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Abstract—The purpose of this benchmark is to evaluate the
planning and control aspects of robotic in-hand manipulation
systems. The goal is to assess the system’s ability to change
the pose of a hand-held object by either using the fingers,
environment or a combination of both. Given an object surface
mesh from the YCB data-set, we provide examples of initial and
goal states (i.e. static object poses and fingertip locations) for
various in-hand manipulation tasks. We further propose metrics
that measure the error in reaching the goal state from a specific
initial state, which, when aggregated across all tasks, also serves
as a measure of the system’s in-hand manipulation capability.
We provide supporting software, task examples, and evaluation
results associated with the benchmark.

Index Terms—Performance Evaluation and Benchmarking;
Dexterous Manipulation.

I. INTRODUCTION

N-HAND manipulation is the task of changing the grasp

on an hand-held object without placing it back and picking
it up again. In recent years, researchers have demonstrated
in-hand manipulation skills on real robotic platforms with
end-effectors ranging from simple grippers [1] to anthropo-
morphic hands [2]-[5] on everyday objects (some examples
shown in Fig. 1). This growing interest in in-hand manipu-
lation has created the need for a thorough comparison of the
proposed methods using a common set of tasks and metrics.
However, the diversity in the methodological approaches
and hardware used makes the burden of comparison rather
complex for individual research labs to perform. There is thus
a need for a benchmarking protocol that allows researchers to
evaluate new methodologies in a more standardized manner.

In this work, we propose a benchmarking scheme for
in-hand manipulation that can extend to all kinds of
robotic systems. All the supporting material is available at
https://robot-learning.cs.utah.edu/project/benchmarking_in_
hand_manipulation.

While some benchmark examples are available for evalu-
ating grasp planning in a simulated environment [6], [7], we
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Fig. 1: In-hand manipulation strategy examples: fop left:
pushing against the environment; fop right: bi-manual push;
bottom: exploitation of dexterity in a multi-finger hand.

believe that for contact-rich tasks such as grasping and in-
hand manipulation it is of fundamental importance to evaluate
the performance of the system in a physical, real-world
scenario. Therefore, we propose a series of tasks to evaluate
the capabilities of a robotic system to plan and execute in-
hand manipulation using a set of objects available from the
Yale-CMU-Berkeley (YCB) object and model set [8]. This
set provides both object meshes and physical objects, so that
different research groups can rely on the same test set.
While our benchmark focuses on physical robot execu-
tion, the procedure is still valid in simulation and also for
benchmarking of planning algorithms. The availability of
object meshes for the YCB data-set enables easy evaluation
in common robotics simulators. As such, we will host results
for simulation in a separate section of the associated website.
To motivate our choice of protocol and metrics, we briefly
review the relevant in-hand manipulation literature with a
focus on how researchers perform evaluation and valida-
tion of the proposed methods. Active research on in-hand
manipulation explores a wide variety of robotic systems,
ranging from grippers [9], [10] to dexterous hands [2], [11].
Researchers have also augmented mobile robots [12] and
multiple arms to behave as fingertips [13]-[15] to perform in-
hand manipulation. Methodologies for analyzing the dexterity
of robotic hands were developed in [16] and [17]; however,
they focus on the hands’ kinematic reachability and actuation,
rather than on execution with different objects and tasks.
With multi-fingered dexterous hands, in-hand manipulation
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has been performed leveraging the redundancy in the fingers
to move the object without completely releasing the grasp [2],
[4], [11], [18]-[21]. For under-actuated hands, model based
control has been successfully employed [22]-[25]. Alterna-
tively, task-specific design of under-actuated hands enables
a limited set of re-positioning possibilities [26]-[28]. Re-
searchers have leveraged learning methods to manipulate
objects [3], [29], [30], and validated machine learning ap-
proaches in physics simulation [31], [32]. In-hand manipu-
lation has also been explored as a planning problem [20],
[33].

With parallel grippers, in-hand manipulation has been
achieved by exploiting the concept of extrinsic dexterity [1],
in which the degrees of freedom of a certain gripper are
enhanced by means of external supports such as contact with
the environment, gravity and friction. Some of these works
exploit gravity and inertial forces to initiate the motion of the
object [30], [34]-[37], while others rely on pushes against
an external contact. This contact can be either a fixture or a
surface present in the environment [9], [38], [39], or a second
gripper in a dual-arm manipulation scenario [10].

One of the main challenges in in-hand manipulation is
balancing the object in a stable configuration during the
execution. An alternative to keep stability is dynamic in-hand
manipulation by tossing the object in the air and catching it
in the desired pose [1], [40]. A more conservative approach
is to balance the object with extra support during execution.
Researchers have used a planar surface [5], [41] and even the
palm of the hand [4] to balance the object.

Across these various methods for in-hand manipulation, we
found that the goal was defined as either a target pose [4],
[11], [42], desired contact locations on the object [20], or
both [10]. The target pose can range from single dimensional
rotation [36], through planar [3], [29] to full 3D poses [11].
When desired contacts are defined, the goal is the position
of each specific contact point on the object that the robot
needs to reach [20]. A combination of target pose and desired
contact is commonly user-specified [10]. We summarize the
related work in terms of the goal definition, use of extra object
support, and real-world execution in Table I.

Recently, Rajeswaran er al. [31] proposed a set of ma-
nipulation tasks to benchmark dexterous manipulation. The
benchmark primarily focuses on simulated dexterous hands.
The proposed tasks do not account for all kinds of ma-
nipulation platforms (e.g. the proposed hammer task may
be impractical with a parallel gripper). They also do not
propose qualitative error metrics to measure the capabilities
of a system. In contrast, we design platform-agnostic in-
hand manipulation tasks and we propose qualitative metrics
to evaluate the system’s performance.

We organize the remainder of this letter as follows. We
describe our protocol in Sec. II, followed by a discussion
of the benchmarking guidelines in Sec. IIl. We demonstrate
example results for representative methods of in-hand manip-
ulation, benchmarked using the proposed protocol in Sec. IV,
and conclude the letter in Sec. V.

Goal

Article Pose Contact Obj. support Real-world
[34]-[36] 1D rot. No Yes
[3], [43], [44] 2D tran. No Yes
[15], [28] SE(2) Ext. surface Yes
[9], [37], [42] SE(2) No Yes
[5] SE(3) Designed Ext. surface Yes
[2], [4] SE(3) Palm Yes
(11], [45] SE(3) No Yes
[10] SE(3) Points No Yes
[20] Points NA No
[31] SE(3) Demonstration NA No

Table I: Research articles categorized in terms of goal
definition and other relevant features to protocol formulation.

II. PROTOCOL DESIGN

Our objective is to assess the capability of a system to
execute in-hand manipulation tasks in a goal-directed manner.
We define an in-hand manipulation task as the problem of
changing the grasp on an object without placing it on a
support surface. In this given task, the goal is to change the
object’s configuration inside the robot’s hand, from an initial
grasp to a final desired grasp. A grasp, G, is defined by the
hand pose, H, with respect to the object’s frame and the
contact points, P, made between the hand and the object.
Since different robot geometries will require different hand
poses and contact points to successfully grasp the object of
interest, we specify the protocol in such a way that it can be
adapted to different grasps according to the available setup.

We highlight that the specification of H w.r.t. the object
is equivalent to specifying the object’s pose inside the hand.
We do not constrain the absolute object’s pose in a different,
fixed reference frame because the focus is on the relative pose
between the hand and the object.

A. Task Description

We describe the task with the aid of Fig. 2. An in-hand
manipulation task is defined by:

e An initial contact region, C;, and a desired contact
region, Cy, defined on the object’s surface; examples
of some of these contact regions on the YCB objects
meshes are shown in Fig. 3.

e An initial grasp pose, H;, and the desired grasp pose,
H,, identifying the hand’s pose with respect to the
object’s reference frame.

The initial contact points, P;, and the final contact points,
P,;, between the hand and the object must lie inside the
respective contact regions, in which they can be adjusted
according to their feasibility with the hardware used.

Based on our literature review, we define three levels
of performing an in-hand manipulation task, depending on
which part of the desired configuration is targeted:

o Level I desired hand pose H; only;

o Level II desired contact region Cy only;

e Level III both C; and H,.
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Fig. 2: We illustrate the robot’s fingertips as lines with
solid circles defining contact with the rectangular object.
We illustrate the task in 2D for clarity, but define it in 3D.
Frames H; and H,; define the hand’s initial and desired final
poses respectively. The left image shows the initial task setup,
while the right shows a solution reaching the desired state.

Fig. 3: Example contact regions defining in-hand manipula-
tion tasks on YCB objects. The contact points on the object
must be moved from the area in red to the area in blue.

With level I, the hand can make contact at any region on the
object and with level-II, the initial and final hand pose are not
constrained. These different tasks allow for the exploration of
different in-hand manipulation behaviors (e.g. finger gating
vs in-hand rolling) without specifying how the manipulation
should be performed. Additionally, we aim for our tasks to
adapt to the needs and capabilities of different robots.

B. Procedure

For each task, the procedure runs as follows:

1) The object is set at the initial grasp in the robot’s
hand (e.g. a human places the object, the robot au-
tonomously grasps the object, etc.). The contacts P;
between the hand and the object must lie in the initial
contact region C;. The object pose at this initial pose
is recorded as H;. If the position error% (computed as

H x 100 or orientation error% computed using
i

Eq. 3, between the setup initial hand pose H; and the
initial hand pose H; from the dataset is more than 10%,
this experiment must be discarded.

2) The in-hand manipulation method is run, to move the
object toward the desired configuration, defined by
contact region Cy (or giving specific points Py in the
region Cy), and by Hy.

3) The hand reaches a new pose on the object H,. and new
contacts P,. This final configuration is recorded. The
times for planning and executing are recorded.

C. Setup Description

We defined several tasks for many of the YCB objects [8].
These tasks contain initial and desired contact regions Cj,
Cy4, and are available in our protocol’s associated website.
The given contact regions are meshes that represent parts
of the object’s surface. If a method requires specific contact
points to be defined instead of contact regions, researchers can
define the corresponding contact points P;, P; within these
regions to match their hardware. In particular, the chosen
YCB objects cover a wide spectrum in terms of size which
enables benchmarking hands of different sizes.

The hand poses are strictly dependent on the robot’s hand
frame. We additionally provide some examples of H; and
H, that identify the required change in grasp pose. The main
objective is to obtain a relative change T' between the initial
grasp H!°® and the final grasp H}°® of your specific robot
that matches the transformation 7" from H; to Hy (i.eT =
H;H i_l). Hence, the absolute hand poses for a specific robot
should be adapted , but still impose the same relative change
to the given frames (H};° = TH[Y).

Our examples work for end-effectors roughly the size of
adult human hands, but most of them can be executed with
bigger hands as well.

D. Robot/Hardware Description

This benchmark is targeted towards manipulation systems
equipped with either a gripper or a multi-fingered hand. The
tasks that we describe can also be performed with multiple
arms, which could behave together as a dexterous hand.

A perception system is required to estimate the initial and
final pose of the object and the hand (with pose of the links
for level II and level III tasks). For computing the error
metrics, we additionally require the mesh of the links of
the hand. Given all this information, we provide software
to estimate the errors as shown in Fig. 4.

E. Execution Constraints

During the in-hand manipulation planning and execution
(step 2 in section II-B), a human cannot intervene once
the object has been placed inside the robot’s hand. The
object should be in a stable grasp at the initial and final
configurations. For the purpose of this benchmark, a grasp is
stable if the hand pose with respect to the object is constant
for 5 seconds after execution. During this time, the object
must be in contact only with the robot’s hand, without any
help from external supports.

During the in-hand manipulation execution, the object can
break contact with the robot. However, the contact cannot
be broken to favour stable contacts with support surfaces.
In fact, we do not allow several pick-and-place executions
to change the grasp (i.e. regrasping [46]), because this does
not classify as in-hand manipulation. In contrast, exploiting
external surfaces to push the object inside the hand and
performing non-prehensile manipulation is allowed, because
the contact between the object and the robot is maintained
while the object is in contact with the external surface.
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Similarly, the object can be thrown in the air and caught in a
different configuration, since no contact with external surfaces
happens once the robot releases the grasp. A second robot
hand can be used as a support surface but not for holding the
object, for regrasping between hands is not allowed.

III. BENCHMARK GUIDELINES
A. Scoring

We score the task success based on the error between the
reached grasp G, = [H,., P.] and the desired grasp G4 =
[Hg,Cg). To ensure the robustness of a method, each grasp
set needs to be run on the robot five times for the same object.
We propose two separate sets of metrics to quantify error in
hand pose and reached contact.

To quantify hand pose error, we split the hand pose H
into position vector s and orientation quaternion g and
compute the error in position and orientation separately. Due
to differences in the object and hand sizes, we also compute
an error normalized by the distance between initial and final
poses. The error between the reached hand position s, and
the desired hand position s, is the Euclidean distance /> norm

ey

To compute the percentage position error, we divide the error
by the distance between the initial hand position s; and
desired hand position sg,

errpos = |4 — sr||2-

HSd — Sr ‘ |2
I[sa — sill2
To measure the orientation error, we use the sum of quater-
nions [47]. Given the desired hand orientation g4 and the

orientation of the reached hand pose ¢,, the orientation error
is defined as

errpos % = 100 X

2)

min(||gs — grll2, 194 + g-[l2)
) .
To quantify error in reaching the desired contact regions Cy,
we propose two metrics: Euclidean and Geodesic. We want
all contacts made by the robot to be inside the desired
contact region Cy. Hence these metrics are used to find the
largest distance max4 between the robot links and the desired
contact region. We will first discuss these metrics to compute
error between two points and then describe how to compute
them between meshes.
Given two points, p; and ps, the Euclidean metric Gy ()
is computed as the /3 norm

erry,% = 100 x 3

“4)

The Geodesic metric G g, (-) is the shortest path between the
points on the object surface ¢

Geuc = Hp2 _P1||2~

&)

Efficient geodesic computation methods with software imple-
mentations are available [48].

For using these metrics with meshes, we propose the
algorithm shown in Algorithm 1. We use the object mesh O,
the meshes of the NV links of the robot L;c making contact

Ggeo = |lp2 = pally-

Algorithm 1: Contact region error computation
Data: O,L;cn,Cy
Result: max_d
P <]
Ve <11
max_d<« 0
P + intersect(Cy,0)
for v € P do
‘ V..append(min-vertex(v,0))
for : € N do
V < intersect(l;,0)
for v € V do
‘ P,.append(min-vertex(v,0))
11 for v € P, do

o XN NN R W N =

—
=

12 min_d<¢— oo

13 for p € V. do

14 d« G(v,p)

15 if d<min_d then
16 | min_d«d

17 if min_d>max_d then
18 \ max_d<min_d

19 return max_d

with the object, and the mesh of the desired contact region Cj.
To compute these metrics, we first project the desired contact
region Cy and the robot meshes L;cny onto the object
mesh O as shown in lines 5-10. Given the desired contact
region Cy, we compute the points P on the faces of Cy that
are intersecting with the faces of the object mesh O using
the function intersect (-). Many algorithms exist for
performing this computation [49], [50]. For every point in P,
we find a vertex in object mesh O with the min-vertex ()
function. This function finds the vertex that has the shortest
Euclidean distance to the point. The set of vertices are stored
as the desired contact vertices V. This is also done for the
robot meshes to obtain P, (lines 7-10).

For each vertex in P,, we find the shortest distance to the
desired contact set of vertices V. (lines 11-18). The distance
function G(-) in line 14 is replaced by the Euclidean G, or
geodesic G4, metrics to report the Euclidean contact region
error or Geodesic contact region error respectively. We find
the vertex in P, that is furthest from the desired contact region
and report the distance as the error. These steps are visually
illustrated in Fig. 4. Since our contact metric is based on
vertices on the object mesh, we also report the Euclidean
distance between the two closest vertices in the object mesh
as G to give readers an idea of accuracy of the contact
error. We provide software to compute all of our proposed
error metrics at our associated website.

B. Details of Setup

Researchers following the protocol need to report the
robotic platform used and any additional information about
the experimental setup. Object’s weights, if different from
what was given in [8], must be reported. Any noise in
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(a) Fingertip on object

(b) Intersecting vertices

(c) Distance iteration

v E H,

“

geodesic

v

geodesic=17.5cm

euclidean

(d) Largest distance(max_d)

euclidean=6.2cm

Fig. 4: Computation of the contact region error from Alg. 1
is illustrated. The reached fingertip is shown as the green
mesh on the object (gray mesh) is shown in (a) along with
the desired contact region in blue. (b) shows intersecting
vertices computation (lines 7-10).(c) shows the computation
of distance from one vertex of the fingertip as a heatmap
along the object surface. The shortest distance from the
intersecting vertices of the fingertip P, to the desired contact
region V. is shown in (d). The cyan vertex in the desired
contact region is the closest vertex to the robot hand.

the perception system should be mentioned along with a
discussion of if it affects the results, if any.

C. Results to Report

Researchers are encouraged to submit their initial and
desired grasp sets along with object names for enabling others
to use the same grasps for direct comparison. Additionally,
we require the reporting of different values in the conducted
experiments, which vary depending on the chosen task level
to address:

1) The error between the initial hand pose and the
“human-setup” hand pose, computed as err,qs,
error % (Level I, III), and Geye, Ggeo (Level 11, TII).

2) The error between the reached grasp and the desired
grasp, computed as errpqs, errpos%, erro.% (Level 1,
D), and Geye, Ggeo, as Well as Gy, for accuracy of
contact error (Level II, III).

3) The time spent to plan and execute the in-hand ma-
nipulation method across the chosen object set. If the

chosen method requires an offline planning step, we
suggest to report it separately from the execution time.
4) The percent of unsuccessful executions, specifying
which trials failed and the cause (e.g. object dropped).
Apart from using these results to provide a quantitative
analysis of their methods, we encourage researchers to submit
the computed errors in the given website, where we provide
code to visualize the errors as a box plot. In this box plot,
the middle line defines the median error; the bottom and top
borders indicate the first and third quartiles; the whiskers
indicate the extremes of the inliers within 1.5 times the
interquartile range. An example plot is shown in Fig. 7.

D. Comparing Results

Given the measurements proposed in section III-C, good
methods have low errors, low planning and execution times,
and low failure rates. Comparisons can be made between
methods that address the same level of tasks, and level
IIT can be compared with levels I and II with respect to
their intersecting error types. Systems with similar hardware
(e.g. parallel gripper vs parallel gripper, 3-finger hand vs
3-finger hand) can rely on the same error comparison. Al-
ternatively, The tradeoff between hardware complexity and
result accuracy can be considered as an additional measure
for comparing the results of different methods.

Due to the highly heterogeneous nature of the systems we
aim at evaluating, it is difficult to find an absolute best. As
such, we believe users can compare the different methods
according to the reported results and confront them with
the requirements of the system. In particular, this allows
for a choiche of the relative best system for the particular
application or requirements.

IV. DEMONSTRATION

We benchmark methods for level I and level III tasks in
Sec. IV-A and Sec. IV-B respectively. Since the level III task
demonstrate the metrics used for level II tasks, we do not
explicitly demonstrate a separate method for level II. We refer
readers to [20] for an example approach that could be easily
extended for evaluation using the level II protocol.

A. Level I task

Using the proposed framework, we compare five different
in-hand manipulation solutions using Level I tasks:

o The relaxed-rigidity, relaxed-position, & relaxed-
position-orientation in-hand manipulation methods by
Sundaralingam and Hermans [45]; these methods enable
a robotic system to repose a grasped object without
breaking/making new contacts on the object.

o The IK-rigid method, in which a rigid contact model
between the object and the fingertips is assumed.

e The point-contact method, which assumes a point con-
tact with friction model for the fingertips. That is, the
contact position is assumed fixed, while the relative
orientation can change. This is a simplification of the
model formulated in [51].

The desired grasp is given by a desired palm pose P; with
respect to the object.
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Fig. 5: Objects from the YCB dataset used in the experiments
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Fig. 6: Comparison of planning results across four
Level I methods: IK-rigid, relaxed-position, relaxed-position-
orientation and relaxed-rigidity. Results show the position
error between the desired and expected final hand pose
obtained by the planner (error in planning).

1) Setup Details: The methods are first compared within
a trajectory optimization framework offline. Then, they are
executed on the Allegro hand—a multi-fingered hand attached
to a box frame. For the evaluation, we used ten objects
from the YCB dataset shown in Fig. 5. The object and hand
were tracked using ARUCO markers [52] using an ASUS
XTION camera. A human initialized the object in the initial
hand pose. We setup a rigid transformation between the
human setup pose and the planned initial pose to account
for the human error in the reached pose. Each generated
trajectory was executed five times. We used two different
initial grasps and five different desired grasps per object. Five
trials were run for each generated trajectory, accounting for 50
executions per object. In total, 500 trajectories were executed
on the robot per method. The goal positions range from 0.8
to 8.33cm, with a mean of 4.87cm, from their respective
initial positions. The goal orientations range from 1.53% to
30.7%, with a mean of 11.96%, from their respective initial
positions. The generated grasp sets are available at https:
//robot-learning.cs.utah.edu/project/in_hand_manipulation.

2) Results: For every trajectory that run on the robot,
we record the position and orientation error. The median
planning time across all objects were 14.8s, 4.4s, 0.5 s, 0.3s,
and 0.5s for point-contact, IK-rigid, relaxed-position, relaxed-
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Fig. 7: A comparison of the different methods on real-world
executions. Top: Position error Middle: Position error% Bot-
tom: Orientation error%. The median position error decreases
for all objects with the relaxed-rigidity method. Except for
banana and gelatin box, the orientation error% improves for
the relaxed-rigidity method for all objects.

position-orientation, and relaxed-rigidity respectively. Since
all trajectories are run without replanning, the execution
time is fixed at 1.67s. As suggested in our benchmarking
framework, the errors are plotted as a box plot (showing first
quartile, median error, third quartile) with whiskers indicating
the extremes of the inliers within 1.5 times the interquartile
range. In all plots results correspond to objects grasped with
three fingers. We will first report the error between the
planned hand pose and the desired hand pose, followed by
results on executing the generated trajectories on the real
robot.

We report the error between the planned hand pose
and the desired hand pose across these methods: IK-rigid,
relaxed-position, relaxed-position-orientation and relaxed-
rigidity. We do not show offline results for the point-contact
method as computing the object pose from the solution is not


https://robot-learning.cs.utah.edu/project/in_hand_manipulation
https://robot-learning.cs.utah.edu/project/in_hand_manipulation

CRUCIANI et al.: BENCHMARKING IN-HAND MANIPULATION

Table II: Summary of results with the best value in bold text.
The errors are the median of all trials.

Method drops% (Cme)rrp 05 error%
point-contact 5 169 3681 9.74
relaxed-position 9 1.64 3095 10.43
relaxed-position-orientation 7 1.54  29.19 9.84
relaxed-rigidity 0 132 28.67 9.86

Table III: Metrics for the DMG method.

potted meat

Object gelatin box  cracker box  spatula can
errpos (cm) 0.505 0.267 0.513 0.610
errpos% 9.9 2.7 8.8 11.0
error% 0.016 0.044 0.023 0.049
Geuc (cm) 1.125 0.862 0.746 0.663
Ggeo (cm) 1.127 0.862 1.505 0.663
Gmin (cm) 0.013 0.057 0.034 0.004
DMG time (s) 10.312 15.467 13.406 18.295
Plan time (s) 0.023 0.004  6.7e-05 0.002

possible since the optimization does not internally simulate
the object’s pose. However, we will report the results of point-
contact method in the real-robot experiments. The errors are
plotted in Fig. 6. It is evident that IK-rigid has difficulty
reaching the desired object position, a result of the problem
being over-constrained, as such we do not report experimental
results for this method on the real robot.

The position error and orientation error for all trials across
all objects are shown in Fig. 7. The relaxed-rigidity method
has the lowest median position error across all objects.
Its maximum error across all objects is also much smaller
than the point-contact method. Additionally, one can see
that the relaxed-rigidity method has a lower variance in
final position than the competing methods across nearly all
objects. We report the median errors and the percentage
of object drops in Table II. The relaxed-rigidity method
never dropped any object across the 500 trials that were
executed while all other methods dropped the object at least
5 times. The median errors [err s, €770, %)| between initial
pose and human setup initial pose are [0.58cm, 3.44%] for
point-contact, [0.47cm, 3.19%] for relaxed-position, [0.52cm,
3.32%] for relaxed-position-orientation, and [0.54cm, 3.55%]
for relaxed-rigidity. The contact points based metrics, Gy
and Geo, are not reported because these methods perform
Level I tasks.

B. Level III task

In this section, we show example evaluations for tasks that
involve both desired hand pose and desired contact points
with the object. We use the Dexterous Manipulation Graph
method (DMG), which is a planner for in-hand manipulation
that is based on a graph representation of the object’s surface,
obtained through the object’s discretization into small areas.
The DMG contains information on possible motions of a
finger on the object’s surface. Through this graph, in-hand

manipulation is planned as a sequence of rotations and
translations. A detailed explanation of the method is found
in [10]. Since the motion execution is treated separately from
planning (e.g. it can use pushing against the environment,
bi-manual pushing, etc.), we focus only on evaluating the
planned solution.

1) Setup Details: The DMG planner is used to find an in-
hand manipulation solution for an ABB Yumi smart gripper.
We select some of the contact region tasks we defined in
section II, and defined H; and H,; accordingly. Since the
DMG defined in [10] is designed for parallel grippers, two
contact points per hand are defined. We also define initial
and desired poses P;, P;. Due to the gripper’s structure, its
position can be derived using a translation from the middle
point between the two fingertips. All the executed tasks are
available on our website.

2) Results: Table III shows the results for planning in-
hand manipulation paths. Each column corresponds to a
different task with a different object. Each row shows the
metrics proposed in section III-A, and the planning time.
The evaluated method requires offline computation of the
Dexterous Manipulation Graph structure, reported as DMG
time. Once the offline step is executed, the planning time for
the given tasks is also reported.

V. CONCLUSION

We proposed a benchmarking scheme for quantifying
in-hand manipulation capabilities in a robotic system. We
designed tasks for in-hand manipulation systems using the
widely available YCB objects set, and we provided sugges-
tions for adapting these tasks given the constraints of the
hardware used for the evaluation. We have shown example
results to demonstrate the outcome of the proposed bench-
marking scheme. These results also serve as baselines for
comparison with different methods in the future. By using
this standardized evaluation we enable a comparison between
different in-hand manipulation techniques that also considers
different kinds of hardware platforms.
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