abel 2009; Tanaka & Haiman 2009). Regardless
of the formation channel, observations of active galactic nuclei of
∼109 M� in the centres of galaxies at z ∼ 6–7 indicate MBHs in the
Universe must have formed quickly on cosmological time-scales
after the big bang, within 1 billion yr (Fan et al. 2001a,b, 2006;
Mortlock et al. 2011).

It may be that reality is a combination of these three theories.
Additionally, different accretion types and spin values can affect the
growth rate of MBHs (Plowman et al. 2010; Plowman, Hellings &
Tsuruta 2011; Sesana et al. 2011). Due to the possible measurement
bias of AGNs with EM observations (Lauer et al. 2007; Schulze &
Wisotzki 2011), these possibly conflicting scenarios will benefit
greatly from LISA detections at higher redshifts across the entire
mass spectrum.

The coalescence of two MBHs occurs after a long dynamical pro-
cess forcing the two MBHs to decay from ∼kpc separations down
to merger (Begelman et al. 1980; Yu 2002; Merritt & Milosavljević
2005). Once two galaxies have merged, their central MBHs sink to
the centre via dynamical friction from interactions with surrounding
stars (Chandrasekhar 1943; Quinlan 1996; Quinlan & Hernquist
1997). Once the two MBHs become gravitationally bound, the dy-
namical friction formalism breaks down, and individual interactions
between singular stars and the binary must be considered. These
interactions extract angular momentum from the binary, driving
them closer to each other (e.g. Merritt 2013; Vasiliev & Merritt
2013). This regime is the ‘stellar hardening’ or ‘loss-cone scattering’
regime, which refers to the specific cone in parameter space where
stars have to exist in order to extract angular momentum from the
binary (Frank & Rees 1976; Lightman & Shapiro 1977). Following
these interactions, the binary becomes close enough to interact with
a circumbinary gas disc if gas is present. Generally, the torque from
the gas disc is expected to bring the binary closer to coalescence
(Haiman et al. 2009). However, there is growing evidence that
specific binary parameters and gas disc properties can lead to the
gas disc forcing the binary outwards to larger separations (Moody,
Shi & Stone 2019; Muñoz, Miranda & Lai 2019). After interaction
with a gas disc, or if there is little to no gas present, the binary
will enter the gravitational wave regime where it will evolve until
coalescence. Once the binary enters the gravitational wave regime,
its dynamics follow the formalism of Peters & Mathews (1963) at
small separations of ∼100–1000 Schwarzschild radii (Kelley et al.
2017a). Several studies have predicted some residual eccentricity
when MBH binaries enter the LISA frequency band (Amaro-Seoane
et al. 2010; Porter & Sesana 2010; Dosopoulou & Antonini 2017;
Mirza et al. 2017). However, we will treat all binaries as circular for
convenience. This is also conservative as the eccentricity will cause
the binaries to merge faster.

We will examine binary lifetime models from Dosopoulou &
Antonini (2017) and Kelley et al. (2017a,b). In Section 3.1, we will
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discuss our models and their specific mathematical approaches to
binary lifetime calculations. For this paper, in order to match with
cosmological parameters in the Illustris simulation, we assume a
WMAP-9 cosmology with H0 = 70.4 km s−1 Mpc−1, �M = 0.2726,
�b = 0.0456, and �vac = 0.7274 (Hinshaw et al. 2013).

2 ILLUSTRIS SIMULATION

The Illustris cosmological simulations are a suite of simulations
evolving gas cells, dark matter (DM), star, and MBH particles from
z = 137 to z = 0 in a cube of side length 106.5 comoving Mpc.
Illustris is based on the moving, unstructured-mesh hydrodynamic
code AREPO (Springel 2010). Illustris reproduced statistics of large-
scale galaxy assembly as well as internal structures of elliptical
and spiral galaxies (Vogelsberger et al. 2014b). In particular, we
extracted data from Illustris-1, the highest resolution simulation
in the suite, with 18203 gas cells and DM particles. DM particles
have a mass resolution and typical gravitational-softening length of
∼6.3 × 106 M� and 1.5 kpc, respectively. At redshift zero, there
are over 3 × 108 star particles, which have a resolution of ∼1.3 ×
106 M� and a typical softening length of 700 pc.

MBHs are implemented in Illustris as massive sink particles.
When haloes attain a total mass of 7.1 × 1010 M�, they are seeded
with an MBH of mass 1.42 × 105 M� if it does not already have
an MBH in it (Sijacki et al. 2015); the highest density gas cell in
the halo is converted to the MBH particle. At this point, the initial
dynamical MBH mass will be the same as the gas cell in its previous
state. However, the MBH particle is assigned an internal mass of
the seed mass, which is tracked from this point (Vogelsberger et al.
2013).

MBH particles grow by Eddington-limited, Bondi–Hoyle accre-
tion from their parent gas cells initially, and then from its nearby
gas cells after the dynamical mass of the particle becomes equal to
its internal mass. From this point, the dynamical mass and internal
MBH mass increase in tandem. The similarity in mass between the
MBH particles, gas cells, and star/DM particles would cause the
MBH particle to scatter around haloes in an unphysical manner
without settling down in the centre of the halo. Therefore, MBH
particles are repositioned to the potential minimum of the host halo
at every time-step (we refer to this as the ‘repositioning algorithm’).

For more overview on the Illustris simulations, see Vogelsberger
et al. (2013) and Torrey et al. (2014). See Vogelsberger et al. (2014a),
Genel et al. (2014), and Sijacki et al. (2015) for detailed simulation
results and comparisons of the simulations to observations. The
initial data sets used in this study were all obtained at www.illustri
s-project.org (Nelson et al. 2015). Using this data, we perform more
post-processing to create the final data sets used in our analysis. We
will further explain this in the following sections.

2.1 Massive black hole merger population

Two MBH particles are merged in the Illustris simulation when
they come within a smoothing length of each other (∼kpc). Since
these mergers occur at larger scales, we treat this merger event
as the formation of the binary, from which we evolve the binary
to coalescence with sub-grid models. Following Kelley et al.
(2017a), we adopt the term ‘merger’ to indicate this simulation-
only process: the combination of two MBH simulation particles
into one, indicating the formation of a binary on ∼kpc scales. We
will refer to the final combination of two realistic MBHs into one
as the MBH binary ‘coalescence.’

Over the course of the simulation, detailed MBH and host galaxy
information is saved in a series of 135 snapshots. Higher time-
resolution data was saved for each merger, including the time of the
merger and the constituent MBH masses (Blecha et al. 2016, Kelley
et al. 2017a). We extract detailed properties for all MBHs in the
simulation at each snapshot, as well as relevant, global properties
for each of their host galaxies from the Illustris ‘Group Catalogs’
(Nelson et al. 2015). In addition to the higher time-resolution
merger data set, we extract information about host galaxies related
to the mergers. For each merger, we locate the host galaxies of
the constituent MBHs at the snapshot immediately preceding the
merger, as well as the host galaxy of the remnant MBH at the
snapshot immediately following the merger. For these galaxies, we
not only attained global information, we also gather information
about their specific distribution of gas, stellar, and DM constituents.
The last data needed for our analysis is the Sublink merger trees
(Rodriguez-Gomez et al. 2015) to follow galaxies from snapshot to
snapshot.

Throughout the cosmic history within Illustris, there are 23 708
MBH merger events. However, a fraction of these mergers are artifi-
cial. First, the friends-of-friends (FOF) halo finder will occasionally
associate two haloes as one. When this occurs, the aforementioned
repositioning algorithm will force the two MBHs in the centres of
each galactic halo to the new potential minimum determined during
this misstep by the FOF finder. This causes the two MBHs to merge.
After this ‘fly-by’ encounter, the two galaxies may separate into two
distinct haloes as seen by the FOF finder. When this occurs, there
will be one galaxy without a central MBH. At this point, a new MBH
is seeded in this galaxy causing future artificial mergers to inflate the
merger catalogue. Similarly, the FOF finder may identify a transient
matter overdensity, subsequently seeding a low-mass MBH into the
overdensity. This newly seeded MBH is then quickly merged into the
MBH in the nearest massive halo due to the repositioning algorithm,
once again adding unphysical mergers.

Previously, this was dealt with in Kelley et al. (2017a) and Blecha
et al. (2016) using a cut based on mass – only M• > 106 M� are kept
– to exclude low-mass MBHs that are overwhelmingly the MBHs
involved in these numerical issues. As the authors state, this cut had
minimal effect on their predictions for the PTA background, which
is dominated by high-mass MBH binaries M � 108 M�). In a study
about LISA, these near-seed mass MBHs play a very important
role. Therefore, we designed a post-processing method to avoid
removing these small MBHs in the most robust way possible.

To handle these issues we start by requiring that all merger
constituent MBHs must exist for at least one snapshot prior to the
merger, which is always true for MBHs above 106 M�. This removes
the MBHs seeded when the FOF finder identifies an overdensity
and seeds an unphysical MBH. This is effective in removing these
MBHs because the time between the seeding and the merging of
the unphysical MBH is less than the duration of one snapshot.
We then focus on identifying galaxies that have had their central
MBHs removed by the ambiguities related to the FOF finder and
the repositioning algorithm. We track the evolution of the galaxy
devoid of an MBH as it continues on after its fly-by encounter where
it lost its MBH. If this galaxy seeds a new MBH before it merges
with another galaxy, we remove this MBH from our catalogue, as
well as any of its subsequent mergers.

In addition to filtering the secondary mergers, we analysed the
effects of the premature mergers created by the FOF association of
two separate haloes. In this process, the removal of the MBH from its
galaxy occurs earlier in cosmic time than the actual galactic mergers.
This causes the MBH merger to occur at slightly earlier cosmic
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times. This effect would increase our rate predictions: mergers at
earlier cosmic times inflate the number of mergers because the
volume of the observer’s past light-cone is larger at higher redshifts.
However, we believe this effect to be small for two reasons: the
binaries involved in this scenario tend to have largely unequal mass
ratios, making them increasingly difficult to detect with LISA; and
the delay between the unphysical MBH merger and the subsequent
galaxy merger is of the order of 108 yr, which represents a small
fraction of the lifetime of the Universe as well as a small fraction
of the average binary inspiral times predicted from our two binary
inspiral models.

We will now discuss the post-processing performed on the merger
host galaxies as well as the cuts made based on those galaxies.

2.2 Host galaxy information

To process the host galaxy data, we follow the process of Blecha
et al. (2016) and Kelley et al. (2017a). We need density profiles
and velocity dispersions of remnant host galaxies for input into our
evolution time-scale models. We use the profiles at resolvable scales
to extrapolate inward to the centres of the galaxies to infer properties
at unresolved scales. Therefore, we confirm each remnant host
galaxy is sufficiently resolved for these calculations by requiring
the galaxy contain at least 80 DM particles, 80 gas cells, and 300
star particles.

From these remaining galaxies, we construct spherically aver-
aged, radial density profiles for stars, gas, and DM. We calculate
these profiles based on the innermost shells of particles (cells for
the gas) surrounding the galactic centre. We assume the profile rep-
resented by the innermost shells of particles/cells extends inwards
to the core of the galaxy. We require at least four particles/cells
in each radial bin. The profile is then formed from the innermost 8
bins satisfying the four particle/cell minimum requirement. Binaries
were excluded from the final catalogues when fits could not be
constructed under these requirements. A graphical representation
of this process can be seen in fig. 1 of Kelley et al. (2017a). For
our evolution prescription, we constrain the density profile index to
be in between 0.5 and 2.5. The distribution function for the models
tested becomes unphysical below an index of 0.5. The upper end of
2.5 is determined based on observed stellar cusps of giant elliptical
galaxies. After all of our cuts, we are left with 17 535 of the original
23 708 mergers. We compare this number to 9270, which is the
amount of mergers remaining after the cuts applied in Kelley et al.
(2017a). Therefore, we analyse 8265 more mergers in this work.
The mergers that remain form our final merger catalogue. Fig. 1
compares the main binary parameters resulting from our extraction
method to the flat mass cut of 106 M�. Fig. 2 shows the main
properties of mergers in this final catalogue.

3 METHODS

3.1 Binary lifetime models

For the following models, our goal is to calculate the evolutionary
time-scale from ∼kpc scales to coalescence, which is usually of
order ∼Gyr. We use this time-scale to find the coalescence time by
adding the evolution time to the time of binary formation (particle
merger in Illustris).

The first model we examine has no evolution of the binaries
from their particle mergers in the Illustris simulation. We refer to
this model as ‘ND’ for no delays. In other words, we consider
the formation time to equal the coalescence time. This model is

our baseline model against which we compare our more detailed
models for binary MBH coalescence time-scales: it represents the
exact prediction from the simulation if the merger process is not
modelled below ∼kpc scales, which is a common assumption in
rate prediction papers.

In addition to our ND model, we will examine a subset of our
‘no delays’ model requiring masses to be greater than 106 M�.
This allows us to test the difference in our extraction process by
comparing the new data set to the old extraction data set similar to
the one used in Kelley et al. (2017a). We will refer to this model as
‘ND-6.’

In the following, we will describe detailed models that have been
constructed and analysed in previous papers. Therefore, we give a
quick overview of each model. For more information on the DA17
model (Section 3.1.1), see Dosopoulou & Antonini (2017). For the
K17 model (Section 3.1.2), see Kelley et al. (2017a,b).

3.1.1 DA17 model

The equations shown below are taken directly from Dosopoulou &
Antonini (2017). In what follows, primary, M, (secondary, m) will
refer to the larger (smaller) MBH. For this model, we are assuming
the mergers are gas-poor.

The initial time-scale in this model is the large-scale orbital decay
from ∼kpc scales to a separation equal to the influence radius, rinfl,
of the primary MBH. rinfl is a shorter length scale than the resolution
in the Illustris simulation. Therefore, we use an approximation from
Merritt, Schnittman & Komossa (2009) given by,

rinfl = 10.8

(
M

108 M�

)(
σ

200 km s−1

)−2

pc, (1)

where σ is the three-dimensional stellar velocity dispersion of the
primary galaxy. Modelling the primary host galaxy as a singular
isothermal sphere, Binney & Tremaine (1987) show this decay time-
scale is given by,

T bare
� = 17

6.6

ln �

(
Re

10 kpc

)2 (
σ

300 km s−1

)(
108 M�

m

)
Gyr, (2)

where ln � is the Coulomb logarithm and Re is the effective radius
of the primary galaxy. However, Dosopoulou & Antonini (2017)
modify this formalism to include the effect of the secondary MBH
remaining embedded in a core of stars from the secondary galaxy.
This added mass causes the system to sink faster towards the
primary galaxy’s centre therefore taking less time than is predicted
by equation (2). Assuming the mass of stars bound to the secondary
to be a constant proportionality of 103m (Merritt & Ferrarese 2001),
this large-scale decay time-scale becomes,

T
gx
�,1 = 0.06

2

ln �′

(
Re

10 kpc

)2 (
σ

300 km s−1

)(
108 M�

m

)
Gyr,

(3)

where �′ = 23/2σ /σ s with σ s representing the stellar velocity
dispersion of the secondary galaxy. This equation, however, does
not include tidal stripping of stars from the secondary galaxy by the
primary galaxy. Including this effect, the large-scale decay time-
scale is given by,

T
gx
�,2 = 0.15

2

ln �′

(
Re

10 kpc

)(
σ

300 km s−1

)2(100 km s−1

σs

)
Gyr.

(4)
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Figure 1. Histograms for the main extraction parameters (MT, q, and z) are shown here. We compare our new advanced extraction (green) to the extraction
used previously in Blecha et al. (2016) and Kelley et al. (2017a) requiring m1, m2 ≥ 106 M� (blue). These counts are given after we apply the cuts described
in Section 2.

Using equations (3) and (4), we can approximate the large-scale
decay time-scale as

T� = max
(
T

gx
�,1, T

gx
�,2

)
. (5)

During the large-scale decay, the stellar velocity distribution is
treated as Maxwellian. Once the secondary MBH reaches rinfl of the
larger MBH, this assumption no longer holds because the potential
is dominated by the central MBH. Therefore, the stellar velocity
distribution is treated according to equation 20 in Dosopoulou &
Antonini (2017). We refer to this next regime as the ‘dynamical
friction regime’ to match the conventions of the original paper. The
time-scale for the binary to decay to a shorter separation r = χrinfl

(χ < <1) is given by,

T bare
• = 1.5 × 107 [ln �α + β + δ]−1

(3/2 − γ ) (3 − γ )

(
χγ−3/2 − 1

)

×
(

M

3 × 109 M�

)1/2 (
m

108 M�
)−1 (

rinfl

300 pc

)3/2

yr,

(6)

where γ is the power-law exponent in the stellar density profile,
ρ(r) = ρ0(r/rinfl)−γ ; α, β, and δ are calculated from equations 17 to
19 in Dosopoulou & Antonini (2017).1 If we include the stars bound
to the secondary, as in equation (4), this time-scale becomes,

T gx
• = 1.2 × 107 [ln �α + β + δ]−1

(3 − γ )2

(
χγ−3 − 1

)

×
(

M

3 × 109 M�

)(
100 km s−1

σs

)3

yr. (7)

1In these equations, we assume a circular orbit setting ξ = 1 (see the paper
for more details). However, the dynamical friction decay time-scale is not
greatly affected by the orbital eccentricity.

Similar to equation (5), we find T• with,

T• = min
(
T bare

• , T gx
•
)
. (8)

We use equation (8) to evolve the binary down to the hardening
radius, ah, given by (Merritt 2013),

ah ≈ 36
q

(1 + q)2

M + m

3 × 109 M�

(
σ

300 km s−1

)−2

pc, (9)

where q is the mass ratio (q ≤ 1). Therefore, we set χ = ah/rinfl.
The final phase in the DA17 model is the ‘hardening phase’, as

it includes the effect of gravitational radiation. With dry mergers,
remnant galaxies after a merger are expected to be triaxial. In this
configuration, an efficient hardening of the binary is exposed to a full
and consistently refilling loss-cone (Khan et al. 2011, Vasiliev et al.
2014). From ah until coalescence, including the gravitational wave
regime, the time-scale is given by (Vasiliev, Antonini & Merritt
2015),

Th,GW ≈ 1.2 × 109

(
rinfl

300 pc

) 10+4ψ
5+ψ

(
M + m

3 × 109 M�

) −5−3ψ
5+ψ

×φ
− 4

5+ψ

(
4q

(1 + q)2

) 3ψ−1
5+ψ

yr, (10)

where φ = 0.4 and ψ = 0.3 are triaxial parameters estimated from
Monte Carlo simulations in Vasiliev et al. (2015). In equation (10),
we left out the eccentricity factor as it is unity because we are
assuming circularity. Gravitational radiation takes over at aGW,
determined from the ratio (Vasiliev et al. 2015),

ah

aGW
≈ 55

(
rinfl

30 pc

)5/10 (
M + m

108 M�

)−5/10 ( 4q

(1 + q)2

)4/5

, (11)

where we have once again left out the eccentricity factor as it is equal
to unity. For q ≈ 10−3, ah is less than aGW. For these binaries, we
use the inspiral time for a circular binary due to only gravitational
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2306 M. L. Katz et al.

Figure 2. Histograms are shown for the binaries that make up our catalogue after all of our cuts to the MBH binary population. We group the histograms
by mass ratio. The initial separation shown represents the upper limit on the MBH binary separation at binary formation. This is determined from the MBH
simulation smoothing length when the MBH particles are merged in the Illustris simulation. Similarly, the redshift here is the redshift at binary formation.

radiation according to (Peters & Mathews 1963),

TGW = 2.3 × 106

(
ah

10−3pc

)(
108 M�

M

)2 (
105 M�

m

)

×
(

1

1 + q

)
yr. (12)

Therefore, our final time-scale, Tfinal is given by,

Tfinal =
{

Th,GW, if q ≥ 10−3

TGW, if q < 10−3.
(13)

The DA17 model’s final coalescence time-scale, tcoal, is therefore
given by

tcoal = T� + T• + Tfinal. (14)

3.1.2 K17 model

This section introduces the K17 model, described in detail in Kelley
et al. (2017a,b). Binaries are numerically integrated from their
formation at large separations until their eventual coalescence. Dy-
namical friction is implemented following Chandrasekhar (1943),
where the deceleration is given as,

dv

dt

∣∣∣∣
DF

= −2πG2(M + mDF)ρ

v2
ln �c, (15)

where the relative velocity is taken to be the maximum of the orbital
velocity and stellar velocity dispersion, i.e. v = max (vorb, σ ), ρ is
the total mass-density, and the Coulomb logarithm is set to ln �c =
15. The effective mass of the secondary, mDF, assumes that the
mass of the secondary host galaxy is stripped over the course of a
dynamical time, i.e.

mDF = m

(
m + mhost

m

)1−t/τ dyn

. (16)

The initial host galaxy mass is measured from Illustris in the
snapshot preceding the merger event. Once the binary shrinks below
the ‘loss-cone radius’ (Begelman et al. 1980), the hardening rate is
calculated following the stellar-scattering prescription from Sesana,
Haardt & Madau (2006),

da

dt

∣∣∣∣
SS

= −Gρ

σ
a2 H, (17)

where a is the semimajor axis of the binary which is being integrated,
and H is a dimensionless coefficient calculated from numerical
scattering experiments.

The accretion rate calculated in Illustris provides an estimate of
the presence of circumbinary gas. To model the energy extraction
from this material, we assume the gas settles into a geometrically
thin alpha-disc (Shakura & Sunyaev 1973) with different regions
corresponding to the dominant components of pressure (radiation
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versus thermal) and opacity (Thomson versus free–free), following
Shapiro & Teukolsky (1986). The hardening rates in each regime
are calculated in Haiman et al. (2009), as a function of disc surface
density and binary mass ratio. Numerical simulations have found
these analytical prescriptions to be quite accurate over the parameter
ranges studied (Tang, MacFadyen & Haiman 2017; Fontecilla,
Haiman & Cuadra 2019). We assume these discs extend out to
the radius at which they become Toomre unstable. GW energy
extraction is implemented at all radii, following Peters & Mathews
(1963).

3.2 Determining detectability

3.2.1 Characteristic strain

MBH binaries provide a variety of signals measurable by LISA
since their chirp evolution in the frequency domain occurs near the
low-frequency band edge of the LISA sensitivity curve. Binaries
with ∼105–107 M� total mass will provide a measurable inspiral,
merger, and ringdown leading to very loud signals even out to the
cosmic horizon (Amaro-Seoane et al. 2017).

The binary inspiral is the initial stage of binary black hole
coalescence when the two MBHs orbit one-another at separations
greater than the innermost stable circular orbit (R = 6GM/c2). At
these separations, the orbit is usually treated with a post-Newtonian
formalism.

The merger stage follows the binary inspiral with a highly non-
linear relativistic process. This process continues until the MBHs
have contacted each other to form a single event horizon, leading
to ringdown. The dominant mode of the ringdown spectrum is
expected to be the l = m = 2 quasi-normal mode. Deviations from
general relativity can be measured if LISA can detect subdominant
modes in the ringdown spectrum. This process is referred to as the
so-called black hole spectroscopy (Berti, Cardoso & Will 2006;
Berti et al. 2016; Baibhav et al. 2018; Baibhav & Berti 2019).

We use the characteristic strain, hc, to model the binary signal
which accounts for the time the binary spends in each frequency bin
(Finn & Thorne 2000). The characteristic strain is given by (Moore,
Cole & Berry 2015),

h2
c = 4f 2

∣∣h̃(f )
∣∣2

, (18)

where h̃(f ) represents the Fourier transform of a time domain
signal. To find h̃(f ), we use the phenomenological waveform
PhenomD (Husa et al. 2016; Khan et al. 2016).PhenomD is based on
fitting analytical templates to numerical relativity waveforms. For
a detailed description of its constructions, see Husa et al. (2016)
and Khan et al. (2016). Here, we focus on how the waveform is
determined based on the parameters of the MBHs in our population.

To generate the waveforms, we use the gwsnrcalc PYTHON

package from the BOWIE analysis tool (Katz & Larson 2019).
gwsnrcalc takes as inputs the masses of the MBHs, M, m; the
dimensionless spin of each MBH a1, a2; the redshift of the binary,
z; and the start and end times of the binary’s orbit, in relation to the
merger of the binary, tst and tend.

The dimensionless spin of each MBH is ai = Ji/m
2
i , where J is

the magnitude of the spin angular momentum. a ranges from −1.0
(anti-aligned to the orbital angular momentum) to 1.0 (aligned to
the orbital angular momentum). For convenient use of PhenomD,
we treat the spins as aligned. Measurements of MBH spins have
shown spins near maximal (Miller 2007; Reynolds 2013). For this
reason, we choose to model spins of a1 = a2 = a = 0.8. As the
spin magnitude is raised, the waveform will gain more signal. For

Figure 3. Two examples of the characteristic strain, hc, curves are shown
here with solid lines. The blue, green, and red portions of the binary signals
represent the construction we use for the inspiral, merger, and ringdown,
respectively. Both examples show a= 0.8 and q= 0.2 for a signal beginning
100 yr before merger. To plot these curves, we use tst = 100 yr and tend =
0 so that we encapsulate 100 yr of inspiral as well as the merger and
ringdown. The times before merger are labelled above the strain curve for
100, 10, and 1 yr before merger. Example A shows a binary of MT =
108 M� and z = 0.75. Example B shows MT = 5 × 105 M� and z = 2. In
addition to binary signals, the sensitivity curve tested in this work (PL) is
shown in characteristic strain of the noise, hN (Amaro-Seoane et al. 2017).
Additionally, the Galactic background noise we use is shown with a dashed
orange line.

near-equal mass systems, which represent a majority of systems
in our catalogue, the difference in the spin does not change the
signal significantly. For systems of mass ratio farther from unity,
the spin can have a significant impact on their detectability because
the signal peak can increase by an order of magnitude from the spin-
down (a = −1) to the spin-up case (a = 1). Therefore, applying
this spin configuration (a = 0.8) represents the optimistic case for
these systems. The choice to use the same spin for both MBHs
is made because PhenomD was calibrated in mostly equal-spin
configurations. Within its calibration range, PhenomD performs
accurately matching waveforms to better than ∼1 per cent error.
Outside of its calibration range, it produces physically reasonable
results, indicating it can be useful for basic studies (Khan et al.
2016). See Fig. 3 for examples of characteristic strain curves.

3.2.2 Start and end times

The start times, tst, and end times, tend, both represent the time
until merger for a specific binary at which LISA begins and ends
its observation of the binary’s signal. These times are effectively
a map to the frequency bounds of the PhenomD waveform model.
These times will be of the order of years. Since the merger and
ringdown time-scale is of the order of minutes to hours for MBHs,
we do not include this time-scale in tst and tend. The main reason for
this construction is it allows us to refrain from assuming a specific
observation time for each binary: it allows us to test, within our
Monte Carlo sample, binaries that merge at early and late times in
the LISA observation window, as well as binaries that merge after
the LISA observation window. Early merging binaries will have less
time where their inspiral signal can be observed, compared to later
mergers. Similarly, LISA will not be able to detect the merger or
ringdown for binaries that merge after the LISA observing window,
leading to inspiral-only signals (if the inspiral is detectable over
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2308 M. L. Katz et al.

Figure 4. Our construction for tst and tend, given in Section 3.2.2, is
illuminated with this diagram. We show two binaries (a, b) for which LISA
will only measure the inspiral signal because the binary remains far from
merger when LISA is turned off. For these binaries the difference between tst

and tend will be Tobs. With Tobs = 4 yr, we will accumulate signal for 4 yr as
the binary inspirals towards each other. Cases (c) and (d) represent binaries
that merge during LISA observation. For these binaries, tend is always zero;
tst determines the duration of time that LISA observes these sources.

the observation time). Fig. 4 displays a diagram showing how tst,
tend, and Tobs are related for various sources. See Section A1 in the
Appendix for our analysis related to inspiral-only signals.

As a point of reference, the merger frequency separating inspiral
from merger, is given by

fmrg = c3

G

1

63/2πMT (1 + z)
, (19)

where MT = M + m is the total mass of the binary in its source
frame. The (1 + z) term redshifts this mass to the detector frame.

The frequency at a time before merger to 1PN order is given by
(Blanchet 2014),

f (t) = c3

G

1

8πMT(1 + z)τ 3/8

(
1 +

(
11

32
η + 743

2688

)
τ−1/4

)
,

(20)

where

τ = c3

G

ηt

5MT(1 + z)
. (21)

t is given in the detector frame. The start frequency of the waveform,
fst, is therefore f(tst). For signals that exhibit inspiral, merger, and
ringdown, tend is zero. In this case, the end frequency, fend, is the
highest frequency used in the PhenomD model, representing the
end of the ringdown, given by (Khan et al. 2016),

fend = G

c3

0.2

MT(1 + z)
. (22)

If tend is not zero, indicating that the source is only detected in the
inspiral stage, fend is f(tend).

3.2.3 LISA sensitivity

The LISA sensitivity configuration used is from the LISA Mission
Proposal (Amaro-Seoane et al. 2017). We refer to this sensitivity
as ‘PL’ in Katz & Larson (2019). This sensitivity is based on a 3-
arm triangular configuration with 2.5 million km armlengths, 30 cm
diameter telescopes, and 2 W end-of-life laser power. In Section A1
of the Appendix, we perform an analysis comparing PL to an older
iteration of the LISA configuration (Larson, Hiscock & Hellings
2000) to show how the LISA configuration changes will affect
various aspects of LISA MBH analysis.

We show our sensitivity curve in Fig. 3 in terms of the sky-
averaged characteristic strain, hN. The sky-averaging factor is 3/20
(Robson, Cornish & Liu 2019). Sensitivity curves are generally
presented in terms of the power spectral density of the noise, SN. To
convert from SN to hN, we use hN = √

f SN (Moore et al. 2015).
We also include the effect of the Galactic background noise

in addition to the instrumental noise. We use the analytical ap-
proximation of Hiscock et al. (2000) to the Galactic background
noise suggested in Bender & Hils (1997). This is shown in Fig. 3.
Compared to recent predictions from Robson & Cornish (2017),
this is a conservative estimate of this noise contribution. The
contribution of this background can be decreased with proper
global fitting methods and a longer observation window (Robson &
Cornish 2017).

3.2.4 Signal-to-noise ratio

We use the SNR to determine the detectability of the sources in
our catalogue. The SNR is estimated by integrating the ratio of the
signal to noise in the frequency domain. The sky, orientation, and
polarization averaged SNR is given by (Robson et al. 2019),

〈ρ2〉 = 16

5

∫ ∞

0

h2
c

h2
N

1

f
df . (23)

The SNR is then multiplied by a factor of
√

2 because we consider
a 2 channel interferometer.

An additional question we analyse is how many sources exist
in our models with a high enough SNR to perform black hole
spectroscopy. To do this, we use the General Likelihood Ratio Test
(GLRT) formalism suggested in Berti et al. (2016). Using the GLRT,
the SNR of the l = m = 2 ringdown mode is used as a proxy for
determining the detectability of the l = m = 3 or l = m = 4 modes.
Sources can be spectroscopically measured if ρl=m=2 > ρGLRT ≡
min

(
ρ

2,3
GLRT, ρ

2,4
GLRT

)
, where ρGLRT for each mode is is given by

(Berti et al. 2016),

ρ
2,3
GLRT = 17.687 + 15.4597

q − 1
− 1.65242

q
, (24)

ρ
2,4
GLRT = 37.9181 + 83.5778

q
+ 44.1125

q2
+ 50.1316

q3
. (25)

3.3 Monte Carlo analysis

We use a Monte Carlo analysis technique based on Poisson statistics
to characterize the range of possibilities resulting from the Illustris
output. We do this for multiple reasons. The primary reason is the
Illustris output is one iteration of the evolution of a fractional volume
within the Universe. We want to understand how the detection
rate and source characteristics will vary with the Illustris output
as the statistical backdrop. Additionally, we wanted to create a
catalogue generator for LISA MBH binary signals, which requires
a Monte Carlo draw of a new sample each time. As we will
discuss in Section 3.3.2, the Monte Carlo sampling allows us to
refrain from assuming an observable duration of the waveform for
each of the binaries. Most detection rate predictions assume an
observable time for each MBH of 1 yr. This does not account
for binaries that will merge before 1 yr of LISA observation.
It also does not include the longer measurement of an inspiral
signal if the binary signal is observable at times longer than 1
yr before merger. In other words, our method provides a more
realistic basis for assessing binary detectability during the LISA
mission.
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3.3.1 Merger rate prediction

The first parameter in the Monte Carlo sampling process is the
coalescence rate of MBH binaries in the Illustris simulation. We
calculate this parameter one time for each evolutionary prescription.
At this stage of the sampling process, we are not considering
detectability; we consider any coalescence that occurs prior to z =
0. For the ND and ND-6 models, all binaries in our sample coalesce
before z = 0 because these two models assume no inspiral time
for all MBH binaries. For the binary inspiral models of DA17 and
K17, we find that 84 per cent and 66 per cent of binaries coalesced
before z = 0, respectively. See Section 4.1 and Fig. 6 for more
information on how the inspiral models affected the population
of binaries coalescing before z = 0. We determine the number
of coalescences, N, in a given redshift interval z + �z. We then
compute the number of coalescence events across redshift intervals
per comoving volume element,

d2n(z)

dzdVc
≈ N (z)

�zVc
, (26)

where Vc, the term on the right-hand side, is the comoving volume
of the Illustris simulation, (106.5 Mpc)3. We can then calculate the
number of coalescences per observing time interval given by,

dNcoal

dtobs
=

∫ ∞

0

d2n̄(z)

dzdVc

dz

dt

dVc

dz

dz

1 + z
, (27)

where the 1 + z redshifts the infinitesimal time element in dz/dt
to the observer frame time interval. When we refer to the ‘integral
rate calculation,’ we are referring to equation (27). For our Monte
Carlo catalogues, this quantity becomes our input into our Poisson
rate calculator.

3.3.2 Poisson sampling

The two parameters needed to perform the desired Poisson sampling
is rate of coalescences determined from equation (27) and the
duration for which we want to draw potential sources, tdur. If
we only wanted to draw sources for the observation window, we
would set tdur = Tobs. However, this would only focus on sources
coalescing within the observation window. We also want to test for
inspiraling sources that would coalesce some time after the LISA
observing window. Therefore, we choose tdur > Tobs. We tested
a variety of values for tdur. We found tdur = 102 yr encompassed
all of the observable systems in our catalogues, while maintaining
computational efficiency.

Our final Poisson parameter, λ, is given by,

λ = dNcoal

dtobs
tdur. (28)

In other words, this is the expected number of coalescence events
over 102 yr. For each catalogue, we draw the number of sources
occurring within our 100 yr window from this Poisson distribution.

3.3.3 Event times

When we have the number of sources drawn, we assign each a
random coalescence time, tev, between zero and 102 yr. At the time-
scales we are considering (∼102 yr), the distribution of sources
over time will not be affected by the evolution of the Universe.
tev = 0 indicates an event occurring at the moment LISA begins
observations. tev = Tobs represents an event occurring at the moment
the LISA observation window ends.

When considering the waveform described in Section 3.2.1, we
use tev and Tobs to determine the start (tst) and end (tend) times
related to waveform creation. tst = tev because the event time
represents the time before merger at the start of LISA observation.
Therefore, tend = tev − Tobs if tev > Tobs. If tev ≤ Tobs, tend = 0 (see
Fig. 4).

3.3.4 Resampling binary parameters

After sampling the number of binaries and the event times for each
event, we need to sample binary parameters of M, m, and z. To do
this, we use kernel density estimation methods. However, there is
a key distinction that needs to be made for sampling these binary
parameters: we must incorporate the volume and time redshifting
factors implicit in the expansion of the Universe as weights, w,
in the density estimation. If you assume an infinitesimal redshift
bin width for equation (27) (�z → dz), this weighting factor as a
function of redshift is given by,

W (z) = dz

dt
(z)

dVc

dz
(z)

1

1 + z
. (29)

The weight applied to the ith binary is then wi = Wi/
∑N

i=1 Wi . We
also include the covariance across these parameters in the KDE, so
as to sample the population accurately.

4 RESULTS

4.1 Binary lifetimes

We first test and compare our evolutionary prescriptions to un-
derstand how the initial population of binaries will change when
evolved to coalescence with different sub-grid models. In the
ND and ND-6 models, all binaries are considered to be coa-
lesced prior to z = 0. By modelling the sub-grid physics as
in the DA17 and K17 models, some binaries will no longer
merge before z = 0 and will therefore deflate the merger rate.
Additionally, the mass distributions of the coalesced binaries
may change because the prescriptions have different dependen-
cies on the masses. Fig. 5 shows the evolutionary time-scales
calculated for all binaries binned by total mass and mass ratio.
The DA17 model generally results in a more peaked distribution,
while K17 shows a flatter profile across all plots. However, at
higher total masses, the two prescriptions become very similar
in their predictions. Fig. 6 shows the effect of these evolution-
ary time-scales on the coalescence fractions of our population.
This figure illustrates the global differences, in terms of binary
parameters, between the two prescriptions. DA17 favours near-
equal mass and low total mass systems, while K17 favours
near-equal mass systems with total masses towards the higher
end. With the K17 model, larger masses are favoured because
they are embedded in higher density, more centrally concentrated
stellar cores. On the other hand, the specific dynamical friction
prescription used in the DA17 model (see equations 6, 7 and
8) causes high-mass systems to exist for longer times in the
dynamical friction stage between the influence radius of the larger
MBH (equation 1) and the hardening radius (equation 9) (see
the original papers for more details). It is also clear the overall
coalescence fractions are higher with DA17 than with K17. The
overall coalescence fraction for DA17 was 84 per cent. With the
K17 model, only 66 per cent of all binaries coalesced before
z = 0.
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2310 M. L. Katz et al.

Figure 5. Coalescence time-scales are shown for the DA17 and K17 models in blue and orange, respectively. The top row shows binaries grouped by decades
in total mass, MT. The bottom row shows binaries grouped by decades in mass ratio, q.

Figure 6. Coalescence fractions are compared for the DA17 (left) and K17 (right) models. These fractions are binned in total mass and mass ratio. The number
in each bin represents the total number of binaries residing in that bin. Therefore, this is the same for both models. The colour represents the coalescence
fraction based on the colour bar on the right. None of the binaries shown in grey coalesce before z = 0. The white space represents binaries not analysed here
due to the Illustris resolution limit.

4.2 Rate predictions

We calculate merger rates with two methods: integrating the
redshift distributions with equation (27) and Monte Carlo sampling
(Section 3.3). The results are similar as expected; however, the
Monte Carlo aspect allowed for more freedom in terms of not setting

specific values for observation duration and starting times before
merger. It also ensures we are examining different realizations of the
merging MBH population. Table 1 shows integral merger rate results
for each prescription. It also shows detection rates for each stage of
binary black hole coalescence as well as the rate of sources where
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Table 1. Merger and detection rate calculations per year
are shown using the integral calculation (equation 27). The
evolution prescriptions are listed in the first column. The top
row shows the ‘no delays’ model: ND. The second row shows
the ND-6 model, displayed in italics because it represents a
subset of the ND model with m1, m2 ≥ 106 M�. The final
two rows show the DA17 (Dosopoulou & Antonini 2017)
and K17 (Kelley et al. 2017a,b) models, respectively. The
merger rate gives the rate of coalescences without considering
LISA detectability. The remaining columns show the detection
rate (ρ > 8). Additionally, detection rates are separated into
signal types: All, Ins, MR, and BHS. ‘All’ indicates reaching
detection threshold using the entire signal. ‘Ins’ and ‘MR’
represent detection rates of inspiral signals and signals from
the merger and ringdown, respectively. These categories are
not independent: a single binary can add to the rate in both
categories. ‘BHS’ is the detection rate of MBH binaries where
black hole spectroscopy is possible (see equation 24). We
estimate our errors in these predictions to all fall below 0.01
according to equation 17 in Salcido et al. (2016).

Prescription Merger rate All Ins MR BHS

ND 0.98 0.75 0.45 0.77 0.74
ND-6 0.57 0.44 0.23 0.45 0.43
DA17 0.80 0.70 0.42 0.70 0.67
K17 0.55 0.44 0.28 0.45 0.43

spectroscopic measurements (equation 24) are possible. Similar
results for the Monte Carlo method are shown in Table A1. The
redshift distributions used in these calculations are shown in Fig. 7.
For the main integral merger rate and detection rate results, the rate
is quoted as per year. For the following integral rate calculations,
we estimate our standard deviation in our predictions to be less
than 0.01 (based on our chosen redshift bin width), according to
equation 17 in Salcido et al. (2016).

First, comparing ND with ND-6 (‘ND-6’ represents the subset of
binaries in ‘ND’ which have each constituent mass above 106 M�),
we see the advanced extraction was important for LISA-related
analysis since the ND merger rate was almost two times the merger
rate of ND-6. This holds true for the detection rates as well. An
interesting statistic here is the inspiral detection rate, 0.23 yr−1

with ND-6 versus 0.45 yr−1 with ND, as this demonstrates the
importance of the lower mass systems retained by our advanced
extraction technique.

Comparing all four models, we see some interesting results. The
hierarchy predicted in Section 3.1 is apparent. The DA17 rates
resemble much more strongly the ND rates compared to K17 due
to the inability of K17 to coalesce the large number of low-mass
systems. Interestingly, the K17 rates strongly resemble the ND-
6 rates, indicating the loss of the low-mass systems, as well as the
general loss in coalescing systems due to adding sub-grid modelling,
caused the rate to decrease to similar levels as without the low-mass
systems entirely. These aspects can be seen clearly in Fig. 7. After
calculating the SNR and making our cut at ρ = 8, we see that the
DA17 curve tracks the ND curve, while the K17 curve mirrors the
ND-6 curve.

When analysing the mass distributions, we find all models
produce similar results. Mass distributions from our Monte Carlo
analysis can be seen in Fig. 8. The black solid line shows the
limit imposed by the Illustris simulation seed mass at ∼105 M�.
Binaries with total mass and mass ratio values above this line cannot
exist. Similarly, the black dashed line shows the limit imposed by
the 106 M� cut. This once again highlights the effect of the more

advanced extraction. ND, DA17, and K17 exhibit roughly the same
structure. Specifically, their mean values and higher order moments
about the mean values are within a smallpercentage of each other;
however, DA17 has a slightly smaller kurtosis in the mass ratio. This
general similarity does indicate the K17 model has a relatively flat
effect across the parameter space, where sources are detectable by
LISA, suppressing each mass and mass ratio regime in an equivalent
manner.

5 DISCUSSION

The merger rates and LISA detection rates of MBH binaries from
the Illustris simulation are low compared to the majority of the
literature on this subject. Table 2 summarizes predicted rates in
the literature, including whether their base population is from a
SAM or a hydrodynamic simulation. Additionally, the type of
delay prescription employed is mentioned. For this summary, we
focused on predictions related to high-mass seeds since this seeding
prescription better matches our setup in this paper. Even with our
ND model, which represents the rates directly from the simulation
without any sub-grid modelling, our predicted rate is low. LISA will
be sensitive to binaries ≤105 M�. Therefore, any study that cannot
resolve the galaxies and haloes where these low masses evolve
(see section D in Klein et al. 2016) will underpredict the total
detection rate. Examining Fig. 8, we see LISA primarily observes
binaries of 1 ≤ q ≤ 102. Therefore, if we consider our population
to be complete when we can resolve all constituent MBHs at mass
ratios up to 102, then our study is only complete above 107 M�
leading to a further underestimation of the overall detection rate.
Another way to consider this effect is by understanding how the
seeding prescription will affect the base population. Without seeds
below 105 M�, the detection rate for masses above 105 M� will
also be deflated: seeds below this mass may grow to a mass
above 105 M� before undergoing a merger. This aspect significantly
affects our merger rate prediction as it removes MBHs from our
population at the most common and detectable masses in our
sample.

The literature references for SAMs shown in Table 2 employ
seeds of ∼104 M�. Within the subset of these SAMs predictions,
the higher rate predictions occur with no binary inspiral model
employed (similar to our ND model). However, early SAMs
predictions did analyse various delay prescriptions, but for smaller
seeds (∼150 M�) (e.g. Volonteri et al. 2003; Sesana et al. 2004;
Sesana et al. 2005). Historically, SAMs have predicted rates
about an order of magnitude larger than our findings; however,
our results are within an order of magnitude of those predicted
in Salcido et al. (2016) for the EAGLE simulations (McAlpine
et al. 2016), indicating similarity between two hydrodynamic-based
populations. While hydrodynamic simulations strive to produce
populations from simple physics, they are restricted to a much more
limited parameter space than SAMs (discussed further below). This
means that rate predictions from SAMs and hydrodynamic-based
models fundamentally differ.

One clear difference is the ability of SAMs to explore an
arbitrarily large range of masses, while hydrodynamic simulations
are resolution limited, typically to above ∼105 M�. If we consider
the increased prevalence of MBHs as we move towards smaller
masses, we would expect that models with access to binaries below
105 M� would greatly inflate the merger rate in a similar fashion to
what we have seen when including the lower masses from Illustris
through our advanced extraction. Along the same lines, Illustris,
and simulations like it, do not access the scales needed to examine
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2312 M. L. Katz et al.

Figure 7. Merger rates per year per unit redshift are shown above. ND (no delays), ND-6 (subset of ND model with m1,m2 ≥ 106 M�), K17 (Kelley et al.
2017a,b), and DA17 (Dosopoulou & Antonini 2017) models are shown in red, green, orange, and blue, respectively. The left plot shows all mergers from the
simulation with each prescription. The right shows the detection rate per year per redshift for each model assuming an SNR cut of ρ = 8.

Figure 8. Probability density functions (PDF) are shown for mass ratios and total masses of observed binaries (ρ ≥ 8) from our 10 000 Monte Carlo catalogues.
The coloured, filled contours show the PDF for the model given in the title of each plot. The coloured line contours represent the PDF of the ND model, which
we overplot in each panel. The left plot shows the ND (‘no delays’). In the centre-left, we compare ND-6 with the ND model. The ND-6 model is a subset of
the ND model with m1, m2 ≥ 106 M�. We then show the DA17 and K17 models as the centre-right and right plots, respectively. When comparing DA17 and
K17 to the ND model, there is minimal discernible difference between the three. Empirically, their means and higher order moments in the total mass and mass
ratio are within a smallpercentage of one another. Slightly higher mass ratios are more prevalent in the ND and K17 models compared to the DA17 model. The
solid and dashed black lines show the effect of a mass cut-off at 105 and 106 M�, respectively.

populations of dwarf galaxies. As evidence mounts that dwarf
galaxies house MBHs in their centre in both observations (Reines
et al. 2013; Moran et al. 2014; Satyapal et al. 2014; Lemons et al.
2015; Sartori et al. 2015; Pardo et al. 2016; Nguyen et al. 2018,
2019) and simulations (Volonteri, Lodato & Natarajan 2008; van
Wassenhove et al. 2010; Bellovary et al. 2019), we must improve
models since these dwarf galaxy sources are enitrely missing from
our analysis. Due to the prevalence of dwarf galaxies as well as the
general understanding that dwarf galaxies consistently merge into
larger ‘host’ galaxies over time, missing the dwarf galaxy MBHs

could deflate our rate calculations significantly. This is especially
true because these dwarf galaxies will house smaller MBHs that
will produce strong signals in the LISA frequency band. Similarly,
a number of potential systems may still be missed as we approach
the resolution limit of ∼105 M�.

Similar to this issue with dwarf galaxies, the MBH seeding
mechanism plays a large role in rate calculations. The seeding
mechanism in Illustris (and EAGLE) is ad hoc. The seeding model
chosen for Illustris produces seeds at later times than those seen
in other simulations like Tremmel et al. (2018). Additionally,
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Table 2. A collection of papers quoting rates for the detection of MBH binaries by LISA is shown
above. We focus here on papers analysing the large-seed (104–106 M�) formation channels since
this is similar to the seeding mechanism in Illustris. The base population tells if the models are
based on SAMs or hydrodynamic simulations. Short descriptions of the MBH binary evolutionary
prescriptions are also given. ‘None’ indicates that no delays between galactic and MBH binary mergers
were included. ‘Constant’ indicates that a constant delay was used for all binaries. ‘DF’ is a dynamical
friction prescription. ‘LC’ indicates inclusion of a stellar hardening or loss-cone scattering model. A
prescription involving torque from a gas disc is indicated with ‘VD.’ ‘GW’ indicates a gravitational
wave driven inspiral. A prescription containing triple MBH systems is expressed with ‘Tri’.

Reference Base population MBHB evolution prescription Merger rate (yr−1)

Arun et al. (2009) SAM None ∼22
Sesana et al. (2011) SAM None ∼25
Klein et al. (2016) SAM DF, LC, VD, GW, Tri ∼8
Berti et al. (2016)a SAM DF, LC, VD, GW, Tri ∼8
Salcido et al. (2016) Hydrodynamic Constantb ∼2
Bonetti et al. (2019) SAM DF, LC, VD, GW, Tri ∼23
This paper Hydrodynamic DF, LC, VD, GW ∼0.5–1

aFor detectable ringdown signals. For the mass ranges we consider in this paper, ringdown signals will
be measurable for all detectable sources.
bA constant delay was chosen based on gas-heavy versus gas-poor host galaxies.

the Illustris seeding prescriptions will produce seeds at much
later times when compared to SAMs. Later seeding means a
smaller volume accessible to LISA observations. Therefore, merger
rates from SAMs may also be intrinsically higher at higher
redshits.

The sub-grid models also affect our rates given that they cause
coalescences to occur after z = 0. The particular model chosen
has the potential to deflate the rate significantly. As previously
mentioned, SAM predictions decreased as more ‘delay’ models
were incorporated. In Tremmel et al. (2018), their simulation
works to numerically resolve smaller scales in order to track
MBH pair formation. They show that the expected number of
close MBH binary pairs is lower than expected, which would
lead to a depletion in the LISA rate. However, as seen in Bonetti
et al. (2019), including triple interactions can remedy this issue
quite significantly, producing rates similar to those found when
not considering a delay prescription (∼23). Additionally, including
prescriptions for gas-driven migration can also increase our rates
with our DA17 model (it is included in the K17 model). Without
the inclusion of gas-driven migration or triple interactions, our rate
is truly a lower limit. However, it can be seen that inclusion of these
prescriptions would not significantly alter our results since the rate
from our ND model is only slightly larger than those found with the
DA17 and K17 prescriptions.

For the EAGLE simulations, Salcido et al. (2016) test seeds
of ∼105 M�, similar to the seed model in Illustris. Therefore, we
believe two reasons other than the seed mass are the main factors
in our predicted rate difference. First, Salcido et al. (2016) perform
a different extraction analysis, compared to the analysis done for
this paper, to deal with numerical issues similar to those suggested
in Section 2.1. This may inflate the true number of mergers seen in
the EAGLE simulations, especially at masses near the seed mass.
Secondly, we use more detailed binary inspiral models than the
model used in Salcido et al. (2016). In their paper, they choose an
inspiral time for all binaries as flat values based on if a galaxy merger
was gas-rich (0.1 Gyr) or gas-poor (5 Gyr). When we compare these
inspiral times with those from our more detailed models (see Fig. 5),
we see that our models will generally predict longer inspiral times,
as well as inspiral times that are longer than the age of the Universe.
Therefore, the fraction of coalescing binaries before z = 0 is larger

with their choice of inspiral model, which would lead to a higher
predicted detection rate.

If we consider our rates in a relative way, even though our
predicted rates are low, the comparison of our binary inspiral models
can have an impact on LISA MBH science. We have shown the
difference between merger models is relatively small, but still varies
by a factor of 2. Since most detections are from low-mass systems
(see Fig. 6), much of this factor of two difference will be lost in the
low-mass regime. This means the K17 binary inspiral prescription
will lead to more difficulty characterizing the low-mass population,
as well as seeding models which will predominantly be constrained
by this lower mass regime.

6 CONCLUSIONS

We have presented new MBH binary LISA rate calculations based
on the Illustris cosmological simulations. Our MBH catalogue is
determined from the Illustris output using a new advanced extraction
method allowing us to probe masses down to the simulation seed
mass of ∼105 M�. Previous extraction methods made a mass cut
requiring m1, m2 ≥ 106 M�. By strictly following the interaction
between MBH mergers and the MBH host galaxies, we were able
to refine the analysis and retain an additional 8265 mergers in our
sample (∼50 per cent of mergers analysed). This doubled the rate
of predicted detections for LISA. Binaries containing an MBH of
∼105 M�, especially near equal-mass binaries, are prime targets
of the LISA mission due to their time spent evolving in the LISA
band, their high SNR potential, and their ability to better probe
MBH seeding models.

With this MBH merger catalogue from Illustris, we tested four
evolutionary prescriptions to understand how binary inspiral models
affect our rate predictions, as well as the binary properties of
the detected population. Our base model was the ND model,
which represented the exact prediction from the Illustris simulation
without any delays between the mergers in the simulation (at
∼kpc scales) and true coalescence of the MBH pairs. In order to
understand the effect of our new extraction method, we also tested a
model without delays while requiring m1,m2 ≥ 106 M�. We found
the detection rate was diminished by a factor of 2 when we included
this mass cut.

MNRAS 491, 2301–2317 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/491/2/2301/5614512 by N
orthw

estern U
niversity Library, Serials D

epartm
ent user on 28 January 2020



2314 M. L. Katz et al.

In addition to our base models without delays, we tested two
recent sub-grid models proposed in Dosopoulou & Antonini (2017)
(DA17; Section 3.1.1) and Kelley et al. (2017a,b) (K17; Sec-
tion 3.1.2). When comparing the evolution time-scales predicted
by these two models, we find that DA17 produces a smaller spread
in orders of magnitude of this time-scale when looking at different
masses and mass ratios. K17 produces a relatively flat profile of
time-scales when looking at all masses and mass ratios in our
catalogue. When examining coalescence fractions in Fig. 6, we find
that DA17 favours lower total masses while K17 favours higher
total masses. They both favour more equal mass ratio binaries.
Additionally, it was clear from our analysis that DA17 predicts
that more binaries from our catalogue will merge prior to z = 0
(84 per cent) compared to K17 (66 per cent).

Due to the ability to coalesce lower mass binaries, the DA17
model resembled the ND model in terms of detection rate at
∼0.7 yr−1 (integral rate calculation). The K17 model, with its lower
overall coalescence fraction and inability to retain the low-mass
binaries, led to a detection rate prediction similar to the ND-6
model at ∼0.4 yr−1. The rates predicted for black hole spectroscopy
were similar in magnitude to the overall detection rates. These rates
represent lower limits for similar rate predictions (see Section 5).

We also examined the probability density functions of the total
masses and mass ratios of the detected binaries using Monte
Carlo generated catalogues. We found that all models with low-
mass support (ND, DA17, and K17) produced similar detectable
populations in terms of these parameters. This indicates that the
surpression of sources by K17 is effectively equivalent across mass
regimes, leading to a lower detection rate, while maintaining a
similar total mass and mass ratio probability density function to
the DA17 and ND models. The ND-6 model cannot match this
because it has an entirely inaccessible region where at least one
constituent MBH of less than 106 M� is required. Overall, we show
that these two detailed models for the evolution of MBH binaries
from Dosopoulou & Antonini (2017) and Kelley et al. (2017a),
Kelley et al. (2017b) lead to differences in the detection rate and the
observable population by LISA.
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APPENDIX A: EFFECT OF LISA
CONFIGURATION ON RATE PREDICTIONS

Here, we analyse the difference between the classic LISA sensitivity
(Larson et al. 2000) and the proposed LISA sensitivity (Amaro-
Seoane et al. 2017). We do this purely to draw comparisons and
understand how the measurement of MBH binaries has changed
with the change in mission design. For this section, we refer to
the Proposal sensitivity curve (Amaro-Seoane et al. 2017) as ‘PL’.
The classic LISA curve has an unrealistic low-frequency behaviour
following an f−2 power law to infinitely low frequencies. To correct
for this, we copy the low-frequency band edge behaviour of PL,
move it to lower strains, and spline it together with the classic LISA
curve. We refer to this curve as ‘CLLF’. See Katz & Larson (2019)
for more information about this construction. Both PL and CLLF
are shown in Fig. A1. The basic difference between these two curves
is better low-frequency performance exhibited by CLLF due to a
longer armlength (5 million km).

The CLLF LISA configuration allows for observation of sources
earlier in their inspiral as well as stronger overall measurements
of this signal in the low-frequency regime. Additionally, the low-
frequency difference can allow for detection of larger total mass
sources (Katz & Larson 2019). The difference between these two
curves can be seen visually in Fig. A1 as the space between the
two curves on the low-frequency end. For this paper, we study
MBHs of masses greater than ∼105 M�. This mass regime radiates
gravitational waves observable at frequencies below 10−3 Hz.
Therefore, we want to focus our sensitivity analysis on the low-
frequency band edge. Katz & Larson (2019) show that the high-
mass range observable by LISA is strongly dependent on the low-
frequency band edge behaviour and can reach masses of ∼109 M�.

We also tested the ability of each detector configuration to observe
partial signals as well as binaries earlier in their evolution during
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Figure A1. This figure is the same as Fig. 3, but with the addition of the
modified classic LISA curve (see below). Two examples of the characteristic
strain, hc, curves are shown here with solid lines. The blue, green, and red
portions of the binary signals represent the construction we use for the
inspiral, merger, and ringdown, respectively. Both examples show a = 0.8
and q= 0.2 for a signal beginning 100 yr before merger. To plot these curves,
we use tst = 100 yr and tend = 0 so that we encapsulate 100 yr of inspiral as
well as the merger and ringdown. The times before merger are labelled above
the strain curve for 100, 10, and 1 yr before merger. Example A shows a
binary of MT = 108 M� and z = 0.75. Example B shows MT = 5 × 105 M�
and z = 2. In addition to binary signals, the two sensitivity curves tested in
this section are shown in characteristic strain of the noise, hN. PL (dashed
orange) is the curve proposed in Amaro-Seoane et al. (2017). CLLF (dashed
blue) is a modified version of the classic LISA curve (Larson et al. 2000). At
low frequencies, the classic LISA curve has an unphysical constant slope. To
correct for this, we move the PL low-frequency behaviour to lower strains
and spline it together with the original classic LISA curve. Additionally, the
Galactic background noise we use is shown with a dashed green line.

only their inspiral phase. Fig. A2 shows the detection rate of binaries
versus their time-to-merger at the start of LISA observation. The
binaries shown in this figure will not reach their coalescence by
the time LISA observing terminates. Therefore, the rates shown
represent detections from only the inspiral portion of coalescence.
Immediately to the right of the observation time, the rate drops
off significantly with the loss of the merger and ringdown signals.
Additionally, the inspiral signal is not observable for larger binaries,
meaning LISA will not detect any of the larger mass systems
if they do not merge in the observing window. At longer times
before merger, the rate is further decreased as signals from lower
mass systems fall below the noise. Therefore, in order for these
detections to occur, they have to be lower in mass, sufficiently close
in luminosity distance, and close enough in time-to-merger to be
detectable. Here, we see a stark difference between the two detector
configurations. The PL configuration almost drops off entirely to the
right of the observation time. CLLF displays a different behaviour: it
shows a more gradual decrease in the detection rate with increasing
start time. Detections at start times between 4 and 7 yr occur at
rates between ∼10−2 and 1 yr−1. Therefore, while our magnitude
of the overall rates is low, the detection rate of these inspiral-only

Figure A2. The integral detection rate calculation for different values of tst

is shown above. tst is set to the value on the horizontal axis. Tobs is set to 4
yr. Each binary inspiral model is then tested with both LISA configurations.
The ‘no delay’ (ND) model is shown in blue. ND-6, a subset of the ND
model with m1,m2 ≥ 106 M�, is shown in orange. DA17 (Dosopoulou &
Antonini 2017) and K17 (Kelley et al. 2017a,b) models are shown in green
and red, respectively. The PL (CLLF) LISA configuration is shown with
solid (dashed) lines.

sources can enhance the overall detection rate by ∼20 per cent if the
detector’s low-frequency performance is closer to the classic LISA
configuration. If lower mass binaries were included, this percentage
would increase because at masses lower than those tested here, we
enter a regime where the inspiral stage can be observed, but the
merger and ringdown are no longer detectable.

All of our delay models have the same general behaviour for
both LISA configurations. Since ND-6 bottoms out at 106 M�, the
difference between ND-6 and the other models can be see as the low-
mass (< 106 M�) contribution added by the advanced extraction.
Consequently, ND-6 does have a much steeper drop for CLLF
because it does not have the low-mass support to boost detections
of inpiral-only sources. Once again, the advanced extraction helps
to establish a more complete LISA analysis. Similarly, due to the
inability of K17 to maintain the low-mass systems, the K17 curve
is below the DA17 and ND model curves at all start times.

A1 Monte Carlo rate results

Table A1 shows our Monte Carlo results for 10 000 sampled
catalogues. We estimate the errors in our Monte Carlo results to
be approximately

√
1/N = √

1/10 000 = 1 per cent. The rates for
the measurement of the entire signal roughly match our integral
calculations (Table A2). Testing the inspiral-only results was useful
in this setting because we can get a rate without assuming specific
start times. We see that PL measures a negligble rate of inspiral-only
sources for all of our time-scale models. CLLF, on the other hand,
shows that its low-frequency performance constitutes ∼20 per cent
of all detections for models that include the lower mass binaries
(9 per cent of detections for ND-6). These systems had the lowest
masses in our catalogues.
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Table A1. Monte Carlo results for the observed detection rate per year from our 10 000 catalogues are shown above (see
Section 3.3). We focused our Monte Carlo calculation on the overall signal detection rate as well as sources only detected in
their inspiral stage. The coalescence time-scale prescriptions are listed in the first column: ND is the ‘no delay’ model; ND-6
is a subset of the ND model with all constituent masses below 106 M� eliminated from consideration; DA17 is the binary
inspiral model from Dosopoulou & Antonini (2017); and K17 is the inspiral model from Kelley et al. (2017a, 2017b). The
full signal detection rate with PL and CLLF are shown in the second and third columns, respectivley. Similary, inspiral-only
detection rates are shown for PL and CLLF in the fourth and fifth columns, respectively. The last two columns show the
fraction of the total detection rate contributed by inspiral-only signals using PL and CLLF. For our Monte Carlo results, the
error in the predictions is approximately

√
1/N = √

1/10 000 = 1 per cent.

Prescription PL CLLF PL CLLF PL CLLF
All signal All signal Ins only Ins only Fraction of Ins only Fraction of Ins only

ND 0.79 1.08 <0.01 0.19 <1 per cent 18 per cent
ND-6 0.47 0.57 <0.01 0.05 <1 per cent 9 per cent
DA17 0.72 0.97 <0.01 0.20 <1 per cent 21 per cent
K17 0.47 0.64 <0.01 0.13 <1 per cent 20 per cent

Table A2. This table is the same as Table 1, with rates added for the CLLF LISA configuration. Merger and detection
rate calculations per year are shown using the integral calculation (equation 27). The evolution prescriptions are listed
in the first column. The top row shows the ‘no delays’ model: ND. The second row shows the ND-6 model, displayed
in italics because it represents a subset of the ND model with m1, m2 ≥ 106 M�. The final two rows show the DA17
(Dosopoulou & Antonini 2017) and K17 (Kelley et al. 2017a,b) models, respectively. The merger rate gives the rate
of coalescences without considering LISA detectability. The remaining columns are labelled with the sensitivity curve
used (PL or CLLF) to determine detectability. Additionally, detection rates are separated into signal types: All, Ins, MR,
and BHS. ‘All’ indicates reaching detection threshold using the entire signal. ‘Ins’ and ‘MR’ represent detection rates of
inspiral signals and signals from the merger and ringdown, respectively. These categories are not independent. A single
binary can add to the rate in both categories. ‘BHS’ is the detection rate of MBH binaries where black hole spectroscopy
is possible (see equation 24). We estimate our errors in these predictions to all fall below 0.01 according to equation 17
in Salcido et al. (2016).

Prescription Merger rate PL CLLF PL CLLF PL CLLF PL CLLF
All All Ins Ins MR MR BHS BHS

ND 0.98 0.75 0.89 0.45 0.75 0.77 0.89 0.74 0.88
ND-6 0.57 0.44 0.51 0.23 0.43 0.45 0.52 0.43 0.51
DA17 0.80 0.70 0.77 0.42 0.68 0.70 0.77 0.67 0.77
K17 0.55 0.44 0.50 0.28 0.44 0.45 0.51 0.43 0.50

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 491, 2301–2317 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/491/2/2301/5614512 by N
orthw

estern U
niversity Library, Serials D

epartm
ent user on 28 January 2020


