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Objectives. To assess the environmental justice implications of flooding from Hurri-

cane Harvey in Greater Houston, Texas, we analyzed whether the areal extent of flood-

ing was distributed inequitably with respect to race, ethnicity, and socioeconomic sta-

tus, after controlling for relevant explanatory factors.

Methods. Our study integrated cartographic information from Harvey’s Inundation

Footprint, developed by the US Federal Emergency Management Agency, with socio-

demographic data from the2012–2016AmericanCommunity Survey. Statistical analyses

were based on bivariate correlations and multivariate generalized estimating equations.

Results. The areal extent of Harvey-induced flooding was significantly greater in

neighborhoods with a higher proportion of non-Hispanic Black and socioeconomically

deprived residents after we controlled for contextual factors and clustering.

Conclusions. Results provide evidence of racial/ethnic and socioeconomic injustices in

the distribution of flooding and represent an important starting point for more detailed

investigation of disproportionate impacts associated with Hurricane Harvey.

Public Health Implications. Our findings highlight the need to prepare for and address

theunequal social consequencesof climate change-relateddisasters,which areexpected

to increase in frequency and severity. (Am J Public Health. 2019;109:244–250. doi:

10.2105/AJPH.2018.304846)

See also Galea and Vaughan, p. 196.

The literature on distributive environ-
mental justice encompasses a wide range

of quantitative studies that seek to determine
if socially disadvantaged individuals are dis-
proportionately affected by environmental
health hazards and their sources.1–3 Although
environmental justice research in the United
States had traditionally focused on techno-
logical hazards (e.g., air pollution and haz-
ardous waste) and concomitant health risks,
the devastation caused by Hurricane Katrina
in 2005 and the subsequent failure of gov-
ernment to address this disaster prompted
researchers to investigate social injustices as-
sociatedwith natural events such as hurricanes
and floods.4,5 Concerns regarding the dis-
proportionate impacts of Katrina on Black
and low-income residents of New Orleans,
Louisiana, galvanized considerable empirical
research on the environmental justice im-
plications of flooding.4–12 It is particularly

important to examine whether socially dis-
advantaged (i.e., racial/ethnic minority and
lower socioeconomic status [SES]) individuals
reside in neighborhoods that are adversely af-
fected by hurricane-induced inundation, be-
cause floods can cause a wide variety of physical
health problems and posttraumatic stress.13,14

Most distributive environmental justice
studies on floods have adopted a “preflood”
approach to examining the sociodemo-
graphic characteristics of areas potentially
exposed to flood risks, typically measured by

using boundaries of designated flood zones.
The results have been ambiguous, in terms of
statistical relationships between various in-
dicators of social disadvantage and flood risk
exposure.4 Several studies have found socially
advantaged groups to experience greater
pre-event exposure to flood hazards, com-
pared with disadvantaged populations.9–12,15

However, environmental justice studies that
distinguish between various types of flood
zones indicate that socially advantaged in-
dividuals are more likely to reside in coastal
flood-prone areas than the disadvantaged
(unlike inland flood zones) because of
water-related amenities such as beach access
or ocean views that are unavailable in-
land.11,12 Although social inequities associ-
ated with the distribution of potential flood
risks have been examined, few quantitative
studies have focused on the environmental
justice implications of actual flood events.

We sought to address this limitation and
extend distributive environmental justice
research on climate-induced natural disasters
through a study that examined dispropor-
tionate exposure to flooding caused by
Hurricane Harvey in 2017 in the Greater
Houston (Texas) metropolitan statistical area
(MSA)—one of the most racially/ethnically
diverse and populous MSAs in the United
States and one severely affected by Harvey.
Our objective was to determine whether the
areal extent of flooding at the neighborhood
(census tract) level was distributed inequitably
with respect to race, ethnicity, and SES, after
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controlling for relevant explanatory factors.
Our study integrated cartographic information
from Harvey’s Inundation Footprint, developed
by the US Federal Emergency Management
Agency (FEMA), with sociodemographic data
from the 2012–2016 American Community
Survey (ACS). To analyze the environmental
justice implications of flooding from Hurricane
Harvey,weusedgeneralizedestimatingequations
(GEEs) that accounted for geographic clustering
of neighborhoods in the study area and provided
statistically valid inferences regarding the re-
lationship between flood extent and both
racial/ethnic and socioeconomic explanatory
factors.

METHODS
Our study focused on the Houston–The

Woodlands–Sugar Land MSA, commonly
referred to as Greater Houston, which oc-
cupies approximately 26 061 square kilome-
ters in southeastern Texas. As shown in Figure

1, this MSA encompasses 9 counties and is
bordered on the southeast by the Gulf of
Mexico. Although the official census name
is based on its 3 largest cities, this MSA is
centered around Harris County, the third
most populous county in the United States,
which contains the City of Houston. With
a total population of about 6.47 million in
2016, Greater Houston is the fifth-largest
MSA in the United States and second-largest
in Texas. Non-Hispanic Whites account for
about 37.8% of the MSA population, with
Hispanics (36.4%), non-Hispanic Blacks
(16.8%), and Asians (7.2%) representing the
largest minority groups.

With regard to tropical storms and hurri-
canes, Greater Houston has become one of
the most vulnerable urban areas in the world,
in part because of its proximity to the Gulf of
Mexico. Even before Hurricane Harvey,
Tropical Storm Allison (2001), and Hurri-
canes Rita (2005), Katrina (2005), and Ike
(2008) all caused widespread flooding. More
recently, the Memorial Day (2015) and Tax

Day (2016) floods resulted in deaths and
substantial property damage. Normal pre-
cipitation events have also frequently floo-
ded many neighborhoods in this MSA.
Hurricane Harvey struck Texas on August
25, 2017, and resulted in catastrophic
flooding caused by record rainfall that se-
verely affected all counties of Greater
Houston. A record-setting 76 centimeters of
rain fell in parts of this MSA. Recent studies
indicate that the magnitude of Harvey’s
rainfall has become 3 times more likely and
15% more intense because of climatic
changes occurring over recent decades.16,17

More than 156 000 homes were destroyed
and at least 70 people died.17,18 Most
flooding receded within a week, but some
areas remained flooded for several weeks.19

According to estimates from a recent anal-
ysis of the devastation caused by Harvey,
residential structural damages equal $77.2
million and residential contents damages
equal $36.9 million in Greater Houston.20

However, no published study has examined

MONTGOMERY

LIBERTY

HARRIS

FORT BEND

BRAZORIA

WALLER
AUSTIN

GALVESTON

CHAMBERS

GULF OF MEXICO

N

Greater Houston counites

Other Texas counties

0 50

Kilometers

100

TEXAS

FIGURE 1—Counties of the Greater Houston Metropolitan Statistical Area, Texas

AJPH CLIMATE CHANGE

February 2019, Vol 109, No. 2 AJPH Chakraborty et al. Peer Reviewed Research 245



social inequalities in the spatial distribution
of Harvey-induced flooding.

Previous environmental justice studies
have found significant racial/ethnic and so-
cioeconomic inequities in the distribution of
technological hazards such as air pollution,21–23

toxic waste facilities,24,25 and accidental re-
leases of toxic chemicals26 in counties of
Greater Houston. Few studies have in-
vestigated the environmental justice impli-
cations of risks imposed by natural hazards in
this urban area. In a comparative study of air
pollution and flood risks in Greater Hous-
ton,15 significantly lower percentages of
Black and Hispanic residents were found in
neighborhoods facing higher 100-year flood
risk. This apparent protection of racial/ethnic
minorities from flood risk may be due to their
inability to afford housing in areas with the
water-based amenities that flood zones tend
to offer. Another Houston area study27 used
household-level survey data to examine
whether Hispanic immigrants are dispro-
portionately exposed to flood risks, after
adjusting for a wide range of contextually
relevant factors. Their results indicated that
100-year flood risk is associated with being
a Hispanic immigrant (compared with
other racial/ethnic subgroups), having less
property-level flood mitigation, and having
lower flood risk perception.

Measurement of Hurricane Harvey
Flooding

Our data source for estimating the extent
of flooding caused byHurricaneHarveywas a
cartographic product referred to as Harvey’s
Inundation Footprint, whichwas prepared by
the FEMA Region 6 Mitigation Division
(TX-DR-4332) to support response and re-
covery operations.28 This digital flood in-
undation grid was derived from a range of
federal, state, local, and private sector re-
sources. Specifically, high water marks were
obtained from the US Geological Survey,
Harris County FloodControl District, federal
contractors, and FEMA’s Recovery Division
to compile a collaborative and comprehensive
inventory of known flood depth found
throughout the affected area. For this study,
we obtained a geographic information system
(GIS) raster data set from FEMA’s Hazard and
Performance Analysis’s Geospatial Unit that
contains flood depth values (in feet) as an

attribute of each grid cell (pixel) and covers all
Texas counties affected byHurricaneHarvey.

We estimated the extent of flooding
within each census tract in the Greater
Houston MSA using a GIS-based method-
ology that comprised several steps. First, we
used a high-resolution version of the Na-
tional Hydrography Dataset for Texas to
remove all permanent water features (i.e.,
areas containing water during nonflood
periods) located within census tract
boundaries of counties in this MSA. Second,
we overlaid this map layer representing tract
land areas (without bodies of water) on the
3-meter by 3-meter resolution Hurricane
Harvey inundation raster grid. Third, we
counted the total number of pixels with
nonzero flood depth values within each tract
in our study area. Finally, we calculated
the total area covered by these pixels and
divided it by the land area of the tract to
derive the proportion of the tract area flooded
by Hurricane Harvey. We used this areal
proportion—referred to as “flood extent” in
this article—as a dependent variable in our
analysis.

Explanatory Variables
Our distributive environmental justice

analysis of Harvey-induced flooding is based
on a set of sociodemographic variables from
the 2012–2016 ACS for census tracts in
Greater Houston. Tracts represent the
smallest geographic unit for which reliable
5-year estimates of population and housing
characteristics are available from the ACS. To
ensure stable proportional estimates for all
our variables, we excluded 9 tracts with in-
complete data or small population counts.
Our study used the remaining 1063 tracts in
GreaterHoustonwith at least 500 persons and
50 housing units.

We focused on selecting explanatory
variables that are commonly used in distrib-
utive environmental justice studies,1,15,23,29

as well as variables that have been used in
research on social vulnerability to flood
risks.4,11,12,30 To examine the effect of race/
ethnicity, our analysis included the pro-
portions of individuals who identified
themselves as non-Hispanic White, non-
Hispanic Black, Asian alone, or Hispanic/
Latino, as well as the rest of the tract pop-
ulation (non-Hispanic other races).

To measure socioeconomic characteristics
of tracts, we used 5 specific ACS variables: the
proportions of the population aged 25 years
or older with no high school education, the
population aged 5 years or older with limited
English language proficiency (i.e., do not
speak English very well), individuals with an
annual income below the family poverty level
(i.e., poverty rate), households with no ve-
hicles available (i.e., zero-car households),
and civilians aged 16 and older who are
unemployed. These variables have indicated a
positive relationship with exposure to envi-
ronmental hazards in prior environmental
justice research.11,15,22,23,26,29,31 For our
multivariate analysis, we combined these 5
variables into a singlemeasure since theywere
statistically significantly correlated with each
other (0.5 < r < 0.9). Specifically, we created a
robust index of socioeconomic deprivation
based on these 5 variables (a=0.80), using
principal components analysis. Previous en-
vironmental justice studies have recom-
mended the use of such factors because they
provide a more nuanced representation of
socioeconomic inequality than individual
variables, such as educational attainment or
poverty status, that are highly correlated with
each other.12,15,31

We included 2 additional variables that
focus on housing characteristics. The first was
the proportion of owner-occupied housing
units, also known as home ownership rate.
This variable has been used in previous en-
vironmental justice research as an indicator of
wealth and assets.26,29 The second variable
was the proportion of vacant housing units
classified as vacant for seasonal, recreational,
or occasional use, commonly referred to as
vacation homes. Prior environmental justice
studies have used this variable as a proxy for
water-related amenities and found signifi-
cantly higher percentages of vacation homes
in neighborhoods exposed to coastal flood
risks.11,12

Statistical Methodology
We first used bivariate correlations to

examine statistical relationships between each
explanatory variable and the dependent
variable. In addition to Pearson’s (parametric)
correlation coefficients, we also calculated
Spearman’s correlation coefficients as a non-
parametric measure to reduce the effect of
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outliers. In the second phase, we used GEEs, a
multivariate analysis technique suitable for
analyzing clustered data, to examine the sta-
tistical association between the proportion of
tract area flooded and relevant explanatory
variables. GEEs have been used in several re-
cent environmental justice studies, including
those focusing on Greater Houston.23,27

Following Collins et al.,23 we used GEEs
with robust (i.e., Huber–White) covariance
estimates, which extended the generalized
linear model32 to accommodate clustered data.
GEEs relax several assumptions of traditional
regression models, do not require strict distri-
butional assumptions for the variables analyzed,
and account for geographic clustering of vari-
ables. For this study, GEEs were preferable to
other modeling approaches that consider
nonindependence of data (e.g., mixed models
with random effects). This is because GEEs
estimate unbiased population-averaged
(i.e.,marginal) regression coefficients, evenwith
misspecification of the correlation structure
when a robust variance estimator is used, which
makes them suitable for analyzing general
patterns of inequality across subpopulations.24,33

Mixedmodelswith randomeffects, by contrast,
generate cluster-specific (i.e., conditional or
subject-specific) results that would not provide
as reliable an inferential basis for making
comparisons across population subgroups.32

GEEs were also appropriate in our study
because the intracluster correlation estimates
adjusted for as nuisance parameters are not
modeled, as inmultilevelmodeling approaches.

We used 3 different combinations of ex-
planatory variables in our GEEs. Model 1
focused only on race/ethnicity and included
the proportion of the population belonging to
the non-Hispanic minority and Hispanic
categories. Model 2 included socioeconomic
deprivation, home ownership rate, and pro-
portion of vacation homes. Model 3 com-
bined all 7 explanatory variables from both
model 1 and model 2.

When estimating a GEE model, one must
define clusters of observations under the as-
sumption that observations from within a
cluster are correlated, whereas observations
from different clusters are independent. Our
cluster definition was based on the median
year of housing construction for census tracts
in the Greater Houston MSA, which we
obtained from the 2012–2016 ACS, by
county of location. Specifically, we defined

clusters of tracts based on median decade of
housing construction (2000 or later, 1990–
1999, 1980–1989, 1970–1979, 1960–1969,
1950–1959, 1940–1949, and 1930–1939) by
county, which effectively resulted in 42 dif-
ferent tract clusters. These tract clusters are
depicted in Figure A (available as a supple-
ment to the online version of this article at
http://www.ajph.org). The median year of
home construction by county cluster defi-
nition can be expected to closely correspond
with the urban developmental context
within which census tracts are nested.
Using the median decade of housing to
define clusters is also theoretically valid,
because it has been documented to match the
temporal contextual built-environmental
features associated with the historical-
geographical formation of environmental
inequalities.24 A similar cluster definition has
been used in previous quantitative environ-
mental justice studies using a GEE
approach.23,27,30

GEEs also require the specification of an
intracluster dependency correlation matrix,
known as theworking correlationmatrix. For
this study, we specified that the working
correlation matrix structure was exchange-
able, because this specification assumes con-
stant intracluster dependency.23,30 To select
the best-fitting model, we ran the GEEs
multiple times, varying the specifications for
each model. Because our dependent variable
was continuous with only positive values, we
explored normal, g , and inverse Gaussian
distributions with log and identity link
functions for a total of 6 model specifications.
An identity link functionmodels relationships
between the predictors and dependent vari-
able linearly, whereas a log link function
represents natural logarithmic relationships
between the variables. We selected the nor-
mal distribution with log link function for the
final GEE models, since this specification
yielded the lowest value of the QIC (quasi-
likelihood under the independence model
criterion), indicating the best statistical fit.
Because GEEs do not support model fit sta-
tistics that indicate the proportion of variance
explained, we provide QIC fit statistics,
which are interpretable in a similar manner
to the Akaike information criterion as applied
to generalized linear models (i.e., smaller
values indicate better fit). Although QIC fit
statistics are useful for selecting best-fitting

models or determining the best link function,
they are not directly comparable across the
GEEs.

We standardized all explanatory variables
before including them in the GEEs to allow
direct comparison of model coefficients. We
estimated the statistical significance of each
individual variable using 2-tailed P values
from the Wald c2 test. To examine multi-
collinearity, we calculated the condition in-
dex for the combination of standardized
independent variables in each GEE model.
None of our models yielded a condition
index higher than 6.0, indicating the absence
of collinearity problems.

RESULTS
The spatial distribution of flooding in

Greater Houston is depicted as a classified
choropleth map in Figure 2. For this map, we
grouped census tracts in the study area into 4
quartiles based on the proportion of tract land
area flooded by Hurricane Harvey. Tracts in
the highest quartile (top 25%) for proportion
flooded were located primarily in counties
adjacent to the Gulf of Mexico (Brazoria,
Galveston, and Chambers) and in the City
of Houston in Harris County. Tracts in
the lowest quantile were located primarily
in the northwestern regions of Greater
Houston. The tract-level distributions of 3
key explanatory variables are shown in
Figure B (available as a supplement to the
online version of this article at http://www.
ajph.org). These maps suggest a spatial
correspondence between flood extent
and the non-Hispanic Black and Hispanic
proportions, as well as socioeconomic
deprivation, in several counties of the MSA.

Descriptive statistics for all variables and
correlation coefficients associated with each
explanatory variable are presented in Table 1.
In terms of race/ethnicity, flood extent was
significantly and positively correlated with
the proportion of non-Hispanic Blacks and
Hispanics, but negatively correlated with
the proportion of non-Hispanic Whites,
Asians, and non-Hispanic other race. The
socioeconomic deprivation factor, along
with the 5 variables that compose this index,
were all positively and significantly associated
with flood extent. Both home ownership
and vacation homes, however, showed a
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nonsignificant relationship with flood extent.
The values and significance of Spearman’s r
(nonparametric) were consistent with those
observed for Pearson’s r.

In our multivariate GEEs, summarized
in Table 2, we used the proportion of non-
Hispanic Whites as the reference group and
thus excluded this variable from thesemodels.
In model 1, significant and positive coeffi-
cients for the non-Hispanic Black (P < .01)
and Hispanic (P< .05) variables indicated that
tracts where these subgroups were concen-
trated had higher proportions of flooded area
compared with tracts where non-Hispanic
Whites were concentrated. For the pro-
portion of non-Hispanic Blacks, a coefficient
of 0.044 with an exponent of 1.045 implies
that increasing the non-Hispanic Black pro-
portion by 1 SD led to a 4.5% increase in the
mean proportion of tract area flooded, after

controlling for the effects of other in-
dependent variables. Similarly, increasing the
proportion of Hispanics by 1 SD led to a 2.6%
increase in the mean proportion of tract area
flooded, after controlling for other variables in
the model. Model 2 showed significantly
higher socioeconomic deprivation and home
ownership rates in tracts with greater flood
extent (P < .01). Increasing socioeconomic
deprivation by 1 SD led to a 6.4% increase in
the mean proportion of tract area flooded,
whereas increasing home ownership rate by 1
SD increased the mean proportion of tract
area flooded by 3.3%. The positive coefficient
for the non-Hispanic Black proportion
remained significant (P< .05) after the addi-
tion of socioeconomic deprivation and
housing variables in model 3. An increase in 1
SD for the non-Hispanic Black proportion
led to an increase of 5.0% in the mean

proportion of tract area flooded. In the
presence of the racial/ethnic variables, so-
cioeconomic deprivation, home ownership
rate, and vacation home proportion were
all significantly and positively associated
with flood extent (P< .05) in model 3. An
increase in 1 SD for each of these 3 variables
increased the mean proportion of tract area
flooded by 3.0%, 3.8%, and 2.0%, respectively.

DISCUSSION
We sought to extend distributive envi-

ronmental justice research on climate
change–related disasters by analyzing social
inequities in the areal extent of flooding
caused by Hurricane Harvey in Greater
Houston. Our statistical findings indicate that
both race/ethnicity and SES play a persistent
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explanatory role in the spatial distribution of
flood extent across neighborhoods, even after
controlling for housing-related factors and the
effects of clustering. Specifically, we found
that the Harvey-induced flood extent sig-
nificantly increased in neighborhoods pre-
dominantly comprising Black, Hispanic, and
socioeconomically deprived residents. This
statistical evidence of distributive injustice

associated with flooding in Greater Houston
represents an important starting point for
more detailed investigation of dispropor-
tionate health impacts associated with Hur-
ricane Harvey. Given the well-documented
physical and mental health problems associ-
ated with flooding,13,14 racial/ethnic
minority and socioeconomically disadvan-
taged individuals residing in highly inundated

neighborhoods are likely to suffer the addi-
tional burden of adverse health outcomes.

It is important to consider 2 limitations of this
study,whichweplan toaddress in future research.
First, we focused only on the areal extent of
flooding, not on flood depth, duration, intensity,
and other attributes that contribute to adverse
health or social consequences. Second, our
reliance on neighborhood (tract)-level data

TABLE 1—Summary Statistics for Variables Analyzed and Bivariate Correlations: Greater Houston Metropolitan Statistical Area, Texas, 2017

Variable Min–Max
Mean (SD)

Bivariate Correlation With Flood Extent

Pearson’s r (95% CI) Spearman’s r (95% CI) Spearman’s r (95% CI)

Dependent variable

Proportion of tract area flooded (flood extent) 0.019–0.964 0.549 (0.149)

Independent variables

Proportion non-Hispanic White 0.003–0.912 0.370 (0.271) –0.166 (–0.223, –0.107) –0.179 (–0.236, –0.121)

Proportion non-Hispanic Black 0.000–0.924 0.173 (0.198) 0.161 (0.102, 0.219) 0.139 (0.080, 0.197)

Proportion Hispanic 0.022–0.989 0.376 (0.245) 0.094 (0.035, 0.153) 0.099 (0.040, 0.158)

Proportion Asian 0.000–0.708 0.062 (0.085) –0.100 (–0.159, –0.041) –0.174 (–0.231, –0.116)

Proportion non-Hispanic other 0.000–0.173 0.018 (0.016) –0.094 (–0.223, –0.107) –0.099 (–0.158, –0.040)

Socioeconomic deprivation (a = 0.80) –1.585–4.639 0.000 (1.000) 0.162 (0.103, 0.219) 0.171 (0.1133, 0.228)

Proportion < high school education 0.000–0.667 0.200 (0.154) 0.144 (0.085, 0.202) 0.158 (0.099, 0.216)

Proportion limited English proficiency 0.000–0.763 0.178 (0.150) 0.075 (0.015, 0.134) 0.081 (0.021, 0.140)

Proportion below poverty level 0.000–0.781 0.171 (0.122) 0.113 (0.054, 0.171) 0.142 (0.083, 0.200)

Proportion zero-vehicle households 0.000–0.586 0.065 (0.067) 0.118 (0.059, 0.176) 0.097 (0.038, 0.156)

Proportion civilian unemployed 0.000–0.637 0.253 (0.072) 0.173 (0.115, 0.230) 0.178 (0.120, 0.235)

Proportion owner-occupied housing units 0.000–0.991 0.596 (0.239) 0.003 (–0.057, 0.063) –0.026 (–0.085, 0.034)

Proportion vacant: seasonal/recreational use 0.000–1.000 0.088 (0.167) 0.003 (–0.057, 0.063) 0.030 (–0.030, 0.089)

Note. CI = confidence interval. There were 1063 census tracts in the sample.

TABLE 2—Generalized Estimating Equations for Predicting Proportion of Tract Area Flooded: Greater HoustonMetropolitan Statistical Area,
Texas, 2017

Variable

Model 1 Model 2 Model 3

Ba (95% CI) Exp (B) Wald’sc2 Ba (95% CI) Exp (B) Wald’s c2 Ba (95% CI) Exp (B) Wald’sc2

Proportion non-Hispanic Black 0.044 (0.025, 0.062) 1.045 21.314** 0.049 (0.028, 0.071) 1.050 20.485**

Proportion Hispanic 0.026 (0.001, 0.051) 1.026 3.583* 0.028 (–0.004, 0.060) 1.028 2.970

Proportion Asian –0.014 (–0.041, 0.013) 0.986 1.004 –0.008 (–0.032, 0.016) 0.992 0.392

Proportion non-Hispanic Other –0.011 (–0.030, 0.008) 0.989 1.327 –0.006 (0.025, –0.062) 0.994 0.311

Socioeconomic deprivation 0.062 (0.040, 0.085) 1.064 29.115* 0.030 (0.001, 0.060) 1.030 3.287*

Proportion owner-occupied housing units 0.032 (0.009, 0.056) 1.033 7.377** 0.037 (0.017, 0.058) 1.038 12.555**

Proportion vacant: seasonal/recreational

use

0.010 (–0.008, 0.028) 1.010 1.206 0.020 (0.001, 0.039) 1.020 4.063*

Intercept –0.598 (–0.624, –0.572) 2052.446 –0.601 (–0.626, –0.576) 2237.016 –0.602 (–0.623, –0.581) 3178.916

Note. CI = confidence interval. There were 1063 census tracts in the sample.
aPopulation-averaged estimate; QIC (quasi-likelihood under the independence model criterion) = 39.158 (model 1), 37.271 (model 2), and 43.737 (model 3).

*P < .05; **P < .01.
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prohibited examination of whether socially dis-
advantaged individuals resided within flooded
areas and how they were affected by flooding, in
terms of home damage, loss of jobs and income,
health problems, andother postevent experiences.
The use of structured survey or semistructured
interviews could help clarify factors influencing
neighborhood-level associations and determine
whether socially disadvantaged residents were
unequally burdened by their disproportionate
exposure to Harvey-induced flooding.

Although the adverse impacts of floods have
magnified in recent decades because of increases
in population and impervious surfaces, climate
change has been documented to strongly in-
fluence the frequency and intensity of floods
and other weather-related hazards.17,34 Storms
that bring more than 20 inches of rainfall in
Greater Houston are about 6 times more likely
now than theywere at the end of 2000, and the
annual odds are expected to increase by almost
20% for theperiod2081 to2100.17Researchon
social vulnerability has drawn attention to the
amplified risks faced by racial/ethnic minorities
and individuals of lower SES fromflood-related
events, in terms of their constrained access to
resources necessary for response, recovery, and
medical care.35 From an environmental justice
perspective, understanding and quantifying the
unequal social and health consequences of
climate-induceddisasters are critically important
for developing adequate risk management ac-
tions, as well as planning adaptation and miti-
gation strategies. Our findings reveal significant
social injustices in the distribution of flooding at
the neighborhood level, but more individual-
and household-level analyses are recommended
to address these objectives.
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