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Abstract: Boosting critical infrastructures’ (CIs) preparedness to threats, including natural disasters

and manmade attacks, is a global imperative. The intrinsic dependencies and interdependencies

between CIs hinder their resiliency. Moreover, the evolution of CIs is, in many cases, en routè to tighten

those interdependencies. The goal of this paper is to uncover and analyze the rising interdependency

between the electric power grid, information and communication technology (ICT) networks, and

transportation systems that are heavily reliant on electric-power drivetrains, collectively referred

to hereafter as electro-mobility (e-mobility). E-mobility includes electric vehicles (EVs) and electric

railway systems. A new influence graph-based model is introduced, as a promising approach to

model operational interdependencies between CIs. Each of the links of the influence graph represents

the probability of failure of the sink node following a failure of the source node. A futuristic scenario

has been analyzed assuming increased dependency of the power grid on ICT for monitoring and

control, and high penetration levels of EVs and distributed energy resources (DERs) in an urban

region. Inspecting the influence graph shows that the impact of interdependency between the power

grid, the ICT network, and the transportation network, for the case study analyzed in this paper,

does not lead to failures during normal operation with proper design; however, it is severe during

emergency conditions since it leads to failure propagation among the three CIs. This paper sets the

stage for more research on this topic, and calls for more attention to interdependency analysis.

Keywords: critical infrastructures; e-mobility; ICT network; power grid; urban regions

1. Introduction

An infrastructure, according to the US President’s Commission on Critical Infrastructure Protection,

is “a network of independent, mostly privately-owned, man-made systems and processes that

function collaboratively and synergistically to produce essential goods and services.” Among those

infrastructures, eight are considered critical. Therefore, their “incapacity or destruction would have a

debilitating impact on our defense and economic security [1].” Critical infrastructures (CIs) include

telecommunication, electric power systems, natural gas and oil, banking and finance, transportation,

water supply systems, government services, and emergency services. Whereas we may currently

have a good understanding of the operation of each of these CIs individually, their actual collective

behavior especially during major disturbances remains not fully understood [2–4]. The consequences

of various major events, such as the 2003 North American blackout and the 2011 Japan earthquakes,

have nonetheless vividly showed that this very understanding of how CIs relate to each other is

crucial. CIs are interdependent, e.g., the power grid depends on the information and communication

technology (ICT) network for monitoring and control while the ICT network depends on the power
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grid for electricity supply; therefore, the well-being of a CI may heavily rely on the well-being of

other CIs. Consequently, modeling and analysis of critical infrastructure interdependencies has lately

emerged as a key area of research [5,6].

The power grid represents, in our view, the most critical infrastructure since its failure would

inevitably lead to paralyzing most of the other CIs. It is, then, essential to understand the degree and

nature of interdependencies between the power grid and other CIs. This paper focuses on the rising

interdependencies between the power grid, the ICT network, and e-mobility. Some researchers have

attempted to analyze the interdependencies between the power grid and the ICT network [7,8], using

a top-down approach that overlooks some realistic power system and ICT design and control aspects.

For instance, the assumption that failure of a power node would lead to failure of an ICT device

that is being supplied from that power node, ignoring the fact that many ICT devices have back-up

power sources. Some researchers have also attempted to analyze the interdependencies between the

energy network and the transportation one. Their efforts target long-term design and planning, and

focus on indirect interdependences that may not be visible during normal operation. For instance,

dependence of the power grid on transportation to deliver fuel to power plants, and dependence of the

transportation network on the power grid to power light signals.

Since the power distribution grid is evolving to a more active version, with increased penetration

levels of distributed energy resources (DERs) and electric vehicles (EVs) and increased reliance on ICT

for management and performance optimization, understanding the resulting rising interdependencies

at this early stage is vital. Increased reliance on ICT networks has recently become unarguable as a

means to improve the resilience of the power grid. On the transmission level, there is a consensus that

phasor measurement units and other newly introduced technologies that collectively enable wide area

monitoring, control, and protection can drastically improve cities’ response to major disturbances.

On the distribution level, the concept of active distribution has emerged. In active distribution

networks, management and optimization are achieved through bi-directional communication between

a distribution management system (DMS) and DERs, microgrids, dispatchable loads, and EVs.

Furthermore, with new advances in 5G technologies (e.g., software-defined networks and edge

computing) and extensive research on the Internet of Things (IoT) and smart city, it is expected that the

power grid will increasingly rely on ICT networks in the future.

Many countries and US states have aggressive plans to put more EVs on the roads in the near

future [9]. EVs charge from the power grid, which means that the mobility of people will directly be

impacted by the availability of the power grid, more than ever. Moreover, the power grid will be faced

with a substantial increase in demand in the near future due to EVs. In order to meet the increased

demand, the power grid will either have to go through a series of wide-scale infrastructure upgrades,

which would be cost prohibitive, or rely on smart charging (i.e., scheduling the charging of EVs based

on the condition of the power grid). This creates a new level of increased interdependency between

the power grid and the transportation network.

Several approaches have been proposed in the literature to model CIs interdependencies, including:

1) empirical models [10]; 2) agent-based models [11]; 3) system dynamics-based models [12]; 4) economic

theory based models [13]; and 5) network based models [14]. Interdependency models focusing on

CI networks include those of Buldyrev et al.’s interdependency model (Nature, 2010) [15]; Rinaldi et

al.’s taxonomy (IEEE, 2001) [16]; Rosato et al.’s coupling model [17]; Havlin et al.’s interdependent

networks models [18–20]; Nguyen et al.’s interdependency model [21]; and Castet et al.’s multi-layer

model (PLoS ONE, 2013) [22].

Models can be developed using either a top-down approach in which the modeler describes the

system as a whole and gradually delves into more granular details, or a bottom-up approach in which

the details of individual CIs are initially described then scaled up. As this is largely a multidisciplinary

problem, the majority of researchers to date have treated individual CIs with a top-down high-level

approach, which may overlook critical design and operation details. The bottom-up approach is

more challenging and hence less developed in the literature; however, it has the advantage of more
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accurately capturing the behavior of infrastructures during failure propagation. This work proposes a

new modeling methodology that uses a bottom-up approach to improve modeling accuracy.

In this paper, a flow-based network model is introduced based on the influence graph concept [23].

The proposed model, unlike other models that have been proposed earlier in the literature, quantifies

the probability of failure cascade not only within a single CI but also between multiple CIs using a

common failure propagation index.

The main contributions of this paper can be summarized as follows:

• A new flow-based network model for the interdependency between the power grid, the ICT

network, and e-mobility.

• A common failure propagation index, to identify critical nodes and links within single CIs and

between multiple interdependent ones.

• A new hybrid case study test system that combines a power distribution grid, an ICT network,

and a standard transportation test network, which can be used for further analysis and research

that integrate these three CIs.

The rest of the paper is organized as follows: in Section 2, the structural and topological

interdependencies between the power grid, the ICT network and e-mobility will be modeled; in

Section 3, the operational interdependencies will be modeled and the proposed operational influence

graph will be presented; in Section 4, a new case study combining the IEEE 30-bus standard distribution

network, the 24-node Sioux Falls transportation test network, and an ICT network will be described; in

Section 5, results of the case study along with a discussion on the results will be presented; and finally

in Section 6, some of the conclusions that can be derived from this study are summarized.

2. Modeling Structural Interdependencies

2.1. Individual Critical Infrastructure (CI) Models

The power grid, the ICT network, and the transportation network will be modeled with three

graphs, GP = (VP, EP), GC = (VC, EC), and GT = (VT, ET), respectively. The power grid has

nP = |VP| number of power nodes and lP = |EP| number of links; whereas, the ICT network has

nC = |VC| number of ICT nodes and lC = |EC| number of ICT links, and the transportation network has

nT = |VT | number of transportation nodes and lT = |ET | number of transportation links.

Let AP ∈ R|VP | ×|VP | , AC ∈ R|VC | ×|VC | , and AT ∈ R|VT | ×|VT | be the adjacency matrices for the power

grid, ICT network and transportation network, respectively. The value of AP
ij

is 1, as long as a link

eP
ij
∈ EP exists between nodes vP

i
∈ VP and vP

j
∈ VP, and zero otherwise. Since the three CIs are modeled

with undirected graphs, the values of AP
ij
= AP

ji
, and AP

ii
= 0, ∀(i, j) ∈ Z

|EP |
+ . Similarly, AC

ij
is 1, as

long as a link eC
ij
∈ EC exists between nodes vC

i
∈ VC and vC

j
∈ VC, and zero otherwise. In addition,

AC
ij
= AC

ji
and AC

ii
= 0, ∀(i, j) ∈ Z

|EC |
+ . Finally, AT

ij
is 1, as long as a link eT

ij
∈ ET exists between nodes

vT
i
∈ VT and vT

j
∈ VT, and zero otherwise. Also, AP

ij
= AP

ji
, and AP

ii
= 0, ∀(i, j) ∈ Z

|ET |
+ . The Laplacian

matrix Γ
P for GP can be defined as Γ

P = DP −AP, where DP is a diagonal degree matrix, such that DP
ii

equals the degree of node i. Therefore, Γ
P
ii
= DP

ii
, and Γ

P
ij
= −1 if vP

i
is adjacent to vP

j
(i.e., AP

ij
= 1), and

zero otherwise. Similarly, the Laplacian matrices for GC and GT can be defined as Γ
C = DC −AC and

Γ
T = DT −AT, respectively.

Power nodes VP can be categorized into: 1) generator nodes, VP
G
⊂ VP; 2) non-dispatachable

load nodes, VP
NDL

⊂ VP; 3) dispatchable load nodes, VP
DL
⊂ VP; 4) distributed energy resource

nodes, VP
DER

⊂ VP; 5) microgrid nodes, VP
µG
⊂ VP; 6) electric vehicle supply equipment (EVSE)

nodes, VP
EVSE

⊂ VP; 7) rectifier substations nodes, VP
Rc
⊂ VP (supplying the subway system); and 8)

downstream main infeed nodes (i.e., connection to a higher-voltage grid), VP
IN
⊂ VP. A microgrid,

by definition, includes one or more DERs, an energy storage system (ESS), and a microgrid central
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controller (MGCC). A community microgrid is an extended version of the microgrid, where multiple

neighboring nodes form an island with clearly defined electrical boundaries, and share resources

within a localized transactive energy environment. In normal operation as long as the main grid

remains intact, the aggregation is virtual and a community microgrid operates in conjunction with

the main grid. When a blackout takes place, a microgrid islands itself and relies on its local resources

and controller. A community microgrid hence represents a cut GM
P =

(
VM

P
, EM

P

)
of the main graph

GP, where VM
P
⊂ VP and EM

P
⊂ EP are the number of nodes and number of links in the community

microgrid, respectively. Dispatchable loads represent loads that can be scheduled to receive power at a

later time, unlike the conventional non-dispatchable loads that receive their power on demand.

The ICT nodes VC can be categorized into measurement nodes VC
Z
⊂ VC, router nodes VC

R
⊂ VC,

and control center nodes VC
C
⊂ VC. VC

Z
nodes are where measurement devices, typically line flow,

bus injection and bus voltage magnitude, are placed. The VC
R

nodes route the messages coming from

various VC
Z

on their way to one of the control centers VC
C

, where data processing and decision-making

take place.

The e-mobility nodes can be categorized into road junctions VT
j
⊂ VT and train passenger stations

VT
s ⊂ VT. The set of links ET include road sections between adjacent junctions ET

j
⊂ ET and train railway

sections between adjacent stations ET
s ⊂ ET. Some VT

j
nodes may include EVSE nodes VT

EVSE
⊂ VT

j
.

2.2. The Integrated Structural Interdependency Model

The integrated graph S = (VS,ES) relates the three CIs through a set of structural interdependency

links S. Note that S ⊃ {GP, GC, GT} such that VS = {VP ∪ VC ∪ VT} and ES = {EP ∪ EC ∪ ET ∪ S}.

The set of interdependency links between the power grid and the ICT network PC
S
⊂ S link power

nodes to their corresponding ICT nodes (i.e., the nodes that deliver measurements and control decisions

back and forth between the power nodes and the control center). They also indicate the dependence of

ICT nodes on the power grid for power supply. The interdependency links between the power grid

and the transportation network PT
S
⊂ S link the power nodes to transportation ones (e.g., they indicate

which passenger stations or EVSEs are being supplied by which power substations). A link exists

between an EVSE power node VP
EVSE

and the junction where the EVSE is geographically located VT
j

on

the transportation network. Links to further adjacent transportation junctions to the EVSE junction

VT
j

are also considered, since the focus of this paper is on urban region with short distances between

adjacent nodes. In the subway system, rectifier substations are typically geographically distributed

throughout the various subway lines to maintain regulation of the supply voltage. The number of

rectifier substations is smaller than the number of passenger stations. It is assumed here that a rectifier

substation power node VP
Rc

is affected by two neighboring passenger stations on each side, except for

the terminal substations, which are affected by two passenger stations on one side only. The impact of

the adjacent passenger stations is higher (~double) of the farther ones. The integrated graph S may be

directly used to infer some of the characteristics of the interdependency between the three CIs, e.g.,

using centrality measures. However, S will be built upon and an influence graph will be developed,

which considers operational aspects in addition to the topological ones encompassed within S.

3. Modeling Operational Interdependencies

The structural interdependency models, described in Section 2, provide a good insight on the

geographical and topological relations among nodes. Nonetheless, they may not be enough to describe

the propagation of failures in the power grid, since cascaded failures do not resemble contagion

or epidemic behavior. Failure of a component in the power grid may lead to a failure of another

component that is substantially far, both geographically and/or topologically.

Moreover, the load demand of the power grid considerably contributes to determining the

interdependencies between nodes and links. For instance, if a link of the power grid fails, the power

that the failed line was carrying before braking would be shifted to other transmission line/s increasing

the amount of power flowing through them. Whether this increase in power flow will lead another link
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to fail or not, depends on how much power it was delivering to the loads, at the moment of disturbance.

Therefore, it is rather unpersuasive to assume that the topology of the power grid is solely enough to

realistically capture the behavior of the power grid during failure propagation.

3.1. Interdependency Influence Graphs

In this paper, the operational interdependencies will be modeled with weighted temporal influence

graphs. The power grid will be modeled with GI
P

(
t, Gt

P

)
=
(
VP, Vl

P
, V`

P
, EI

P

)
. GI

P
changes over time

due to load/generation changes. In addition, it changes as the topology of GP changes (e.g., due to line

or node disconnection). GI
P

can be modeled as a continuous series of static networks (i.e., snapshots).

In this hybrid state/event driven model, a new snapshot is formed if: 1) some predefined time interval

(TS) passes, e.g., TS may be a few minutes, transitioning GI
P

from GI
P

(
t, Gt

P

)
to GI

P

(
t + TS, Gt

P

)
; and/or

2) a contingency takes place in the power grid, transitioning GI
P

from GI
P

(
t, Gt

P

)
to GI

P

(
t, Gt+1

P

)
. GI

P

has nI
P
=
∣∣∣VP + Vl

P
+ V`

P

∣∣∣ number of nodes and lI
P
=
∣∣∣EI

P

∣∣∣ number of links. The Vl
P
∈ R1 ×|VP | nodes

in GI
P

represent the links of GP, i.e. in the proposed influence graph, both the power grid’s buses

(nodes) and lines (links) are modeled as nodes. The V`

P
set includes fictitious nodes that will be

added to GI
P

to model alternative sources of power, as in the case of microgrid nodes. El
Pi j varies

between 0 and 1, and signifies the tendency of node Vl
Pi to fail following a disturbance at node Vl

P j.

The fundamental question here is how to establish the weights of EI
P

. The links El
P
∈ R|VP+Vl

P
|×|EI

P
|

represent a time-varying failure propagation index (FPI) between nodes, throughout the network.

3.2. Failure Propagation Index (FPI)

The FPI index between the various nodes of GI
P

will be calculated as follows:

(1) To calculate the set of edges EP
LP
⊂ EI

P
from the Vl

P
nodes to the VP ones, the degree of the VP

node and the line loading of its adjacent links are taken into consideration. EP
LP

edges represent the FPI

of a node, following the failure of a link. Note that every Vl
P

node can be mapped to an EP link of GP.

EP
LP( j, i) =



1 if DP
ii
= 1 ∨ EP

LP
> 1

|Pi|/
∑

DP
ii
−1 | k,i

|Fik −Cik| if DP
ii
> 1
∣∣∣ AP

ik
= 1 (1a)

Pi =
∑

DP
ii

Fik ∀k : AP
ik
= 1 (1b)

Pi = Bδ (1c)

δ̃ = B̃
−1

P̃i (1d)

F = Hδ̃ (1e)

where Pi is the net power injection at node i, Fik is the power flow through the link connecting nodes i

and k, and Cik is the power flow capacity of the same link. (1b) denotes the nodal power balance, (1c)

relates Pi to the imaginary component of the bus admittance matrix (B) and the phase angle ∆ at every

bus. In (1d), δ̃, B̃
−1

, and P̃i extend (1c) when the elements (row and column) attributed to the reference

bus (i.e., a bus with a slack generator) are eliminated from δ, B, and Pi, respectively. Finally, F can be

calculated using 1e.

This expression tends to one, when the failing link supports the only connection between the node

and the rest of network. In other words, if a node is connected to the network through a single link as

in the case of a node located at the end of a radial distribution feeder, failure of the link will inevitably

lead to failure of the node. If a node is connected to more than a single link, failure of a link may or

may not impact the node, depending on the remaining capacity margin of its adjacent lines combined.

Note the absolute sign of the term |Pi| denoting that the expression can be generalized to both load and

generator nodes.
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(2) To calculate the set of edges EP
PL
⊂ EI

P
from the VP nodes to the Vl

P
ones, the FPI here will

represent the sensitivity of line loading to node power variations. Note from (1d) and (1e) that:

∆F = HB̃
−1

∆P̃i (2a)

S = HB̃
−1

(2b)

∆F is a vector combining the power variation in the various lines for changes in the power injection

vector ∆P̃i. S may be directly used to estimate EP
PL

; however, we can also adhere to the deterministic

flow-based approach of this paper and attempt to include the actual power flow, as follows.

EP
PL( j, i) =


1 if EP

PL
> 1∣∣∣Si j ∆P̃i

∣∣∣/
∣∣∣Fi j −Ci j

∣∣∣ otherwise
(3)

(3) To calculate the set of edges EP
LL
⊂ EI

P
from the Vl

P
nodes to other Vl

P
ones, the FPI here will

represent the sensitivity of line loading of each line to failure of other lines. This can be computed by

modifying S, multiplying it by the node-branch incidence matrix, to represent S of line Fik to power

injection at bus k. A line outage distribution factor ς can then be represented as follows.

∆ Li
= ςLiL j

∆
(τc−)

L j
(4)

is an array combining all elements of F as a vector. ςLiL j
relates the change in the loading of line

Li following the loss of line L j, as a function of the line flow of line L j just before the contingency

incident τc.

EP
LL

(
Li, L j

)
=



1 if EI
LL
> 1∣∣∣∣∣ςLiL j

∆
(τc−)

L j

∣∣∣∣∣/
∣∣∣∣FL j
−CL j

∣∣∣∣ otherwise
(5)

The values of EI
P

are limited to one in this paper, for visualization and comparison purposes. This

limit is nevertheless optional and may be eschewed if needed.

3.3. Microgrids and Energy Storage Systems

Unlike VP
G

, VP
NDL

, VP
DL

, VP
DER

, and VP
IN

, the set of VP nodes with an energy storage system (ESS) or

microgrid VP
µG
⊂ VP require special attention since the energy storage capability raise their resiliency

level and reduce the FPI. Note that the VP
EVSE

may need to be treated similar to VP
µG

if an ESS is

deployed (i.e., as in the case of direct current (DC) fast charging stations) or when EVs within an EVSE

participate in V2X services, such as V2G, V2V or V2B. For every VP
µG

node, a V`

P
node is introduced that

will connect to the microgrid node via a single link. The V`

P
connects to GI

P
only through the microgrid

node. Following the failure of its adjacent lines, the probability that a microgrid node fails heavily

depends on the availability of energy from its local energy sources, including ESS and DERs. The set of

links EP
Pµ
⊂ EI

P
between a microgrid node i ∈ VP

µG
and its corresponding fictitious node ĭ ∈ V`

P
can be

calculated as follows.

EP
Pµ(i, ĭ) =



0 if P
(τc−)
µG

= 0 ∨ |Pi| ≤
∑
DP

ii

|Fik −Cik|

Ai

∣∣∣∣PMµG

∣∣∣∣/

|Pi| −

∑
DP

ii

|Fik −Cik|


 if |Pi| >

∑
DP

ii

|Fik −Cik|

1 if EP
Pµ
> 1

(6)
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PM
µG

is the maximum power capacity of the local resources, i.e., ESS and/or DERs, combined. A ∈ [0, 1]

is a time-varying availability factor that takes into account energy availability parameters, including

current and forecasted renewable energy production, ESS state of charge, ESS charging/discharging

rates, etc.

3.4. The Integrated Operational Interdependency Model

The integrated influence graph = (V ,E ) models the operational interdependencies between

the three CIs through links . The set of directed interdependency links between the power grid and

the ICT network PC ⊂ models the influence of power nodes on ICT ones and vice versa; whereas,
PT ⊂ models the operational interdependency between the power grid and the transportation

network. The ICT network will be modeled via GI
C =

(
VC, EI

C

)
. EI

C
are links that determine the

influence of ICT nodes on each other, analogues to EI
P

in GI
P

. We will calculate EI
C

between nodes i ∈ VC

and j ∈ VC using (7), considering the degree of node i, DC
ii

. j ∈ VC is a node that lies on one of the paths

connecting node i to the control center. Even though this may be considered a topological factor, it will

be adopted in this paper for simplicity. However, other operational factors of the ICT network, e.g.,

delay or packet loss, may be also be considered.

EI
C(i, j) = 1/ℜC

i (7)

ℜC
i

is the set of possible shortest paths between node i and the control center, excluding those that

will not be available due to failure of node j. The power grid measurements, which are needed by the

power grid operator to make proper control decisions, are transmitted from measurement devices to

the control center through ICT nodes. The interdependency links originating from the ICT nodes to

the power grid ones will be calculated to signify the impact of a lost ICT node on the observability of

the power grid. We define = (δ;ϕ;V;R) ∈ R as the state vector of the power grid at a given time, ϕ

is a vector of transformer phase shifts,V is the voltage magnitude at every bus, and R is a vector of

transformer off-nominal voltage ratios. The set of measurements  can be can be modeled as = ( ) + ε.

The measurement errors ε are typically minimized using weighted least square formulation as follows.

ζ =
1

2
[ − ( )]TΛ

−1[ − ( )] (8)

This can be approached by recursively solving (8), using the Newton’s method.

v+1 = v + −1
v Hv[ − ( v)] (9a)

Hv = ∇ ( v) (9b)

v = HT
v Λ
−1Hv (9c)

Λ is a square matrix whose off-diagonal elements are zeros, and diagonal elements equal the standard

deviation of the measurement errors, and v is the iteration index. The observability of the power grid

depends on the rank of v. Therefore, the link from a power grid node i to an ICT node j, C−→P(i, j) ⊂ PC

is attained by calculating (τc−) = rank(
(τc−)
v ) before ICT node failure, and (τc+) = rank(

(τc+)
v ) after

node failure.

C−→P =



C
i

if (τc+) < (τc−)

1
lC
i

otherwise
(10)

lC
i

is the number of ICT nodes connected to power node i. C
i
∈ [0, 1] is the estimated error between

the actual measurement of i, and its estimated value. This can be approached by analyzing the

variability/predictability of historical profiles for the power injection at the node. Several factors may

be taken into consideration, such as whether it is a load bus, or a DER one with intermittent solar
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generation. The interdependency link from an ICT node i to a power grid node j, P−→C(i, j) ⊂ PC

is obtained by considering the dependency of the ICT node on the power from the power one, and

whether there is a local back up resource at the communication node or not.

P−→C =
1

lP
i

(11)

where lP
i

is the number of power nodes connected to ICT node i. If the state of the power grid is

unobservable following an ICT failure, the system may actually be divided into multiple observable

islands. In order for the power grid operator to be able to yield a control decision before the

current control cycle times out, some pseudo-measurements (e.g., an estimated nodal power injection,

replacing a missing measured value) must be introduced. Control decisions that are based on many

pseudo-measurements may not be accurate, especially during large power grid disturbances. A more

accurate way to find C−→P might be achieved by simulating the power grid under various ICT node

failures, and estimating the impact of inaccurate control resulting from node failures on line congestions.

If a backup source is available at an ICT node, a fictitious power node ĭ is added, to supply its

designated ICT node only. The link between the ICT node i and the added node ĭ can be obtained

as follows.

E`

C(i, ĭ) =
DiTs

C
(
Ψ −Ψ

min
) (12)

where C is the total energy capacity, and Ψ is the current available energy level (e.g., state of charge

(SoC) in the case of a battery). An ICT node is not solely dependent on the power grid to remain

functional if it has local back up generation; however, during a blackout the health of the node will

depend on the availability of energy from the local resources.

The transportation network will be modeled via GI
T =
(
VT, Vl

T
, EI

T

)
. The Vl

T
nodes represent the

links ET of GT. ET
TL
⊂ EI

T
represents a set of links between a VT node and a Vl

T
one. ET

LL
⊂ EI

T
represents

a set of links between a Vl
T

node and another Vl
T

one. No direct links are considered between VT nodes.

The Vl
T

nodes can be categorized into nodes Vj
T
⊂ Vl

T
, which map the ET

j
links, and nodes Vs

T
⊂ Vl

T
that

map the ET
s ones.

The link ET
TL

between a node i ∈ VT and another j ∈ Vl
T

is set to 1—that is, the failure/congestion

of a junction or passenger station will lead to the failure of its adjacent road/rail sections; hence, forcing

drivers to go through other nodes. On the other hand, the link EI
T

originating from a node j ∈ Vl
T

to a

node i ∈ VT shall be calculated as follows:

ET
TL( j, i) = 1/DT

ii (13)

The mobility of travelers plays a major role in defining the characteristics of the transportation

system, and its interdependencies with the other CIs. In an urban region, there may be three main

modes of morning and evening commutes: on foot, by automobile (including regular and electric

public transit buses, personal cars and EVs, and regular and electric taxicabs), and by electric railway

system (i.e., subway). Those who move on foot may not have a significant impact on CIs. However,

the automobile and subway modes are interrelated; consider a group of passengers traveling from a

certain origin to a destination, if they drive or take a taxicab or bus, the loading on the subway system

is reduced, and vice versa. Failure of a subway passenger station that is serving an area may lead to

traffic congestion around it since people would commute by automobile. In a system with a high level

of penetration of EVs, this scenario consequently leads to increased charging demand from EVs and

electric buses, which reflects on the power grid. By contrast, during power grid full or partial outage,

some EVSEs may not be available. The demand on the subway system may substantially increase,

potentially leading to one of two problems: 1) the subway system operator may increase the frequency

of the trains to accommodate the high demand, increasing the power demand of associated substations;
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and 2) the subway system may not increase the frequency of the trains, leading to extensive travel

delays (and economic loss as a consequence). Therefore, it is essential to model the links between the

Vj
T

nodes and the Vs
T

ones. The Ejs
LL
(i, j) ∈ Ejs

LL
⊂ ET

LL
link from node i ∈ Vj

T
to node j ∈ Vs

T
is calculated

by (14); whereas, the ET
LL
( j, i) ∈ Esj

LL
⊂ ET

LL
link from j ∈ Vs

T
to i ∈ Vj

T
is given by (15).

Ejs
LL
(i, j) =


1 if Ejs

LL
> 1∣∣∣∣σjsi j

∆E
j

i j

∣∣∣∣/
∣∣∣∣Esi j
−Cs

i j

∣∣∣∣ otherwise
(14)

Esj
LL
(i, j) =


1 if Esj

LL
> 1∣∣∣∣σsji j

∆Es
i j

∣∣∣∣/
∣∣∣∣Eji j
−Cj

i j

∣∣∣∣ otherwise
(15)

∆E
j

i j
represents the change in the flow due to a problem in the ET

j
(i, j) link, which may overload link

ET
s (i, j) with a probability of σjs

i j
. The term

∣∣∣∣Eji j
−Cj

i j

∣∣∣∣ represents the remaining capacity of link ET
s (i, j).

In other words, when road link ET
j
(i, j) fails, travelers may commute with a probability σjs

i j
using the

subway link ET
s (i, j). This will increase the demand on the subway system, and require an increase

in the frequency of the trains. Whether this change in the mode would overburden the subway link

or not, depends on the initial loading condition of that link. ∆Es
i j

represents the change in the traffic

low in the ET
s (i, j) link, which may overload link ET

j
(i, j) with a probability of σsj

i j
. Similarly, the term∣∣∣∣Esi j

−Cs
i j

∣∣∣∣ represents the remaining capacity of link ET
j
(i, j).

EVs charge at EVSEs whose power supply is part of the power grid, VP
EVSE

⊂ VP. The number

of cars charging at an EVSE, and consequently the power demand at its corresponding VP
EVSE

node,

is affected by the transportation network. For instance, if the path leading to an EVSE is blocked

or congested, the EVs seeking charge at that EVSE will likely travel to the nearest functional EVSE.

This functional EVSE will experience more than normal demand, potentially overloading the power

substations supplying them. On the other hand, if some EVSEs are not functional within an area

(e.g., due to malfunction of the power substations supplying them), traffic may be congested around

the functional EVSEs. This effect may be more severe during natural disasters, similar to a familiar

scenario when cars get packed at gas stations with functional back up pumping power, during natural

disasters and blackouts. To model the dependence of the power grid on the transportation network,

we will introduce links between the EI
T

links, and the EI
P

ones. When a transportation link EI
T

leading

to an EVSE or a passenger station fails, the load may be redirected to the nearest transportation node

(junction or passenger station), and consequently impact another power node. The impact on the

power grid will then depend on the available capacities of the power links adjacent to that power

node. When a link i ∈ EI
T

fails, and that link is leading to an EVSE or a passenger station, such that its

nearest alternate node is j ∈ EI
T

, the link between the transportation node and the power links around

j, T−→P(i, j), can be calculated as follows:

T−→P =



1 if T−→P > 1∣∣∣∣σjji j
∆E
j

i j
D
j

i j
+ σss

i j
∆Es

i j
Ds

i j

∣∣∣∣/
∑

DP
jj

:∃AP
jk
=1

|Fik −Cik| otherwise (16)

σjj
i j

∆E
j

i j
and σss

i j
∆Es

i j
represent the new (transportation) demand encountered by node junctions and

passenger stations located nearest to node j, respectively, following the failure of link i. Dj
i j

and

Ds
i j

represent the power demand per unit increase in the traffic and subway demand. Dj
i j

may be

considered as a stochastic variable that correlates the traffic flow at a road, to the charging demand at

an existing EVSE.Ds
i j

may be calculated in a more deterministic manner, since we can relatively easily
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relate the trains’ frequency to the demand of the rectifier substations looking at real-time measurements

or historical interval data.

To model the dependence of the transportation network on the power grid, we will introduce links

between both of the VP
EVSE

and VP
Rc

nodes, and the EI
T

links, P−→T. When an EVSE node i ∈ VP
EVSE

fails, the EI
T

link leading to the nearest EVSE node j ∈ VP
EVSE

will be impacted. This dependence will

be modeled by a link P−→T
j

(i, j) ⊂ P−→T.

P−→T
j

(i, j) =


1 if T−→P

j
(i, j) > 1∣∣∣∣σjji j

∆E
j

i j

∣∣∣∣/
∣∣∣∣Eji j
−Cj

i j

∣∣∣∣ otherwise
(17)

When a rectifier substation node i ∈ VP
Rc

fails, its neighboring substations have to accommodate

the load that the failed substation was handling before failure. Depending on the strength of the power

supply of the subway system (number and distribution of substations, short circuit impedance of the

substations, etc.), the voltage of the subway system supply rail (e.g., the third rail in a DC electric rail

system) may drop. In this case, the impacted section of the subway system may shut down. Whether

the neighboring substations can maintain the voltage or not, relies on how much power they were

carrying before the fault and their maximum capacity, and how far those substations are from the

failing one. Note that a neighboring substation may not be capable of supporting a failing one, even

though it has enough power capacity, if the failed substation is far. Distance creates losses and voltage

drop that may trigger the under-voltage protection devices, especially if uncontrolled rectifiers are

used, which is the case in many electric rail transit systems. When rectifier substation node i ∈ VP
Rc

fails, the EI
T

links adjacent to it may fail if the nearest rectifier substation node j ∈ VP
Rc

cannot remotely

regulate the voltage at i. This dependence will be modeled by a link P−→T
s (i, j) ⊂ P−→T. This process is

heavily impacted by the frequency of the trains, i.e., during morning or evening peaks when frequency

of the trains is high, the voltage generally tends to drop, and failure of a substation may be severe.

P−→T
s (i, j) =


1 if P−→T

j
(i, j) > 1∣∣∣∣σssi j

∆Es
i j
Ds

i j

∣∣∣∣/ ji

∣∣∣∣PMj − P j

∣∣∣∣ otherwise
(18)

ji represents the probability that rectifier substation j ∈ VP
Rc

can support a failed substation i ∈ VP
Rc

,

which can be estimated by simulating the system under various loading (trains/hour) and contingency

scenarios [24].

4. Case Study

The proposed modeling approach will be tested on a benchmark problem that the author has

presented in [25], by overlaying the Sioux Falls 24-node transportation test network onto the standard

IEEE 30-bus test feeder, and an ICT network as shown in Figure 1. This multilayered test system

will be referred to as the “Aggregated Model.” This study region is divided into three main urban

agglomerations, namely: Area A, Area B, and Area C. These areas are further broken down into various

geographically distributed zones. Each area is supplied via some local generators through distribution

lines. Moreover, there is a tie line that enables energy exchange between Areas A and B, three tie lines

between Areas B and C, and three tie lines between Areas C and A. Bus 1 represents the interface

between the power distribution grid, and the higher-voltage bulk power transmission system. Bus 1

also serves as the slack in normal operating conditions. The DMS is assumed to be located near bus

1. There are 30 buses (i.e., power grid nodes), and 41 distribution lines/cables (i.e., power grid links).

Buses {1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 28} lie within Area A, buses {12, 13, 14, 15, 16, 7, 18, 19, 20, 23} lie within

Area B, and buses {10, 21, 22, 24, 25, 26, 27, 29, 30} lie within Area C.
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Figure 1. The integrated structural interdependency graph S = (VS,ES).

There are 3 solar photovoltaic systems located at buses 2 (Area A), 13 (Area B), and 22 (Area C).

There are 7 EVSEs located at buses 7, 8, 14, 16, 21, 26, and 30. The EVSEs at buses 7, 14, 16, 21, and

30 are assumed to be smart, such that they can reduce their consumption when commanded by the

control center, or when energy prices are high [26]. There are 5 rectifier substations supplying the

electric rail transit systems, located at buses 7, 12, 19, 22, and 24. There are three microgrids located at

buses 28, 23, and 22. The microgrids located at buses 28 and 23 are collaborative; they continuously

coordinate with the DMS, sending state measurements and receiving control commands. Moreover,

the load at bus 12 is assumed to be dispatchable.

An ICT network is used to collect and transmit real-time measurements from the distribution grid

to the DMS, and deliver control decisions from the DMS back to the generators, microgrids, EVSEs,

and dispatchable loads. There are 15 ICT nodes, and 20 ICT links. The power injection is measured at

buses (i.e., power grid nodes) 1, 3, 5, 6, 14, 16, 17, 20, 10, 15, 21, 27, and 30. The power flow is measured

in the distribution lines connecting between nodes (28, 27), (6, 10), (10, 9), (17, 10), and (23, 24).

The 24 nodes of the Sioux Falls test network (i.e., transportation system nodes) represent

major junctions, which are interlinked through 38 roads/streets (i.e., transportation system links).

Transportation nodes {1, 3, 4, 5, 9, 10, 11, 12} lie within Area A of the power grid; whereas, nodes

{2, 6, 7, 8, 16, 17, 18} lie within Area B, and nodes {13, 14, 15, 19, 20, 21, 22, 23, 24} lie within Area C.

The EVSEs are located at transportation nodes 4, 12, 6, 16, 20, 22, and 30. In addition, there is a 3-line

subway system that links the three areas. Subway Line A↔B connects between Areas A and B, and

has passenger stations near transportation nodes 12, 11, 9, 8, and 7. Subway Line B↔C has stops at

transportation nodes 2, 6, 8, 16, 17, 22, 24, and 13. Subway Line C↔A has stops at transportation nodes
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21, 22, 11, and 1. There are four main public transit bus routes, {1, 3, 12, 13, 24}, {1, 2, 6, 8, 16, 17, 19, 20,

22, 15}, {9, 8, 7, 18, 16, 17, 10}, and {1, 3, 4, 5, 9, 10, 15, 14, 23, 24, 21, 22}.

5. Results and Discussion

The proposed interdependency model was applied on the Aggregated Model. Figure 2 shows

the operational interdependency influence graph. While this graph can be presented as a full graph,

such that all links within each of the CIs or between CIs are shown, some of the important links are

shown in this paper. A good approach here may be to show the links with FPI values of more than a

pre-determined threshold (e.g., 0.5), since those with lesser values represent less influence on the rest of

the system. The weights of the influence graph represent the impact of a node or link failure on other

nodes and links (i.e., the FPI). Therefore, navigating through this graph starting from a node provides

an insight on how a failure initiated at that node may propagate throughout the three CIs. Moreover,

in this case, eigenvector centrality measures—unlike their application on topological models—can

provide a good insight on the most vulnerable nodes and links. Long paths through the influence

graph represent increased probability of failure cascade.

 

Figure 2. The operational interdependency influence graph = (V ,E ).

Inspecting the graph and its weights, it can be seen that there are no individual ICT or transportation

nodes whose failure can lead to an immediate failure in the power grid. Case scenarios will be run to

check if this observation would change following contingencies. For the graph, some of the critical

power grid nodes (e.g., 8 and 23) and links (e.g., 10, 28, and 32); critical ICT nodes (e.g., 13) and links;

and critical transportation system nodes (e.g., 12) and links were identified. Some potential failure
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scenarios can be traced, and ideally, the control policy would be modified to avoid those failures.

Among the various scenarios that can be analyzed, we will hereafter discuss two as examples. In the

first scenario, the failure will be assumed to be only originated from the power grid, while the ICT

and transportation networks are intact. In the second scenario, it will be assumed that the failure will

originate from the power grid, but propagate to other CIs. In both scenarios, the model will start with

one or more contingencies, and trace how it cascades. The cascading model, following a disturbance,

that was used in this paper is as follows: (1) for each island resulting from the contingency, if the total

generation is greater than the total demand (e.g., a load node failed), generators reduce their power

production based on their droop characteristics. If the total demand is greater than the total generation,

dispatchable loads are reduced and microgrids are commanded to provide more power. If power

balance cannot still be achieved, other loads are uniformly reduced. If an island has no generators

or microgrids, the loads within the island are outaged; (2) if an island has one or more microgrids,

the loads within that island can be supplied depending on the availability of energy in the microgrid;

(3) re-run the load flow, and calculate the line flows; (4) remove all overloaded lines; (5) repeat the

four steps until the cascade stops. Note that following every contingency the topology of the system

changes, and a new interdependency influence graph is generated.

5.1. Scenario I

The total load is initially about 190 MW, with ~25 MW supplied by bus 1 and the rest supplied

via DERs and microgrids. The lines connecting power nodes {6, 7, 8} become congested during

high-demand periods, e.g., during a hot summer day. In order to avoid infrastructure upgrade,

the DMS relies on requesting energy from the microgrid connected at bus 28, and commanding the

EVSE connected at bus 7 to reduce its consumption. Consequently, more EVs will charge at the EVSE

connected at bus 8. This may lead to traffic congestion around transportation node 4. Moreover, looking

at the values of EP
PL to its neighboring links, we will realize that it is a critical node. Overloading

may cause node branch 10 (buses 6 to 8) to fail. When link 10 fails, from the interdependency graph,

we can see that links 40 and 41 become overloaded. The DMS should in this case, disconnect the

overloaded branches isolating node 8, and reducing the total generation by ~30 MW. The cascade will

stop provided that the ICT network will timely deliver the control signals.

Power link 29 is also congested. Let us consider another low-probability high-impact scenario

when links 10 and 29 concurrently fail. Looking at the interdependency influence graph, it can be seen

that links 40 and 41 will be threatened. If the DMS manages to command the microgrid connected at bus

28 to change its power injection (e.g., using its energy storage system), node 28 may be self-sustained

relaxing link 41. The next step is that branches 1, 3, 6, 7, 8, 11, 12, 15, 28, 30, 36, 40, and 41 will become

overloaded and disconnected, separating the system into some surviving islands (although in practice

the whole system may shut down). An island will include nodes 12, 13, 14, 15, 16, and 17; and another

will include nodes 27, 29, and 30.

5.2. Scenario II

However, if the ICT node 2 (at power node 28) is not functional following the initial contingency,

and the DMS cannot communicate with the microgrid, both links 40 and 41 will fail, isolating nodes

8 and 28. The next step is that the failures will sharply cascade leading to a wide-scale blackout.

In addition, the rectifier substation connected at node 28 will lose power, potentially leading to extensive

train delays, and traffic congestion since passengers are likely to change their mobility mode and use

automobiles. Figure 3 shows a comparison of the average yield (ratio of served load to total load) in

both cases.
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Figure 3. Average yield for Scenarios I and II. In Scenario 1, the yield following the first contingency

drops from 1 to about 0.84, and then drops again to about 0.27 before the cascade stops. In Scenario II,

since it involves failures within multiple CIs, the yield drops more sharply to zero.

As can be seen, many different scenarios can be analyzed. It may actually be infeasible to try

to pre-analyze all the possible cascades in advance. What may be feasible is to use the proposed

interdependency influence graph to develop an adaptive scheme, which can autonomously modify

its strategy by looking at the three CIs to minimize the vulnerabilities (i.e., bring the FPI as close as

possible to zero). This requires an approach that searches for the resilient states, without having to go

through all the possible states of the system. While in this paper the aim was to set up the foundation

for developing the operational interdependency influence graph concept and setting the stage for

further research on the power grid/ICT/e-mobility topic, in the author’s future work the focus will be

on how to use it to analyze and mitigate vulnerabilities.

6. Conclusions

Current widely deployed policies that prioritize non-wire solutions to meet demand growth,

although effective in deferring infrastructure upgrades, may tighten the interdependencies between the

power grid, the ICT network, and the transportation network. An operational interdependency influence

graph has been proposed to model the rising interdependencies between the three infrastructures.

The proposed weighted influence graph uses a common failure propagation index to model the

operational interdependency within an individual CI, and between multiple CIs. Therefore, the graph

can be traversed concurrently within and between CIs to determine the most critical nodes and links.

A case study was used to validate the proposed model. The power grid relies on the ICT network for

monitoring and control. The level of dependency of the power grid on ICT is evaluated considering

the impact of a lost ICT node on the observability of the power grid. The extent of dependence of

the ICT network on the power grid varies based on whether there is a local back up power resources

at the communication nodes or not. People’s mobility substantially impacts the interdependency

between the transportation system and the power grid. For instance, failure of a subway passenger

station may lead to traffic congestion around it. This leads to increased charging demand of EVs and

electric buses. On the other hand, if EVSEs are not available within an area, the demand on the subway

system may substantially increase. When a rectifier substation fails, its neighboring substations have

to accommodate its load demand. Results show that the interdependence may considerably aggravate

the situation during cascaded failures.

Funding: This research was funded by the US National Science Foundation grant number 1830105 and grant
number 1846940.

Conflicts of Interest: The author declares no conflict of interest.
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Nomenclature

GP, GC, GT Graphs representing the power, ICT, and transportation networks, respectively

VP, VC, VT Sets of power nodes, ICT nodes, and transportation nodes, respectively

EP, EC, ET Sets of power grid links, ICT links, and transportation links, respectively

nP, nC, nT Number of power grid nodes, ICT nodes, and transportation nodes, respectively

lP, lC, lT Number of power grid links, ICT links, and transportation links, respectively

AP, AC, AT Adjacency matrices of the power grid, ICT, and transportation networks, respectively

Γ
P, Γ

C, Γ
T Laplacian matrices for GP, GC And GT, respectively

DP, DC, DT Degrees of the power grid, the ICT network, and the transportation network, respectively

VP
G

Set of generator nodes

VP
NDL

Set of non-dispatchable load nodes

VP
DL

Set of dispatchable load nodes

VP
DER

Set of DER nodes

VP
µG Set of microgrid nodes

VP
EVSE

Set of EVSE nodes

VP
Rc

Set of subway substation nodes

VP
IN

Set of nodes connecting the power grid to infeed from a higher-voltage

GM
P Graph representing a community microgrid

VM
P

, EM
P

Nodes and links of the community microgrid, respectively

VC
Z

Measurement nodes

VC
R

Router nodes

VC
C

Control center nodes

VT
j

Road junctions

VT
s Passenger stations

ET
j

Road sections between adjacent

ET
s Train railway sections between adjacent stations

S The integrated graph

VS,ES Nodes and links of S, respectively
PC
S

Links between power nodes and their corresponding ICT nodes
PT
S

Links between power nodes and their corresponding transportation nodes

GI
P Graph to model the operational interdependencies of the power grid

Vl
P

Set of nodes that represent links of GP

V`

P Set of fictitious nodes that are added to GI
P To model alternative sources of power, if any

El
Pij Links that signify the probability of node Vl

Pi To fail following a disturbance at node Vl
P j

FPI Failure propagation index

EP
LP

Set of links from Vl
P

Nodes to VP Nodes

Pi The net power injection at node i

Fik The power flow through the link connecting nodes i and k

Cik The power flow capacity of the link connecting nodes i and k

B Imaginary component of the bus admittance matrix

EP
PL

Set of links from VP Nodes to Vl
P

Nodes

∆F
A vector combining the power variation in the various lines for changes in the power

injection vector

EP
LL

Set of edges from Vl
P

nodes to other Vl
P

ones

ς Line outage distribution factor ς

Array combining all elements of F as a vector

EP
Pµ Set of links microgrid nodes and their corresponding fictitious nodes

P
µG Maximum power capacity of local microgrid resources

Time-varying availability factor

The operational interdependency influence graph

V ,E Nodes and links of

GI
C Graph to model the operational interdependencies of the ICT network

EI
C

Links that determine the influence of ICT nodes on each other
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ℜC
i

Set of possible shortest paths between node i and the control center, excluding those that

are be available due to failure of node j

State vector of the power grid at a given time

ϕ Vector of transformer phase shifts

Voltage magnitude at every bus

 Vector of transformer off-nominal voltage ratios

Set of power system measurements

ε Measurement errors

Λ
Square matrix whose off-diagonal elements are zeros, and diagonal elements equal the

standard deviation of the measurement errors

v Iteration index
C−→P Link from a power grid node i to an ICT node j

lC
i

Number of ICT nodes connected to power node i
C
i

Estimated error between the actual measurement of i, and its estimated value
P−→C Interdependency link from an ICT node i to a power grid node j

lP
i

Number of power nodes connected to ICT node i

ĭ Fictitious power node

E`

C
Total energy capacity

Total energy capacity

Ψ Available energy

GI
T Graph representing the transportation network

Vl
T

Set of nodes representing links ET of GT

ET
TL

Set of links between a VT node and a Vl
T

one

ET
LL

Set of links between a Vl
T

Node and another Vl
T

One

Vj
T

, Vs
T

Road and subway nodes, respectively

Ejs
LL

, Esj
LL

Links between Vj
T

And Vs
T

, and links between Vs
T

And Vj
T

, respectively

∆E
j

ij
Change in the flow due to a problem in the ET

j
(i, j) link∣∣∣∣Ejij −Cj

ij

∣∣∣∣ Remaining capacity of link ET
s (i, j)

σ
js

ij
, σsj

ij

Probability of travelers changing their mode of travel from road to subway, and subway

to road, respectively
T→P Links that model dependence of the power grid on the transportation network

σ
jj

ij
∆E
j

i j
, σss

ij
∆Es

ij

Modified demand encountered by node junctions and passenger stations located nearest

to node j, respectively

j

ij
, s

ij

Sets representing the power demand per unit increase in the traffic and subway demand,

respectively
P→T Links that model the dependence of the transportation network on the power grid
P→T
j

P→T Dependency related to EVSEs
P→T
s

P→T Dependency related to subway substations

ji Probability that rectifier substation j can support a failed substation i
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