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Synopsis Mosaic evolution refers to the pattern whereby different organismal traits exhibit differential rates of evolution

typically due to reduced levels of trait covariation through deep time (i.e., modularity). These differences in rates can be

attributed to variation in responses to selective pressures between individual traits. Differential responses to selective

pressures also have the potential to facilitate functional specialization, allowing certain traits to track environmental

stimuli more closely than others. The teleost skull is a multifunctional structure comprising a complex network of

bones and thus an excellent system for which to study mosaic evolution. Here we construct an ultrametric phylogeny

for a clade of Neotropical electric fishes (Apteronotidae: Gymnotiformes) and use three-dimensional geometric

morphometrics to investigate patterns of mosaic evolution in the skull and jaws. We find strong support for a

developmental, three-module hypothesis that consists of the face, braincase, and mandible, and we find that the

mandible has evolved four times faster than its neighboring modules. We hypothesize that the functional specializa-

tion of the mandible in this group of fishes has allowed it to outpace the face and braincase and evolve in a more

decoupled manner. We also hypothesize that this pattern of mosaicism may be widespread across other clades of

teleost fishes.

Introduction

Mosaic evolution refers to the pattern where differ-

ent traits of an organism experience different rates of

evolution (Clarke and Middleton 2008; Felice and

Goswami 2017). Here, organismal traits may elicit

differential responses to selection or mutational pres-

sures, unless constrained by conditioning on other

traits (i.e., pleiotropy, integration) (Stebbins 1983;

Cheverud 1996). Mosaic patterns of evolution can

arise when semi-independent evolutionary modules

(sensu Wagner 1996; Wagner and Altenberg 1996;

Winther 2001), encompassing both functional

and developmental components (Brandon 2005;

Eble et al. 2005), elicit differential responses to se-

lection, as a result of a low degree of covariation

among modules and a high degree of covariation

within modules (Felice and Goswami 2017).

The vertebrate skull is a multifunctional structure

that has become a popular system for the study of

modularity as several clades have evolved a diverse

array of modular configurations (Goswami 2007;

Drake and Klingenberg 2010; Goswami and Polly

2010; Sanger et al. 2012; Piras et al. 2014; Vidal-

Garc�ıa and Keogh 2017). Teleost fishes in particular

have evolved high kinetic skulls with protrusible jaws

for use in suction feeding and have subsequently
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adapted their skulls to exploit a wide variety of tro-

phic resources (Westneat 2004, 2005; Price et al.

2011). Trophic ecology is suspected to be a strong

driver of morphological diversification in the skull of

teleost fishes, as shifts to different feeding behaviors

and prey items have been shown to exert differential

selection pressures on feeding morphologies and per-

formance (Wainwright et al. 1991, 2004; Westneat

2005; Helfman et al. 2009; Collar et al. 2014;

Kolmann et al. 2018). Within the teleost skull, the

mandible has become a widely used model for eco-

morphological studies (Motta 1988; Wainwright

et al. 1991; Liem 1993; Westneat 2005; Hill et al.

2018). The mandible has also been shown to exhibit

high levels of developmental plasticity to environ-

mental stimuli in members of several phylogeneti-

cally disparate teleosts clades, including cyprinids

(Neuhauss et al. 1996; Trainor et al. 2003); salmo-

nids (Küttner et al. 2014); centrarchids (Hegrenes

2001), and cichlids (Wimberger 1992; Chapman

et al. 2008; Parsons et al. 2014; Hu and Albertson

2017).

Within teleost fishes, Neotropical electric fishes

(Gymnotiformes: Teleostei) have become a popular

system for the study of skull shape evolution and

specifically, integration and modularity (Evans

et al. 2017b, 2017c, 2018a; Keeffe et al. 2019).

Gymnotiform fishes are a clade of elongate,

weakly-electric fishes distributed in the freshwaters

of Central and South America. This clade of fishes

is particularly interesting for studies of skull shape

evolution because they have evolved a remarkable

diversity of skull shapes ranging from highly elongate

faces (e.g., Sternarchorhynchus), to highly foreshort-

ened faces (e.g., Hypopygus) with a wide range of

intermediate phenotypes (Albert 2001; Evans et al.

2017b, 2018b). Previous studies looking at the neu-

rocranium in two dimensions recovered strong pat-

terns of evolutionary integration between the face

and braincase across the entire clade and during

the development of dolichocephalic (long-snouted)

species (Evans et al. 2017b, 2017c). These patterns

of strong evolutionary integration are thought to be

driven by developmental mechanisms underlying the

formation of the face. While informative, the previ-

ous studies were limited because they only examined

two modules in the neurocranium, excluding the

lower jaw (mandible) and associated elements and

only examined these patterns of covariation in two

dimensions, which may have excluded an important

axis of shape variation in the third dimension (Buser

et al. 2017). The exclusion of the lower jaw in pre-

vious literature limits insight into patterns of evolu-

tionary integration across the entirety of

gymnotiform skull. Unlike the neurocranium, the

mandible is developmentally derived from a distinct

neural crest cell (NCC) population, which eventually

forms the Meckel’s cartilage (Mabee and Trendler

1996). Within Gymnotiformes, the family

Apteronotidae exhibit the highest degree of

craniofacial shape diversity with phenotypes

ranging from highly elongate tube-snouts (e.g.,

Sternarchorhynchus) to foreshortened faces (e.g.,

Adontosternarchus) with each phenotype accompa-

nied by a unique trophic ecology that includes

planktivory (e.g., Adontosternarchus) and lepidoph-

agy (a specialized form of piscivory that consists of

feeding exclusively on fish scales, e.g., Sternarchella)

(Evans et al. 2017a).

Here, we examine patterns of evolutionary inte-

gration, modularity, and disparity in three dimen-

sions across the skull of apteronotid fishes using

geometric morphometrics and evaluate hypotheses

of modularity across the teleost skull. We also quan-

tify rates of shape evolution between modules to test

for the presence of mosaic evolution across the

apteronotid skull. We predict that the mandible

will exhibit the highest degree of evolutionary mod-

ularity relative to the other hypothesized modules

(face, orbit, and basicranium), due to its develop-

mental semi-autonomy; as it is derived from a

unique NCC population relative to aforementioned

elements of the neurocranium; which are known to

exhibit strong patterns of covariation early in devel-

opment (Mabee and Trendler 1996; Marcucio et al.

2005; Parsons et al. 2018). We further predict that

the mandible will exhibit the fastest rates of shape

evolution as a result of its increased evolutionary

modularity.

Materials and methods

Morphological sampling

Craniofacial shape was characterized across 49 spe-

cies of apteronotid fishes (52% taxon sampling) rep-

resenting 13 of 15 known genera (Supplementary

Table S1). An average of 3.0 specimens per species

were micro-CT scanned using a Bruker SkyScan 1172

at the University of Washington, in conjunction with

the #ScanAllFishes project. Sampling was restricted

to adult specimens (as evidenced by body size and

degree of sphenoid ossification) to avoid potential

biases introduced by ontogenetic shape differences

(Evans et al. 2017b). Micro-CT scans were then

used to construct surface models (.stl) of skulls for

each specimen and imported into Stratovan

Checkpoint � for digitizing. All three-dimensional

models are freely available for download at Open
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Science Framework (osf.io/q4aw5). Specimens were

digitized in 3-dimensional with 25 landmarks placed

on the left side of each specimen (Fig. 1) following

Evans et al. (2018a) (Table 1).

Since one of the main questions of this study was

to discern whether rates of shape evolution are dif-

ferent among modules in the head, we had to per-

form a single Procrustes analysis across all regions so

that we would be able to compare evolutionary rates

among them. However, this would entail using land-

marks of both the skull and mandible, which would

not only include their morphological variation, but

also variation in the relative position of one structure

to the other due to their articulated nature. We

found variation in the relative position between the

skull and jaws across all specimens (Supplementary

Table S2), which would affect shape estimates as well

as the quantification of integration between different

cranial modules. In order to correct for this rota-

tional variation across specimens, we performed a

rigid rotation of all the mandible landmark subsets

using the function simple.rotation in the

ShapeRotator R tool (Vidal-Garc�ıa et al. 2018), in

order to standardize the position of the skull and

mandible relative to the jaw joint in the three-

dimensional space across all specimens. This tool

removes the effect of random translations and rota-

tions across specimens, so that all regions are placed

in homologous relative positions, allowing a single

Generalized Procrustes Superimposition in a multi-

modular and articulated structure (Vidal-Garc�ıa
et al. 2018).

Phylogenetic reconstruction

The package phylotaR (Bennett et al. 2018) was used

to retrieve DNA sequences from GenBank release

230 (February 15 2019). This package is an updated

version of the program PhyLoTa (Sanderson et al.

2008), which includes a pipeline that uses the Basic

Local Alignment Search Tool—BLAST (Altschul

et al. 1990) to identify and retrieve orthologous

DNA sequences clusters. The pipeline consisted of

four stages: taxise, download, cluster, and cluster2.

The taxise stage identified taxonomic ranks of the

clade Gymnotiformes (ID ¼ NCBI:txid8002) avail-

able in the NCBI taxonomy database (Federhen

2012). The download stage hierarchically retrieved

sequences from across all recognized taxonomic

ranks. The cluster stage generated clusters from the

downloaded sequences down to the taxonomic

ranks. The cluster2 stage joined clusters identified

within separate ranks to identify clusters at higher

taxonomic ranks. Each cluster was exported as

sequences in FASTA format and, then, aligned using

MAFFT under default parameters (Katoh et al.

2005).

TrimAl: automated alignment trimming

The program trimAl (Capella-Guti�errez et al. 2009)

was used to automatically trim aligned sequences.

This program adjusts models to optimize signal-to-

noise ratios within alignments. It incorporates three

basic algorithms for automated trimming align-

ments: gappyout, strict, and strictplus; each one of

them applies a threshold of acceptable missing data

(or gaps) and similarity scores (e.g., residue similar-

ity scores—see the algorithm in Thompson et al.

2001). The option-automated was used in the pro-

gram trimAl. This option implements a heuristic

method using a decision tree approach to choose

between either the algorithms gappyout or strict/

strictplus depending on the features of the align-

ments. This option has been optimized for trimming

Fig. 1 CT scans of Apteronotus bonapartii in lateral (A), dorsal

(B), and ventral (C) views showing 25 three-dimensional land-

marks used for the geometric morphometric analysis of skull

shape in apteronotid fishes.
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alignments to be analyzed by maximum likelihood

inferences (see manual at http://trimal.cgenomics.

org/trimal).

PartitionFinder2: partitioning schemes and models

of DNA evolution

The program PartitionFinder2 (Lanfear et al. 2016)

was used to estimate simultaneously the optimal par-

titioning scheme and models of DNA evolution for

the concatenated matrix. The model estimates were

performed on a tree inferred by maximum parsi-

mony and assuming linked branch lengths. When

branch lengths are set to linked, the relative branch

lengths are determined by the start tree, and each

model is afforded a single rate multiplier which

can stretch or shrink all branch lengths. Models of

DNA evolution were restricted to either GTR or

GTRþC. For large alignments, it is not practical

to compute all possible models in PartitionFinder2.

The relaxed hierarchical clustering algorithm (rclus-

terf) was used to compute and compare likelihoods

across partitioning schemes. The best partitioning

scheme was selected using the Akaike Information

Criterion (AIC).

BEAST 2

The program BEAST 2 (Bouckaert et al. 2014) was

used to estimate posterior trees of Gymnotiformes.

Priors for substitution rates were taken from the

output of PartitionFinder2. Priors for tree/branching

were set to birth–death process. Priors for clock rates

were set to an uncorrelated relaxed clock with log-

normal distributions. Taxa with missing DNA

sequences were randomly assigned within respective

genera and/or families. BEAST ran two independent

Markov Chain of Monte Carlo (MCMC) of 50

Table 1 Landmark descriptions and module hypotheses for the three-dimensional geometric morphometric analysis of skull shape

Landmark

No. Landmark description

Skull (no

modules)

Skull and

jaws

Face,

braincase,

and mandible

Ethmoid, orbit,

basicranium,

mandible

1 Mesethmoid-anterior-most tip 1 1 1 1

2 Mesethmoid-ventral ethmoid-mesethmoid ventral margin 1 1 1 1

3 Ventral ethmoid-ventral ethmoid-parasphenoid margin 1 1 1 1

4 Ventral ethmoid-ventral ethmoid-mesethmoid dorsal margin 1 1 1 1

5 Frontal-mesethmoid-frontal margin 1 1 1 1

6 Orbitosphenoid-anterior-most orbitosphenoid-frontal margin 1 1 1 2

7 Orbitosphenoid-anterior-most orbitosphenoid-parasphenoid margin 1 1 1 2

8 Pterosphenoid-orbitosphenoid-pterosphenoid-frontal margin 1 1 1 2

9 Pterosphenoid-orbitosphenoid-pterosphenoid ventral margin 1 1 1 2

10 Parasphenoid-posterior-most orbitosphenoid-parasphenoid margin 1 1 1 2

11 Parasphenoid-pterosphenoid-parasphenoid margin 1 1 2 2

12 Parietal-lateral-most parietal-frontal suture 1 1 2 3

13 Prootic–prootic foramen 1 1 2 3

14 Supraoccipital-posterior-most projection of supraoccipital crest 1 1 2 3

15 Supraoccipital-exoccipital-supraoccipital margin 1 1 2 3

16 Basioccipital-posterior-ventral-most point of basioccipital 1 1 2 3

17 Basioccipital-posterior-most-parasphenoid-basiocciptal margin 1 1 2 3

18 Frontal-anterior-most segment of anterior fontanel 1 1 1 2

19 Frontal-posterior-most segment of anterior fontanel 1 1 1 2

20 Frontal-anterior-most segment of posterior fontanel 1 1 2 2

21 Parietal-posterior-most segment of anterior fontanel 1 1 2 3

22 Dentary-anterior-most tooth 1 2 3 4

23 Dentary-dorsal-most-dentary-angular-margin 1 2 3 4

24 Angular-center of jaw joint 1 2 3 4

25 Retroarticular-posterior-ventral-most point on retroarticular 1 2 3 4

Module assignments denoted by Numbers 1–4 for different hypotheses.
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million generations each, sampling a tree topology

and log parameters at every 5000 generations. The

diagnosis of MCMC runs and posterior probabilities

were evaluated by inspections of the effective sample

sizes in the program Tracer (Rambaut and

Drummond 2003). Burn-in procedure (25%) was

defined after the inspection of the posteriors of the

combined MCMC chains. Posterior trees were sum-

marized in a maximum clade credibility (MCC) to-

pology with node heights represented by median

heights (Fig. 2). Besides the MCC topology, 100 ran-

dom posterior trees were selected for conducting

analyses of morphological evolution.

Integration and modularity

We fit four different models of craniofacial modu-

larity to our dataset in order to identify the best

modular partition using a phylogenetic adaptation

of a maximum likelihood approach with the R pack-

age EMMLi (phyloEMMLi) (Goswami and Finarelli

2016) (Table 1; Supplementary Fig. S1). Our first

model assumed no modularity across the skull. The

second model consisted of two biomechanical func-

tional modules (neurocranium and mandible) fol-

lowing the delimitations of Westneat (2005). Our

third model consisted of three developmental mod-

ules (face, braincase, and mandible) following

Langille and Hall (1988) and Evans et al. (2017b,

2017c). Our fourth model consisted of four modules

(ethmoid, optic, basicranium, and mandible) based

on the sensory capsules that serve as developmental

precursors that form different regions of the neuro-

cranium (excluding the otic region) and the devel-

opmentally distinct mandible (Helfman et al. 2009).

We also quantified the degree of phylogenetic in-

tegration for the four different modular partitions

with the covariance ratio (CR) coefficient (Adams

2016) using the function phylo.modularity in geo-

morph (Adams 2016). We estimated the degree of

modularity (CR), the bootstrapped 95% confidence

intervals of the CR, and the P-values across the pos-

terior distribution of 101 trees, in order to take into

account phylogenetic uncertainty.

We then compared the phylogenetic mean rates of

shape evolution among modules from the best sup-

ported modular partition hypothesis across all 101

trees.

Disparity through time

After recovering strong support for a three module

hypothesis consisting of the face, braincase, and

mandible regions, we used a disparity through time

(DTT) analysis to examine patterns of shape

evolution across the three modules separately. DTT

analyses estimate the relative trait (in this case shape)

disparity throughout time and compares the empir-

ical data its pattern to an expected pattern under

Brownian motion (BM). Recently, DTT approaches

have been marred by issues related to multiple test-

ing and high false-positive rates. In our analysis, we

utilized a recent implementation of the DTT analysis

which employs a rank envelope test that orders dis-

parity curves based on their most extreme disparity

values (for more information see Murrell 2018). All

DTT analyses were performed using the r-package

geiger (Harmon et al. 2008).

We ran separate DTT analyses for each of the

three modules. Each module was subjected to a gen-

eralized Procrustes superimposition. DTT analyses

Fig. 2 MCC tree of 49 apteronotid species.
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were then performed on the Procrustes coordinates

of each module, each analysis consisted of 2500 sim-

ulations to construct the null BM disparity model.

The null hypothesis (BM) was rejected whenever the

DTT curve of a module was ranked in the 5% most

extreme curves from the null model.

Results

Skull shape evolution in Apteronotidae

Apteronotid fishes exhibit a diverse array of skull

shapes (Fig. 3). The primary axis of variation

(PC1) explains 70.65% of the total shape variance

and corresponds to shape differences in the neuro-

cranium and dentary (anterior portion of the man-

dible). Along this axis, species range from exhibiting

highly foreshortened neurocrania (truncated frontal

and ethmoid regions) and dentaries (e.g.,

Adontosternarchus balaenops) to elongate neurocrania

and dentaries, typical of the tube snouted species

(e.g., Sternarchorhynchus kokraimoro). The second

principal component axis (PC2) explains 11.10% of

total shape variation and corresponds primarily to

shape differences in the posterior portion of the

mandible encompassing the jaw joint and retroartic-

ular. Along this axis, species range from exhibiting

truncated posterior regions of the mandible (e.g.,

Orthosternarchus and Adontosternarchus) to more

elongate (e.g., Apteronotus eschmeyeri).

Evolutionary modularity

Analysis of evolutionary modularity using EMMLi

indicates strong model support for a developmental

three-module hypothesis encompassing the face,

braincase, and mandible regions with different

within and between-module q values (Table 2). A

significant degree of modularity is also recovered us-

ing the CR with a median CR of 0.86 across the 101

randomly sampled phylogenies. Using the EMMLi

analysis, we find that the mandible exhibits the high-

est degree of within-module correlation (q¼ 0.79)

followed by the face (q¼ 0.66) and the braincase

(q¼ 0.46). Additionally, we find that the face and

mandible exhibit the highest degree of between-

module correlation (q¼ 0.62) relative to the face

and braincase (q¼ 0.45), and the braincase and

mandible (q¼ 0.42).

In addition to differing levels of shape correlation

among modules, we also recover significantly differ-

ent rates of shape evolution between modules using

the compare.multi.evol.rates analysis (Table 3 and

Fig. 4). We find that the mandible evolves nearly

four times (r2 ratio ¼ 3.70) faster, on average,

than either the face (P< 0.001) or braincase

(P< 0.001) modules. Additionally, we find that the

face and braincase evolve at indistinguishable

(P¼ 0.243) rates.

Disparity through time

DTT analyses indicate differences in patterns of

shape evolution between modules (Fig. 5). We find

that both the face and mandible closely track a BM

model of shape evolution (face: P¼ 0.348,

MDI ¼ 0.302) (mandible: P¼ 0.318, MDI ¼ 0.254),

while the braincase differs significantly (P ¼ <0.001,

MDI ¼ 0) from a BM model and has maintained a

fairly constant level of sub-clade disparity for much of

its evolutionary history.

Discussion

Here we evaluated morphological disparity, modu-

larity, and evolutionary integration in the skull and

mandible of apteronotid fishes, using a three-

dimensional geometric morphometric approach.

We focused on the tempo and mode of morpholog-

ical evolution in this clade by asking two main ques-

tions: (1) are patterns of shape evolution highly

integrated across the head or do they instead follow

a modular pattern? And (2) are there differential

rates of shape evolution between modules in the

skull (i.e., mosaic evolution)? We were able to iden-

tify a strongly supported tri-modular model consist-

ing of the face, the braincase, and the mandible. We

found that the mandible has evolved four times

faster than the face and braincase. We hypothesize

that the functional specialization and the develop-

mental autonomy of the mandible in this group of

fishes have resulted in higher rates of shape

Fig. 3 Phylomorphospace analysis of skull shape for 49 aptero-

notid species showing the first two principal component axes.

Insets depict extreme skull shapes for each axis. (1)

Adontosternarchus balaenops, (2) Apteronotus eschmeyeri, and (3)

Sternarchorhynchus kokraimoro.
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evolution and a higher degree of modularity over

evolutionary time. We discuss each of these topics

in turn, and suggest that this pattern of morpholog-

ical mosaicism is likely to be common throughout

other clades of teleost fishes.

Mosaic evolution in the electric fish skull

Mosaic evolution occurs when different traits of an

organism undergo differential rates of evolution.

This is typically considered to be a product of the

modularization of organismal traits, which subse-

quently allows them to elicit differential responses

to selective pressures. Here, we find that the mandi-

ble evolves nearly four times faster than its neigh-

boring modules; the face and braincase. Similarly,

the mandible exhibits the highest degree of within

module correlation relative to the other modules.

These findings suggest that the mandible may exhibit

a higher degree of autonomy than the face or brain-

case, and that this autonomy may have subsequently

allowed the mandible to exhibit substantially faster

rates of shape evolution. A potential explanation for

this autonomy may be found in the developmental

prominences that form the upper and lower jaws.

During development in bony fishes, the elements

of the neurocranium are derived from a mixture of

cranial NCCs, mesoderm, and frontonasal ectoderm,

while the mandible is derived from a unique popu-

lation of cranial NCCs located in the first pharyngeal

arch which later form the Meckel’s cartilage (Langille

and Hall 1988; Benjamin 1990). This cartilage even-

tually ossifies and becomes part of the lower jaw.

The timing of the ossification between the neurocra-

nium and the mandible also differs substantially with

the Meckel’s cartilage, typically appearing and ossi-

fying earlier than many of the skeletal elements of

the neurocranium (Mabee and Trendler 1996).

We hypothesize that the rates of shape evolution

in the mandible are closely tracking the evolution of

trophic ecology in Apteronotidae. Within

Apteronotidae, species have evolved a broad diversity

or trophic ecologies including planktivory (e.g.,

Adontosternarchus), lepidophagy (scale-eating; e.g.,

Sternarchella raptor), and a highly specialized form

of invertivory involving grasp-suction feeding in sev-

eral independently evolved tube-snouted species

(e.g., Orthosternarchus and Sternarchorhynchus). The

modularity of the mandible may allow it to exhibit a

stronger response to trophic selective pressures as it

is less constrained by conditioning (integration) on

other regions of the skull. Interestingly, we find that

Table 2 Results for the evaluation of modularity hypotheses (using EMMLI) for 49 apteronotid species

Model K AICc DAICc
Model

likelihood

Posterior

probability

No modules 2 1088.88 333.56 3.70E�73 3.63E�73

Skull and mandible—same within-module p þ same

between-module p

3 1090.58 335.27 1.58E�73 1.55E�73

Skull and mandible—seperate within-module p þ
same between-module p

4 1029.28 273.97 3.23E�60 3.17E�60

Face, braincase jaws—same within-module p þ same

between-module p

3 991.88 236.57 4.27E�52 4.19E�52

Face, braincase, jaws—seperate within-module-p þ
same between-module p

5 862.65 107.34 4.92E�24 4.84E�24

Face, braincase jaws—one within-module p þ seper-

ate between-module ps

5 884.49 129.17 8.92E�29 8.77E�29

Face, braincase, jaws—seperate within-module-ps 1
seperate between-module ps

7 755.31 0.00 1 0.98

Ethmoid, orbit, basicranium, mandible—same within

module p þ same between module p

3 1064.16 308.85 8.60E�68 8.45E�68

Ethmoid, orbit, basicranium, mandible—seperate

within module p þ same between module p

6 926.95 171.63 5.38E�38 5.29E�38

Ethmoid, orbit, basicranium, mandible—same within

module p þ seperate between module p

8 900.41 145.10 3.10E�32 3.05E�32

Ethmoid, orbit, basicranium, mandible—seperate

within module p þ seperate between module p

11 763.41 8.10 0.02 0.02

Models correspond to modules in Supplementary Table S2, while additionally testing within and between module correlations (q). Bold text

indicates optimal model.
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the face and mandible exhibit the highest degree of

between-module covariation, however, the mandible

still evolved significantly faster than the face, while

the face and braincase exhibited indistinguishable

rates of shape evolution. The tight link between the

mandible and the face is not surprising, given that

the face typically houses the tooth-bearing premaxil-

lary bones which function together with the mandi-

ble during prey capture and processing (i.e.,

functional integration). It is therefore possible that

the face and mandible elicit similar directional

responses to selective pressures, but that the face is

constrained by its close proximity to the braincase

and thus exhibits a lower degree of shape diversity

across evolutionary time.

The highly conserved braincase

Under a neutral model of trait evolution, a strict

correlation should generally exist between evolution-

ary rate and trait variance (Felsenstein 1985; Ricklefs

2006).

Fig. 4 Mosaic evolution in the apteronotid skull with violin plots depicting relative rates of shape evolution between modules across

101 phylogenies randomly sampled from a posterior distribution. Diamonds indicate mean rate values. Asterisks indicate statistical

significance (P¼ 0.05). Inset depicts representative craniofacial regions.

Table 3 Results of the evolutionary modularity analysis showing

rates of shape evolution (6standard error) averaged across 101

phylogenies sampled from a posterior distribution

Module Rate (avg) Std error

Face 0.0097 0.0010

Braincase 0.0073 0.0008

Mandible 0.0249 0.0014
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In other words, the relationship between disparity

and rate should closely track a BM model of trait

evolution (Felice et al. 2018). This is because under a

BM model, trait variance is proportional to evolu-

tionary rate. Deviations from the BM model are also

possible depending on how selection acts on the un-

derlying covariance structure of the traits and may

be indicative of constraints or other forces that may

have an influence on trait disparity. To test the re-

lationship between disparity and relative time for the

three craniofacial modules, we used a DTT analysis.

We find that both the face and mandible follow a

BM model of trait evolution while the braincase dif-

fered significantly from a BM process. The braincase

appears to maintain a fairly constant level of dispar-

ity for over 80% of relative evolutionary time before

steeply declining toward the recent, suggesting that

the braincase is constrained in a way that prevents it

from following the null model expectation of BM

model of phenotypic evolution. Interestingly, we

find that when the face is separated from the brain-

case, it also follows a BM process similar to the

mandible. We interpret these findings to suggest

that the rate of shape evolution in the facial module

is being constrained and suppressed by its close

proximity to the braincase, as well as a series of de-

velopmental mechanisms, including physical and

molecular influences that create a strong pattern of

covariation between the face and braincase regions

(Hallgr�ımsson et al. 2009; Marcucio et al. 2011). This

is strongly supported by previous studies on mor-

phological integration between the face and the

braincase across developmental series in dolichoce-

phalic apteronotids (Evans et al. 2017b, 2017c).

The evolutionary rate and shape disparity of the

braincase are likely constrained by its numerous

functional interactions with other anatomical struc-

tures including the Weberian apparatus (a modifica-

tion of the first four vertebrae which attach the swim

bladder to the inner ear), numerous muscle attach-

ments between facial and axial muscle groups, and

housing the brain and many of the facial nerves

(Fink and Fink 1981; Albert 2001). These numerous

interactions may result in a high degree of functional

integration which should, in-turn, impose powerful

restrictions on the rate and trajectory of shape evo-

lution in this module. It is possible that this pattern

is conserved across all major teleost clades, as the

braincase is burdened with many of the same multi-

functional demands across this clade.

Perspectives on mosaic evolution across

multifunctional structures

Multifunctional structures are prevalent throughout

the natural world and present throughout several

layers of biological organization. These structures

are tasked with competing demands from separate

functions that may exert opposing selective pressures

across the structure. The evolutionary modulariza-

tion of a multifunctional structure may serve to

compartmentalize and localize selective forces to spe-

cific regions of the structure in an effort to relieve

more globalized selective pressures. This modulariza-

tion can then, in turn, facilitate mosaic patterns of

Fig. 5 DTT of the cranial modules in Apteronotidae. DTT anal-

yses using the rank envelope test for face, braincase, and man-

dible modules showing the change in empirical (solid line) shape

disparity over relative time when compared with a BM model

(dashed line). Shaded areas indicate 95% confidence intervals. P-

values reported are the most conservative from the results of

the rank envelope test.
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evolution as different regions of the structure begin

to follow different evolutionary trajectories.

Evolutionary modularity is one of several potential

solutions to dealing with competing selective

demands across a structure (Linde-Medina et al.

2016). Evolutionary integration may also provide

an alternative solution, allowing a structure to

streamline responses to selective pressures if the an-

gle between the primary direction of the trait cova-

riances, and the varying directions of the selection

vectors are sufficiently small (Goswami et al. 2014;

Du et al. 2018). In this case, it is more likely that

structures with fewer functions, or more similar

functions, would utilize evolutionary integration as

opposed to structures with more and diverse func-

tions, which may instead utilize modularity.

As our ability to robustly and accurately sample

morphologies continues to improve, and phyloge-

netic hypotheses for different groups become more

prevalent and thoroughly sampled, we suspect it will

become apparent that patterns of evolutionary mo-

saicism are broadly widespread across clades. While

our ability to detect and quantify patterns of mod-

ularity and integration across structures has certainly

improved (and will most likely continue to do so),

the burden will then be on the investigators to iden-

tify and quantify the different functions that may be

exerting selective pressures across them.
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