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ABSTRACT 

Current crisis informatics research using social media to identify human location and 
behavior has neglected to identify which populations may be prevented from using social media 
during a disaster. Unfortunately, most crisis informatics focuses on either individual postings or 
large-scale analyses of signal changes and is potentially overlooking or misrepresenting 
vulnerable populations. To assess this, we utilize scaled spatial nets and disaggregated 
population and vulnerability index data in order to identify relationships between social media 
signal deviation and vulnerable populations within areas that experienced substantial 
infrastructural damage from Hurricane Harvey. Many studies have identified a strong positive 
correlation between areas experiencing high amounts of hurricane damage and increased Twitter 
activity; however, we find that highly damaged areas with more elderly people, disabled people, 
and people without access to vehicles instead have a significant negative correlation with Twitter 
activity during disaster. In defining this relationship, we show that some vulnerable populations 
have decreased instead of increased social media visibility during disasters. These findings 
identify demographic inequalities in the scalar representation of data from humans-as-sensors in 
disaster. 

BACKGROUND 

As new and varied forms of information become available to researchers during crises, there 
has been a substantial push towards finding ways of applying that information to emergency 
responder priorities on the ground and at higher levels of decision-making. More people than 
ever are living in areas susceptible to catastrophic disasters because of urban sprawl (Allen, 
2006) and increased extreme weather patterns from climate change (Adachi et al., 2017). As 
such, our ability to effectively and accurately utilize all forms of available information will be 
critical to reducing loss of human life and increasing the resilience of our cities. While worsening 
extreme events are becoming more of a certainty than a possibility (Hauer et al., 2016), the 
extent of the impact on humans and society can be mitigated with improved resource planning 
and resource agility through increased real-time information on human location, activity, and 
responsiveness (Roshan et al., 2016). Ultimately, more efficient distribution of our resources will 
depend on what we know about the people in the path of these extreme events. 

One source of data on human behavior and the distribution of need during crises is the data 
generated through human interaction with communication networks. These data sources, such as 
Twitter (Spence et al., 2015), FourSquare (Aubrecht et al., 2017), and cellular data (Jennex, 
2012), are particularly useful as they each can have unique user identifiers, a location attribute, 
and sometimes a topical attribute, such as the text of a Tweet or the type of store someone has 
visited. The incorporation of these data attributes has been useful for tracking individuals’ 
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mobility and the influence of a disaster on that mobility (Wang et al., 2017), the change of 
individuals’ sentiment in response to different disaster impact levels (Wang and Taylor, 2018), 
the need and availability of resources (Huang and Xiao, 2015). Research using spatiotemporal 
aggregation to compare two spatial datasets has shown that bursts of social media behavior and 
disaster-related posts can indicate areas of relatively higher hurricane damage (Kryvasheyeu et 
al., 2016) and the location of flooding (de Albuquerque et al., 2015). 

 
Figure 1. (Left) The plotted redistribution of Houston’s population at 30mx30m scale. 

Green indicates less population density; red indicates higher population density. (Right) A 
hexagonal grid covering the majority Houston, TX. 

As compelling as these findings are, big data research has often been critiqued for 
overlooking human variability and for mistaking big data for complete data (Blumenstock, 2018; 
Gandomi and Haider, 2015). These two fallacies can also be found intertwined in some aspects 
of existing crisis informatics, as one of the critical dilemmas with humans-as-sensors analyses is 
that humans are not reliable sensors. We do not transmit consistent, coordinated, or comparable 
information through public data channels that can be continuously accessed by connected 
emergency responders or data analysts. The rush to utilize information produced by humans-as-
sensors in disasters has neglected to incorporate some of the distinctions of diverse human 
response and capabilities in its analysis. One study found that 50% of deaths from Hurricane 
Sandy occurred in an area with a complete lack of Twitter activity (Shelton et al., 2014). Another 
study focused on Hurricane Harvey found that some areas’ decreases in Twitter activity during a 
hurricane correlate as strongly with damage as others areas’ increases (Samuels et al., 2018). We 
do not currently understand what factors could contribute to some populations being represented 
by social media in an emergency while others simply disappear. 

In examining why some people stop Tweeting during disaster, it is critical to incorporate 
human variability into the analysis to shed light on how variations in populations is associated 
with Tweet deviations. We chose to incorporate demographic data as a proxy for human 
variability. Previous research has shown that the people most endangered by disasters, such as 
lower socioeconomic groups, the elderly, and the disabled, are those with the least robust 
resources (Bian and Wilmot, 2017). Lower socioeconomic groups are more likely to lose internet 
access during power loss, as internet usage by people in a lower income bracket is often 
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facilitated by free Wi-Fi hotspots located at places of employment or cafes (Khan et al., 2016). 
During a disaster, those hotspots are no longer available due to closures or travel impedances. 

 
Figure 2. Correlation matrix showing the Spearman rank correlation coefficient between 
the estimated vulnerable populations and the daily social media signal deviation during 

Hurricane Harvey where p<0.05.  Blank squares indicate a p>0.05. 

Increases in Twitter activity are more common than decreases in Twitter activity in a 
disaster; however, those decreases do not appear to be random, and studies that assume the 
decreases to be negligible may be overlooking vulnerable populations. Understanding how social 
factors influence individuals’ interactions with sensors and technologies in a disaster is critical to 
understanding which endangered populations can be identified through social media analyses. As 
our cities become smarter and most people become more connected to technology, the 
technological data signal from vulnerable populations, especially in disasters, is necessary for 
understanding what populations could be left behind in our future cities. Our research objective 
is to identify the demographic and infrastructural vulnerability factors related to discrepancies in 
the humans-as-sensors signal response. We examine this in the specific context of Houston, 
Texas during and after Hurricane Harvey. Through the identification of demographic factors that 
correlate with social media silence, we can start to identify which kinds of people crisis 
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informatics analyses tend to exclude. 

METHODS 

Social Media Data Acquisition: The geolocated Twitter data for the greater metropolitan 
area of Houston for three weeks prior to and one week following Hurricane Harvey's landfall 
were streamed through the Twitter API (Wang and Taylor, 2015). These Tweets were aggregated 
by day and plotted in ArcGIS. Tweets from the days prior to the recognition of Harvey's 
formation in the Atlantic were designated as "steady state" (August 3rd to August 17th), and 
Tweets from one day prior to landfall and seven days following landfall were designated as 
"perturbed state" (August 24th to September 1st). 

Distributing Demographic Data: Vulnerability indices are based on foundational social 
research addressing the socioeconomic, mobility, disability, and resource-availability factors that 
cause discrepancies in the abilities of people to rebuild after disaster. Most of these vulnerability 
indexes are defined at the county level and use census data and other social indicator data, such 
as school performance and community connectedness. However, recent research has shown that 
hurricane damage can vary at small spatial scales (Wurman and Kosiba, 2018), and we theorized 
that discrepancies between social media signal behavior responses would occur at the sub-county 
level. Thus, in order to understand the societal response to hurricane damage, we needed to 
reduce the scale at which we could analyze human demographic data from the census tract and 
Zip Code Tabulation Area (ZCTA) scales. The ZCTA shapefiles that were used to match the 
demographic census data were downloaded from the Harris County GIS data portal. First, we 
redistributed the population within each census tract to a more granular scale, and then we 
assigned the attributes of a social vulnerability index to the redistributed population points. 

The geographic information systems field has historically utilized National Land Cover 
Database (NLCD) data to increase the granularity of the census data with substantial accuracy 
(Reibel and Agrawal, 2007). The NLCD contains a raster file with 30 meters (m) by 30 m cells 
that have been classified, through satellite imagery, as one of 16 classes. The classification 
includes four classes of developed land: open space, low intensity, medium intensity, and high 
intensity. We extracted the raster cells from the 2011 dataset that were classified as developed 
and were located within the greater metropolitan Houston Area. Using ArcGIS' Raster to Point 
function, we then transformed each of the raster cells into points located at the center of each cell 
and spatially joined these points by count into the census tracts for Houston. Using the counts of 
each type of NLCD class and the population record for each census tract, we used multiple linear 
regression to determine the contributing coefficients of each land type with respect to population. 
The results have an adjusted R-squared of 0.8317 and a model p-value of <0.001. 

For the vulnerable population assignment, we used the Social Vulnerability Index (SVI) 
developed at the Centers for Disease Control (CDC) (Flanagan et al., 2011). This data is 
available at the census tract level as well as the county level, and the individual demographic 
factors utilized in the CDC’s analysis are available in their component parts. These factors, and 
the thorough documentation of the incorporation of those components, made the CDC’s SVI 
ideal for our analysis. We multiplied the percentages of the population ascribing to each of the 
salient factors identified by the SVI by the identified population of the 30mx30m representative 
points by that percentage, accounting for mean error of the assignations. When we spatially 
aggregated the population points, we also aggregated the ZCTA-specific demographic data into 
the aggregation polygons. Using this method, we developed an estimate for the number of people 
or buildings ascribing to the following 14 categories within each area: people without vehicle 
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access, people with limited English skills, minorities, single parents, disabled people, people 
over 65, people under 17, people without a high school diploma, unemployed people, people 
below the poverty line, crowded homes, mobile homes, and homes within multi-unit complexes. 

Scalar Aggregation Nets: We designed six spatial nets to catch the population data and the 
Twitter stream for each day. The nets are composed of a series of equal-area, hexagonal 
polygons that cover the greater Houston area. Using ZCTAs can exacerbate the modifiable areal 
unit problem due to their varying sizes and shapes (Jelinski and Wu, 1996). The census tracts 
within Houston range in size from 0.16 square kilometers (km2) to 677.20 km2. For this analysis, 
we developed nets that could be deployed across a large area, and could be scaled according to 
the intended research design. Hexagons are better suited for tiling large geospatial areas because 
of their scalability and the reduction in sampling bias from edge effects (Carr et al., 1992). The 
six hexagonal nets consist of hexagons with square areas of 1 km2, 2 km2, 5 km2, 10 km2, 15 
km2, and 20 km2. A comparison of the redistributed census data and one of the hexagonal nets is 
presented in Figure 1. 

Population and Social Signal Analysis: We spatially joined the daily Tweet sets via count 
and the redistributed population data with the socially vulnerable population attributes via sum to 
each of the hexagonal nets. In order to be able to focus on areas experiencing significant amounts 
of infrastructural hurricane damage, we spatially joined the Hurricane Harvey Federal 
Emergency Management Agency (FEMA) Building Level damage assessments to our hexagonal 
nets. This dataset contains a list of building locations and a damage rating from 1 (minor 
damage) to 4 (destroyed). Using the previously described sets of steady and perturbed state data, 
we standardized the Tweet counts of each day of the perturbed state using the mean and standard 
deviation of the steady state. From these datasets, we extracted the polygons that had nonzero 
Twitter activity during the steady state period and the areas that contained at least one FEMA 
Building Level damage assessment of “4”, or “destroyed”. From this data pool, we generated a 
series of rank correlation matrices. To generate the matrices, we calculated Spearman’s rho and 
incorporated a threshold p-value of 0.05 to identify any statistically significant relationships 
between the variation in vulnerable populations and the variation in signal response at increasing 
scales to catastrophic hurricane damage. 

RESULTS 

The correlation between Twitter activity signal changes and demographic vulnerability was 
most pronounced at the 5 km2, so the matrix for the 5 km2 hexagonal grid is presented as Figure 
2. As could be expected, the presence of one vulnerability factor in an area has a strong positive 
relationship with the presence of another. Equally, the signal behavior of an area following the 
day of maximal infrastructure damage (August 27th, two days following landfall), correlates with 
the other days’ behavior, but not the days prior to the 27th. Within the correlations between 
deviation and the vulnerability factors, we see some clear distinctions. Primarily, we see that the 
significant relationships are all negative, indicating a relationship between vulnerable 
populations’ decreasing microposts during a disaster. Additionally, the correlations between 
vulnerability indicators (excepting populations without vehicle access) and activity deviations 
are only significant following the day of maximal rainfall. The factors with the most consistent 
significant correlations with activity decreases are: lacking vehicle access, being disabled, and 
being over the age of 65. The strongest negative correlations (ρ≥-0.28) appear 3-5 days following 
the day of maximal rainfall within populations that are over 65, lack vehicle access, are in 
crowded homes, and/or are below the poverty line. With regard to differences between scalar 
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aggregations, there was an identifiable increase in the number of significant decreasing 
correlations with vulnerable populations and social media signal deviation with increasing areal 
size. The correlations also tended to strengthen with increasing scale up to the 15km2 nets. 

DISCUSSION 

These results show that some demographic factors correspond with the direction of social 
signal response in the face of disaster. The clearest links to decreased signal are with the elderly, 
the disabled, and those who are unable to easily access transportation away from the disaster 
area. Although many would assume the elderly in general do not contribute to the social signal 
data stream and thus do not produce a negative signal deviation, some of these populations—or 
people living less than a mile in radius from those populations, consistently and throughout 
Houston—were Tweeting prior to the hurricane and then stopped. For those without access to a 
vehicle and for the disabled, evacuating in the face of any oncoming disaster is difficult 
(Flanagan et al., 2011). This is doubly true for Harvey, for which an evacuation notice for 
Houston was not sent until almost immediately prior to the storm, and then only for a few 
counties (Houston-Galveston Area Council, 2017). Data shadows (areas in which no data is 
available) do not indicate whether the lack of signal is due to evacuation or due to a human 
behavior change; however, for more immobile populations, the data shadows are more likely due 
to human behavior change in response to damaged infrastructure or nonfunctioning technology. 

The increase in correlation strength with increasing time (especially more than four days 
beyond the day of maximum flooding) could indicate either extended evacuation by vulnerable 
populations (unlikely due to the reasons stated above) or ongoing, substantially damaged energy 
or housing infrastructure. Both potential reasons indicate a lack of urban resilience surrounding 
the vulnerable populations, further indicating a need to adjust existing social media tool analyses. 

This study’s limitations are primarily centered on the distribution of vulnerable populations 
to very small, sub-ZCTA scales. Based on our regression analysis, the population distribution 
using NLCD data was mostly accurate; however, the social vulnerability factors were distributed 
as a percentage of the population and not weighted by other factors. Social media itself is 
notoriously noisy and less than reliable, and recent changes in metadata transitions from 
Instagram to Twitter have made that worse; however, by aggregating the data and focusing on 
both large-scale trends and signal deviation, we hope to have more thoroughly isolated humans 
and behaviors affected by the storm. Additionally, the NLCD distribution is limited to nighttime 
and not daytime accuracy. Based on the Twitter content we reviewed, many businesses were 
closed and many people stayed in their homes regardless. We are also unable to isolate the 
causes, social or technical, of the behavioral differences in vulnerable populations. Finally, the 
vulnerability factors were isolated in our covariance matrix; clearly, many of those factors are 
themselves correlated, and more accurate relationships would be determined through regression 
analyses. We will be focused on modeling this behavior and the root causes for distinctions 
between scalar aggregations in our future work. 

CONCLUSIONS 

To date, research has not investigated what socioeconomic factors might influence the 
increase or decrease of signal data from humans-as-sensors in a disaster. Ultimately, tools 
seeking to use social media data (and any form of data from humans-as-sensors that may 
develop) need also to understand what populations do and do not continue to contribute to 
certain technological data streams during a disaster. We developed and applied a methodology 
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for identifying demographic and infrastructural vulnerability factors related to neighborhood-
scale discrepancies in humans-as-sensors behavioral response. We found that, in Houston, TX 
during Hurricane Harvey, there was a significant decrease in social media signals from 
vulnerable populations such as the elderly, disabled, and those who lack access to a vehicle. The 
results of our research indicate that humans-as-sensors data are not sufficient for identifying 
crises specific to these populations. As urban analytics and decision-making begin to utilize more 
big data produced by the interactions between people and technology, we need to incorporate the 
discrepancies between data produced by general and vulnerable populations such that the people 
in the most danger are not the ones with the least visibility. 
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