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Abstract

In a dense stellar environment, such as the core of a globular cluster (GC), dynamical interactions with black holes
(BHs) are expected to lead to a variety of astrophysical transients. Here we explore tidal disruption events (TDEs)
of stars by stellar-mass BHs through collisions and close encounters. Using state-of-the-art cluster simulations, we
show that these TDEs occur at significant rates throughout the evolution of typical GCs and we study how their
relative rates relate to cluster parameters such as mass and size. By incorporating a reahstlc cosmologlcal model of
GC formation, we predict a BH-main-sequence-star TDE rate of approx1mately 3 Gpe 2 yr~ ! in the local universe
(z < 0.1) and a cosmological rate that peaks at roughly 25 Gpc > yr ' for redshift 3. Furthermore, we show that the
ejected mass associated with these TDEs could produce optical tran51ents of luminosity ~10*'—10* erg s~ with
timescales of about a day to a month. These should be readily detectable by optical transient surveys such as the
Zwicky Transient Facility. Finally, we comment briefly on BH—giant encounters and discuss how these events may
contribute to the formation of BH-white-dwarf binaries.
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1. Introduction

The high stellar densities at the centers of globular clusters
(GCs) make them hotbeds for exotic astrophysical objects,
including blue stragglers (e.g., Sandage 1953; Ferraro et al.
1995; Piotto et al. 2002; Geller & Mathieu 2011; Chatterjee
et al. 2013; Leigh et al. 2013), millisecond pulsars (e.g., Lyne
et al. 1987; Sigurdsson & Phinney 1995; Ivanova et al. 2008;
Ransom 2008; Fragione et al. 2018; Ye et al. 2019), and low-
mass X-ray binaries (e.g., Clark 1975; Verbunt et al. 1984;
Heinke et al. 2005; Ivanova 2013; Giesler et al. 2018; Kremer
et al. 2018b). The influence of dynamics is particularly
pronounced for stellar-mass black holes (BHs), which
preferentially reside in the highest-density central regions of
their host clusters, as a consequence of mass segregation.
Recent work has shown that GCs efficiently produce merging
binary BHs (BBHs) through series of binary-mediated
dynamical encounters (e.g., Moody & Sigurdsson 2009;
Banerjee et al. 2010; Bae et al. 2014; Ziosi et al. 2014;
Rodriguez et al. 2015, 2016, 2018a; Askar et al. 2017,
Banerjee 2017; Giesler et al. 2018; Hong et al. 2018; Fragione
& Kocsis 2018; Samsing & D’Orazio 2018). Thus, as LIGO
and Virgo have begun to unveil the gravitational-wave (GW)
universe through detections of merging BBHs (e.g., Abbott
et al. 2016a, 2016b, 2016¢, 2016d, 2017; The LIGO Scientific
Collaboration et al. 2018), the topic of binary BH formation in
GCs has risen in importance.

In the past two decades, our understanding of stellar-mass
BH populations in GCs has evolved significantly. From an
observational perspective, several BH candidates have been
identified in GCs through both X-ray/radio (e.g., Maccarone
et al. 2007; Strader et al. 2012) and radial-velocity (Giesers
et al. 2018) observations. Recent computational work has
supported these observational findings. Current models of GCs
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show that they can retain large populations of BHs, even at late
times (¢t 2 10 Gyr), and the BHs readily mix with luminous
stellar populations forming BH-non-BH binaries. Furthermore,
it is now understood that the BHs can play a dominant role in
determining the large-scale structural properties of their host
cluster (e.g., Merritt et al. 2004; Mackey et al. 2007, 2008;
Peuten et al. 2016; Wang et al. 2016; Arca Sedda et al. 2018;
Kremer et al. 2018c, 2019; Zocchi et al. 2019).

In a GC, stars will frequently pass through small-N (most
commonly, three- or four-body) resonant encounters that lead
to a greatly increased rate of close passages between objects
relative to direct single-single interactions (e.g., Bacon et al.
1996; Fregeau et al. 2004). If these small-N encounters involve
BHs and other stars, sufficiently close passages can lead to tidal
disruption events (TDEs) of stars by the BHs. Previous work
has shown that these events may serve as a dynamical
formation channel for a variety of sources observed in GCs.
For instance, Ivanova et al. (2005) showed that direct physical
collisions between neutron stars (NSs) and giant stars can lead
to bright, ultracompact X-ray binaries, similar to those
observed in Milky Way GCs, in which the NS is accreting
from a white-dwarf (WD) companion. Similarly, Ivanova et al.
(2010) showed that collisions between BHs and giants may
result in accreting BH-WD binaries, possibly similar to the
X-ray/radio source observed in NGC 4472 (Maccarone et al.
2007). More recently, Ivanova et al. (2017) showed that
(grazing) tidal captures of subgiants by stellar-mass BHs may
lead to BH—sub-subgiant binaries, similar to the BH candidate
observed in M10 (Shishkovsky et al. 2018).

Additionally, TDEs involving stellar-mass BHs may produce
interesting electromagnetic transient signatures. Perets et al.
(2016) showed that disruptions of stars by stellar-mass BHs
and NSs, which they called “micro-TDEs,” may give rise to
bright, energetic, long X-ray/gamma-ray flares, which could
possibly resemble ultralong gamma-ray bursts. Recently,
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Lopez et al. (2018) demonstrated that when a star is disrupted
by a BBH, the BH spins may be significantly modified if a
significant fraction of stellar material is accreted. Samsing et al.
(2019) showed that for disruptions by BBHs, observations of
breaks in the light curve may be used to determine the BBH
orbital period, and they proposed to link this inferred orbital
period to the BBH merger rate from clusters, thus connecting
tidal disruption and GW signals. Additionally, Fragione et al.
(2019) recently showed that secular effects relevant in
hierarchical triple systems may also lead to BH-star TDEs
that occur at significant rates.

In this analysis, we use our Hénon-type Monte Carlo code
CMC to explore the rates of TDEs by stellar-mass BHs in GCs,
and we then estimate the electromagnetic signatures expected
from these events. Our paper is organized as follows. In
Section 2 we summarize the methods used to model the long-
term evolution of GCs, including our treatment of BH TDEs. In
Section 3 we discuss the total number of BH-main-sequence
(MS) star TDEs identified in our models and discuss the
dependence of these events on cluster properties, in particular
the initial cluster size and mass. In Section 4 we discuss the
expected electromagnetic signatures of such events and in
Section 5 we give our predictions for the event rate. We briefly
discuss BH—giant encounters in Section 6. Finally, we discuss
our results and conclude in Section 7.

2. GC Models

CMC (for Cluster Monte Carlo) is a rigorously tested, Hénon-
type Monte Carlo code that computes the long-term evolution
of GCs with realistic initial properties and containing up to
several million stars (Hénon 1971a, 1971b; Joshi et al.
2000, 2001; Fregeau et al. 2003; Chatterjee et al.
2010, 2013; Pattabiraman et al. 2013; Rodriguez et al. 2015).
CMC incorporates stellar and binary evolution using the
evolution codes SSE and BSE (Hurley et al. 2000, 2002),
modernized to reflect our most up-do-date understanding of the
formation of compact objects, including prescriptions for natal
kicks, mass-dependent fallback, and (pulsational) pair-instabil-
ity supernovae (Fryer & Kalogera 2001; Belczynski et al. 2002;
Hobbs et al. 2005; Morscher et al. 2015). We also integrate all
small-N resonant dynamical encounters (including binary—
single and binary-binary encounters) using the fewbody
package (Fregeau et al. 2004; Fregeau & Rasio 2007) which
has been updated to incorporate gravitational radiation reaction
for all encounters involving BHs (for more information, see
Rodriguez et al. 2018a, 2018b).

We use the same prescription to treat pulsational-pair
instabilities and pair-instability supernovae as Rodriguez
et al. (2018b), which follows Belczynski et al. (2016). Briefly,
we assume that any star with a pre-explosion helium core
between 45 and 65 M., will undergo pulsations that eject a
significant amount of mass, until the final product is at most
45 M. Assuming that 10% of the mass is lost during the
conversion from baryonic to gravitational mass at the time of
collapse, this leaves a BH of mass 40.5 M... Finally, we assume
that stars with helium core masses in excess of 65 M, are
completely destroyed by a pair-instability supernova (no
remnant is formed). Of course, there are many uncertainties
associated with these numbers. In particular, some studies (e.g.,
Woosley 2016; Spera & Mapelli 2017) have predicted that the
lower boundary of this mass gap may be as high as 50 M.
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For NS formation and evolution, we have updated the SSE
and BSE codes to include changes to the magnetic field and
spin-period evolution, as well as the natal kick prescriptions for
NSs formed in electron-capture supernovae (ECSNe; Kiel et al.

2008; Kiel & Hurley 2009). See Ye et al. (2019) for further
detail on the treatment of NSs and radio pulsars in CMC.

In a GC, the stellar dynamics in the high-density core can
frequently lead to close encounters between stars. For
encounters of two single stars with masses M, and M,, the
cross section for an encounter with pericenter distance 7, is
given by

ey

2G (M; + M.
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where o, is the local velocity dispersion (see, e.g., Fregeau &
Rasio 2007). Here, we are interested in the particular case of
close encounters between BHs and MS stars. For sufficiently
close encounters, the tides raised on the MS star may dissipate
enough energy to bind the two objects or disrupt the structure
of the MS star. Following Fabian et al. (1975), we define the
characteristic radius for tidal interaction as
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where Mgy is the BH mass, M, and R, are the stellar mass and
radius, respectively, and f,, is a dimensionless parameter that
captures the details of the tidal interaction. In order of
increasing r,, close encounters may take the form of physical
collisions (e.g., Fryer & Woosley 1998; Hansen & Murali 1998;
Zhang & Fryer 2001), tidal disruptions (e.g., Perets et al. 2016),
tidal captures (e.g., Fabian et al. 1975; Ivanova et al. 2017), or
more distant tidal encounters that only weakly perturb the star
(e.g., Alexander & Kumar 2001). In addition to the dependence
on the pericenter distance, the details of a particular close
encounter and associated tidal interactions also depend upon
the internal structure of the star. For instance, tidal interactions
can be quite different for young low-mass MS stars, which
have relatively uniform density, compared to evolved massive
MS stars, which are much more centrally concentrated.

Capturing the subtleties of tidal interactions during close
encounters requires detailed hydrodynamic calculations of the
events, and is beyond the computational scope of CMC.
Therefore, we simply consider two limits for our choice of
the maximum pericenter distance, rtpg, that leads to a TDE. As
a conservative lower limit we take rypg = R, (models 1-24 in
Table 1 adopt this assumption), and as an upper limit we
assume rppg = rr computed by Equation (2) with f, =1
(models 25 and 26 adopt this assumption).” Henceforth, we use
the term TDE as shorthand to denote all close encounters with
1, < rrpg, computed in one of these two limits.

Although BH-MS-star TDEs are the main focus of this
study, we comment briefly on NS-MS-star TDEs in

7 The choice of f» =1 as our upper limit is meant to simply reflect the

classical tidal disruption limit assuming a star of uniform density. While this
approximation is reasonable for low-mass MS stars, a different choice for f,
may be more appropriate for evolved massive stars. As this is a first attempt at
studying these TDEs in our cluster models, we adopt f,, = 1 for all stars for
simplicity and reserve a more detailed exploration of the dependence of f, on
stellar type for a later study. We do emphasize, however, that an f, dependent
on stellar type is unlikely to change the results presented here significantly.
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Table 1
Initial and Final Cluster Properties for All Models
Model N z , My, Mot Nobi, merger BH-MS TDEs BH-Giant TDEs  BH-WD TDEs
(x10%) (Zs) (pc) (10° M) s—s b-s b-b total
1 2 0.01 1 0.5 1 7 0 2 0 2 1 0
2 5 0.01 1 1.46 41 42 5 6 2 13 3 0
3 10 0.01 1 3.09 165 114 23 12 4 39 9 0
4 20 0.01 1 6.3 634 341 57 49 7 113 29 2
5 2 0.25 1 0.43 1 9 1 2 3 6 6 1
6 5 0.25 1 1.35 36 48 4 9 3 16 6 0
7 10 0.25 1 2.84 198 121 17 9 2 28 15 0
8 20 0.25 1 5.94 608 344 59 53 13 125 29 0
9 2 0.05 1 7 3 0 1 4 3 0
10 5 0.05 1 0.87 9 32 7 6 6 19 12 0
11 10 0.05 1 2.45 89 102 18 23 8 49 18 1
12 20 0.05 1 5.29 423 331 93 71 10 174 57 1
13 2 0.01 2 0.54 32 4 0 1 0 1 0 0
14 5 0.01 2 1.54 114 27 3 2 0 5 3 0
15 10 0.01 2 3.19 416 66 9 8 0 17 2 0
16 20 0.01 2 6.61 1192 196 26 21 5 52 9 0
17 2 0.25 2 0.47 23 10 0 0 0 0 0 0
18 5 0.25 2 1.4 136 20 3 2 1 6 1 0
19 10 0.25 2 2.98 415 75 18 5 2 25 3 0
20 20 0.25 2 6.3 1133 203 30 11 1 42 8 0
21 2 0.05 2 8 1 1 0 2 1 0
22 5 0.05 2 0.8 55 24 3 7 0 10 0 0
23 10 0.05 2 2.48 260 59 8 10 5 23 2 0
24 20 0.05 2 5.78 871 177 29 23 2 54 12 0
25 10 0.05 1 2.82 171 111 67 56 6 129 18 0
26* 10 0.05 2 2.97 375 78 22 24 1 47 6 0

Note. Initial and final cluster parameters for the models considered in this study. Columns 2—4 show the particle number (), metallicity (Z), and initial virial radius
(ry), respectively. Column 5 shows the final cluster mass (at t = 12 Gyr) and column 6 shows the total number of BHs retained in the cluster at this time (note that
these values are null for models 9 and 21, which have both dissolved by 12 Gyr). Column 7 show the cumulative number of BBH mergers occurring in each model.
Columns 8-10 show the total number of BH-MS TDEs that occur through single—single (s—s), binary—single (b—s), and binary—binary (b—b) encounters, respectively,
and column 11 shows the total number of BH-MS TDE:s in each model. Columns 12 and 13 show the total number of BH-giant and BW-WD TDEs that occur in
each model. The final two rows (models 25 and 26, marked with asterisks) show models for which we place a less stringent requirement on the minimum pericenter

distance for a BH-MS TDE to occur (see Section 2 for more detail).

Section 7.4. These are computed in the same way as described
above for BHs. In addition to close encounters between MS
stars and BHs (NSs), we also record all close encounters of
BHs (NSs) with giants and WDs. For these events, we consider
a maximum pericenter distance of rrpg = R, for all models,
where R, is the stellar radius of the giant or WD. We discuss
BH-giant and BH-WD TDEs further in Section 3 and we
examine BH—giant encounters specifically in Section 6.

For stellar pairs where neither object is a BH or an NS (for
example, MS-MS) CMC includes only physical collisions,
treated in the “sticky-sphere” approximation, i.e., the two stars
are merged assuming conservation of mass and momentum
whenever 7, < R| + R, where R; and R, are the radii of the
two stars (see Chatterjee et al. 2013 for more detail). All stellar
radii are computed using the evolutionary tracks of SSE
(Hurley et al. 2000).

Close encounters leading to TDEs can occur through both
single—single dynamical encounters and binary-mediated
encounters (binary—single and binary—binary encounters;
higher multiples are not included in CMC). For a discussion
of how TDEs are computed in CMC, we direct the reader to
Fregeau & Rasio (2007), which describes the elements of the

calculation for both the single-single case and the binary-
mediated case in detail. For a more general discussion of the
calculation of TDEs and collisions within a Monte Carlo-type
dynamics code, we direct the reader to Chatterjee et al. (2010),
Goswami et al. (2012), Pattabiraman et al. (2013) as well as
earlier work by Freitag & Benz (2002) and Giersz (2001).

The final outcome of TDEs involving stellar-mass BHs (and
NSs) is highly uncertain. Performing detailed calculations of
the 3D hydrodynamics associated with these events is beyond
the scope of this study (see J. Fixelle et al. 2019, in preparation
for a first attempt). Here, for simplicity, we assume that in the
event of a BH-star (or NS—star) TDE, the star is instanta-
neously destroyed, and no mass is accreted by the BH (NS).
Qualitatively, this is because the accretion of even a small
amount of mass onto the BH (NS) is expected to easily release
enough energy to completely unbind the stellar debris. This
process is discussed in more detail in Section 4. However, the
possibility that a significant fraction of the disrupted star could
be accreted by the BH cannot be entirely ruled out. If indeed a
significant portion is accreted, it could affect the cluster’s BH
population, as discussed further in Section 7.3.
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For this analysis, we use the same set of models described in
Rodriguez et al. (2018a) (models 1-24), plus two additional
models (models 25 and 26) that adopt an upper limit for tidal
disruptions, as described above. A number of initial cluster
parameters are fixed throughout, including the initial King
concentration parameter (W, = 5) and the stellar initial mass
function (IMF; we assume an IMF as in Kroupa (2001) with
initial masses sampled in the range 0.1—150 M). We assume
an initial binary fraction of 10% in all models with binary mass
ratios drawn from a flat distribution; binary semimajor axes are
drawn from a distribution flat in log form from near contact to
the hard/soft boundary, and initial eccentricities drawn from a
thermal distribution. Four initial parameters are varied in this
grid of models: the total particle number (N =2 x 10°,
N=5x10°, N=10°% and N = 2 x 10°), the virial radius
(r, =1 and 2 pc), the metallicity (Z = 0.01, 0.05, and 0.25
Z), and the galactocentric distance (rgc = 2, 8, and 20 kpc).
We assume that the metallicity and galactocentric distance
values are correlated, giving us a 4 x 3 x 2 model grid.
Table 1 lists the initial parameters for all models used in this
study, as well as the total number of BHs retained at
t = 12 Gyr, the cumulative number of BBH mergers, and
cumulative numbers of BH-MS, BH-giant, and BH-WD
TDEs in each model. All together, this grid of models
approximates the full distribution of cluster masses, sizes,
and metallicities observed in the Milky Way.

3. BH-MS TDEs in Cluster Models

As shown in Table 1, we identify a total of 898 BH-MS
TDEs in models 1-24 of this study. Of these, 433, 363, and 102
occur through single—single, binary—single, and binary—binary
encounters, respectively. For models 25 and 26 (for which we
increase the cross section for TDEs to obtain an upper limit; see
Section 2), we identify 176 total TDEs, including 89, 80, and 7
from single—single, binary—single, and binary—binary encoun-
ters, respectively. Figure 1 shows all BH-star TDEs identified
in models 1-24. For the top panel, we show the mass of the star
involved in each TDE on the vertical axis and we show the
TDE time on the horizontal axis. Black points indicate BH-MS
TDEs, orange points indicate BH—giant TDEs, and blue points
indicate BH-WD TDEs. In total we identify 246 BH-giant
TDEs and six BH-WD TDEs in models 1-24. We discuss BH-
giant TDEs in more detail in Section 6. Because BH-WD
TDEs occur at such a relatively low rate compared to the other
stellar types, we do not consider them further in this analysis.

The gray curve in the top panel of Figure 1 marks the turnoff
mass as a function of time. As seen in the figure, a handful of
BH-MS TDEs involve MS stars with masses lying above the
turnoff curve. These MS stars are themselves collision products
of MS stars and would be identified as blue stragglers (e.g.,
Sandage 1953; Ferraro et al. 1995; Piotto et al. 2002; Chatterjee
et al. 2013).

The middle panel of Figure 1 shows the distribution of MS
masses for all BH-MS TDEs shown in the top panel (black
curve) compared to the IMF (gray curve). As the middle panel
shows, the mass distribution of MS stars disrupted by BHs
follows the IMF closely. The median MS mass for all BH-MS
TDEs is 0.5 M.

We show in the bottom panel of Figure 1 the distribution of
BH masses for all BH-MS TDEs. In black, we show all first-
generation BHs (BHs that have not already undergone a binary
BH merger) and in blue we show all second-generation BHs
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Figure 1. Top panel: stellar mass vs. time of TDE for all BH-star TDEs
identified in models 1-24. Black, orange, and blue symbols show MS, giant,
and WD TDEs, respectively. The solid gray line shows the turnoff mass as a
function of time. Middle panel: distribution of stellar mass for all BH-MS
TDEs (black) compared to the initial mass function (IMF; gray). The median
MS mass is approximately 0.5 M. Bottom panel: distribution of BH mass for
all BH-MS TDEs. The median BH mass is approximately 18 M. The black
curve shows first-generation BHs and blue shows second-generation (BHs that
were formed through binary BH mergers earlier in the cluster evolution).

(BHs that were formed from binary BH mergers earlier in the
cluster evolution). The peak at Mgy = 40.5 M, in the black
curve comes from our treatment of pair-instability supernovae
(see Section 2). The handful of first-generation BHs with
masses slightly above 40.5 M, are the result of either stable
mass transfer or stellar collisions prior to BH formation (see
Rodriguez et al. 2018b for further detail). In total, only six of
the total of roughly 900 BH-MS TDEs in models 1-24 (~1%)
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Figure 2. Total number of BH-MS TDEs in models 1-24 vs. final cluster
mass. Filled (open) circles show models with r, = 1 pc (2 pc).

occur with a second-generation BH. The median BH mass for
all BH-MS TDEs is 18 M.,

In Figure 2 we show how the number of BH-MS TDEs per
cluster varies with cluster mass and size (which are specified in
our models by initial N and r,, respectively). Here, filled and
open circles denote cluster models with r, = 1pc and
r, = 2 pc, respectively. As the figure shows, the number of
TDEs varies proportionally with cluster mass and inversely
with cluster size. This is as anticipated. The TDE rate scales
with the cluster number density, n ~ N/ rf. For clusters of
similar total N, decreasing the size (r,) will increase the density,
leading to a higher TDE rate. Likewise, for clusters of similar
physical size, increasing the number of particles (total mass)
will increase the density and again lead to more TDEs.

For all initial models in this study, we adopt a King
concentration parameter of W, = 5 and vary the initial density
simply using the initial virial radius. However, in principle,
higher values of W, may also yield an increase in the TDE rate
and stellar collision rate. Along these lines, several recent
papers (e.g., Portegies Zwart et al. 2004; Freitag et al. 2006;
Giersz et al. 2015; Mapelli 2016) have shown that large initial
concentrations may even lead to runaway mergers of MS stars
in clusters, a possible channel for forming intermediate-mass
BHs (IMBHs). An exploration of the effect of initial cluster
concentration on the TDE rate is beyond the scope of the
present study but is a topic worth consideration in future
analyses. We return to this topic of IMBHs briefly in
Section 7.6.

Finally, comparing models 25 and 26 to models 7 and 19,
respectively (which have the same initial conditions), we see
that using the upper limit for TDEs described in Section 2, the
number of BH-MS TDEs is increased by a factor of a few
(roughly 5 for model 25 versus model 7 and roughly 2 for
model 26 versus model 19). This is anticipated: the median BH
mass of all disruptions is approximately 18 M, and the median
MS mass is approximately 0.5 M., thus the impact parameter
for disruptions is increased, on average, by a factor of
(Mg /M,)'/3 ~ 3 compared to our conservative lower limit
where we assume rrpg = R, (see Section 2 for further detail).
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4. Electromagnetic Signatures

In this section we present an analytic prediction for the
electromagnetic signature associated with BH-MS TDEs. We
start with a broad-brush picture of the disruption process and
disk formation from the fallback debris (Section 4.1). After-
wards, we adopt a simple model for the evolution of a super-
Eddington accretion disk and its wind (Section 4.2). The wind
carries the radiation generated in the disk (by viscous
dissipation) and releases it at larger radii where photons can
diffuse away (Section 4.3). The final results—the light curves
and temperature evolution—are shown in Figures 5 and 6. The
possibility of jet formation is discussed in Section 4.4.

4.1. Tidal Disruption and Disk Formation

Consider an MS star of radius R, = ryR. and mass
My = myM,, BH mass M = 10M;M,; the mass ratio is
qg = M,/M. Adopting the upper limit case discussed in
Section 2 where we assume the maximum pericenter distance
that will lead to a TDE, rypg, is equal to rr as given by
Equation (2), we can write

ripe = Reg ™3 = (1.0 x 1095 M *mi e, (3)

where r, = GM/ ¢* = 15M, km is the gravitational radius of
the BH. For stellar-mass BHs with masses up to ~50M,, and
MS stars with masses as low as ~0.1M,,, Equation (3) gives
rrpe/Rx ~ ¢~/ < 8 (as compared to rrpg /Ry > 1 for MS
disruptions by supermassive BHs). The initial orbit of the star
has pericenter distance r, = rrpg/f, where 52 1 is the
dimensionless impact parameter. Here, we only consider the
most frequent cases where (3 is close to unity. Since rpg is
comparable to the stellar radius, the star’s self-gravity cannot
be ignored in the hydrodynamic disruption process. This
suppresses the amount of marginally bound debris and hence
the evolution of late-time fallback rate is steeper than the
canonical power law t ° /3 (e.g., Guillochon & Ramirez-
Ruiz 2013; Perets et al. 2016).

Instead of modeling the detailed disruption process (see
Perets et al. 2016), we focus on the broad-brush picture of disk
formation, viscous accretion, and the electromagnetic signals.
Roughly speaking, the stellar debris has a spread in specific
(kinetic + potential) energy

e GM _ GM @

rToE  TTDE — TR«

and specific angular momentum

¢ >~ (rrpg — NR+)y2GM /r1pE, )

where the parameter 77 € [—1, 1] roughly corresponds to fluid
elements at different locations inside the star (n = 1 for the part
of the star closest to the BH at disruption). The bound debris
corresponds to negative specific energy (0 < n < 1) and has
eccentricity

e = \/1 + 25(2/rg2c4 o~ \/1 —4ng' 31— ng'?y.  (6)

We define a circularization radius 7, corresponding to a circular
Keplerian orbit with the angular momentum in Equation (5):

re =0 /rgc? = 2rmpe(l — ng'/3)>. @)
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For stellar-mass BHs of mass M ~ 20M., (roughly the typical
BH mass identified in our cluster models; see Section 3), we
see that 1 — e is of order unity and hence the orbits of the
bound debris are not highly eccentric. This is very different
from TDEs by supermassive BHs where we have
1 —e~ M, /M)l/ 3 <« 1. Therefore, as seen in smoothed-
particle hydrodynamics (SPH) calculations (see, e.g., J. Fixelle
et al. 2019, in preparation ), we expect a nearly circular
accretion disk to form quickly after the most tightly bound
mass falls back to the pericenter, and the radius of the disk is
given by r. ~ rrpg (we ignore the weak dependence on 7).
The viscous accretion timescale at radius r ~ 1. is
- (/H)?

fois ™ " ~ (0.74 day) () 'my 121372, (8)
K

where Qk () = \/GM/r? is the Keplerian angular frequency,
a ~ 0.1a_ is the dimensionless viscosity parameter (Shakura
& Sunyaev 1973), and we have taken the disk height ratio H/r
to be 0.5 (appropriate for a super-Eddington thick disk and the
uncertainty can be absorbed into «). Since the late-time
fallback rate drops rapidly on a timescale Q' (Perets et al.
2016), nearly all the bound debris will fall back within the
viscous time tvis(>>Qg1) and accumulate near r ~ 7. Thus, we
take the disk mass to be ~M, /2, and then the peak accretion
rate is given by

oz_lmf/z

—_— 9
r;/z ( )

~ (2.5 x 10?°M yr™h
\28)

Note that the maximum luminosity of the accretion system is

~0.1Mpeacc? ~ 1.4 x 10%(cr/0.1) erg s~!, which can only be

achieved under conditions for extremely efficient energy

release (e.g., in the form of relativistic jets, see Section 4.4).

Defining the Eddington accretion rate as
MEdd = Lgaa /C2 =26 X 1078M1M@ yI'71 (Lgaa being the
Eddington luminosity), we have

Mpea 1o [Miaate ~ 10%a_; > 1. Thus, the viscous heating rate
~GMMyes /1. exceeds the Eddington luminosity by about five
orders of magnitude and hence the disk is indeed geometrically
thick near r ~ r.

4.2. Super-Eddington Accretion Disk

The electromagnetic signals of MS—-BH TDEs depend on the
physics of super-Eddington accretion, and the relevant MHD
processes coupled with radiative transport are not understood in
detail (Blaes et al. 2011; Ohsuga & Mineshige 2011;
McKinney et al. 2014; Sadowski & Narayan 2016; Jiang
et al. 2017); see recent reviews by Abramowicz & Fragile
(2013) and Blaes (2014). To construct a simple model, we
approximate the disk mass distribution as a “ring” located at the
peak radius of the surface density distribution ry and calculate
the time evolution of the bulk properties of the disk. The disk
mass My and angular momentum Jy evolve as (Kumar et al.
2008)

Mqy(ra) = —Ma/tis,  Ja= —fiJa/tvis; (10)

where the viscous time is taken to be ty(ry) = 4a*1§2§1(rd)
(fixing the height ratio H/ry = 0.5) and the parameter f; is the
ratio between the specific angular momentum of the disk wind
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Figure 3. Top panel: the time evolution of the photon-trapping radius r;
(Equation (21), thick curves) and the disk radius 7 (thin curves). Bottom panel:
the accretion rates at the outer radius My (thick curves) and at the ISCO
Migeo = My(Fiseo/7a)* (thin curves). For both panels, three cases of different
mass flux power-law indices s (Equation (14)) are shown in red (s = 0.2),
green (0.5), and blue (0.8). Two cases of different viscosity parameters a are
shown in solid curves (a = 0.1) and dashed—dotted curves (o = 0.01). We fix
the efficiency of escaping power f = 0.5 (Equation (17)), ISCO radius
Fisco = 61y, BH mass M = 20M, and stellar mass My = 0.5M. The solid
(and dashed—dotted) segment of each curve corresponds to when the accretion
disk stays thick, and the dotted segment at late time indicates that the disk may
collapse into a thin one (so our assumption of H/r ~ 1 becomes invalid).

it

and that of the disk at the wind launching point. The disk
angular momentum at any given time is given by
Jo = (GMry)'/2My, so the disk radius evolves as

fa = 2(1 — f)ra/tvis. 1D

The analytical solution to Equations (10) and (11) is

2
3

1
ra=rao|ll +—1,
fo
43

. 3
My = _&(1 + L) " (12)
3(1 = fao fo

where 1y = [4/3(1 — ]j)]oflﬁil(rd‘o) is the characteristic
evolution timescale and the initial conditions for the disk
evolution are taken as (see Section 4.1)
740 = rtpE,  Mgo = M. /2. (13)
The time evolution of the disk accretion rate and radius for a
number of choices of f; and « are shown in Figures 3 and 4.
It is widely believed that a large fraction of the disk mass
will be blown away in the form of a wind (Shakura &
Sunyaev 1973; Narayan & Yi 1994; Blandford & Begel-
man 1999, 2004; Strubbe & Quataert 2009). We approximate
the radius-dependent accretion rate as a power law (Blandford
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Figure 4. The same as Figure 3 but with My = 5M,,. The major difference is
that the disk accretion rate stays high and the disk stays thick for a longer time
than in the My = 0.5M, case.

& Begelman 1999):
M(r) = M (ra)(r/ra)’

where the power-law index 0 < s < 1, and the upper limit of s
is set by energetic requirements and the lower limit corresponds
to no wind mass loss. Numerical simulations of adiabatic
accretion flows show that the power-law index likely lies in the
range 0.4-0.8 (Yuan et al. 2012 and references therein). The
radius of the innermost stable circular orbit (ISCO) depends on
the BH spin risco € [1, 9]7. If the wind launched at radius r has
specific angular momentum f; (GMr)'/2 (where f; is the lever
arm), then the rate at which angular momentum is carried away
by the wind is Jj= f[fjvs/(s + 1/2)1Jy/tvis (Shen &
Matzner 2014), which means f; = f s/(s + 1/2). The angular
momentum evolution only affects the late-time behavior of the
electromagnetic emission at time £ >> tyis(73,0). Since we are
mainly concerned with the peak luminosity and the peak
duration, we take the lever-arm factor f; ~ 1 for simplicity and
hence

TFisco < 1 < 1, (14)

£~ /(s + 1/2). (15)

Under the above prescription, the system evolves self-similarly
at t>> t,(rqo) and we obtain the well-known solution:
raox 123, My oct=@tH/3 and Mg o< £46TD/3 0 (see
Equation (12)). The prescription stays valid until the accretion
rate My drops below ~(ry/ry)Lgaa/c* (or the sphericalization
radius Myc?ry /Lraa drops below ry, Begelman 1979), and then
the disk is expected to undergo thermal instability and collapse
into a thin one near 7y3. The accretion rate may drop by many
orders of magnitude at the transition to the thin-disk phase
(Shen & Matzner 2014). In this paper, we focus on the thick-
disk phase, where an optically thick wind can generate bright
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optical emission. The time evolution of disk properties in the
thick-disk phase is shown in Figures 3 and 4.

4.3. Radiation from the Super-Eddington Wind

Having the disk dynamics in hand, we calculate the
radiation-hydrodynamic evolution of the wind. The local
viscous heating rate per unit area is given by Lynden-Bell &
Pringle (1974):

. N2
Q(r)=—3GMMS(r)[1—(r‘ﬂ) ] 16)

d7r r

We assume that a fraction f of this heating power escapes,®
shared by the wind kinetic power and radiative power. Then the
total luminosity of the disk is given by

4 ory 2

Lqy=f f Q(r)2nrdr = —=M (rg)c“g(x, s), a7
Tisco Tisco

where x = ry/risco and the function g is given by

g(x S) - 1 7xs71 B 1 7xs71.5
’ 1 —s 15—s )

(18)

Except for extreme values of s (0 or 1), most mass is loaded
near 7y (lowest escape speed) but most accretion power is
released near radius ris, (highest escape speed), so we expect
internal collisions to occur and the total power Lq will be
thermalized near radius 7y under spherical symmetry (Begel-
man 2012). Thus, the bulk kinetic energy and the radiation-
dominated thermal energy are roughly in equipartition
atr ~ ry.

As the wind expands in radius, nearly all the heat is
converted back into bulk kinetic energy due to adiabatic
expansion, so the asymptotic wind speed v, is given by
Myv2/2 = Lq, which means

3f 1, g(x, ) ]1/2

Fiseo(1 — x7°)

vw/Cc = [ (19)
Note that the asymptotic wind speed is independent of the
accretion rate and is sub-relativistic in most situations
(unless s ~ 0).

The radiation carried by the wind is advected until it reaches
the photon-trapping radius #, where photons can diffuse away
over a dynamical time. At a given time #, a wind shell at radius
r was launched at the retarded time #(r) given by

r = ra(to) + vw(to)(t — t9), (20)

where 74(ty) and vy (7o) are the disk radius (inner boundary of
the wind, Equation (12)) and the wind speed (Equation (19)) at
time #y, respectively. Thus, the time evolution of the photon-
trapping radius r.(f) can be estimated by matching the
diffusion time with the expansion time:

7 (1) Ty (Four — Tir)

c Tout

=1 — 10(r), 2y

8 Note that /. is not much less than unity. For instance, if the super-Eddington

wind launched at each radius has asymptotic velocity of order of the local
escape speed, then the wind kinetic power has effi-

ciency ~[sM (r)/r1[GM /r1/127rQ(r)] = 2 5/3)[1 — Jriseo/r]1 7"
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where f#o(r) is the retarded time of the wind shell currently at
radius 7, 7y = Wy (o = 0)1 is the outer boundary of the wind
launched at 7y = 0, and 7(r) is the Thomson scattering optical
depth of the wind outside radius r:

) = f ™ o p(Fdr. 22)

The integrated wind mass loss rate is
Mw = M(rd) - M(risco), (23)
and the wind density profile is taken to be

p(r) = My (to) / [4mr2vy, (t0)], (24)

where we have taken into account wind propagation by using
the retarded time fo(r) for each shell at radius r. At the relevant
densities and temperatures, the Rosseland mean opacity is
dominated by Thomson scattering, s = 0.34cm?g "' (for
cosmic abundance). The time evolution of the photon-trapping
radius is shown in Figures 3 and 4 for two TDEs with the same
BH mass M = 20M,, but different stellar masses M, = 0.5 and
5M., respectively. The qualitative result is that the photon-
trapping radius increases with time initially (due to wind
expansion), reaches a maximum that is many orders of
magnitude larger than the disk radius (due to high optical
depth), and then decreases rapidly as the wind mass loss rate
drops at late time.

Once we find the photon-trapping radius, the bolometric
luminosity of the escaping photons is given by the rate at which
radiation is advected across the trapping surface, i.e.,

Lool(t) = 47rr§U<ru)[vw<to) - ‘Z] (25)

where the radiation energy density is given by adiabatic
expansion (valid at r < #y),

4/3
U = U(m)[” (’“)] , (26)
p(ra)

and U(rg) = Lg/(8nrivy) and p(ry) = My, /(47riv,) are
evaluated using the disk luminosity L4(ty), disk radius ry (%),
and asymptotic wind speed vy (7o) at the retarded time for this
trapping shell. The temperature (or average energy) of the
escaping photons’ is given by

T (ry) = [U(ry)c/4osp]/4, (27)

where ogp is the Stefan—Boltzmann constant.

Figures 5 and 6 show the bolometric light curve, asymptotic
wind velocity, and the temperature of the photons escaping
from the trapping surface. We find that BH-MS TDEs generate
bright optical transients on timescales of a few to 100 days with
peak luminosities from 10*' to 10* erg s™'. The photospheric
velocity may range from 0.01c to 0.1c and decreases with time.
The largest uncertainty in our model is the mass flux power-law
index s, and the luminosity decreases toward larger s (as a

° The thermalization radius is defined where the effective optical depth

T(hn) =~ JTaT = 1 (Rybicki & Lightman 1979), where 7, = Tyk, /Ky is the
absorption optical depth. In the case when r; < ryp, the color temperature is
lower than that in Equation (27) by a factor of (ry,/ 1) "3/4, but the bolometric
luminosity in Equation (25) is unaffected. Modeling the (bound—free and free—
free) absorption opacity k, requires detailed non-LTE radiative transfer
calculations and is left for future works.
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Figure 5. Bolometric light curves (upper panel), asymptotic wind velocity
(middle panel), and the temperature of the photons escaping from the trapping
radius (lower panel), for three different choices of accretion rate power-law
index s = 0.2 (red), 0.5 (green), and 0.8 (blue). Two cases of different viscosity
parameters « are shown as solid curves (v = 0.1) and dashed—dotted curves
(o = 0.01). We fix the efficiency of escaping power f. = 0.5 (Equation (17)),
ISCO radius risco = 67y, BH mass M = 20M,, and stellar mass My = 0.5M.
The solid (and dashed—dotted) segment of each curve corresponds to when the
accretion disk stays thick, and the dotted segment at late time indicates that the
disk may collapse into a thin one (so our assumption of H/r ~ 1 becomes
invalid).

result of stronger mass loss and hence less accretion power).
We note that our simple model for the disk evolution does not
include the rising segment of the wind power at very early time,
which depends on the details of the tidal disruption and disk
formation on a timescale of a few hours. Instead, we add a short
segmentlo of M (ry) 15 in the first 10° s (or 10*s) for the case
of My = 0.5M, (or My = 5M,,), which roughly captures the
rapid onset of the gas fallback as shown in Figure 1 of Perets
et al. (2016). Input from three-dimensional SPH calculations is
needed to discuss the intricacies of disk formation and
evolution in more detail in the context of the calculations
presented here.

10 A steeper power law generally leads to a more rapidly rising light curve, but
the latter is much shallower in that dlogL/dlogt < dlogM (ry)/d logt,
because of the lag between launching of the wind and photons escaping. The
lag time is longer for larger mass flux index s due to a denser wind.
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Figure 6. The same as Figure 5 but with My = 5M;. The main difference is
that the luminosity is slightly higher, the photon temperature is slightly lower,
and the emission lasts for a longer time than in the My = 0.5M, case.

4.4. Jet Formation and Gamma-Ray Burst

Given the high peak accretion rate (Equation (9)), if the
accretion efficiency can reach that of typical active galactic
nuclei ~0.1 (e.g., Soltan 1982), then the peak luminosity of the
accretion system is of the order of 10" ergs™" with duration
~10%-10° 5. Thus, it has been proposed (Perets et al. 2016) that
TDEs by stellar-mass BHs may be responsible for the
population of ultralong duration gamma-ray bursts (ulGRBs,
Gendre et al. 2013; Levan et al. 2014). Numerical simulations
of super-Eddington accretion flows in the magnetic-arrested
disk (MAD, with dynamically important magnetic flux and
rapid BH spin) regime show that high accretion efficiency >0.1
can be achieved (Tchekhovskoy et al. 2011; McKinney et al.
2015), and these models have been applied to ultraluminous
X-ray sources (Narayan et al. 2017) and jetted TDEs by
supermassive BHs (Tchekhovskoy et al. 2014; Dai et al. 2018;
Curd & Narayan 2019).

Levan et al. (2014) estimated the event rate of ulGRBs to be
a factor of a few lower than that of classical GRBs, of order
1 Gpe™? yr! at redshift z ~ 1, after correcting for the selection
bias whereby faint, long-lived events tend to fall below the
trigger threshold of Swift BAT. However, ulGRBs are most
likely strongly beamed, so the true rate may be much (a factor
of 10-100) higher than the BH-MS rate predicted by our GC
simulations (see Figure 7). Another challenge to the BH-MS
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Figure 7. Comoving rate (top panel) and cumulative rate (bottom panel) vs.
redshift for all BH-MS TDEs, as calculated using the method described in
Section 5. In blue (green) we show the rate for clusters of 7, = 1 pc (2 pc), and
in black we show the combined rate. Solid lines show rates assuming our
fiducial cluster initial mass function (a pure xM > power law with no
truncation) and dashed lines show rates assuming truncation of the cluster
initial mass function at 10° M, as described in the text.

TDE scenario is the detection of a bright supernova (SN
2011kl) associated with the ultralong GRB 111209A (Greiner
et al. 2015). SN 2011kl had a peak time of 14 rest-frame days
and peak bolometric luminosity of ~3 x 10** ergs™', and its
overall spectral and light-curve shapes were similar to that of
GRB-associated broad-line type-Ic supernovae (with no
evidence of H or He). This is inconsistent with the expected
H-rich gas composition of BH-MS TDE:s, although the super-
Eddington disk wind may generate sufficiently bright optical
emission (see the s = 0.2 case in Figure 5).

Therefore, we conclude that it is unlikely that BH-MS TDEs
are responsible for the majority of ulGRBs. Nevertheless, when
appropriate conditions (e.g., BH spin and magnetic flux) are
met, the launching of relativistic jets in BH-MS TDEs is still
possible. In the following section, we compute the comoving
and cumulative rates of BH-MS TDE:s as a function of redshift,
showing that, in principle, if indeed a relativistic jet is
launched, these events can potentially be detectable at very
high redshifts.
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An alternative possibility mentioned briefly in Perets et al.
(2016) is that, on longer timescales, debris from the TDE may
slowly fall back, potentially forming a long-lived accretion disk
that may produce an X-ray source very similar to an X-ray
binary (with the notable difference that the accretion occurs
through the disk alone, not fed by a stellar companion). We
refer the reader to previous work by Hills (1976) and Krolik
(1984) for a more detailed discussion of this scenario.

5. Event Rates

To calculate the event rate of BH-MS TDEs, we use an
integral equation similar to that used in Rodriguez & Loeb
(2018). The BH-MS TDE rate as a function of cosmic time 7 is
given by

MGC 1
R(@) = P(Mgc)
/ffdlogMHalo . (Mac)

X R(r,, Mgc, T — )f,o meu (v, M) dMuyaodMgedT

(28)

——C€ s the comoving rate of star formation in GCs
d log;o Myalo

(in units of M, yr_1 Mpc_3) per halo mass My, at redshift z
(1) corresponding to a cosmic time 7, from El-Badry et al.
(2018). R(r,, Mgc, 1) is the rate of BH-MS TDE:s at time 7 for a
cluster with an initial mass Mgc and virial radius r,. As was
done in Rodriguez & Loeb (2018), we assume that the
individual cluster rate can be described as

where

R(Mgc, 1) = (AMéC + BMgc + C) x ¢t~ logjo Mac) (29)

where we fit the five parameters, 0 = (A, B, C, v, ).
separately for clusters with r, = Ipc and r, =2pc. We
truncate the rate to zero below 100 Myr, which we find
reproduces both the rate and the total number of BH-MS TDEs
from our CMC models.

P(Mgc) is the cluster initial mass function (CIMF), which we
assume to be a power law between 10° M, and 10’ M, with a
possible exponential truncation

¢ (Mgc)dMac o< Mgé exp(—Mge /ME-)dMac. (30)

We consider exponential truncations of MJ- = oo (corresp-
onding to a purely ocM 2 power law) and MZ. = 10°M,, (as
suggested by observations of young massive star clusters in the
local universe, e.g., Portegies Zwart et al. 2010). (Mgc) is the
mean initial mass of GCs given an assumed CIMF (this is used
to convert the mass formed in GCs into a number of GCs).
(Mgc) is the mean initial mass of GCs given the
assumed CIMF.

We have introduced a new parameter, fiomveu(?vs Mage),
corresponding to the fraction of clusters that do not form an
IMBH by runaway collisions of BHs. It has recently been
shown (Antonini et al. 2018) that for clusters with central
escape speeds >300kms ' the probability of forming an
IMBH through repeated collisions of BHs goes to 1. Since the
presence of an IMBH can suppress the standard three- and four-
body encounters that facilitate collisions between BHs and MS
stars, we assume that any cluster that forms an IMBH does not
contribute to the rate calculated. This is incorporated into
Equation (28) by assuming that a certain fraction of clusters
with a given escape speed v, contribute zero mergers. We find

10
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that an equation of the form

Jro s (s M) = [1 + explk (ese =W, (31

with k£ = 0.05 and vX. = 295 km s~!, provides a good fit to
Figure 6 of Antonini et al. (2018). We define v, as the central
escape speed from a Plummer model of mass Mgc and virial

radius r, (e.g., Heggie & Hut 2003):

e — 32GMgc
o 37r, '

In practice, Equation (31) only truncates the contribution to the
rate from the most massive and compact clusters. We find that
the local comoving merger rate is decreased by only ~10% in
the local universe. For comparison, this same correction
decreases the BBH merger rate from Rodriguez & Loeb
(2018) from ~14 Gpc > yr ' to ~12Gpc > yr ' in the local
universe. The IMBH correction does not alter the rate when the
CIMF is truncated by MZ- = 10°M.,. We discuss the topic of
IMBHs further in Section 7.6.

Figure 7 shows the rate as a function of redshift using
Equation (28). The top panel shows the comoving rate and the
bottom panel shows the cumulative rate. The solid and dashed
black lines show the BH-MS TDE rate for both the fiducial
CIMF (solid) and assuming an exponential truncation at
M* = 10° M., (dashed). In the top panel, we also show in
blue (green) the rate if only those models with r, = 1 pc (2 pc)
are considered in the calculation. As anticipated, the predicted
rate is higher for the models with r, = 1 pc, simply because
these models have relatively higher stellar densities, leading to
more TDE:s.

As discussed in Section 2, if we consider our upper limit for
the TDE cross section, the rate shown in Figure 7 increases by
a factor of roughly 3, based on our typical values of BH and
MS masses. Therefore, we can extrapolate an upper limit for
the BH-MS TDE rate by simply multiplying the rates of
Figure 7 by this factor. In the local universe (z < 0.1), we
predict a comoving BH-MS TDE rate of 4 Gpc > yr ' and an
extrapolated upper limit rate of 12 Gpc > yr~'. If we consider a
CIMF truncated at 10° M., these rates decrease to
2.5Gpc *yr ! and 7.5 Gpe * yr !, respectively. For compar-
ison, Rodriguez & Loeb (2018) predicted a typical BBH
merger rate of 12Gpc " yr ' in the local universe, roughly
comparable to the extrapolated upper limit for our TDE rate if
we assume no truncation for the CIMF.

Assuming the density of Milky Way-equivalent galaxies
(MWEGs) in the local universe is one per (4.4 Mpc)3 (Abadie
et al. 2010), we predict a BH-MS TDE rate of
34 x 100" MWEG !yr~! with an upper limit of roughly
107 MWEG™ ! yr~! in the local universe. Note that the latter
rate is in approximate agreement with the analytic predictions
made by Perets et al. (2016).

(32)

6. BH-Giant Close Encounters

In addition to the BH-MS TDESs, which are the main focus
of this study, we also report all close encounters of BH-giant
pairs identified in our models. The orange points in the top
panel of Figure 1 show these events. In total, we find 246 giant
TDEs in models 1-24. Although the cross section is higher for
giants than for MS stars (simply due to their relatively large
stellar radii) the TDE rate is limited by the relatively small
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number of giants, which is a consequence of their shorter
lifetimes.

Detailed consideration of the outcome of BH-giant close
encounters is outside the scope of this study. We simply cite
here the predicted outcomes from earlier work, and defer a
more detailed study of these events to a future analysis. In
particular, Ivanova et al. (2010) showed that close encounters
of giants and stellar-mass BHs may serve as a formation
channel for BH-WD binaries, an important result given that
observations suggest that a fraction of the stellar-mass BH
candidates identified in GCs to date may indeed have WD
companions (Strader et al. 2012; Bahramian et al. 2017).
Estimates from Ivanova et al. (2010) of the hydrodynamics
suggest that BH-giant collisions will result in a BH-WD
binary with orbital separation a 2 1.3 Rg, where Rg is the
giant’s radius. For giants of mass ~x1 M, and radii ~3 R, this
corresponds to a > 10" 2au. Of course, the details of these
BH-giant close encounters are sensitive to the highly uncertain
common envelope physics and more detailed (hydrodynamic)
calculations are necessary to explore the outcomes of these
events in detail.

For typical clusters (number densities of ~10°pc > and
velocity dispersions of ~10km s~ 1), Ivanova et al. (2010)
predicted that BH-WD binaries will form through BH-giant
close encounters at a rate of ~1.5 x 102 per BH per Gyr,
using a calculation of the form

3

Mgy n Rg
Tan_wp ~ 0.1 R,
BH-WD fo/’(IS ]V[@)[IO5 p073 )(RO)
~1
x (m) x Npu Gyr~! (33)
oy

(see, e.g., Ivanova et al. 2005, 2010) where f is the fraction of
giants in the stellar population within the GC core, n is the
number density, Mgy is the typical BH mass, Rg is the typical
stellar radius of giants, and o, is the velocity dispersion.
f» = rp/Rrc describes how close a typical BH—giant encounter
must be to result in a disruption. In our models, we take f,, = 1,
but as discussed in Ivanova et al. (2010), f, as high as ~5 may
also be appropriate.

In Figure 8, we show the rate of formation of BH-WDs
through BH—giant close encounters computed for various late-
time cluster snapshots (> 8 Gyr) in models 1-24 plotted
against the total number of BHs retained in the cluster at each
respective time. We compute the rate, ['gy wp, using
Equation (33) with Mgy, Rg, 1, 0,, and fg computed uniquely
for each cluster snapshot. As in Figure 2, filled circles denote
models with r, = 1 pc and open circles denote models with
r, = 2pc. We limit ourselves to late times here to reflect the
typical ages of present-day GCs. BH-WD binaries formed
through close encounters of BHs and giants at earlier times may
be unlikely to survive to the present as a result of the frequent
dynamical encounters that may break apart the binaries,'" thus
to remain conservative we include only those binaries that
would have formed relatively recently in their host cluster.

' The typical timescale for a BH-WD binary to undergo a strong encounter
that  could otentially ~ disrupt it can be approximated as
t ~ 3 Gyr(n/10° pc=3~(a/0.1 au)~ (M /30 M) '(0, /10 km s~1). Thus we
expect a typical BH-WD binary to survive for no longer than a few gigayears
in a typical cluster. See, e.g., Kremer et al. (2018b) for further discussion of the
rate at which BH-non-BH binaries are expected to be broken through
dynamical encounters.
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Figure 8. On the y-axis we show the formation rate of BH-WD binaries
through BH-giant close encounters (as computed from Equation (33)) at
various late-time snapshots for models 1-24 and on the x-axis we show the
total number of BHs retained in each cluster at these snapshots. Different colors
denote clusters of different sizes, as denoted in the legend. Filled circles show
cluster models with r, = 1 pc and open circles show models with r, = 2 pc.

Figure 8 shows similar trends to those shown in Figure 2 for
the BH-MS TDEs. In particular, the formation rate of BH—
WDs varies directly with N (as seen by comparing the different
colors) and inversely with cluster size (r,; as seen by comparing
the open versus filled circles), as expected from Equation (33).
The dependence of the rate on the total number of retained BHs
is more complex. The overall trend is a direct relation between
I'sp_wp and Ngy, as expected because more BHs are formed
in more massive clusters. However, for models of fixed mass (
i.e., points of a single color in Figure 8), it can be seen that
I'sy_wp varies inversely with Ngy. This results from the way
BH populations shape the dynamical evolution of their host
cluster. As discussed in Kremer et al. (2019), BH populations
provide an internal “heating” source for their host cluster. As a
result, clusters with many BHs are relatively diffuse while
clusters with few BHs may undergo core-collapse leading to
relatively high central densities. Because I'gy_wp scales with
density, this means clusters with smaller BH populations will
actually lead to more BH-giant encounters. Furthermore, as the
figure shows, this process is coupled with the initial r,: clusters
with r, = 1 pc (filled circles) retain fewer BHs at late times
than their r, = 2 pc counterparts (open circles). This is also
consistent with Kremer et al. (2019), who showed that the
initial cluster size is the key parameter for determining the
number of BHs retained in a cluster at present.

As Figure 8 shows, close encounters of BHs and giants may
lead to the formation of up to approximately one BH-WD
binary per Gyr per cluster, possibly sufficient to explain the
handful of accreting BH-WD binary candidates observed in
local clusters. In addition to the BH—giant encounter channel
considered here, BH-WD binaries compact enough to start
mass transfer may also form through series of binary-mediated
exchange encounters, as discussed in Kremer et al. (2018b).

Finally, we note that, in addition to being potentially
observed as mass-transferring low-mass X-ray binaries, BH-
WD binaries may also be observed as GW sources by low-
frequency GW detectors such as LISA (e.g., Kremer et al.
2018a). Future electromagnetic and GW observations of these
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sources will continue to provide better constraints on the
formation of these types of binaries.

7. Conclusions and Discussion
7.1. Summary

We have explored the disruption of stars by stellar-mass BHs
in GCs through close encounters. We summarize our main
findings below.

1. Using our Monte Carlo code CMC to model the evolution
of GCs, we show that stellar-mass BHs disrupt MS stars,
giants, and WDs throughout the lifetime of the cluster.
These TDEs can occur through both single—single and
binary-mediated encounters (binary—single and binary—
binary).

2. The number of TDEs per cluster is determined primarily
by the cluster’s initial size (parameterized in our models
by the initial virial radius) and initial mass. For our most
massive and compact models (N =2 x 10° and
r, = 1pc), we get up to 200 BH-MS TDEs over the
cluster lifetime. For our lower-mass cluster models
(N=2 X 105), the total number of TDEs can be as
low as zero to a few.

3. By incorporating a realistic cosmological model for GC
formation, we derive a rate of BH-MS TDEs of
approximately 4—12Gpc > yr ' in the local universe
and a cosmologlcal rate that peaks at roughly
25—75Gpc " yr = at a redshift of about 3.

4. We show that the wind mass loss associated with these
BH-MS TDEs produces optical transients of luminosity

~10*" to 10" ergs™' on timescales of about a day to a
month In Section 4 we show light-curve predictions
expected from these events.

5. BH—giant close encounters occur at rates of up to ~1 per
Gyr per cluster. These events may serve as a dynamical
formation channel for BH-WD binaries in GCs, which
may be observed as X-ray or GW sources.

7.2. Detectability

The Zwicky Transient Facility (ZTF) reaches g = 20.8 mag
(50) during a single exposure of 30 s, surveying 37 of the sky.
Assuming a blackbody temperature of 2 x 10°K (see
F1gures 5 and 6), the detection horizon in luminosity distance
is roughly DL max = 150Lye) 42 Mpc, where
Lo = 104 Lgo/1242 ergs~' is the bolometric lummosny near
the optical peak. The all-sky rate is about 10yr ' in the
0pt1m1stlc case where s =0.2 and peak luminosity
Lpo ~ 10* ergs . In the pesmmlsUC case where s = 0.8
and peak lummosny Lot ~ 10%ergs™!, the all-sky rate is
about 10~ % yr ™!

—1

7.3. Possible Effects on the BH Population

When a BH disrupts a star, the disruption may have various
effects upon the BH itself, which in turn may alter the overall
BH dynamics in the cluster. For instance, if a significant
fraction of the mass of the disrupted star were accreted by the
BH following the TDE, the BH may be spun up through
accretion. Merging BBHs that are hl%hly spinning can get GW
recoil kicks as high as 5000kms™ (e.g., Campanelli et al.
2007; Lousto et al. 2012), significantly larger than the escape
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speed of a typical GC or even a galactic nucleus. Thus, if a
significant number of BHs in a given cluster attain high spins
through TDEs of MS stars, all BBH merger products will be
ejected from the cluster promptly after merger. This has
important implications for the production of second-generation
mergers in clusters (see, e.g., Rodriguez et al. 2018b).
Additionally, as discussed in Section 4, in a typical BH-MS
TDE, some fraction of stellar material will become unbound
from the system. This unbound mass is ejected in an
asymmetric manner, so the BH receives an impulsive kick in
response. The unbound debris has posmve spec1ﬁc energies in
the range € € (0, Emax), Where Emax = V2, /2 is given by

GMBHR _ (MBH)‘/3 GM,

gmax — M. R.

(34)

r TDE

where we have used rrpg = R, (Mgy/M,)'/3. The escape
velocity of the star is given by ve = 2GM, /R,. The
maximum speed of the unbound debris is then
Vmax = (Mpu/M,)"/%v... The total linear momentum, P,
carried away by the unbound debris depends on the mass
distribution over specific energy, dM/d £, but a rough estimate
is that P ~ (M, /3)vnax (this expression is exact for a flat
distribution of dM/d £). Then the BH receives a kick in the —
direction of velocity

6
~ M* 5/ vCSC
Mgy 3

For a typical TDE with an MS star of mass of 0.5 M., (with
escape velocity of ~600km s~ ') and a BH of mass of 20 M,
we obtain vy ~ 10 km s~ !, These kicks are low compared to
both typical cluster escape velocities (~50-100kms ") and
typical dynamical recoil kicks attained from small-N BH
resonant encounters. Thus, these TDE kicks are unlikely to
affect the overall BH dynamics in a significant way.

Accounting for these kicks as well as potential BH spin-up
as a result of these TDEs is beyond the present study. Follow-
up analyses may explore the potential impact of these effects
upon the evolution of the BH populations in clusters in more
detail.

(35)

7.4. NS TDEs

As discussed briefly in Section 2, CMC records close
encounters of NSs and stars in a manner similar to the BH-
star encounters. These NS—star interactions may also lead to
disruption events, where the NS acts as the disrupting object.
Such events were considered in, e.g., Hansen & Murali (1998)
and Perets et al. (2016). In particular, Hansen & Murali (1998)
argued that accretion onto the NS during such events may
trigger collapse to a BH. In total, we identify 28 NS-MS TDEs
in our models 1-24. Roughly, this translates to a galactic rate of
~1078yr~! per Milky Way-like galaxy, two orders of
magnitude lower than the rate predicted for BH-MS TDEs.
Thus we conclude that NS-MS TDEs do not occur at an
astrophysically interesting rate in this set of cluster models.

As discussed in, e.g., Belczynski et al. (2018) and Ye et al.
(2019), the dynamical interaction rate for NSs in a GC is
closely related to the cluster’s BH population. For clusters with
BH populations sufficiently large to dynamically affect the
cluster through “BH heating,” the NS population will be
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relegated to the outer parts of the cluster where densities are
relatively low. Only when the BH population has been
sufficiently depleted will the NSs see a significant boost in
their encounter rate, but even then the encounter rate for NSs is
limited by the fact that, on average, NSs have masses of the
same order as other populations, in particular WDs and MS
binaries. As a result, dynamical interactions involving NSs are
never as frequent as those involving BHs in typical GCs, thus
explaining the relatively low rate of NS-MS collisions
compared to BH-MS TDEs. However, in a core-collapsed
cluster with relatively higher stellar densities and ~0 BHs (see,
e.g., Kremer et al. 2019), NS-MS TDEs may become more
frequent.

7.5. Link to r-process Enrichment?

Observational evidence of r-process enrichment exists in
several Milky Way GCs, including M5, M15, M92, and NGC
3201 (e.g., Roederer 2011; Bekki 2018). The LIGO/Virgo
detection of the binary NS merger GW170817 (Abbott et al.
2017) and the follow-up electromagnetic observations showed
that NS mergers produce large amounts of r-process elements
(Kasen et al. 2017). However, explaining the observed r-
process abundance in GCs with NS merger events proves to be
difficult. Recent observational evidence shows that Milky Way
GCs exhibit multiple stellar populations, which are formed over
a series of star formation episodes that can span tens to even
hundreds of millions of years (for a recent review on the
formation of multiple populations in GCs see, e.g., Gratton
et al. 2012). For a particular binary NS merger event (or series
of events) to enrich a GC’s stars with r-process material, the
event(s) must occur while star formation is still taking place
(see, e.g., Bekki 2018; M. Zevin & K. Kremer 2019, in
preparation for further discussion).

Merging binary NSs are expected to form in GCs through
two mechanisms: binary evolution of primordial binaries (e.g.,
Ivanova et al. 2003; Dominik et al. 2012; Tauris et al. 2017)
and dynamical formation of NSs at late times (e.g., Ye et al.
2019). In the first scenario, where the NS components typically
form through iron core-collapse supernovae (which are
expected to lead to large natal kicks; Hobbs et al. 2005), it is
not straightforward to produce binary NSs that remain bound to
the cluster or have merger times sufficiently short such that the
merger takes place within the cluster environment during GC
star formation (M. Zevin & K. Kremer et al. 2019, in
preparation; also see Safarzadeh et al. 2018 for related
discussion in the context of ultrafaint dwarf galaxies). In the
second scenario, where binary NSs are formed dynamically
through exchange encounters, one must wait for the NSs to
mass-segregate to the cluster core, which takes ~1 Gyr, due to
the relatively low NS masses (see, e.g., Ye et al. 2019; M.
Zevin & K. Kremer et al. 2019, in preparation). Thus, by the
time binary NSs have begun to form dynamically and to
subsequently merge, any star formation episodes will have
almost certainly ceased. In this case, any r-process material
produced in these late-time NS merger events would be unable
to enrich the stellar population.

We propose that if accretion onto a BH arising from the BH—
MS disruptions of this study leads to the production of neutron-
rich material, these events may provide a way to enrich GCs
with r-process elements at early times. As shown in Kremer
et al. (2018c), the cluster NGC 3201, one of the Milky Way
clusters in which r-process enrichment is observed, is

13

Kremer et al.

consistent with hosting a large population of BHs at present.
In particular, our models 7 and 19 have final masses,
metallicities, and BH numbers consistent with both observed
and theoretical predictions for NGC 3201. In these models, we
identify 28 and 35 BH-MS collisions, respectively. Of these,
six and two occur within the first 100 Myr of cluster evolution.
(We adopt 100 Myr as an approximate time duration for star
formation episodes. The exact duration may be much shorter or
longer. Again, see Gratton et al. (2012) for further detail.) Of
course, more careful consideration must be taken to determine
whether a single BH-MS disruption could produce sufficient
(or indeed, any) r-process material to explain the observed
enrichment. In particular, it is unclear whether the disk
expected to form during such an event will reach high enough
densities to produce r-process elements. We simply note that
on the basis of event rates alone the BH-MS disruptions could
in principle serve as a possible mechanism. We also note that
other mechanisms such as the collapsar model discussed in
Siegel et al. (2018) may serve as viable alternatives for r-
process production in GCs. A complete exploration of r-
process production in GCs is beyond the scope of this paper;
see M. Zevin & K. Kremer et al. (2019, in preparation) for a
more detailed discussion on the topic.

7.6. Directions for Future Work

We note that there are several complexities associated with
BH-star TDEs not captured in this analysis. For example, how
do effects of metallicity and/or stellar age (and therefore
density profile of the star) alter the outcome of these disruption
events? Also, are there differences expected if the disrupted star
is itself a collision product (i.e., a blue straggler, as discussed
briefly in Section 3)? Furthermore, under what circumstances is
a relativistic jet expected to be launched? Additionally, recent
work (e.g., Samsing et al. 2017, 2018) has shown that the
inclusion of tidal coupling within small-N dynamical encoun-
ters may have a significant effect on tidal disruptions. Many of
these complexities will require detailed 3D (magneto)hydro-
dynamic calculations of these encounters. Our first exploration
of some of these complexities will be presented in a
forthcoming paper (J. Fixelle et al. 2019, in preparation ).

The distinction between direct, physical collisions where a
BH passes within the radius of a star and more distant
encounters near the tidal disruption boundary such as those
considered in Section 4 is likely important when considering
the electromagnetic signature of these events. For instance, a
direct collision may lead to prompt accretion onto the BH,
which may make the effects of feedback critical. Here, we have
remained agnostic to these differences and simply included the
physical collision and more distant tidal disruption limits to
bracket the expected range of close encounters between BHs
and stars leading to TDEs. More careful treatment of the tidal
interactions, especially in the context of binary-mediated
resonant encounters, is necessary to explore outcomes of these
events in greater detail. In a future study, we hope to explore
binary-mediated close encounters between BHs and stars using
a small-N integrator that self-consistently incorporates relevant
hydrodynamic effects to examine some of these complexities in
more detail (for previous work on the topic, see, for example,
Goodman & Hernquist 1991).

We note that the number of single—single TDEs identified in
this analysis is roughly comparable to the number of TDEs
through binary encounters (binary—single or binary—binary;
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compare columns 8—10 in Table 1). This is perhaps surprising,
given earlier work showing that the number of close encounters
can increase substantially for binary-mediated encounters
relative to single-single encounters alone (e.g., Bacon et al.
1996; Fregeau et al. 2004; Chatterjee et al. 2013). For example,
Chatterjee et al. (2013) showed that binary interactions lead to
a marked increase in MS—-MS collisions, which may lead to the
formation of blue stragglers. Several reasons may explain why
we do not see a similar result here in the case of BH-MS TDE:s.
First, as discussed in Kremer et al. (2018b), interactions
involving BHs and stars are sensitive to the details of the BH-
star “mixing zone,” the properties of which are determined by a
complex interaction between the BH population and the rest of
the cluster. In a manner similar to its effect on the formation of
accreting BH—star binaries, this interaction may limit the
number of binary-mediated BH—star TDEs. Second, as seen in
Table 1 in Chatterjee et al. (2013), the models with the most
marked increase in binary-mediated close encounters in that
analysis are those with initial global binary fractions as high as
27% (and as high as roughly 40% in the core). Here we
consider models with a lower binary fraction (10%). A more
expansive set of cluster models covering a broader range in
initial binary fraction are necessary to evaluate the relative
contribution of single—single encounters and binary encounters
to the overall TDE rate.

In this analysis, we have focused primarily on stellar-mass
BHs; however, a large body of literature has also explored the
possible existence of IMBHs in GCs from both observational
(e.g., Gebhardt et al. 2005; Lanzoni et al. 2007; Liitzgendorf
et al. 2011; Feldmeier et al. 2013) and theoretical perspectives
(e.g., Portegies Zwart et al. 2004; Freitag et al. 2006; Giersz
et al. 2015; Mapelli 2016; Antonini et al. 2018). TDEs
(particularly TDEs of WDs) by IMBHs have been examined in
various recent analyses including Rosswog et al. (2008, 2009)
and MacLeod et al. (2014, 2016), and these events have been
proposed as the mechanisms that may have produced a number
of observed high-energy events (e.g., Krolik & Piran 2011;
Jonker et al. 2013). The existence of IMBHs in clusters remains
contested. Nonetheless, the role that IMBHs, if present, may
play in the production of high-energy transients such as TDEs
and also GC dynamics more broadly is a rich topic that we
hope to explore in more detail within the scope of our Monte
Carlo code in a later study.
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