
Eurographics Symposium on Geometry Processing 2019
D. Bommes and H. Huang
(Guest Editors)

Volume 38 (2019), Number 5

Feature Preserving Octree-Based Hexahedral Meshing

Xifeng Gao1,2, Hanxiao Shen2, and Daniele Panozzo2

1Computer Science, Florida State University, USA
2Courant Institute of Mathematical Sciences, New York Unversity, USA

Figure 1: We propose an automatic algorithm to convert a closed triangle mesh with complex features, e.g. high frequency (left) and sharp

features (right), into a pure hexahedral mesh with a bounded Hausdorff distance from the input.

Abstract

We propose an octree-based algorithm to tessellate the interior of a closed surface with hexahedral cells. The generated

hexahedral mesh (1) explicitly preserves sharp features of the original input, (2) has a maximal, user-controlled distance

deviation from the input surface, (3) is composed of elements with only positive scaled jacobians (measured by the eight corners

of a hex [SEK∗07]), and (4) does not have self-intersections.

We attempt to achieve these goals by proposing a novel pipeline to create an initial pure hexahedral mesh from an octree structure,

taking advantage of recent developments in the generation of locally injective 3D parametrizations to warp the octree boundary

to conform to the input surface. Sharp features in the input are bijectively mapped to poly-lines in the output and preserved by

the deformation, which takes advantage of a scaffold mesh to prevent local and global intersections.

The robustness of our technique is experimentally validated by batch processing a large collection of organic and CAD models,

without any manual cleanup or parameter tuning. All results including mesh data and statistics in the paper are provided in the

additional material. The open-source implementation will be made available online to foster further research in this direction.

1. Introduction

Hexahedral meshes are a popular volumetric discretization widely
used for solving partial differential equations in computer graphics
and engineering applications. They are favored over unstructured
meshes due to their support for higher-order spline constructions,
which are popular in the isogeometric analysis community [HCB05]
due to their slightly higher accuracy [SHG∗19]. They are also
one of the default mesh types used in many existing open-source
and commercial computer-aided engineering analysis packages,
e.g. PolyFEM [SDG∗19], FEniCS [ABH∗15], libMesh [KPSC06],
MFEM [cod], Deal.II [AAB∗18], ANSYS [ANS19], and ABAQUS
[ABA19].

However, the automatic generation of such meshes is a challeng-
ing problem, for which robust solutions are still elusive. Most recent
research efforts were spent in developing polycube or field-aligned
methods, which have the potential to generate high-quality meshes
with elements on the boundary nicely following sharp features. How-
ever, these algorithms cannot guarantee to produce an all-hex mesh,
they cannot ensure feature preservation, and often contain inverted
elements and globally intersected regions, requiring post-processing
steps. The lack of robustness and guarantees hinders their use in
automated analysis pipelines.

We introduce a new algorithm that attempts to produce a pure
hex-mesh without self-intersections and with positive scaled Jaco-

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

/ Feature Preserving Octree-Based Hexahedral Meshing

bians (measured by the eight corners of a hex [SEK∗07]), while
capturing both the high frequency features on organic shapes and
the sharp features on CAD models up to a user-specified geomet-
ric distance bound (Figure 1). Starting from a 3D, self-intersection
free, closed surface, our method first creates a pure hex-mesh that
has no inversions and intersections, and then deforms it to mini-
mize the distance to the input surface by taking advantage of recent
advancements in the generation of volumetric parametrizations. Lo-
cal self-intersections are prevented using a flip-avoiding deforma-
tion [RPPSH17], while global intersections are prevented using a
scaffold mesh [JSP17].

We generate an initial pure hex-mesh by revisiting classical results
in octree mesh generation, one of the oldest hex-meshing techniques,
that was originally introduced by [YS84], and is currently used
in commercial hexahedral meshing tools [Mes18, Bol18]. While
similarly relying on the adaptivity of an octree to use as few as
possible elements to roughly approximate the volume of the input,
we propose a simple yet effective algorithm to transform the octree
into a pure hex mesh based on the observation that the dual-mesh
of a non-conforming octree is conforming and made of a small set
of polyhedral types, which can always be merged together into an
adaptive and inversion-free pure hex mesh.

We then build a topologically bijective feature graph map between
the boundary of the hex-mesh and the input, and employ locally
injective volumetric deformations to align the features. During this
process, we introduce a novel variational padding technique to add
additional hexahedra to the mesh for better feature preservation.

For an input surface with annotated sharp features and a user-
specified distance bound, a feature-aligned hex-mesh can be robustly
generated by combining the two steps above. Since the edge length
of the final mesh is not necessarily related to the given distance
bound we aim to achieve, our algorithm iterates the two steps by
varying the target edge length until it meets the stopping criteria.

We experimentally show the robustness and effectiveness of our
method by batch-processing hundreds of models and producing
meshes that have fewer elements and with a higher minimal element
quality than a commercial, state of the art hexahedral meshing algo-
rithm [Mar09, Mar16], included in the software package [Mes18].

We attach a reference implementation of our algorithm, with
scripts to reproduce all results in the paper, in addition to the data
(input/output) for all figures and for our dataset composed of 202
shapes. Both the implementation and the dataset will be released in
the public domain to foster research in this area.

2. Related Work

We review the hex-meshing literature, with a focus on the space
partitioning methods which are closely related to our contribution.
We also review the literature in volumetric parametrization and
deformation, since they are used extensively in our algorithm.

Paving and Sweeping. The first generation of hex-meshing algo-
rithms was based on paving (i.e., inserting layers of cubes on a
quad mesh boundary) and sweeping (i.e., extruding a quad mesh
or a skeleton) [SJ08, GMD∗16, LMPS16]. While ideal to produce
high-quality elements in the vicinity of the boundary, the quality of

the generated elements is poor in the interior where the multiple ad-
vancing fronts meet. They also require a high-quality quad mesh to
start from and are extremely challenging to implement robustly due
to the large number of special cases to handle [San16]. In contrast,
our technique does not require a clean quad mesh or skeleton, it is
robust and fully automatic, and can handle complex sharp features.

Spatial Partitioning. A hex-mesh can be trivially created by vox-
elizing the interior of a closed surface: the denser is the vox-
elization, the closer the geometric approximation will be. Start-
ing from this regular lattice, many methods have been proposed
[SB95, Sch96, SLSK04, ZB06a, ZZM07a, ZZM07b] to either project
the vertices on the input surface or cut the elements intersecting it.
Care needs to be taken to avoid inverted elements and to ensure that
all the resulting elements will be hexahedra after the remeshing. The
most popular approaches in this group use adaptive spatial parti-
tioning to reduce the element count [SSW96, ZB06b, ISS09, Mar09,
QZ10, EPOM11, ZLX13, EE14, OSE17, Mar16], further increasing
the algorithmic complexity since adjacent octants will in general
not conform to each other. These methods propose multiple tem-
plates to subdivide the octants for conforming transitions, but only a
few [Mar09, Mar16] can robustly produce a hex-mesh for a clean
input without introducing other kinds of elements. Another long last-
ing difficulty for these approaches is to accurately capture features
on the input while maintaining the element quality satisfactory. Our
algorithm uses an octree as a starting point, but ensures a pure hex
output relying on a novel algorithm that uses its mesh dual (Section
3.2) and achieves feature preservation by warping the mesh using a
locally injective deformation (Section 3.5). We provide an extensive
comparison of our algorithm and the state-of-the-art, commercial
implementation of [Mar09,Mar16] available in MeshGems [Mes18]
in Section 4.

Polycube Deformation. A modern approach to hex-meshing uses
polycube domains, i.e. the union of a set of cubes, to define the
connectivity of the final mesh. In contrast with spatial partition-
ing, these methods strive to deform the surface, usually filled with
tetrahedra, to generate an axis-aligned polycube [GSZ11, LVS∗13,
HJS∗14, FXBH16, FBL16, LLWQ13, ZLL∗18]. After the deforma-
tion, the polycube (which is a hex mesh by definition) is optionally
subdivided and then mapped to the interior with the inverse of
the deformation applied to the surface. The advantages of these
methods is that they have superior singularity placement (assuming
that the polycube is a good fit), but they have higher geometri-
cal distortion, which can be ameliorated by an optional padding
step [GSZ11, CAS∗19], since they cannot introduce internal singu-
larities. These methods are not robust due to two major drawbacks:
(1) the volumetric deformation needs to exactly satisfy positional
constraints and be bijective, a difficult geometrical problem for
which no robust solutions currently exist [CSZ16] and (2) even if
the map is bijective in the continuous sense, an extremely dense hex
mesh might be required to avoid flips due to the piecewise-linear
discretization of the hex mesh [CSZ16]. Our method takes inspira-
tion from these approaches: we deform the dual of the octree mesh
to fit the surface, using a method to prevent flipped elements. In case
a solution could not be found by our parametrization algorithm, we
locally refine until the map is sufficiently dense to admit a solution
(Section 3.6). While we cannot prove that such a solution will al-

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

/ Feature Preserving Octree-Based Hexahedral Meshing

ways exist, we experimentally show that we are able to find one for
hundreds of real-world models.

Field-Aligned Parametrization. Directional fields [VCD∗16] have
been very successful for quad meshing applications [BLP∗12],
and have been recently introduced in volumetric meshing algo-
rithms [NRP11, HTWB11, LLX∗12, JHW∗14, SVB17, LZC∗18].
They are used to guide a Poisson-based volumetric parametrization,
which induces a hex-mesh if singularities are placed at integer loca-
tions and if the parametrization is locally injective [VCD∗16]. An
algorithm guaranteed to ensures these two properties is still elusive,
and currently heuristics method are used to obtain these conditions
in a weak sense [LBK16]. The robustness of these methods is not
sufficiently high for practical applications, despite the high quality
of the generated meshes when they succeed. Our approach produces
meshes with inferior singularity placement, but it can do it robustly
on hundred of models (Section 4).

Simplification and Quality Improvement. A large family of meth-
ods exist to simplify quad [DSSC08, DSC09a, DSC09b, TPC∗10,
BPP∗10] and hexahedral meshes, using sheets collapse operations
[BBS02, LS10] or altering the hexahedral duals [TK03, KLSO12].
The topological complexity can also be reduced using local oper-
ations [BLK11, TPP∗11, MPKZ10, GDC15, GPW∗17]. The geo-
metrical quality of a hex-mesh can also be improved relocating its
nodes without changing their connectivity [Knu00,Knu03,BDK∗03,
WSRRR∗12,RGRS14,RGRS∗15,LSVT15,XGC18]. All these meth-
ods are orthogonal to our contribution and could be used to post-
processing our meshes for specific applications.

Hex-Dominant Meshing. Given the challenges in constructing
hexahedral meshes with a high quality, low-element count, and
good topological structure, a new family of methods has been
introduced to generate hybrid meshes composed of a majority
of hexahedral elements, but allowing a few general polyhedra
[SRUL16, GJTP17]. These methods can robustly process complex
CAD models, reliably creating high-quality meshes. Unfortunately,
the use of these meshes requires the design of ad-hoc FEM meth-
ods [MKB∗08, Bis14, RL16, SDG∗18], which are not yet widely
used by the graphics and engineering community. Our algorithm
strives to fill the temporal gap needed for these hybrid approaches to
become mainstream, providing a similar robustness but generating
meshes that are directly usable in existing FEM pipelines.

Locally Injective Parametrization. The creation of discrete lo-
cally injective maps, i.e. parametrization without inverted ele-
ments, received a lot of attention in the last few years due to their
wide applicability in geometry processing problems. Two main ap-
proaches exist: methods based on minimizing flip-preventing ener-
gies [HG00,SSGH01,SCOGL02,DMK03,SKPSH13,APL14,PL14,
SS15, FLG15, KGL16, RPPSH17, SPSH∗17, ZBK17] or methods to
remove flips from existing discrete maps [Lip12, AL13, KABL15,
FL16]. Our method relies on a variant of [RPPSH17] to fit the bound-
ary of the hex mesh to the input surface and to add the padding
layers. We selected this method due to its favorable scalability prop-
erties and availability of an open-source implementation, but other
approaches could be used instead with minimal changes to our
algorithm.

3. Method

Given (a) a manifold, watertight triangle mesh with annotated
sharp features, (b) a small, user-specified tolerance ε, and (c) a
desired edge length l, our algorithm attempts to produce an all-
hexahedral mesh with the following properties: (1) the mesh has no
non-manifold configurations, (2) all elements have positive scaled
Jacobian [SEK∗07], i.e. the Jacobian measured at the eight corners
of a hexahedron are all positive, (3) its boundary is within ε distance
from the input mesh, and (4) the boundary of the mesh has no self-
intersections. We call a hex mesh satisfying these four properties
valid.

Our fundamental principle of tackling this problem is to achieve
the validity requirements one by one, and once a property is satisfied,
it will never leave the valid space. For example, when we generate
a manifold hex-mesh with only elements with positive scaled Jaco-
bian (Sections 3.1-3.4), then its manifoldness and positive scaled
Jacobian will be maintained throughout the deformation process for
feature conforming. During the generation of the initial mesh, we
also construct a scaffold [JSP17] surrounding that mesh to prevent
any intersections from happening to our mesh throughout the rest of
the pipeline. The feature alignment and geometric fidelity to the in-
put are enforced by first constructing a topologically correct feature
map, and then deforming the mesh to match the input using a locally
injective volumetric parametrization (Section 3.5). Adaptive mesh
refinement and padding is performed until the ε bound is satisfied
(Section 3.6).

Pipeline. Figure 2 illustrates our pipeline in 2D. Starting from a
closed, manifold triangular mesh that defines the domain to be
meshed, we create an adaptive octree, with higher density in regions
containing small geometric features (Section 3.1). The octree is then
converted into a pure hexahedral mesh by computing its geometric
dual and splitting/merging the non-hex cells (Section 3.2). At this
step, we segment the mesh into inside and outside and treat the
outside mesh as a scaffold mesh. The sharp features on the input
mesh are then topologically mapped to the boundary of the hex
mesh (Section 3.3), and both the mesh and the scaffold are padded
both on the surface and around sharp features (Section 3.4). Finally,
the hexahedral mesh is deformed using a locally injective map to
match the geometry of the input surface (Section 3.5). Additional
refinement might be necessary to ensure the topological bijective
feature mapping (Section 3.3) or to satisfy the ε distance bound
(Section 3.6).

3.1. Octree Generation

We construct an adaptive octree covering the input surface domain,
with the maximum edge length not exceeding the target edge length
l. Starting from the bounding box of the input, we recursively split
its cells if their boundary intersects the input surface, or if they
contain a vertex of the input mesh. To ensure a conforming pure
hex-mesh with a “smooth” size transition, we also force additional
splits to ensure (1) balancing, i.e. the difference between any two
neighboring octants is less than or equal to one, and (2) pairing, i.e.
if an octant’s child has been split, then its siblings having the same
octant as their parent should be split as well [Mar09].

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

/ Feature Preserving Octree-Based Hexahedral Meshing

Figure 2: 2D illustration of our algorithm. Top row: adaptive quadtree constructed from the input, dual of the quadtree, and quadrilateral

(quad-) mesh and scaffold mesh after splitting all cells. Bottom row: feature topological matching, padding of both the target mesh and the

scaffold, mesh deformation to fit the input, and the output pure quad-mesh.

3.2. Conversion to a Pure Hexahedral Mesh

Differences from [Mar09, Mar16]. The constructed octree can be
viewed either as a non-conforming hex-mesh, with hanging nodes
between adjacent octants with different sizes, or as a conforming
hybrid mesh, composed of general polyhedral elements. The first
point of view led to a wide array of techniques to explicitly split
the cells containing hanging nodes into an all-hex mesh [SB95,
ZB06a, Mar09, ISS09, Mar16]. Our construction takes advantage
of the second point of view, i.e. it considers the octree structure
as a hybrid mesh, and exploits the fact that its dual is a different
hybrid mesh composed predominantly of hexahedral cells, based on
which we introduce an easy all-hex hex-mesh conversion scheme as
described below.

Our Approach. We first discuss the 2D case, i.e. the conversion of
a quadtree into an all-quad mesh M, and then show how to extend
this construction to an octree.

2D. Thanks to the balancing rule, triangles in the dual quadtree are
hanging nodes in the quadtree (Figure 3, left). Due to the pairing
rule we used in the quadtree construction (Section 3.1) hanging
nodes on the same axis always appear in pairs, and each pair of
triangles form a trapezoid (Figure 3, left). Trapezoids are always
isolated from each other, i.e. all the elements around them are quads.
We can transform each trapezoid into a set of quads by splitting
the interior quad with two additional vertices (Figure 3, right). This
operation is purely local: since it does not modify the boundary and
there is no propagation to other regions of the mesh. By executing
this local operation on all trapezoids in the dual quadtree mesh, we
obtain a pure quad mesh (Figure 2, top-right).

3D. Similarly, hanging nodes in an octree create pyramids in the
dual octree (Figure 4, left). Thanks to the pairing rule we used in the
octree construction (Section 3.1), four hanging nodes on the same
plane always appear at the same time, forming a special configura-
tion containing 4 pyramids, 1 cube, and 4 triangular prisms which
we call a 3D frustum (Figure 4, middle). The 3D frustum can be
turned into a pure hex mesh composed of 13 hexahedra by adding
12 vertices, and reconnecting them into the configuration depicted
in Figure 4, right. Differently from the 2D case, the nodes have to be
inserted in the boundary, creating polyhedral cells around the split-
ted frustum. Surprisingly, there are only three types of polyhedral

Figure 3: The dual of a hanging node is a triangle. Triangles always

appear in pairs with a quad in-between: we call this configuration

a trapezoid (left, light blue). A trapezoid can be decomposed into a

set of pure quads with a local splitting rule (right).

Figure 4: The dual of a hanging node is a pyramid (left), and

pyramids always appears in group of four (middle) due to the octree

balancing rules. We call this configuration a 3D frustum. We convert

each frustum into a collection of hexahedral elements by applying

the splitting rule depicted on the right.

elements that are generated after splitting all 3D frustums with the
previous pattern: the polyhedra sandwitched between two frustums
at the same octree level (Figure 5, top row), and those touching
frustums of different levels (Figure 5, middle and bottom rows).
By applying the corresponding splitting rule to each polyhedra as
illustrated in Figure 5, we obtain a pure hexahedral mesh.

3.3. Feature Matching

We assume that the input surface is equipped with sharp features,
each of which is defined as a collection of edges, when this infor-
mation is missing, the input is regarded as an organic model with
no sharp features. For the meshes in our CAD dataset, we extracted

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

/ Feature Preserving Octree-Based Hexahedral Meshing

Figure 5: Splitting rule for polyhedral elements touching two frus-

tums at the same level (top). The remaining polyhedral elements are

split with the two rules in the middle and bottom rows.

Figure 6: Features are bijectively transferred from the input (left)

onto the hex-mesh after all-hex conversion (middle and right).

the sharp features automatically using a dihedral angle threshold of
140 degrees, and then manually fix them if some features are missed
or incomplete. The sharp feature annotations are provided in the
additional material.

Partitioning. As shown in Figure 6 (left), the annotations induce a
partitioning of the input surface into feature corners (where sharp
turn happens on feature lines), lines (collection of segments), and
patches (collection of connected triangles enclosed by feature lines).
Our goal is to transfer all these entities onto the surface of the all-hex
mesh generated in Section 3.2 (Figure 6 right).

The partitioning might contain invalid corner configurations that
either are impossible to represent with an octree mesh (valence
higher than 6) or will lead to very high geometric distortion (angles
smaller than 30 degrees). We detect these configurations in the
input annotations and tag them as invalid: our algorithm will still
ensure validity (positive scaled Jacobian, within an ε distance from

Figure 7: To transfer a feature we first map its two endpoints (left),

sample and map the feature itself to build a distance field (mid-

dle), and finally trace the line on the target domain using weighted

Dijkstra (right).

the input, and free of self-intersections) of the mesh around these
regions, but it will not enforce exact representation of these features.

Transfer. The transfer of the features onto the surface of the hex-
mesh could be solved by computing a bijective map between the
source triangle mesh and the target quad-mesh, i.e. the boundary of
the hex-mesh. Despite the recent advancements in cross parametriza-
tion techniques [SAPH04, KS04, APL14, APL15], a solution that
supports arbitrary constraints, minimizes distortion, works robustly
on hundreds of (possibly low quality) surface meshes, and ensures
that the bilinear map of every mapped quad has positive Jacobian
is still elusive. The last point is particularly important and specific
for our setting, since it is required to ensure that the corresponding
hex elements have positive scaled Jacobian. We propose a robust
technique to achieve a bijective feature map by first topologically
transferring the feature corners, lines, and regions (this section), and
then computing their geometry with a bijective spatial deformation
(Section 3.5).

We initially map every feature corner to the closest (spatially)
vertex of the quad-mesh. We then map the feature lines sequentially,
using the following procedure: (1) sample uniformly each feature
lines on the input mesh (using l/2 as sampling distance) and map
all the samples to the closest point on the edges of the quad mesh
(Figure 7, middle), (2) define a distance field on the quad mesh,
assigning to every vertex the distance to the closest mapped sample,
and (3) we trace the feature line using Dijkstra’s algorithm, using
the distance field as weight (Figure 7, right). Every time a feature
line is added, we consider it as a cut for subsequent feature tracing,
ensuring that no intersections can be introduced.

With the corners and curves being bijectively mapped, we extract
the patches segmented by the feature graph for both the input and
the quad mesh. For each patch, we search for its correspondence
by comparing the composed nodes and curves. Furthermore, for
the found patch in the quad-mesh, we perform again the search to
make sure the corresponding patch in the input is the same one,
ensuring the bijectivity of patches: every patch of the input has a
correspondence in the quad mesh and vice versa.

Bijective Map. A bijective map will not exist if the topology of
the source and target domain is different or if the resolution of the
target domain is insufficient. We address both cases with an adaptive
refinement strategy. If the topology of the two domains is different,
we split all the octree cells that intersect the patch in the input and
repeat the procedure. If Dijkstra’s algorithm fails to find a path, we

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

/ Feature Preserving Octree-Based Hexahedral Meshing

split all the octree cells that are intersecting the corresponding input
feature line. While this procedure will eventually lead to a valid
solution (since due to our balancing rules, the splits will propagate,
increasing the resolution of the entire octree), it might introduce a
lot of unnecessary elements. In practice, we found it to be effective
and always succeed in only 1 or 2 iterations.

Remark on Feature Annotation. For many meshes converted
from the CAD format, our simple, angle-based thresholding is suf-
ficient to identify features. However, there are occasional issues
mostly due to problems during the meshing fo the CAD surfaces
which may require manual edit to correctly capture the feature lines.
The most common cases are (1) features that are incomplete (for
example, a ring which misses only one edge), (2) missing small
features, and (3) spurious features that are geometrically close to
real ones. In these cases, we manually fix them with an annotation
tool that allows to add/remove triangle edges to the feature list.

3.4. Variational Padding and Untangling

The singularity distribution in the hexahedral mesh depends only
on the octree adaptivity: it might be impossible to represent sharp
features well without inserting additional singularities to compen-
sate the geometric distortions to align the features and the input
surface (Section 3.5). We propose to insert additional hex-mesh
layers, introducing more singularities, around the surface and sharp
features to alleviate such problem.

The challenge of adding additional hex elements remains in topo-
logically maintaining the conformity between adjacent elements
and geometrically preventing the newly inserted elements from in-
version. This has been a notoriously difficult problem remaining
unsolved [Mar16], since the insertion of new hex layers could be
adjacent to an arbitrarily complicated surface. This essentially is
equivalent to the unsolved untangling problem in 3D [Knu00].

Existing approaches tackle the geometric positioning of the new
vertices by either simply extruding the surface along normal direc-
tion [SB95] or classifying the procedure into different configura-
tions where each is handled by a mixture of complicated strate-
gies [Mar16]. We propose a simple, general, and empirically ro-
bust solution by first, connectivity-wise, correctly inserting the
new hex elements around the feature regions, and then comput-
ing a valid embedding using a variant of the algorithm proposed
in [FL16, PTH∗17], to untangle inversions presented in the hex-
mesh.

Topological Padding. We distinguish features in a 3D model into
two types: soft features that can be approximated by increasing
the discretization resolution, e.g. the light red smooth curve in Fig-
ure 8, and hard features that have to be explicitly captured where
refinement cannot help, e.g. the red straight line in Figure 9.

Soft features correspond to high frequency features that introduce
concave regions. They are difficult for an underlining mesh reso-
lution to capture, since the mesh has to be inversion-free limiting
the space for positioning vertices. Figure 8 illustrates our solution
in 2D. Given a mesh and a feature curve, an element (grey, Figure
8 left) with a concave corner is introduced in order to capture the
concave part of the curve. By offsetting the polyline corresponding

Figure 8: A smooth curve (light red) is captured by a polyline (i.e.

a set of red edges) of the mesh where a flipped element is introduced

(left). Since the polyline partition the mesh into our target mesh

(green) and the scaffold mesh (grey), by creating two padding layers

around the polyline through offsetting it inward and outward, more

degrees of freedom are given and the inverted element can be easily

resolved.

Figure 9: Left: a degenerate element (blue) in 2D on a straight line

feature (red) can be easily cured by inserting a ring of quads along

the boundary of the degenerate element. Right: similarly, through

the insertion of a layer of hexahedra along the boundary of those

elements, the straight line feature can be precisely captured without

introducing degenerates.

to the feature (red, Figure 8 middle) to both sides (gray and green,
Figure 8 middle) and connecting the corresponding vertices, the
vertices near the concave region have more freedom to recover from
the inversions (Figure 8 right). In 3D, this operation corresponds to
offsetting the closed surface both inside and outside. We apply this
strategy to all the models in our test, greatly reducing the need for
refinement to satisfy the distance bound (Section 4).

Sharp features are points, curves, and surfaces that the user want
to preserve precisely. An element on a sharp feature may degenerate
when two or more of its edges are topologically labeled as features
(blue, Figure 9 left). We resolve this issue by localizing the insertion
to a small region. As illustrated in 2D in Figure 9 left, we can identify
the degenerate quad element (blue) and insert a ring of elements
by offsetting the boundary polyline of this quad element inward
and connecting the corresponding vertices (Figure 9 second-left).
This is equivalent to identifying
the degenerate hex elements in 3D
(Figure 9 second-right) and offset-
ting the boundary surface of the lo-
cal mesh composing of those hex
elements inwards (Figure 9 right
shows the bottom part of the mesh after offsetting). To reduce the
distortion, the degenerate region is expanded by adding one ring of
elements. The inset shows such an example in 2D.

Untangling. After topologically inserting new elements, the hex-
mesh may contain inversions. We isolate the inverted elements as
local regions, expand the local regions by two rings of hex elements

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

/ Feature Preserving Octree-Based Hexahedral Meshing

for efficiency, and optimize the hex-mesh composed by these regions
only. The challenge in our setting is that the mesh we wish to opti-
mize is composed of hexahedra instead of tetrahedra. We propose
a novel formulation combining the stitching idea [FL16] with the
distortion energy introduced in [GPW∗17]. The resulting energy can
be efficiently minimized using the solver proposed in [RPPSH17],
to obtain a general and effective mechanism to pad hex meshes.

Distortion Energy Term. To measure the distortion of the hex
elements, we use the energy proposed in [GPW∗17], which we
summarize here to make the paper self-contained. We measure the
distortion Dh(V) (V is a matrix storing the vertex positions of the
entire mesh) of each hexahedron h as the sum of the distortions of
its decomposition into eight tetrahedra t, one for each corner:

ED(V) = ∑
h∈H

Dh(V) = ∑
h∈H

∑
t∈h

Dt(V) (1)

Dt(V) = ||Jt(V)||2F + ||J−1
t (V)||2F

where H is the set of all hexahedra, and Jt is the Jacobian of the
transformation of the tetrahedron t from its rest shape which is an
ideal tetrahedron of the same volume as t. The difference between
the current and ideal tetrahedron Dt(V) is measured with the sym-
metric Dirichlet energy [SS15]. We require the ideal shape to be a
right-angled tetrahedron: we compute the target shape as the tetra-
hedron of the corresponding corner of a cube, which has the same
volume as h.

Stitching Energy Term. Initially, all the hex elements are dissem-
bled into independent cubes and therefore, all the vertices except
those on the boundary have multiple copies. This term encourages
the multiple copies of each vertex to move into the same position,
allowing us to merge them into a single vertex. We define a cluster c

for each set of vertices that needs to be merged, and add a quadratic
penalty term that encourages each cluster to contract:

ES(V) = ∑
c∈C

∑
p∈c

(‖ p(V)−
1
|c| ∑

p∈c

p(V) ‖2
2) (2)

where c is a vertex clusters, and p is the position of one of the
vertices in the cluster. Ideally, we would like ES to be exactly zero,
in practice we try to collapse each cluster after every optimization
iteration, and we accept the merge if it does not introduce elements
with negative Jacobian.

Solver. The geometry of the local regions (the vertices of the subset
of the mesh are denoted as V′) is optimized by minimizing the
following energy:

EF (V
′) = ED(V

′)+λSES(V
′), (3)

where the weighting strategy is adapted from [FL16] to set as
λ

update
S = min(λmin ∗max(λS

ED

ES
,1),λmax) with λS = 1 as the ini-

tialization, λmin = 104 and λmax = 1016.

Since our input is dissembled into a hex mesh consisting of valid
hex elements only (i.e., all scaled Jacobians are positive), we use the
SLIM solver [RPPSH17] to minimize the energies, which employs
the flip-avoiding line search [SS15] to avoid flips on the 8 corner
tetrahedra. Figure 10 demonstrates a 3D example by applying our
algorithm on a pyramid.

Figure 10: Given a mesh containing inverted hexahedra (left), our

untangling technique initializes an independent cube to each hex-

hedron (middle), and stitches them back while maintaining the

inversion-free property of the mesh (right).

3.5. Geometric Fitting

The hexahedral mesh is finally deformed to minimize the distance
between its boundary and the input triangular mesh. This is achieved
by computing a locally injective map, similarly to how we insert the
padding, but with an additional set of energy terms encouraging the
feature corners, lines, and patches on both meshes to align.

Feature Preservation. The feature is aligned by applying the energy
term EB(V) proposed in [GPW∗17]:

EB(V) = ∑
p∈corner

||p(V)− p̃||2 + ∑
p∈line

||p(V)− p̃−al
~dl ||

2 (4)

+ ∑
p∈M

||~n · (p(V)− p̃)||2

where p̃ is the closest surface position for each boundary vertex, ~dl

is the feature line tangent at p̃, al is an auxiliary variable added to
the system for feature line constraints, and~n is the normal at vertex
p̃.

Note that, while all the features are topologically captured for
all of our results, we do not enforce the preservation of the corner
formed by two connecting feature curves if its angle is <30 degrees.
This avoids close to degenerate hexahedra to be introduced close
to these regions. If exact preservation is required, this additional
filtering can be disabled, but this will consistently introduce badly
shaped elements close to these corners.

Fitting Energy. The final mesh is computed by minimizing the
following energy:

E(V) = ED(V)+λBEB(V), (5)

where the same weighting strategy is used by setting as λ
update
B =

min(λmin ∗max(λB
ED

EB
,1),λmax) with λB = 50 at the beginning.

Remark on Scaffolding. As done in [JSP17], the outer boundary of
the scaffold mesh should be fixed to guarantee that both the scaffold
and the target meshes contain no self-intersections during defor-
mation, however, we experimentally found that letting the scaffold
freely deform in 3D leads to a much easier and faster convergence
of the geometric fitting to satisfy the feature alignment and the Haus-
dorff distance bound. Therefore, we freeze the scaffold boundary
only when we detect self-intersections which never happens for all
of our experiments.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

/ Feature Preserving Octree-Based Hexahedral Meshing

Figure 11: The same model is meshed using ε = 0.5, 0.2,0.15, 0.1, 0.05, 0.005, and 0.001 respectively. The corresponding ratios of the

number of singular edges to all edges for the meshes are 140/1037, 944/4738, 1093/5891, 2616/15449, 2657/14989, 18454/99983, and

37380/207646, respectively.

0 50k 100k 150k 200k 250k 300k 350k

0

200

400

600

800

1000

1200

CAD

Smooth

Number of Hexahedral Elements

R
u
n
n
in

g
 T

im
e
 (

m
in

u
te

s
)

Figure 12: The running time (vertical axis) of our algorithm is

mostly dependent on the size of the output mesh (horizontal axis).

3.6. Stopping Criteria

We minimize the energy for at most 30 minimization iterations (Eq.
5), and we stop earlier if two conditions are satisfied: (1) the mesh
is within the user-specified ε maximum Hausdorff distance bound,
and (2) the change of the average surface deviation from the input,
measured using Metro [CRS03], between two consecutive iterations
is small enough (default is 1%). While the first condition provides
the geometric fidelity, the second ensures the geometric smoothness
of the mesh on the boundary. Typically, the geometry of the mesh
will become stable and smooth when the energy in Eq. 5 reaches a
local minimum. While our optimization greatly reduces the energy in
the first few iterations and the geometry is already smooth enough,
it may require many iterations for the energy to reach the local
minimum, we use the direct measure of the change of the surface

geometry instead, i.e. condition (2), to stop the optimization earlier.
If both conditions are satisfied (checked using [CRS03]), we output
the resulting mesh. Otherwise, we force a split on the octree cells
that intersects hexes outside the ε bound and repeat the procedure
from Section 3.2.

The number of required splits is highly correlated with the user
parameters l and ε. A smaller l reduces the chances of breaking the
bound, but increases the overall mesh density, and similarly a larger
ε reduces the chances of breaking the bound, but leads to meshes
with a higher geometric difference from the input. Figure 11 shows

Figure 13: Models with high frequency features.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

/ Feature Preserving Octree-Based Hexahedral Meshing

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5

MSJ Marechal 2016 (CAD)

MSJ Marechal 2016 (Smooth)

MSJ Ours (CAD)

MSJ Ours (Smooth)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.7 0.75 0.8 0.85 0.9 0.95 1

ASJ Marechal 2016 (CAD)

ASJ Marechal 2016 (Smooth)

ASJ Ours (CAD)

ASJ Ours (Smooth)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

HR Marechal 2016 (CAD)

HR Marechal 2016 (Smooth)

HR Ours (CAD)

HR Ours (Smooth)

0

0.01

0.02

0.03

0.04

0.05

0.06

0 100k 200k 300k 400k 500k 600k 700k 800k

#H Marechal 2016 (CAD)

#H Marechal 2016 (Smooth)

#H Ours (CAD)

#H Ours (Smooth)

Figure 14: Histograms for both our methods and [Mes18] over the

entire datasets of: Minimum Scaled Jacobian (MSJ, top), Average

Scaled Jacobian (ASJ, second top), Hausdorff distance ratio wrt the

bounding box diagonal (HR, second bottom), and Hex count (#H,

bottom).

the effect of ε. As shown in the figure, the ratio of the number of
singular edges to the number of all the edges in the mesh is not
obviously correlated. We found this parameter much simpler to use
than competing alternatives available in commercial software, where
the maximal tree refinement or the desired number of elements are
used.

Figure 15: Hex-meshes are generated from MeshGem [Mes18] (left

column), by subdividing one tetrahedron into four hexes from a tet-

mesh (middle column), and our approach (right column). Different

visualizations of the hex-meshes are shown: the global structure

(top row), cutting through of the interior (middle row), and the entire

global structure with transparency.

4. Results

We tested our single thread implementation on cluster nodes with 2
Xeon E5-2690v4 2.6GHz CPUs and 250GB memory, running 4 pro-
cesses in parallel on each node, each with 60Gb of reserved memory.
All experiments used l = b

26 (b is the longest side of the bounding
box) and the same Hausdorff distance bound of ε = 0.005d (d is the
diagonal of the bounding box). The reference implementation used
in the experiments and scripts to reproduce all results are included
in the additional material.

Robustness Testing. We tested our algorithm on two benchmarks.
The first is a dataset containing all the 93 organic models intro-
duced in [FBL16]. The second is a new dataset of CAD models
with manually annotated sharp features: the dataset was created by
selecting and manually annotating 109 CAD models from [FBL16]

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

/ Feature Preserving Octree-Based Hexahedral Meshing

Figure 16: Sample models in our dataset.

(13 models) and from [Dre18] (96 models). The manual annotations
are created using a combination of manual editing and automatic de-
tection via dihedral angle thresholding. Our algorithm successfully
meshed both datasets. A sampler of our results is shown in Figure
16. In addition, Figure 13 demonstrates that our algorithm works
well for models with high-frequency features. The input data (obj
format), together with the annotations (fgraph format) and the out-
puts (vtk and mesh format) are available in the additional material
for further inspection. The timings for our method are reported in
Figure 12 which demonstrates that the running time is growing ap-
proximately linearly with the number of hexahedral elements in the
output mesh. To statistically measure the feature preservation of our
method, for each model, we compute the error as the ratio between
the deviation of corners, curves, and patches independently from
the resulting mesh to the original input and the diagonal length of
the model. Over the entire dataset, we achieved feature preservation
with errors (Min/Average/Max): 0/7.06× 10−5/9.56× 10−4 for
corners, 3.98× 10−10/2.11× 10−4/1.13× 10−3 for curves, and
5.35×10−5/6.11×10−4/3.5×10−3 for patches.

Comparison with Octree Methods. We compared our results
against the implementation of [Mar09, Mar16] available in
MeshGem-Hexa [Mes18], a state-of-the art, commercial hex-mesher.
We use it to process the entire dataset and compare it with ours (using
default parameters for both methods). We report aggregated statis-
tics for both methods in Figure 14. We also show a representative
visual comparison in Figure 17, and attach all the results in both the
vtk and mesh formats for further inspection. Our method produces
results with a minimal scaled Jacobian considerably higher than
MeshGem for both smooth and CAD models (Figure 14, top). The
averaged scaled Jacobian is similar for both methods (Figure 14,
middle): it is interesting to note that while our method distributes the
distortion more evenly, MeshGem favors perfect elements, produc-
ing an average quality close to 1 (ideal) for a few models. MeshGem
does not explicitly control the geometric approximation error, ob-
taining meshes with a high variance in Hausdorff distance to the
input (Figure 14, bottom), while our method keeps it bounded, pro-
ducing meshes with a distance that is always smaller than ε (0.5% of
the bounding box in our experiments). On the other hand, MeshGem

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

/ Feature Preserving Octree-Based Hexahedral Meshing

Figure 17: Comparison between meshes generated by MeshGem Hexa (middle) and our algorithm (right). The input triangle mesh is shown

on the left.

produces meshes in seconds, while our approach can cost as many
as more than 20 hours for a mesh with complex features (Figure 12,
the dot at up-right corner).

Structure Irregularity. One of the big differences of a hex-mesh
from a tet-mesh is its tensor-product nature which can be used to
construct high-order splines. From irregular edges, a hex-mesh can
be decomposed into cuboid blocks, the number of which is largely
determined by the number of irregular edges and the connections
between them. Figure 15 (top) shows the decomposed blocks for
hex-meshes created by MeshGem, a direct one to four subdivision
method of a tet-mesh, and our method, respectively. Their corre-
sponding number of singular edges (number of all the edges) are
8270/143404, 3157/13637, and 4498/34528, where the ratio of the
mesh by the direct tet decomposition is the largest. Their correspond-
ing scaled Jacobians (MSJ/ASJ) are 0.180/0.844, 0.003/0.254, and
0.164/0.7667, where the quality of the mesh by the direct tet decom-
position is the worst. As shown in Figure 15 (bottom), since both
MeshGem and our methods are octree-based, it is not surprising

that the resulting hex-meshes have similar patterns. However, since
our method generates a coarser resolution for the same model than
MeshGem, as a result, the structure of our mesh is much simpler.
Compared to the hex-mesh from the direct subdivision of a tet-mesh,
the octree structure is much simpler (Figure 15, middle row).

5. Conclusion

We introduced a fully automatic algorithm to generate hexahedral
meshes conforming to the sharp features of the input, manifold,
with positive scaled Jacobian, and without self-intersections on their
boundary. The robustness of our approach has been experimentally
verified by batch processing hundreds of models including both
CAD and organic shapes.

Our technique has three main limitations: (1) it has a large mem-
ory footprint, (2) it has long running times, and (3) it only produce
meshes with positive scaled Jacobians, i.e. the eight tetrahedra cre-
ated at the corners of each hex have positive area.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

/ Feature Preserving Octree-Based Hexahedral Meshing

Table 1: Statistics of the input and output meshes of the models shown in the paper. #V/#H stands for the vertex and hex element numbers, ASJ

and MSJ are the average and minimum scaled Jacobian. Std. is the standard deviation of the distribution of scaled Jacobians (in percentage)

of all elements in a mesh. HR indicates the Hausdorff distance. Please refer to the supplemental document for the statistics of all models we

have experimented with.

Models [Mar09, Mar16, Mes18] Ours

#V/#H MSJ/ASJ/Std. HR(%) Time (m) #V/#H MSJ/ASJ/Std. HR(%) Time (m)

3-octa-flower (Fig. 17) 854616/743861 0.008/0.786/0.032 1.07 0.48 20379/16616 0.045/0.738/0.041 0.48 35.90
anc101 (Fig. 16) 154675/135982 0.017/0.797/0.044 0.54 0.02 212847/188886 0.094/0.865/0.027 0.30 772.76

aries155_1 (Fig. 16) 85030/73878 0.030/0.892/0.029 0.82 0.07 27548/22547 0.092/0.813/0.031 0.36 76.13
armadillo (Fig. 13) — — — — 72728/60340 0.159/0.779/0.023 0.49 320.97

bimba (Fig. 13) — — — — 63679/55035 0.056/0.792/0.026 0.49 168.90
block (Fig. 16) 53985/47282 0.071/0.914/0.025 0.48 0.37 11517/9343 0.177/0.797/0.032 0.41 60.73

cheese 4 (Fig. 1) 644766/552706 0.009/0.778/0.046 0.22 0.56 103152/78245 0.142/0.717/0.033 0.45 106.26
chinese_lion (Fig. 13) 196616/174268 0.023/0.810/0.030 1.05 0.13 69278/59102 0.266/0.797/0.024 0.46 137.42

coverrear (Fig. 16) 104071/92084 0.015/0.846/0.039 0.40 0.11 38136/32116 0.134/0.781/0.037 0.25 80.95
dancer (Fig. 11) 49810/40947 0.019/0.816/0.026 0.52 0.05 37679/30958 0.193/0.807/0.022 0.45 110.37
david (Fig. 13) 506449/458518 0.015/0.804/0.033 0.75 0.28 127778/112314 0.126/0.795/0.026 0.49 647.77
dilo (Fig. 16) 100110/84977 0.0173/0.798/0.029 0.85 0.08 32637/26553 0.100/0.791/0.022 0.42 89.61
dino (Fig. 17) 115189/98515 0.020/0.796/0.028 0.59 0.08 35471/29065 0.248/0.777/0.022 0.43 166.39

elephant (Fig. 16) 130971/113341 0.048/0.799/0.029 0.70 0.10 38805/31642 0.232/0.781/0.021 0.48 104.84
gargoyle (Fig. 1) — — — — 157008/135737 0.070/0.785/0.025 0.48 634.22
hanger (Fig. 16) 54027/44863 0.025/0.851/0.031 0.50 0.10 33002/26918 0.155/0.828/0.028 0.23 25.60
holes10 (Fig. 16) 214268/186549 0.009/0.843/0.037 0.67 0.23 138138/115987 0.110/0.813/0.031 0.01 70.58

lion_recon (Fig. 16) 185901/161870 0.078/0.796/0.029 0.80 0.12 134140/115245 0.179/0.789/0.025 0.46 312.60
red_circular_box (Fig. 17) 864366/786129 0.017/0.805/0.032 0.67 0.50 409011/367583 0.216/0.817/0.027 0.29 1193.77

sculpture (Fig. 17) 353541/307789 0.011/0.787/0.037 0.23 0.23 19068/15202 0.104/0.759/0.036 0.16 13.76
wooden_fish (Fig. 16) 178530/153458 0.014/0.801/0.029 0.54 0.12 61284/50616 0.276/0.798/0.023 0.45 229.09

0.6 10.2 0.2

99

412

244

632

Fertility Deckel
0

100

200

300

400

500

600
Octree conversion

Feature matching

Padding and untangling

Geometric fitting

Figure 18: Timings of one iteration of the four steps of our pipeline

on an organic model and a CAD model. The vertical axis denotes

the time in seconds.

Figure 18 shows the breakdown of timings of one iteration of our
pipeline on an organic model and a CAD model, respectively. For
the four steps of our pipeline, both the padding and untangling, and
geometric fitting steps dominant the timing since they both involve
nonlinear global optimization. Similar breakdown statistics applies
for the memory usage, where the peak memory for the first two
steps and the last two steps are respectively the same, and it is 10
times larger of the last two steps than the first two steps.

The memory limitation could be ameliorated by computing the
final deformation on subsets of the mesh, or by replacing SLIM with
a localized optimization, which has a smaller memory requirement.
The timing limitation is due to the use of locally injective volumetric
parametrization on large meshes, and will likely become less rele-
vant as more advanced parametrization algorithms are discovered.

The third limitation is more critical: having a positive scaled
Jacobian is a necessary, but not sufficient, condition to ensure a
bijective geometric map, e.g. the tri-linear map [JWR17], and in-
deed in 5 meshes in our results (out of 202) we have problematic
elements. Luckily, for these five meshes, there is only one non-
bijective element per model and is on the boundary which can
be simply discarded to obtain a valid mesh. While these inverted
elements are not a problem for solving Poisson problems, it pre-
vents using these meshes for other PDEs like non-linear elastic-
ity. This is a limitation shared with most recent hexahedral mesh-
ing and improvement methods [Knu00, Knu03, BDK∗03, Mar09,
GSZ11,NRP11,HTWB11,LLX∗12,WSRRR∗12,JHW∗14,LVS∗13,
HJS∗14,RGRS14,RGRS∗15,LSVT15,GMD∗16,GDC15,LMPS16,
Mar16, FXBH16, FBL16, LBK16, GPW∗17, CAS∗19] and we be-
lieve is an important direction to find a way to integrate conservative
inversion checks such as [Zha19] into a mesh optimization frame-
work.

We believe that our technique will have a large impact in the
research community, since it will allow to automatically generate
hundreds of coarse, feature-preserving hexahedral meshes, provid-
ing a complete pipeline for generating IsoGeometric Aanalysis
preferable hex-meshes by coupling it with [GPW∗17], opening
the door to black-box finite element analysis pipelines on hexa-

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

/ Feature Preserving Octree-Based Hexahedral Meshing

hedral meshes and allowing statistically significant comparisons
between different types of meshes in graphics and engineering ap-
plications [SHG∗19].

Acknowdgement

We thank Jérémie Dumas, Yixin Hu, Zhongshi Jiang, and Teseo
Schneider for valuable discussion, suggestion, and helping with
some initial experiments. This work was partially supported by the
First Year Assistant Professor Funding 043525 from Florida State
University. This work was supported in part through the NYU IT
High Performance Computing resources, services, and staff exper-
tise. This work was partially supported by the NSF CAREER award
under Grant No. 1652515, the NSF grant OAC-1835712, the NSF
grant DMS-1436591, a gift from Adobe Research, and a gift from
nTopology.

References

[AAB∗18] ALZETTA G., ARNDT D., BANGERTH W., BODDU V.,
BRANDS B., DAVYDOV D., GASSMOELLER R., HEISTER T., HELTAI

L., KORMANN K., KRONBICHLER M., MAIER M., PELTERET J.-P.,
TURCKSIN B., WELLS D.: The deal.II library, version 9.0. Journal

of Numerical Mathematics 26, 4 (2018), 173–183. 1

[ABA19] ABAQUS INC.: Abaqus FEA. http://www.simulia.

com, 2019. 1

[ABH∗15] ALNÆS M. S., BLECHTA J., HAKE J., JOHANSSON A.,
KEHLET B., LOGG A., RICHARDSON C., RING J., ROGNES M. E.,
WELLS G. N.: The FEniCS project version 1.5. Archive of Numerical

Software 3, 100 (2015). 1

[AL13] AIGERMAN N., LIPMAN Y.: Injective and bounded distortion
mappings in 3d. ACM Trans. Graph. 32, 4 (July 2013), 106:1–106:14. 3

[ANS19] ANSYS INC.: ANSYS R©. https://www.ansys.com/,
2019. 1

[APL14] AIGERMAN N., PORANNE R., LIPMAN Y.: Lifted bijections
for low distortion surface mappings. ACM Trans. Graph. 33, 4 (2014),
69:1–69:12. 3, 5

[APL15] AIGERMAN N., PORANNE R., LIPMAN Y.: Seamless surface
mappings. ACM Trans. Graph. 34, 4 (July 2015), 72:1–72:13. 5

[BBS02] BORDEN M. J., BENZLEY S. E., SHEPHERD J. F.: Hexahedral
sheet extraction. In Proc. of the 11th International Meshing Roundtable

(2002), pp. 147–152. 3

[BDK∗03] BREWER M., DIACHIN L., KNUPP P., LEURENT T., ME-
LANDER D.: The mesquite mesh quality improvement toolkit. In Proc.

of the 12th International Meshing Roundtable (2003), pp. 239–250. 3, 12

[Bis14] BISHOP J.: A displacement-based finite element formulation for
general polyhedra using harmonic shape functions. International Journal

for Numerical Methods in Engineering 97, 1 (2014), 1–31. 3

[BLK11] BOMMES D., LEMPFER T., KOBBELT L.: Global structure
optimization of quadrilateral meshes. CGF 30, 2 (2011), 375–384. 3

[BLP∗12] BOMMES D., LÉVY B., PIETRONI N., PUPPO E., A C. S.,
TARINI M., ZORIN D.: State of the art in quad meshing. In Eurographics

STARS (2012). 3

[Bol18] Bolt. http://www.csimsoft.com/boltoverview,
2018. Accessed: 2018-06-05. 2

[BPP∗10] BOZZO A., PANOZZO D., PUPPO E., PIETRONI N., ROCCA

L.: Adaptive quad mesh simplification. In Eurographics Italian Chapter

Conference 2010 (2010). 3

[CAS∗19] CHERCHI G., ALLIEZ P., SCATENI R., LYON M., BOMMES

D.: Selective padding for polycube-based hexahedral meshing. Computer

Graphics Forum 38, 1 (2019), 580–591. 2, 12

[cod] MFEM: Modular finite element methods library. mfem.org. 1

[CRS03] CIGNONI P., ROCCHINI C., SCOPIGNO R.: Metro: Measuring
error on simplified surfaces. Computer Graphics Forum 17, 2 (2003),
167–174. 8

[CSZ16] CAMPEN M., SILVA C. T., ZORIN D.: Bijective maps from
simplicial foliations. ACM Trans. Graph. 35, 4 (July 2016), 74:1–74:15.
2

[DMK03] DEGENER P., MESETH J., KLEIN R.: An adaptable surface pa-
rameterization method. In Proceedings of the 12th International Meshing

Roundtable (2003), pp. 201–213. 3

[Dre18] DREXEL: Drexel cad repository, 2018. URL: http://edge.
cs.drexel.edu/repository/. 10

[DSC09a] DANIELS J., SILVA C. T., COHEN E.: Semi-regular
quadrilateral-only remeshing from simplified base domains. In Computer

Graphics Forum (2009), vol. 28, Wiley Online Library, pp. 1427–1435. 3

[DSC09b] DANIELS II J., SILVA C. T., COHEN E.: Localized quadrilat-
eral coarsening. In Proceedings of the Symposium on Geometry Process-

ing (2009), SGP ’09, pp. 1437–1444. 3

[DSSC08] DANIELS J., SILVA C. T., SHEPHERD J., COHEN E.: Quadri-
lateral mesh simplification. ACM Trans. Graph. 27, 5 (Dec. 2008), 148:1–
148:9. 3

[EE14] ELSHEIKH A. H., ELSHEIKH M.: A consistent octree hanging
node elimination algorithm for hexahedral mesh generation. Advances in

Engineering Software 75, Supplement C (2014), 86 – 100. 2

[EPOM11] EBEIDA M. S., PATNEY A., OWENS J. D., MESTREAU E.:
Isotropic conforming refinement of quadrilateral and hexahedral meshes
using two-refinement templates. International Journal for Numerical

Methods in Engineering 88, 10 (2011), 974–985. 2

[FBL16] FU X.-M., BAI C.-Y., LIU Y.: Efficient volumetric polycube-
map construction. In Computer Graphics Forum (2016), vol. 35, Wiley
Online Library, pp. 97–106. 2, 9, 12

[FL16] FU X.-M., LIU Y.: Computing inversion-free mappings by sim-
plex assembly. ACM Trans. Graph. 35, 6 (Nov. 2016), 216:1–216:12. 3,
6, 7

[FLG15] FU X.-M., LIU Y., GUO B.: Computing locally injective map-
pings by advanced mips. ACM Trans. Graph. 34, 4 (July 2015), 71:1–
71:12. 3

[FXBH16] FANG X., XU W., BAO H., HUANG J.: All-hex meshing
using closed-form induced polycube. Transactions on Graphics (Proc.

SIGGRAPH 2016) 35, 4 (2016). 2, 12

[GDC15] GAO X., DENG Z., CHEN G.: Hexahedral mesh re-
parameterization from aligned base-complex. ACM Trans. Graph. (SIG-

GRAPH ’15) 34, 4 (2015), 1–10. 3, 12

[GJTP17] GAO X., JAKOB W., TARINI M., PANOZZO D.: Robust hex-
dominant mesh generation using field-guided polyhedral agglomeration.
ACM Trans. Graph. 36, 4 (July 2017), 114:1–114:13. 3

[GMD∗16] GAO X., MARTIN T., DENG S., COHEN E., DENG Z., CHEN

G.: Structured volume decomposition via generalized sweeping. IEEE

TVCG 22, 7 (2016), 1899–1911. 2, 12

[GPW∗17] GAO X., PANOZZO D., WANG W., DENG Z., CHEN G.:
Robust structure simplification for hex re-meshing. ACM Trans. Graph.

36, 6 (Nov. 2017), 185:1–185:13. 3, 7, 12

[GSZ11] GREGSON J., SHEFFER A., ZHANG E.: All-hex mesh generation
via volumetric polycube deformation. CGF 30, 5 (2011), 1407–1416. 2,
12

[HCB05] HUGHES T., COTTRELL J., BAZILEVS Y.: Isogeometric anal-
ysis: Cad, finite elements, nurbs, exact geometry and mesh refinement.
Computer Methods in Applied Mechanics and Engineering 194, 39 (2005),
4135 – 4195. 1

[HG00] HORMANN K., GREINER G.: MIPS: An efficient global
parametrization method. In Curve and Surface Design: Saint-Malo 1999.
2000, pp. 153–162. 3

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

/ Feature Preserving Octree-Based Hexahedral Meshing

[HJS∗14] HUANG J., JIANG T., SHI Z., TONG Y., BAO H., DESBRUN

M.: L1-based construction of polycube maps from complex shapes. ACM

Trans. Graph. 33, 3 (2014), 25:1–25:11. 2, 12

[HTWB11] HUANG J., TONG Y., WEI H., BAO H.: Boundary aligned
smooth 3d cross-frame field. ACM Trans. Graph. 30, 6 (Dec. 2011),
143:1–143:8. 3, 12

[ISS09] ITO Y., SHIH A. M., SONI B. K.: Octree-based reasonable-
quality hexahedral mesh generation using a new set of refinement tem-
plates. Int. J. Numer. Meth. Engng, 77 (2009), 1809–1833. 2, 4

[JHW∗14] JIANG T., HUANG J., WANG Y., TONG Y., BAO H.: Frame
field singularity correction for automatic hexahedralization. IEEE TVCG

20, 8 (Aug. 2014), 1189–1199. 3, 12

[JSP17] JIANG Z., SCHAEFER S., PANOZZO D.: Simplicial complex
augmentation framework for bijective maps. ACM Trans. Graph. 36, 6
(Nov. 2017), 186:1–186:9. 2, 3, 7

[JWR17] JOHNEN A., WEILL J., REMACLE J.: Robust and efficient
validation of the linear hexahedral element. CoRR abs/1706.01613

(2017). URL: http://arxiv.org/abs/1706.01613, arXiv:
1706.01613. 12

[KABL15] KOVALSKY S. Z., AIGERMAN N., BASRI R., LIPMAN Y.:
Large-scale bounded distortion mappings. ACM Transactions on Graphics

(proceedings of ACM SIGGRAPH Asia) 34, 6 (2015). 3

[KGL16] KOVALSKY S. Z., GALUN M., LIPMAN Y.: Accelerated
quadratic proxy for geometric optimization. ACM Trans. Graph. 35,
4 (July 2016), 134:1–134:11. 3

[KLSO12] KOWALSKI N., LEDOUX F., STATEN M. L., OWEN S. J.: Fun
sheet matching: towards automatic block decomposition for hexahedral
meshes. Engineering with Computers 28, 3 (2012), 241–253. 3

[Knu00] KNUPP P. M.: Hexahedral mesh untangling and algebraic mesh
quality metrics. In Proceedings, 9th International Meshing Roundtable

(2000), pp. 173–183. 3, 6, 12

[Knu03] KNUPP P. M.: A method for hexahedral mesh shape optimization.
International journal for numerical methods in engineering 58, 2 (2003),
319–332. 3, 12

[KPSC06] KIRK B. S., PETERSON J. W., STOGNER R. H., CAREY

G. F.: libMesh: A C++ Library for Parallel Adaptive Mesh Refine-
ment/Coarsening Simulations. Engineering with Computers 22, 3–4
(2006), 237–254. 1

[KS04] KRAEVOY V., SHEFFER A.: Cross-parameterization and com-
patible remeshing of 3d models. ACM Trans. Graph. 23, 3 (Aug. 2004),
861–869. 5

[LBK16] LYON M., BOMMES D., KOBBELT L.: Hexex: Robust hexahe-
dral mesh extraction. ACM Trans. Graph. 35, 4 (July 2016), 123:1–123:11.
3, 12

[Lip12] LIPMAN Y.: Bounded distortion mapping spaces for triangular
meshes. ACM Trans. Graph. 31, 4 (July 2012), 108:1–108:13. 3

[LLWQ13] LI B., LI X., WANG K., QIN H.: Surface mesh to volumetric
spline conversion with generalized poly-cubes. IEEE TVCG 19, 9 (2013),
1539–1551. 2

[LLX∗12] LI Y., LIU Y., XU W., WANG W., GUO B.: All-hex meshing
using singularity-restricted field. ACM Trans. Graph. 31, 6 (Nov. 2012),
177:1–177:11. 3, 12

[LMPS16] LIVESU M., MUNTONI A., PUPPO E., SCATENI R.: Skeleton-
driven adaptive hexahedral meshing of tubular shapes. In Computer

Graphics Forum (2016), vol. 35, Wiley Online Library, pp. 237–246. 2,
12

[LS10] LEDOUX F., SHEPHERD J.: Topological modifications of hexahe-
dral meshes via sheet operations: a theoretical study. Engineering with

Computers 26, 4 (2010), 433–447. 3

[LSVT15] LIVESU M., SHEFFER A., VINING N., TARINI M.: Practi-
cal hex-mesh optimization via edge-cone rectification. Transactions on

Graphics (Proc. SIGGRAPH 2015) 34, 4 (2015). 3, 12

[LVS∗13] LIVESU M., VINING N., SHEFFER A., GREGSON J., SCATENI

R.: Polycut: monotone graph-cuts for polycube base-complex construc-
tion. ACM Trans. Graph. 32, 6 (2013), 171. 2, 12

[LZC∗18] LIU H., ZHANG P., CHIEN E., SOLOMON J., BOMMES D.:
Singularity-constrained octahedral fields for hexahedral meshing. ACM

Trans. Graph. (2018). 3

[Mar09] MARÉCHAL L.: Advances in Octree-Based All-Hexahedral Mesh

Generation: Handling Sharp Features. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009, pp. 65–84. 2, 3, 4, 10, 12

[Mar16] MARÉCHAL L.: All hexahedral boundary layers generation.
Procedia Engineering 163 (2016), 5 – 19. 25th International Meshing
Roundtable. 2, 4, 6, 10, 12

[Mes18] MeshGems. http://meshgems.com/

volume-meshing-meshgems-hexa.html, 2018. Accessed:
2018-06-05. 2, 9, 10, 12

[MKB∗08] MARTIN S., KAUFMANN P., BOTSCH M., WICKE M.,
GROSS M.: Polyhedral finite elements using harmonic basis functions.
In Proceedings of the Symposium on Geometry Processing (Aire-la-
Ville, Switzerland, Switzerland, 2008), SGP ’08, Eurographics Asso-
ciation, pp. 1521–1529. URL: http://dl.acm.org/citation.
cfm?id=1731309.1731340. 3

[MPKZ10] MYLES A., PIETRONI N., KOVACS D., ZORIN D.: Feature-
aligned t-meshes. ACM Trans. Graph. 29 (July 2010), 117:1–117:11.
3

[NRP11] NIESER M., REITEBUCH U., POLTHIER K.: Cubecover- pa-
rameterization of 3d volumes. CGF 30, 5 (2011), 1397–1406. 3, 12

[OSE17] OWEN S. J., SHIH R. M., ERNST C. D.: A template-based
approach for parallel hexahedral two-refinement. Computer-Aided Design

85, Supplement C (2017), 34 – 52. 24th International Meshing Roundtable
Special Issue: Advances in Mesh Generation. 2

[PL14] PORANNE R., LIPMAN Y.: Provably good planar mappings. ACM

Trans. Graph. 33, 4 (2014), 76:1–76:11. 3

[PTH∗17] PORANNE R., TARINI M., HUBER S., PANOZZO D.,
SORKINE-HORNUNG O.: Autocuts: Simultaneous distortion and cut
optimization for uv mapping. ACM Trans. Graph. 36, 6 (Nov. 2017),
215:1–215:11. 6

[QZ10] QIAN J., ZHANG Y.: Sharp Feature Preservation in Octree-Based

Hexahedral Mesh Generation for CAD Assembly Models. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010, pp. 243–262. 2

[RGRS14] RUIZ-GIRONÉS E., ROCA X., SARRATE J.: Optimizing mesh
distortion by hierarchical iteration relocation of the nodes on the cad
entities. Procedia Engineering 82 (2014), 101–113. 3, 12

[RGRS∗15] RUIZ-GIRONÉS E., ROCA X., SARRATE J., MONTENEGRO

R., ESCOBAR J. M.: Simultaneous untangling and smoothing of quadri-
lateral and hexahedral meshes using an object-oriented framework. Ad-

vances in Engineering Software 80 (2015), 12–24. 3, 12

[RL16] REBEROL M., LÉVY B.: Low-order continuous finite element
spaces on hybrid non-conforming hexahedral-tetrahedral meshes. ArXiv

e-prints (May 2016). arXiv:1605.02626. 3

[RPPSH17] RABINOVICH M., PORANNE R., PANOZZO D., SORKINE-
HORNUNG O.: Scalable locally injective mappings. ACM Trans. Graph.

36, 2 (2017), 16:1–16:16. 2, 3, 7

[San16] SANDIA N. L.: Cubit. https://cubit.sandia.gov/,
2016. 2

[SAPH04] SCHREINER J., ASIRVATHAM A., PRAUN E., HOPPE H.:
Inter-surface mapping. ACM Trans. Graph. 23, 3 (Aug. 2004), 870–877.
5

[SB95] SCHNEIDERS R., BUNTEN R.: Automatic generation of hexa-
hedral finite element meshes. Computer Aided Geometric Design 12, 7
(1995), 693 – 707. Grid Generation, Finite Elements, and Geometric
Design. 2, 4, 6

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

/ Feature Preserving Octree-Based Hexahedral Meshing

[Sch96] SCHNEIDERS R.: A grid-based algorithm for the generation of
hexahedral element meshes. Engineering with Computers 12, 3 (Sep
1996), 168–177. 2

[SCOGL02] SORKINE O., COHEN-OR D., GOLDENTHAL R., LISCHIN-
SKI D.: Bounded-distortion piecewise mesh parameterization. In Pro-

ceedings of the Conference on Visualization (2002), pp. 355–362. 3

[SDG∗18] SCHNEIDER T., DUMAS J., GAO X., BOTSCH M., PANOZZO

D., ZORIN D.: Poly-spline finite element method. CoRR abs/1804.03245

(2018). URL: http://arxiv.org/abs/1804.03245, arXiv:
1804.03245. 3

[SDG∗19] SCHNEIDER T., DUMAS J., GAO X., ZORIN D., PANOZZO

D.: PolyFEM. https://polyfem.github.io/, 2019. 1

[SEK∗07] STIMPSON C. J., ERNST C. D., KNUPP P., PÉBAYAND P. P.,
THOMPSON D.: The verdict geometric quality library, 2007. 1, 2, 3

[SHG∗19] SCHNEIDER T., HU Y., GAO X., DUMAS J., ZORIN D.,
PANOZZO D.: A large scale comparison of tetrahedral and hexahedral
elements for finite element analysis. CoRR abs/1903.09332 (2019). URL:
http://arxiv.org/abs/1903.09332, arXiv:1903.09332.
1, 13

[SJ08] SHEPHERD J. F., JOHNSON C. R.: Hexahedral mesh generation
constraints. Eng. with Comput. 24, 3 (June 2008), 195–213. 2

[SKPSH13] SCHÜLLER C., KAVAN L., PANOZZO D., SORKINE-
HORNUNG O.: Locally injective mappings. In Symposium on Geometry

Processing (2013), pp. 125–135. 3

[SLSK04] SU Y., LEE K., SENTHIL KUMAR A.: Automatic hexahe-
dral mesh generation for multi-domain composite models using a hybrid
projective grid-based method. Computer-Aided Design 36, 3 (2004),
203–215. 2

[SPSH∗17] SHTENGEL A., PORANNE R., SORKINE-HORNUNG O., KO-
VALSKY S. Z., LIPMAN Y.: Geometric optimization via composite
majorization. ACM Trans. Graph. 36, 4 (July 2017), 38:1–38:11. 3

[SRUL16] SOKOLOV D., RAY N., UNTEREINER L., LÉVY B.:
Hexahedral-dominant meshing. ACM Trans. Graph. 35, 5 (June 2016). 3

[SS15] SMITH J., SCHAEFER S.: Bijective parameterization with free
boundaries. ACM Trans. Graph. 34, 4 (July 2015), 70:1–70:9. 3, 7

[SSGH01] SANDER P. V., SNYDER J., GORTLER S. J., HOPPE H.: Tex-
ture mapping progressive meshes. In ACM SIGGRAPH (2001), pp. 409–
416. 3

[SSW96] SCHNEIDERS R., SCHINDLER R., WEILER F.: Octree-based
generation of hexahedral element meshes. In IN PROCEEDINGS OF THE

5TH INTERNATIONAL MESHING ROUNDTABLE (1996), pp. 205–215.
2

[SVB17] SOLOMON J., VAXMAN A., BOMMES D.: Boundary element
octahedral fields in volumes. ACM Trans. Graph. 36, 3 (May 2017). 3

[TK03] TAUTGES T. J., KNOOP S. E.: Topology modification of hexa-
hedral meshes using atomic dual-based operations. In Proc. of the 12th

International Meshing Roundtable (2003), pp. 415–423. 3

[TPC∗10] TARINI M., PIETRONI N., CIGNONI P., PANOZZO D., PUPPO

E.: Practical quad mesh simplification. CGF 29, 2 (2010), 407–418. 3

[TPP∗11] TARINI M., PUPPO E., PANOZZO D., PIETRONI N., CIGNONI

P.: Simple quad domains for field aligned mesh parametrization. ACM

Trans. Graph. 30, 6 (Dec. 2011), 142:1–142:12. 3

[VCD∗16] VAXMAN A., CAMPEN M., DIAMANTI O., PANOZZO D.,
BOMMES D., HILDEBRANDT K., BEN-CHEN M.: Directional field
synthesis, design, and processing. In Computer Graphics Forum (2016),
vol. 35, Wiley Online Library, pp. 545–572. 3

[WSRRR∗12] WILSON T. J., SARRATE RAMOS J., ROCA RAMÓN X.,
MONTENEGRO ARMAS R., ESCOBAR SÁNCHEZ J. M.: Untangling and
smoothing of quadrilateral and hexahedral meshes. 3, 12

[XGC18] XU K., GAO X., CHEN G.: Hexahedral mesh quality improve-
ment via edge-angle optimization. Computers & Graphics 70 (2018), 17 –
27. CADGraphics 2017. 3

[YS84] YERRY M. A., SHEPHARD M. S.: Automatic three-dimensional
mesh generation by the modified octree technique. International Journal

for Numerical Methods in Engineering 20, 11 (1984), 1965–1990. 2

[ZB06a] ZHANG Y., BAJAJ C.: Adaptive and quality quadrilat-
eral/hexahedral meshing from volumetric data. Computer methods in

applied mechanics and engineering 195, 9 (2006), 942–960. 2, 4

[ZB06b] ZHANG Y., BAJAJ C.: Adaptive and quality quadrilat-
eral/hexahedral meshing from volumetric data. Computer Methods in

Applied Mechanics and Engineering 195 (Feb. 2006), 942–960. 2

[ZBK17] ZHU Y., BRIDSON R., KAUFMAN D. M.: Blended Cured
Quasi-Newton for Geometric Optimization. ArXiv e-prints (Apr. 2017).
arXiv:1705.00039. 3

[Zha19] ZHANG S.: Subtetrahedral test for the positive jacobian of
hexahedral elements. http://www.math.udel.edu/~szhang/
research/p/subtettest.pdf, 2019. Accessed: 2019-04-03. 12

[ZLL∗18] ZHAO H., LEI N., LI X., ZENG P., XU K., GU X.: Robust
edge-preserving surface mesh polycube deformation. Computational

Visual Media 4, 1 (Mar 2018), 33–42. 2

[ZLX13] ZHANG Y. J., LIANG X., XU G.: A robust 2-refinement algo-
rithm in octree or rhombic dodecahedral tree based all-hexahedral mesh
generation. Computer Methods in Applied Mechanics and Engineering

256 (2013), 88–100. 2

[ZZM07a] ZHANG H., ZHAO G., MA X.: Adaptive generation of hexahe-
dral element mesh using an improved grid-based method. Computer-Aided

Design 39, 10 (2007), 914–928. 2

[ZZM07b] ZHANG H., ZHAO G., MA X.: Adaptive generation of hexahe-
dral element mesh using an improved grid-based method. Computer-Aided

Design 39, 10 (2007), 914–928. 2

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

