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The Bethe-Salpeter equation (BSE) is the standard computational method for optical excitations
in solids, including excitonic effects. In this paper we explore ways to reduce the computational cost
of the BSE by simplifying the dielectrically screened Coulomb interaction: instead of calculating the
dielectric function from first principles, we replace it by a momentum-dependent model dielectric
function or just by a single parameter. Combined with a semilocal exchange-correlation kernel,
this defines a new class of hybrid functionals for solids within generalized time-dependent density-
functional theory. We perform a systematic assessment of these simplified approaches, and find
that they yield optical absorption spectra and exciton binding energies of semiconductors and wide-
gap insulators in close agreement with the standard BSE and with experiment. We also present
applications to the perovskite material CsPbBr3 as an example of a more complex system.

I. INTRODUCTION

Excitonic effects play a critical role in the optical prop-
erties of electronic materials used in light-emitting de-
vices, photovoltaics and photo-catalysts. The standard
method to describe the excitons—coupled and correlated
electron-hole quasiparticles (QPs)—is through a Green’s
function based approach known as the Bethe-Salpeter
equation (BSE) [1–3]. For extended systems, the BSE
is the most accurate method to calculate optical proper-
ties [4–6], but this accuracy tends to come with a rather
high computational cost.

Excitons originate from the Coulomb interactions
within the electron-hole pairs that are created during op-
tical excitation processes. Coulomb interactions in elec-
tronic materials have classical and nonclassical contribu-
tions, also known as direct (or Hartree) and exchange-
correlation (xc); for excitons, screened Coulomb ex-
change (where the screening can be viewed as a form
of correlation) is the key mechanism of electron-hole in-
teraction, whereas the Hartree interaction gives rise to
so-called local-field effects, which are less influential. The
BSE accounts for all of these effects from first principles.

The main computational effort within BSE is spent
on the screened Coulomb exchange interactions, which
require constructing the inverse dielectric function using
the random-phase-approximation (RPA) [7–9]. Although
dynamical effects are usually neglected, it is still costly to
perform RPA calculations to get fully converged dielec-
tric functions εRPA, since many unoccupied bands and a
relatively dense k-grid sampling are typically needed.

Over the past decades, remarkable progress has been
made in simplifying the RPA calculations or developing
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model dielectric functions [10–13]. By substituting εRPA

with such model dielectric functions, not only the opti-
cal properties but also the quasiparticle band structure
(within the GW approximation) can be reasonably esti-
mated for a wide range of materials [11, 14–17].

An alternative approach to the optical excitation
problem is time-dependent density-functional theory
(TDDFT) [18–20]. Using xc kernels with proper long
range, TDDFT can successfully describe excitonic effects
and produce reasonable optical spectra for solids [21–28].

A very widely used generalization of (TD)DFT [29–31]
is based on hybrid functionals, where a fraction of nonlo-
cal (Hartree-Fock) exchange is combined with semilocal
exchange and correlation [32–36]. In ground-state DFT,
hybrid xc functionals have gained increased popularity
for calculating electronic band structures, since they offer
a practical solution to DFT’s band gap problem [37–49].
There also are a few applications of hybrid xc function-
als to describe excitations in periodic solids [50–53]. In
particular, the so-called optimally tuned range-separated
hybrids produce excellent results for organic molecular
crystals [54, 55]. Recently, Wing et al. [56, 57] showed
that range-separated hybrids with an empirical parame-
ter agree well with GW-BSE results for several materials.

In a similar context, a screened exact-exchange (SXX)
approach was recently proposed by Yang et al. [58]. The
SXX can be viewed as a simplified BSE approach, where
the dielectric function is replaced by a uniform screen-
ing parameter γ; but it can also be seen as a special
type of hybrid functional where the semilocal exchange-
correlation part is not included. In the original work [58],
γ was determined nonempirically as the inverse of the di-
electric constant. This approximation only requires RPA
calculations at q = 0, leading to a significant computa-
tional speedup. Moreover, γ can also be obtained using
dielectric constants from experiment.

The purpose of this paper is a systematic assessment of
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simplified BSE schemes, including BSE based on model
dielectric functions, SXX, and a newly proposed hybrid
functional which combines SXX with a fraction of local
exchange and correlation. The primary goal is to find
a nonempirical approach which can be used to calculate
excitonic effects in complex materials for which standard
BSE is unaffordable, but with similar (or perhaps even
better) accuracy compared to experiment.

We will mainly focus on calculating exciton binding en-
ergies and optical spectra in simple semiconducting and
insulating materials, with particular emphasis on practi-
cal aspects such as convergence with respect to the num-
ber of reciprocal lattice vectors, and robustness under
small variations of the dielectric screening. To demon-
strate the capability of the simplified BSE schemes, we
also present a detailed study of the cubic perovskite ma-
terial CsPbBr3. The performance of the simplified BSE
schemes turns out to be excellent throughout; the new
hybrid functional is found to work particularly well for
the wide-gap insulators LiF and solid Ar.

The paper is organized as follows. In Sec. II we present
the theoretical background of the BSE formalism and its
simplifications, and discuss some computational details.
In Sec. III we present results for a variety of common in-
sulators and semiconductors, as well as for CsPbBr3, and
we assess the performance of the simplified BSE schemes.
Sec. IV contains our conclusions and a general outlook.

II. THEORY AND METHODOLOGY

A. Simplifying the dielectric screening in the BSE

The BSE can be expressed as a matrix equation [59],(
A B
B∗ A∗

)(
Xn

Yn

)
= ωn

(
−1 0
0 1

)(
Xn

Yn

)
, (1)

where A and B are defined in quasiparticle transi-
tion space (including excitations and de-excitations),
(Xn,Yn) are the nth eigenvectors, and ωn is the nth
excitation energy. The de-excitation effects are usually
negligible in the BSE with momentum transfer q = 0
[28, 60]. Therefore, we here adopt the Tamm-Dancoff
approximation, which means B is set to be zero [27, 60].
Then, Eq. (1) can be simplified as[

(Ec,k − Ev,k′)δvv′δcc′δkk′ +KBSE
cvk,c′v′k′

]
Yn = ωnYn.

(2)
Here, v denotes occupied valence bands, c denotes unoc-
cupied conduction bands, and the Eks are single (quasi-)
particle energies. Equation (2) features the coupling ma-
trix KBSE = Kd + Kx, which is also called BSE kernel.
The first part of KBSE is the direct interaction,

Kd =
2

Vcell

∑
G 6=0

4π

|G|2
〈ck| eiG·r |vk〉 〈v′k′| e−iG·r |c′k′〉 ,

(3)

which will remain the same for all the methods in the
present work. The second part is the exchange kernel,

Kx(q, ω) =
2

Vcell

∑
G,G′

WG,G′(q, ω)δq,k−k′

× 〈ck| ei(q+G)r |c′k′〉 〈v′k′| e−i(q+G′)r |vk〉 ,
(4)

which is much more expensive to calculate than Kd. The
main computational cost comes from the construction of
the screened Coulomb interaction, WG,G′(q), given by

WG,G′(q, ω) = −
4πε−1G,G′(q, ω)

|q + G||q + G′|
. (5)

The inverse dielectric function ε−1G,G′(q, ω) is obtained
from first principles via

ε−1G,G′(q, ω) = δG,G′ +
4π

|q + G|2
χRPA
G,G′(q, ω) , (6)

where χRPA
G,G′(q, ω) is the density-density response func-

tion in random-phase approximation (RPA).
For most practical BSE calculations, a widely used

treatment is to ignore the frequency dependence of the
dielectric function and use ε−1G,G′(q, ω = 0) [4, 5, 61].
However, the ω-dependent dynamic effects of the dielec-
tric screening may have a non-negligible influence on the
electron dynamics [62, 63], which can be estimated by
methods such as generalized plasmon-pole models [64–
66]. In the present work, we use the static approxima-
tion throughout, and refer to this as the standard BSE
approach or simply as the BSE.

Even if the static approximation is made, the RPA cal-
culation for the dielectric function is still one of the most
resource demanding steps for the whole process of first-
principles BSE calculations, because it requires a sum-
mation over the q-grid in the reduced Brillouin zone, in
addition to a double sum over the reciprocal wavevectors
G,G′. Furthermore, many unoccupied bands must be
included in χRPA to obtain a fully converged dielectric
function.

Alternatively, one can replace the RPA dielectric func-
tion by a model dielectric function or just a simple pa-
rameter, both of them diagonal in G,G′:

ε−1G,G′(q, 0) −→
{
ε(q)−1δG,G′ (m-BSE)

γδG,G′ (SXX).
(7)

Here, m-BSE stands for BSE with a model dielectric func-
tion, and SXX stands for screened exact exchange, fol-
lowing Ref. [58] (if γ = 1, the method reduces to time-
dependent Hartree-Fock, hence the name SXX). We also
considered the head-only SXX (h-SXX), where we set
ε−1G,G′(q, 0) = γδG,G′δG,0.

Here, we adopt the model dielectric function by Cap-
pellini et al. [13]:

ε(q) = 1 +

{
1

ε(0)− 1
+ α

(
q

qTF

)2

+
~2q4

4m2ω2
p

}−1
, (8)
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where q = |q + G|, α = 1.563 is an empirical parameter,
and qTF and ωp are the Thomas-Fermi wave vector and
the plasma frequency, respectively, obtained with the av-
erage electron density of the system. Lastly, ε(q) requires
the dielectric constant ε(0) as input, which can either be
taken from experiment, or calculated as the head of the
RPA inverse dielectric function ε(0) = 1/(εRPA)−10,0(q =

0), using Eq. (6).
In Ref. [58] it was proposed that the screening param-

eter γ in SXX be determined from a first-principles RPA
calculation:

γ = (εRPA)−10,0(q = 0) = 1/ε(0). (9)

In fact, the role of ε−10,0 could be regarded as an overall
account of the Coulomb screening effects for the opti-
cal excitation when q → 0. Furthermore, the ε(0) or γ
in m-BSE and SXX can also be treated as empirically
adjustable parameters. Such flexibility could be helpful
when the RPA dielectric function alone is not sufficiently
accurate for excitonic effects, for instance due to the pres-
ence of lattice screening effects [67]. We use the definition
of the screening parameter in Eq. (9) for m-BSE, SXX
and the hybrid functional kernel throughout, unless ex-
plicitly stated otherwise.

The main advantage of m-BSE and SXX is avoiding the
full RPA calculation of the momentum-dependent dielec-
tric function. Another advantage is that the off-diagonal
terms of WG,G′ are eliminated. As we will see below, the
off-diagonal terms of the dielectric function are not im-
portant for the optical response in semiconductors, but
in insulators with strong short-range interactions, the ef-
fect of the off-diagonal terms (local field effects, LFE) can
be nonnegligible. Overall, it will turn out that the sim-
plified schemes developed here agree closely with BSE,
while leading to a significant reduction of computational
cost (as detailed in Appendix D).

B. From simplified BSE to generalized TDDFT: a
hybrid functional for excitons in solids

In ground-state DFT, the central idea of hybrid func-
tionals is to write the xc energy functional as [32–36]

Ehybrid
xc = aEexact

x + (1− a)Esl
x + Esl

c , (10)

where Eexact
x is the exact Fock exchange energy func-

tional, and Esl
x,c are approximate semilocal exchange and

correlation functionals, respectively. The parameter a
(often chosen as a ≈ 0.25) mixes exact exchange with
semilocal exchange.

While hybrid functionals have found widespread appli-
cation for periodic solids thanks mainly to their excellent
performance for calculating band gaps [37–49], there have
so far been relatively few applications of hybrid function-
als for optical spectra in semiconductors and insulators
[50–57].

Here, we propose a nonempirical hybrid approach
specifically designed to produce excitonic properties in
close agreement with the BSE. The idea is to combine
the long-ranged SXX with an approximate treatment of
xc local-field effects via the adiabatic LDA (ALDA), in
the following way: in the BSE equation, Eq. (2), we re-
place the screened exchange part of the BSE kernel, Kx,
with the hybrid kernel

Khybrid
xc = KSXX + (1− γ)KALDA

xc , (11)

where

KSXX(q) = − 2

Vcell

∑
G

δq,k−k′
4πγ

|q + G|2
(12)

× 〈ck| ei(q+G)r |c′k′〉 〈v′k′| e−i(q+G)r |vk〉

and

KALDA
xc (q) =

2

Vcell
lim
q→0

∑
G,G′

fALDA
xc,GG′(q) (13)

× 〈ck| ei(q+G)r |vk〉 〈v′k′| e−i(q+G′)r |c′k′〉 .

Here, fALDA
xc,GG′(q) is the local frequency-independent xc

kernel in ALDA [20].
The construction of our hybrid kernel (11) differs from

standard generalized (TD)DFT hybrid expressions, see
Eq. (10), in that we reduce the entire local xc part by a
factor (1− γ), whereas in Ehybrid

xc only the exchange part
is reduced and not the correlation part. The reason for
this is that the screening in SXX is in essence a corre-
lation effect, so that we must reduce all of KALDA

xc (not
just the exchange part) in order to avoid overcounting of
correlation. While this is of course just a simple approx-
imation, it nevertheless captures essential aspects of the
behavior of screened electron dynamics in solids, and, as
we will see below, Khybrid

xc leads to good results.

C. Computational Details

To calculate Kohn-Sham band structures, we used the
LDA functional in the Quantum Espresso package [68],
employing a plane-wave basis along with optimized norm-
conserving Vanderbilt pseudopotentials [69]. The elec-
tronic band gaps were then corrected to the experimental
value by applying scissors operators [70, 71]. Experimen-
tal lattice parameters were used for all materials.

With the so obtained Kohn-Sham band structures, we
used the Yambo code [72] to perform our calculations for
optical excitations. We used a 28 × 28 × 28 Γ-centered
k-point mesh for GaAs and Si. The k-grids for the other
materials are: 24×24×24 for z-GaN and CdS; 24×24×12
for w-GaN and AlN; and 16×16×16 for LiF and Ar. The
RPA dielectric functions were calculated with at least
60 conduction bands and 200 G-vectors. To build the
BSE and ALDA kernels, we used 3 valence bands and 3
conduction bands for GaAs and Ar. The corresponding
numbers of valence and conduction bands for the other
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TABLE I. Exciton binding energies for various elemental and
binary materials, comparing calculated with experimental re-
sults. All energies are in meV, except for LiF and Ar (eV).

GaAs Si CdS z-GaN w-GaN AlN LiF Ar
BSE 24 42 59 103 110 181 2.05 1.83

m-BSE 24 43 59 103 108 185 2.17 1.78
SXX 24 41 58 101 106 177 1.93 1.75

h-SXX 25 43 58 101 106 176 1.77 1.70
Hybrid 24 41 59 102 107 180 2.00 1.80
Expt.a 4 14 28 26 20 75 1.6 1.9

a Experimental data from Refs. [76–86]

materials are: 4, 4 for z-GaN, Si, w-GaN and AlN; and
5, 5 for CdS and LiF (with the 1s electrons of Li included
in the pseudopotential).

We used Haydock iteration to solve the BSE-type equa-
tions, instead of directly diagonalizing the huge BSE ma-
trix. To identify the position of excitons in the spectra,
a smaller broadening of 0.002 eV is used; to calculate op-
tical spectra, a much larger broadening of 0.1 eV is used.
It is well known that large numbers of k-points are re-
quired to obtain converged spectra [73, 74]. We adopted
the random integration method and inversion solver in
Yambo [72, 75]. In this scheme, the optical spectra of z-
GaN are calculated with a double k-grid, which includes
a 12 × 12 × 12 Γ-centered uniformed k-point mesh and
20000 random interpolated k-points.

III. RESULTS AND DISCUSSIONS

A. Elemental and binary materials

We assess the performance of m-BSE, SXX, and the
hybrid kernel for Si and for several common binary com-
pounds, namely, the semiconductors GaAs, GaN with
zincblende and wurtzite structure (z-GaN and w-GaN,
respectively), AlN, and CdS, and the wide-gap insula-
tors LiF and Ar. The strength of the excitonic effects
in these materials covers a wide range, with the exciton
binding energy Eb varying over three orders of magni-
tude. Furthermore, CdS was chosen to give an example
for systems containing transition metals.

1. Exciton binding energies

Table I shows Eb for the materials mentioned above,
calculated with various approaches and compared to ex-
periment. The results are also graphically illustrated in
Fig. 1.

Compared to experiment, the standard BSE tends to
systematically overbind the excitons. There are several
reasons for this: mainly the k-point sampling, but also
underestimation of dielectric screening for some materi-
als, and exclusion of dynamic effects for both band struc-
tures and optical properties. We present the evolution

FIG. 1. Exciton binding energies Eb calculated with different
variants of BSE and SXX for GaAs, Si, z-GaN, w-GaN, CdS,
AlN, LiF, and Ar, compared with experimental values.

of Eb depending on number of k-points in Appendix A,
which shows the same convergence behavior for all meth-
ods under study. According to Ref. [4], for the excitons in
GaAs one would have to increase the k-point grid density
to 108 k-points in the Brillouin zone to reach the limits
of numerical precision, which is obviously unaffordable.

However, our goal is not to reproduce the experimen-
tal Eb to the maximal level of attainable precision, but
to demonstrate that the simplified BSE approaches are
good approximations for the full BSE. In other words,
we here compare theory with theory, taking the full BSE
at a given (affordable) level of numerical precision as the
benchmark for the other, more approximate, methods.

For all semiconductors considered, we find that the Eb

calculated with m-BSE, SXX, and the hybrid functional
are remarkably close to the BSE results (to within a cou-
ple of meV for GaAs, Si, CdS, and GaN, and to within
10 meV for AlN), which demonstrates the usefulness of
these approaches.

The Eb calculated with h-SXX are practically identi-
cal to those obtained with SXX, except for LiF and Ar.
This indicates that the influence of the LFE on the ex-
citons is negligible in most covalent semiconductors, and
only the long-range electron-hole interaction is relevant.
By contrast, in ionic insulators such as LiF and wide-
gap materials such as solid Ar, the Frenkel-type excitons
are tightly bound around the ions. Although the long-
range excitonic interactions are still dominant, the diag-
onal short-range interaction and LFE play a much more
important role than for semiconductors. In the following,
we focus on LiF; the behavior in Ar is similar.

We found that Eb of LiF calculated with m-BSE (2.17
eV) is larger than that of the BSE (2.05 eV). This over-
estimation by m-BSE can be mainly attributed to the
neglecting of the off-diagonal G,G′ terms of the dielec-
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tric function. To confirm this, we considered a diagonal
BSE (d-BSE) by setting G = G′ in Eq. (5), which also
results in a larger Eb (2.25 eV) compared to the BSE.

On the other hand, the diagonal terms in the dielectric
function are even more critical. Compared with the m-
BSE, SXX reduces Eb by 0.24 eV. A main reason for this
is that SXX does not consider the decay of the dielectric
function depending on q, thus the diagonal short-range
electron-hole interactions in LiF are overscreened. Nev-
ertheless, our results shows that one can still use m-BSE
and SXX to calculate Eb in insulators with moderate
deviations from the full BSE.

According to the discussion above, the LFE play a sig-
nificant role for ionic insulators. In our hybrid functional,
the LFE are included via the ALDA kernel. For LiF
(see Table I), Eb calculated with the hybrid functional
is 2.00 eV, which deviates by only 0.05 eV from Eb by
BSE; by comparison, Eb by m-BSE deviates by 0.12 eV
from BSE. The hybrid functional corrects not only the di-
agonal short-range interaction, but also the off-diagonal
LFE. Therefore, one can expected our hybrid functional
to generally perform well for excitons in insulators.

2. Convergence with number of G-vectors

The computational cost of the BSE and its simplified
versions depends not only on the complexity of the kernel
Kx, i.e., whether the full inverse dielectric matrix ε−1GG′

is required, only the diagonal elements of it, or just a
simple model such as ε(q) or γ. The cost also depends
on the number of reciprocal lattice vectors, NG, which
are needed to achieve converged results. Thus, even if a
method is formally simpler than BSE, a large NG could
make it computationally unfavorable.

To test the convergence with respect to NG, we take
z-GaN and LiF as representative examples for semicon-
ductors and insulators with direct band gaps and well-
separated excitonic peaks in the optical spectrum. We
consider Eb to be converged if it changes by less than 0.5
meV and 5 meV for z-GaN and LiF, respectively. The
dependence of Eb on NG is plotted in Fig. 2 for the two
materials. In addition to BSE, m-BSE and SXX, we also
considered d-BSE (only diagonal elements in the BSE
kernel). We did not test the NG-dependence for the hy-
brid kernel, since its screened exchange part is the same
as SXX and its ALDA part is treated in the same way as
the direct kernel, see Eqs. (3) and (13).

For z-GaN, all four methods show a quick convergence,
and we find that 51 G-vectors are enough. For LiF, on
the other hand, 169 G-vectors are needed. The differ-
ent convergence of z-GaN and LiF is mainly due to the
stronger bound excitonic effects in LiF, which makes the
short-range interactions more critical. This can be clearly
seen by comparing m-BSE and d-BSE in LiF: the differ-
ences seen in Fig. 2b result from the differences between
the model and RPA dielectric functions (see Appendix C
for more details).

FIG. 2. G-vector dependent convergence behavior of Eb in
d-BSE, BSE, m-BSE and SXX, for z-GaN and LiF.

It is also interesting that the finally converged Eb

(NG = 169) using d-BSE differs from the initial Eb

(NG = 0) by at least 120 meV, but the corresponding
difference for the BSE is less than 90 meV, see Fig. 2b.
A similar but less pronounced tendency is found in z-
GaN. This can clearly be attributed to the effects of the
off-diagonal terms in the dielectric screening.

Regardless of the details above, we find for both small-
and large-gap materials that the number of G-vectors
needed for convergence is similar for BSE, m-BSE, SXX
and the hybrid kernel.

3. Variations of the screening parameter

The screened Coulomb interaction W in Eq. (5) is de-
termined by the RPA dielectric function, which requires
the Kohn-Sham band structure as input. Moreover, εRPA

0,0

is usually used to obtain the macroscopic dielectric con-
stant as εM ≈ 1/(εRPA)−10,0. As mentioned before, one

can also manually adjust ε(0) or γ in m-BSE, SXX and
in the hybrid functional, in the spirit of an empirical cal-
culation.

The accuracy of 1/(εRPA)−10,0 relies on the Kohn-Sham
band structure, and therefore on the DFT approximation
used; on top of this, convergence with the number of k-
points and unoccupied bands may sometimes be difficult
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TABLE II. SXX, m-BSE, and hybrid exciton binding energies
Eb, with variational inverse dielectric constants (εRPA)−1

0,0, for
z-GaN (in meV) and LiF (in eV)

z-GaN LiF
+10% (εRPA)−1

0,0 −10% +10% (εRPA)−1
0,0 −10%

SXX 92 101 112 1.63 1.93 2.34
m-BSE 93 103 114 1.87 2.17 2.57
Hybrid 92 102 113 1.68 2.00 2.42

to achieve for reasons of computational cost. This raises
the question of how sensitive the calculated excitonic ef-
fects are to variations of the dielectric constant. From
prior experience [27, 87] it is known that 1/(εRPA)−10,0 can

differ from εM by about 10%. In the following, we will
perform tests to see how Eb is influenced by fluctuations
of the dielectric screening.

In Table II we list the calculated Eb via m-BSE, SXX
and the hybrid functional with 1/ε(0) = γ = (εRPA)−10,0

and (εRPA)−10,0±10% for z-GaN and LiF. In the case of z-

GaN, +10% and −10% (εRPA)−10,0 lead to 90% and 112%
Eb, respectively. This suggests that for small-gap mate-
rials the exciton binding energy changes linearly under
variation of (εRPA)−10,0 in the 10% range for all the three
methods considered.

This linearity no longer quite holds for LiF, and there
appears to be a greater sensitivity of the excitonic effects
to variations of the screening parameters. With a 10%
increase of (εRPA)−10,0, Eb decreases by 0.3 eV (i.e., by

about 15%) for all three methods. Under a 10% decrease
of (εRPA)−10,0, Eb reacts more strongly and increases by
0.4 eV. We found the hybrid functional a little more sen-
sitive, see Table II. Due to the negative sign of KSXX in
Eq. (12), the screened part of ALDA (−γKALDA

xc ) actu-
ally amplifies the response of KSXX to the variation of
γ. But since KALDA

xc contributes much less to the domi-
nant long-range interaction, the hybrid function shows a
sensitivity similar to SXX for both z-GaN and LiF.

It is noticed that in Eq. (8), the parameter ε(0)
is defined as the dielectric constant. However, the di-
electric constant from RPA (εRPA

0,0 ) differs a little from

1/(εRPA)−10,0. It should be obtained by strictly computing

the inverse of the matrix (εRPA)−1G,G′ in Eq. (6) and then
taking the head of the new matrix as:

εRPA
0,0 =

[
(εRPA)−1G,G′

]−1
q=G=G′=0

, (14)

where the local field effects are included in the dielectric
constant. Using Eq. (14), we obtained εRPA

0,0 = 5.8 for

z-GaN, which is 10% larger than 1/(εRPA)−10,0 = 5.3. Ac-

cording to Table II, Eb will be 114 meV if ε(0) = εRPA
0,0 =

5.8 for m-BSE. Although one should use ε(0) = εRPA
0,0 for

calculating the dielectric function in Eq. (8), the results
by m-BSE with 1/(εRPA)−10,0 applied are in close agree-
ment with those by BSE. The reason is that by sub-
stituting 1/(εRPA)−10,0 for ε(0) in Eq. (8), one will get

FIG. 3. Optical spectra for z-GaN, calculated by BSE, m-
BSE, SXX and hybrid functional with (a) uniform (163) k-
grid (b) double k-grid (123 +20000 random). The dashed line
shows the experimental band gap. For all the spectra, a 0.1
eV broadening was applied. The experimental data are taken
from Ref. [77].

ε−1(q = 0) = (εRPA)−10,0. Our m-BSE calculations there-
fore reproduce the BSE results. The physical interpre-
tation is to obtain the ε−1(q) for dielectric screening for
WG,G′ , the LFE (off-diagonal terms) actually have to
be considered again as the opposite process of Eq. (14).
Therefore, ε(0) = 1/(εRPA)−10,0 makes more sense and of-
fers closer results to BSE when estimating the dielectric
screening for excitons.

4. Optical spectra

Besides the exciton binding energy, it is important to
evaluate the overall shape of the optical spectrum. The
spectra of z-GaN, obtained with a 163 Γ-centered uniform
k-point mesh using the m-BSE, SXX, hybrid functional
and BSE, are shown in Fig. 3a. The BSE and m-BSE
result in very similar spectra except some minor differ-
ences in higher energy range after 5 eV. Compared to
BSE, SXX and hybrid functional reproduce all the main
peaks, but with an overall smaller oscillator strength.

However, the 163 k-point mesh is not dense enough.
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FIG. 4. Optical spectra for LiF, calculated by BSE, m-BSE,
SXX and hybrid kernel with a 163 k-grid. The dashed line
shows the experimental band gap. For all the spectra, a 0.1
eV broadening was applied. The experimental data are taken
from Ref. [88].

The optical spectra calculated with the double k-grid
method are plotted in Fig. 3b. The calculated curves
are much more smooth than those in Fig. 3a, and are
closer to experiment. The SXX spectrum matches the
experiment best among all the methods, but this may be
fortuitous and might not be the case in other materials.
In fact, the main source of error in the BSE spectra is
that we completely excluded dynamical effects by using a
scissor-operator for the QP energies and setting ω = 0 in
the BSE dielectric screening. The dynamical effects due
to the self-energy influence both the (single) QP renor-
malization and the excitonic interaction [62]. If the QP
energies are obtained by the GW method, we are able to
reproduce the experimental spectrum much better (see
Appendix B).

For LiF, we only use a 163 k-point mesh, which is al-
ready sufficient for obtaining a reasonable shape of the
spectrum. As shown in Fig. 4, the BSE predicts a lower
excitation energy than the experiment for the first ex-
citon, in agreement with prior studies [4, 5, 89]. The
first excitonic peak using SXX differs from the BSE in
position and height. Due to the stronger screening in
SXX, the calculated peak slightly moves towards the ex-
perimental peak, along with a smaller oscillator strength.
m-BSE shifts the exciton to an even lower energy, but re-
produces the height of the BSE peak. As expected, the
hybrid functional agrees best with the BSE.

B. Application in Cubic CsPbBr3

The reduced computational cost makes m-BSE and
SXX attractive for studying excitons in more complex
systems. Here we take one of the simplest perovskites,
cubic CsPbBr3, as an example of a material where the

FIG. 5. (a) BSE optical spectra of CsPbBr3 with and without
SOC. (b) Comparison of BSE (full line), SXX and m-BSE
with εRPA (dashed lines) and SXX and m-BSE with ε = 30
(dash-dotted lines). For all the spectra, SOC was included
and a 0.1 eV broadening was applied. The experimental data
are taken from Ref. [93]. The vertical dashed lines show the
experimental electronic band gap.

spin-orbit coupling (SOC) must be included. To calcu-
late the Kohn-Sham band structure, we use a 6 × 6 × 6
Γ-centered uniform k-point mesh, along with the PBE
functional [90]. We obtain a Kohn-Sham band gap of
0.54 eV, in agreement with previous calculations [91].
We then applied a scissors shift of 1.82 eV to generate
a QP band gap which reproduces the experimental gap
[92]. To keep the degeneracy, we use 8 valence bands
and 8 conduction bands to build the BSE kernels. The
BSE-type equation is then solved by the inversion solver
in Yambo with 7500 random interpolated k-points. We
did not use the hybrid functional for CsPbBr3, because
an implementation of SOC in the adiabatic PBE kernel
was not available in Yambo.

It is well known that the strong SOC from Pb signifi-
cantly affects the electronic and optical properties of lead
halide perovskites. In Fig. 5a, we plot the optical spectra
of CsPbBr3 calculated with and without SOC. There is
a huge difference between two spectra, especially in the
range of visible light (< 3.1 eV). The SOC significantly
splits the valence and conduction bands near the Fermi
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level [94], which reduces the oscillator strength at lower
energies. Our results confirm the importance of SOC for
optical properties of CsPbBr3 on the level of many-body
theory. In the following, the SOC is included throughout.

Here we used the experimental data from Ref. [93],
which is widely accepted in the literature [95, 96], but
there are other experiments which produce a much
sharper peak at the same position [97–99]. However, the
computed perovskite structure is quite sensitive, and the
cubic phase we use in this work is actually a high tem-
perature phase. Thermal vibrations are likely to induce
additional broadening effects on the spectrum, which is
not included in our calculations.

The calculated excitonic binding energies are 32 meV,
28 meV and 27 meV by BSE, m-BSE and SXX, re-
spectively. These values lie within the range (2 to 62
meV) quoted in the experimental and theoretical litera-
ture [95, 96, 100, 101]. It should be pointed out that these
calculated values are obtained with 1/(εRPA)−10,0 = 5.96.
On the other hand, the experimental dielectric constant
of CsPbBr3 is reported to be in a wide range from 5 up
to 40, though orthorhombic phase samples are used in
some works [97, 98, 102]. To account for this, we also
calculated Eb with ε(0) = 1/γ = 9, 16 and 30 via m-BSE
and SXX. With ε(0) = 1/γ = 9, we find Eb = 3 meV
for both m-BSE and SXX, which agrees with the exper-
imental measurements of Ref. [100]. However, there is
no excitation located below the electronic band gap with
the other two higher screening parameters of 16 and 30.
This implies that excitonic effects in CsPbBr3 are well
described using static electronic dielectric constants with
both m-BSE and SXX, though the lattice screening is
also critical to the dielectric response when measured by
different experiments. Our results show that the excitons
have a stronger dependence on electronic screening [103].

In Fig. 5b, we compare the BSE, m-BSE and SXX
optical spectra with experiment. As shown in the fig-
ure, the m-BSE and SXX spectra, which were calculated
from first principles using 1/(εRPA)−10,0 = 5.96, are similar
to BSE in the range of visible light. All three methods
successfully reproduce the excitonic peak just above the
band gap, though the calculated peaks are much more
pronounced than the experimental one. We mention
that the single-particle optical spectrum, see Ref. [94],
smoothly increases without any obvious excitonic peak.

There are two main differences between the SXX and
BSE spectra. The absorption strength by SXX is not
as strong as BSE, which we already observed in z-GaN.
The other difference is the spectrum for excitation energy
above 3.5 eV. The imaginary part of the BSE dielectric
function decreases beyond 4 eV, which is not observed
in the experiment. On the other hand, the SXX spec-
trum comes to a sharp drop around 4.9 eV, which is in
agreement with the experiment.

One potential reason for the behavior of BSE is the ef-
fect of free electrons on the dielectric function, which can

be simply expressed as ε(q, nc) = ε∞

(
1 +

q2TF

q2

)
, where

the Thomas-Fermi wave vector is qTF ∝
√
nc. Here, nc is

the concentration of free electrons in the system. How-
ever, nc may be seriously underestimated by our model,
since the we did not consider free electrons arising from
defects or donors in the experimental sample. The high
free electron concentration is known to play a critical role
in the optical properties in CH3NH3PbBr3 perovskites
[104]. Since a higher nc leads to a larger ε(q, nc), we get
(εRPA)−1(q) ≥ ε−1(q, nc), which is similar to the relation-
ship between the dielectric screening of BSE and SXX,

where (εRPA)−1G,G′(q) ≥ γ = ε−1,RPA
0,0 . Hence, we find the

SXX optical spectrum to be closer to experiment.
Since the experimental dielectric constant varies over

a rather wide range from 5 up to 40 [97, 98, 102], we also
plotted the optical spectra calculated with ε(0) = 1/γ =
30 in Fig. 5b. Compared with 1/(εRPA)−10,0 = 5.96, dielec-

tric screening become much stronger with ε(0) = 1/γ =
30, bringing two significant changes for both m-BSE and
SXX. Not only the first peak is significantly blue-shifted,
but also the optical absorption strength becomes lower.
The continuum spectrum beyond 3.0 eV provides a better
match with the experiment when ε(0) = 1/γ = 30. Fur-
ther improvement could be achieved by carefully choos-
ing the ε(0) and tuning α in Eq. (8) [17], as well as in-
cluding the free-electron effects. In addition, the optical
spectrum is expected to be improved by considering the
dynamic effects with QP band structure as we mentioned
for z-GaN.

Lastly, we have assessed the computational cost of our
approaches for the case of the perovskite. In Appendix
D we compare the CPU times used by BSE and SXX,
and find that SXX and m-BSE lead to quite a significant
speedup of up to two orders of magnitude, depending on
the details of the calculation.

IV. SUMMARY

The central goal of this paper was to find simplifica-
tions of the Bethe-Salpeter equation for calculating opti-
cal spectra of insulators and semiconductors, with a par-
ticular emphasis on capturing spectral properties, includ-
ing excitons, close to the optical gap. The main focus was
on reducing the computational effort that goes into con-
structing the screened Coulomb interaction, which is the
centerpiece of the BSE approach. In BSE, the frequency-
and wavevector-dependent dielectric function—formally
a matrix in the space of reciprocal lattice vectors—must
be computed from first principles using the RPA. We
found that the dielectric function can be replaced by sim-
ple models, or even a single screening parameter, without
significant loss of accuracy. The gain in computational
speed achieved in this way can be considerable.

We combined the simplified BSE kernel (referred to as
screened exact exchange, or SXX) with a local exchange-
correlation kernel, which constitutes a simple hybrid
functional in the context of generalized TDDFT. We then
performed a detailed numerical assessment of our simpli-
fied BSE schemes and the hybrid approach for several
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elemental and binary materials, including the wide-gap
insulators LiF and Ar. We also studied a perovskite ma-
terial as an example of a more complex system. We found
that all methods produce exciton binding energies and
optical spectra in close agreement with the full BSE.

In DFT, hybrid functionals are becoming increasingly
popular in materials science since they provide an effi-
cient way to approximate the quasiparticle band struc-
ture, which leads to much improved band gaps. In
TDDFT for solids, hybrid functionals are now also be-
ginning to be used [50–56], and there are many indica-
tions that hybrids may be the most promising approach
to describe excitons from first principles.

In this paper, we showed that hybrid functionals di-
rectly follow from a suitably simplified BSE. Our con-
struction is a very simple one, where the admixture of
screened exact exchange and semilocal exchange and cor-
relation is governed by a single parameter γ. This param-
eter can be calculated using the RPA, which makes the
hybrid approach completely nonempirical; but it can also
be taken from experiment, or fitted to reproduce refer-
ence data. Clearly, more sophisticated constructions such
as multiparameter or local hybrids are possible, and the
recent history of DFT shows that such efforts, combined
with systematic assessments using materials data bases
or test sets, can be extremely fruitful.
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Appendix A: Dependence of exciton binding energy
on k-point sampling

We use the Quantum Espresso code [68] for the elec-
tronic band structures and the Yambo code [72] for the
electronic excitation spectra. In both codes we use uni-
form k-point sampling. Here, we give an example of the
dependence of the exciton binding energy on the number
of k-points, for the case of z-GaN. The calculations are
done with the full BSE, m-BSE, and SXX.

Figure 6 shows the exciton binding energy Eb plotted
as a function of the number of k-points, Nk, for grid sizes
ranging from 16 × 16 × 16 up to 30 × 30 × 30. For all
the tested methods (BSE, m-BSE and SXX), Eb shows

FIG. 6. Exciton binding energy of z-GaN, as a function of the
number of k-points, for BSE, m-BSE and SXX.

a quite similar behavior depending on the k-point sam-
pling density: Eb decreases monotonically from around
150 meV for 163 k-points down to 80 meV for 303 k-
points. The experimental value is 26 meV (see Table I).
From the data shown in Fig. 6 it is clear that Eb is not
yet fully converged, which would require a considerably
larger number of k-points, and would bring the calcula-
tion closer to the experimental value.

A similar convergence analysis (for the quasiparticle
gap) was also recently carried out for two-dimensional
materials by Rasmussen et al. [105]. We also note that
Rohlfing and Louie [4] point out that a converged Eb for
GaAs would need around 108 k-points; however, much
fewer k-points are sufficient if they are distributed in such
a way that there is a high enough sampling density close
to the zone center.

Appendix B: Quasiparticle corrections to the optical
spectrum of z-GaN

Figure 3 shows the optical spectra of z-GaN. The BSE
calculation deviates from the experimental optical spec-
trum, and one may suspect that this is because we use
LDA+scissors electronic band structures. To test the in-
fluence of the electronic band structure, we perform a
single-shot G0W0 calculation to obtain quasiparticle cor-
rections to the Kohn-Sham band structure. The dynamic
effects on the quasiparticles are estimated by the gener-
alized plasmon-pole model [65]. The calculations in this
section are done with a 123 + 20000 k-point double-grid,
which is the same as that for the optical spectra of z-GaN
shown in Fig. 3b of the main paper.

In Fig. 7a we show the energy levels at the Γ point
for z-GaN, comparing LDA, LDA+scissors and G0W0.
As can be seen, the G0W0 calculation produces an elec-
tronic band gap of 3.47 eV, which is very close to the
experimental value of 3.48 eV. By construction, the



10

FIG. 7. (a) Energy levels at the Γ point for z-GaN, calculated
using LDA, LDA+scissors, and G0W0. (b) Optical spectra for
z-GaN, calculated using BSE with LDA+scissors and G0W0

band structures. The optical spectra using m-BSE, SXX, and
the hybrid functional on top of G0W0 are also shown.

LDA+scissors gap is the same as the experimental one.
However, the higher conduction band levels and lower va-
lence band levels are further shifted within G0W0 com-
pared to LDA+scissors.

As shown in Fig. 7b, the G0W0 band structure leads
to a BSE optical spectrum that is much closer to ex-
periment. The G0W0+m-BSE produces a spectrum very
similar to G0W0+BSE, in agreement with Fig. 3b in the
main paper. It also shows that SXX with G0W0 under-
estimates the spectral strength, which is hardly surpris-
ing since SXX, by construction, tends to overestimate
the screening. As expected, the hybrid functional kernel
with G0W0 improves the results of SXX, resulting in a
spectrum of similar quality as G0W0+m-BSE.

We also calculated the exciton binding energy Eb us-
ing the G0W0 band structure, and found a value of 110
meV, which is only 5 meV larger than Eb by using the
LDA+scissors band structure (105 meV, using the same
double k-point grid). This suggests that using a quasi-
particle band structure makes less of a difference when
looking at excitonic effects close to the band edge.

FIG. 8. The q-dependent dielectric function of LiF calculated
from first principles using RPA as the diagonal of εG,G′(q)
and calculated using the model by Cappellini et al. [13].

Appendix C: Dielectric Function of LiF

Table I compares exciton binding energies Eb calcu-
lated with different approaches (BSE, m-BSE, SXX, h-
SXX, and hybrid). It is found that all methods produce
very similar results, except for the wide-gap insulators
LiF and (to a somewhat lesser extent) Ar.

In the case of LiF, local-field effects play a significant
role in the exciton binding, especially the diagonal ele-
ment of ε−1G,G′(q). We compared a version of the BSE

where only the diagonal elements of the full ε−1G,G′(q) are

included (d-BSE) with m-BSE, which uses the (diagonal)
model dielectric function by Cappellini et al. [13], see Eq.
(8).

The two momentum-dependent dielectric functions are
compared for LiF in Fig. 8. It can be seen that the model
ε(q) lies slightly above the RPA dielectric function, which
explains the fact that Eb calculated with m-BSE (2.17
eV) is found to be lower than that calculated with d-
BSE (2.25 eV), due to the slightly stronger screening.

Appendix D: Computational speedup of simplified
BSE

In the main paper, we point out that the principal
motivation for simplifying the BSE is to speed up the
calculation. To estimate the speedup, we have performed
a comparison of the CPU times between SXX and BSE
for calculating the exciton binding energy of CsPbBr3.
The computational details are the same as those given in
Sec. III B. Here, we vary the k-grid size from 43 to 103.

For larger systems, the main bottleneck of doing
BSE-type calculations lies in the memory requirements.
Therefore, we have carried out our calculations (using
version 4.3.2 of Yambo) with a configuration that is opti-
mized towards using the least amount of memory, instead
of the most CPU efficient one. The same configuration
is used for the SXX calculations. The results are shown
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FIG. 9. Total CPU time for calculating the exciton binding
energy of CsPbBr3 using SXX and BSE.

FIG. 10. Same as Fig. 9, but only the CPU time spent after
calculating the screened Coulomb interaction.

in Figs. 9 and 10.

Figure 9 gives the CPU time for the total calculation,
which includes building the kernel Kx(q, ), Eq. (4), and
solving the Tamm-Dancoff equation, Eq. (2), to ob-
tain Eb. Clearly, SXX becomes vastly more efficient
with increasing grid size (almost two orders of magni-
tude for 103). The acceleration in SXX mainly comes
from not having to calculate the full inverse dielectric
function (εRPA)−1G,G′(q), but instead only doing a single-
point RPA calculation to obtain the RPA dielectric con-
stant ε(0) = 1/(εRPA)−10,0(0).

This is confirmed in Fig. 10, which illustrates the
remaining computational cost after building the kernel
Kx(q). The SXX acceleration now comes from having
δG,G′ in the screened Coulomb interaction. Clearly, this
is only a fraction of the total CPU time shown in Fig. 9.

Therefore, we conclude that the RPA calculation of the
full dielectric function is the most costly part for a doing
a BSE calculation in a complex system like CsPbBr3, and
our simplifications (m-BSE, SXX, and hybrid) take full
advantage of this.
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