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Fig. 1. Our technique curves deposition paths to improve parts printed with fused filament fabrication. Compared to state of the art adaptive slicing (top let)
which is limited to planar layers, our print (botom let) has a smooth surface finish while using the same number of layers (40). The reproduction accuracy is
improved overall (middle graph), with a total volume error of 57mm3 compared to the 149mm3 of adaptive slicing. Our approach computes a continuous
deformation of space (top right) under fabrication constraints (thicknesses, slope). The produced toolpaths are guaranteed to print without collisions on
standard 3-axis 3D printers, here an Ultimaker2 (botom right).

Most additive manufacturing processes fabricate objects by stacking planar

layers of solidiied material. As a result, produced parts exhibit a so-called

staircase efect, which results from sampling slanted surfaces with parallel

planes. Using thinner slices reduces this efect, but it always remains visible

where layers almost align with the input surfaces.

In this research we exploit the ability of some additive manufacturing

processes to deposit material slightly out of plane to dramatically reduce

these artifacts. We focus in particular on the widespread Fused Filament
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Fabrication (FFF) technology, since most printers in this category can deposit

along slightly curved paths, under deposition slope and thickness constraints.

Our algorithm curves the layers, making them either follow the natu-

ral slope of the input surface or on the contrary, make them intersect the

surfaces at a steeper angle thereby improving the sampling quality. Rather

than directly computing curved layers, our algorithm optimizes for a defor-

mation of the model which is then sliced with a standard planar approach.

We demonstrate that this approach enables us to encode all fabrication con-

straints, including the guarantee of generating collision-free toolpaths, in a

convex optimization that can be solved using a QP solver.

We produce a variety of models and compare print quality between curved

deposition and planar slicing.
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1 INTRODUCTION

Additive manufacturing processes fabricate physical objects by pro-

gressively depositing solidiied material, forming a solid. In the vast

majority of cases, the deposition is performed layer by layer, where

each layer is a planar slab of the object. This constraint sometimes

stems from the implementation of the process itself; for instance

selective laser sintering technologies melt (and solidify) the lat sur-

face of a powder tank. However, many processes ofer additional

degrees of freedom. In particular, Fused Filament Fabrication (FFF)

allows one to deposit molten plastic along curved paths, as long as

it is deposited onto an existing surface [Chakraborty et al. 2008].

This opportunity is used in recent methods tackling the generic

problem of free form deposition, e.g. using the 6-DOF of a robotic

arm [Dai et al. 2018]. We refer to such methodologies as curved slic-

ing and deposition. While ofering many advantages over traditional

lat deposition, these systems require expensive hardware (6-DOF

robotic arms or 5-axis motion platforms), limiting their applicability.

We propose an algorithmic solution to enable curved deposition

using standard FFF machines, with the only requirement of having

a speciic nozzle shapeÐno lat area around the molten ilament exit

holeÐwhich is the case on many printers already. Since replacement

nozzles for the most common printers are available at a modest

price (< 10 USD), our contribution has the potential to be widely

adopted by makers and 3D printing companies.

The key idea of our technique is to (1) compute a deformation of

the input object, (2) slice the deformed solid using standard uniform

planar slicing, and then (3) deform the toolpaths back into the origi-

nal space. By constraining the volumetric mapping, we guarantee

that there will be no collision between the part and the extrusion de-

vice and that deposition thicknesses remain within feasible bounds.

We propose a speciic parameterization of the problem that reduces

it to a simple set of constraints which can be solved using a standard

QP solver. The mapping is optimized such that during slicing the

surface reproduction error is reduced. When mapping back to the

initial space, the deposition paths become curved, but the surface

quality improvement is preserved.

Our technique signiicantly improves surface accuracy and inish

over traditional FFF, in particular strongly reducing the staircase

defects due to planar layering. In fact, our technique compares

favorably to previous methods relying on robotic arms, ofering a

highly efective solution with minimal hardware requirements. To

foster adoption of our technique, we will release an open source,

reference implementation of ourmethod, in addition to the toolpaths

for all our results and detailed instructions for modifying existing

FFF printers to achieve the best results.

2 PREVIOUS WORK

As most additive manufacturing processes solidify objects layer

by layer, the impact of layering on surface roughness and part

accuracy has been extensively studied. For an in-depth review of

how processing of a part relates to its inal quality we refer to the

survey by Livesu et al. [2017].

Approaches fall into diferent categories: adapting the layer thick-

nesses, changing the part orientation, splitting parts, curving depo-

sition. We discuss each of these below.

Adaptive slicing. Many additive processes allow for the thickness

of an entire layer to be changed within some bounds. Therefore,

methods have been proposed to adapt the layer thicknesses to better

capture the part geometry [Pandey et al. 2003]. A irst approach

consists of choosing the thickness using the local surface slope [Do-

lenc and Mäkelä 1994]. Other methods follow splitting strategies,

starting from an initial uniform slicing and then dividing or fusing

slices [Hayasi and Asiabanpour 2013; Hope et al. 1997; Kulkarni and

Dutta 1996; Sabourin et al. 1996; Tyberg and Bùhn 1999].

Recently, global approaches have been proposed.Wang et al. [2015]

formulate a global optimization of the thicknesses, minimizing the

worst cusp height [Dolenc and Mäkelä 1994] in each layer. Alexa

et al. [Alexa et al. 2017] propose a provably optimal adaptive slic-

ing algorithm, in the discrete setting. This approach minimizes the

overall volume error, that is the volume incorrectly assigned in the

sliced part [Masood et al. 2000; Tata et al. 1998]. We compare our

work to optimal adaptive slicing in Section 5.

One drawback of standard adaptive slicing is that it maintains

the same thickness everywhere within the layer. To address this

limitation, some approaches divide a part in multiple regions, and

use diferent layerings in each [Mani et al. 1999; Sabourin et al. 1997;

Tyberg and Bùhn 1998; Wang et al. 2015]. The object still prints as

a single part. One diiculty is that the abrupt change of layering

thickness results in visible scars along the surface. Curving the

layers avoids this problem.

Orientation. The orientation of a shape plays an important role in

the inal part quality [Livesu et al. 2017]. While orientation impacts

many factors, such as structural strength [Umetani and Schmidt

2013] and aesthetics [Zhang et al. 2015], several techniques orient

the part to minimize errors due to layering [Cheng et al. 1995;

Thrimurthulu et al. 2004].

While we preserve the global orientation of the input, existing

techniques for global orientation optimization could be used as a

front-end. By curving the layers our approach further locally adapts

orientation to the part geometry.

Partitioning. A number of approaches split the input into diferent

parts, fabricated separately and assembled later. Diferent objectives

are sought for: itting large parts in printers with limited extent [Luo

et al. 2012] or boxes of speciic sizes [Attene 2015], fabricating large

objects with an empty inner core [Song et al. 2016], avoiding support

structures [Hu et al. 2014], inding optimal orientations for slicing

subparts [Hildebrand et al. 2013; Wang et al. 2016].

Our technique is complementary to these approaches, as it can

further improve the quality of each individual part.

Curving layers. Curved layers and their properties have been pro-

totyped by several researchers. [Chakraborty et al. 2008] considers

deposition paths along curved surfaces with the objective of obtain-

ing stronger parts. The beneits on structural strength of curved

layers are further studied in [Huang and Singamneni 2012; Singam-

neni et al. 2012]. Existing techniques typically combine lat layers

in the core with curved layers on the last few visible surfaces [Allen

and Trask 2015; Huang and Singamneni 2015][Ahlers 2018] or over-

lay thin skins on top of existing models [Thomas et al. 2016]. Lim

et al. [2016] perform similar experiments to fabricate large scale
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Fig. 2. Overview. We start from a 3D model Ω and optimize a mapping
M. We slice the deformed modelM to obtain the toolpaths T, which are
mapped back into the initial space asM−1(T) for fabrication.

concrete panels, with a system akin to fused ilament fabrication.

Overall, curved layers provide smoother, stronger surfaces.

Printing shell-like, constant thickness curved layers on top of

lat layers is very practical but has two drawbacks. First, ilament

along curved surfaces may sag in the staircases underneath, leaving

porosities. Instead our approach progressively curves and thickens

layers, avoiding abrupt transitions while leaving no gaps inside the

parts. Second, the error cannot improve for slopes exceeding the

printable angle. Our algorithm introduces the idea of verticalizing

to address such cases (detailed in Section 3.2).

Song et al. [2017] propose a general approach that curves tool-

paths by small amounts after slicing: the layers remain lat, but

have tiny height variations compensating the staircase defect. How-

ever, the technique cannot globally curve the paths nor precisely

follow a slanted surface. Ezair et al. [2018] generate curve tool-

paths within volumes following a user speciied trivariate parame-

terization. Curved layers are produced along the isolvalue of one

parameterization variable, ensuring a proper coverage is obtainedÐ

overall equal spacingÐby trimming layers in close proximity. The

layers are covered with curves in a similar manner. A set of 3-axis

toolpaths is obtained by further splitting and ordering the curves

to avoid collisions during deposition. We take a diferent point of

view. Our technique optimizes a parameterization that allows to

slice the object in the parametric domain using any standard planar

slicer. The produced toolpaths are guaranteed to be fabricable when

mapped back into the initial domain, without requiring splitting

or re-ordering. The parameterization is automatically optimized to

obtain smooth surface tops and to globally reduce staircase defects.

Additional degrees of freedom. The approaches we have discussed

so far target 3-axis printers. A number of techniques have been

proposed to physically realize parts using 5-DOF or 6-DOF systems.

Keating et al. [2013] demonstrated a irst prototype fabricating

parts of limited complexity with a 6-DOF robotic system. Pan et

al. [2014] rely on a multi-axis device to fabricate additional features

along existing curved surfaces. Chen et al. [2017] fabricate parts

with planar layers but use the rotational capabilities of a robotic

arm to change the part orientation mid-print.

Multi-axis systems have also been used to create wireframe mod-

els, for example to help prototype shapes quickly [Mueller et al.

2014; Peng et al. 2016]. Algorithms have been proposed for multi-

axis toolpath planning of arbitrary wireframe objects [Huang et al.

2016; Wu et al. 2016].

Dai et al. [2018] introduce a general algorithm to fabricate parts

with a robotic arm while avoiding the need for supports. Paths are

curved throughout the parts, albeit with a constant thickness.

While extremely promising, 6-DOF 3D printing requires special

equipment and a relatively complex setup. The part quality is also

not currently on-par with that of 3-axis printing, which is wide

spread and well understood. Our objective in this paper is to allow

for standard 3-axis printers to print curved objects, enabling novel

possibilities on the wide variety of printers already installed in

workshops, schools, FabLab and homes.

3 OVERVIEW

Our approach starts from a mesh Ω correctly deining a solid (e.g.

an STL ile for fabrication), and oriented such that the Z axis is the

build direction. We then optimize for a mappingM from the object

space to the slicing space. The mesh to be sliced is obtained through

the mapping asM(Ω). A standard slicer is then called to produce a

set of toolpaths T , using uniform slicing. The inal toolpaths used

for fabrication are obtained through the inverse mappingM−1(T ).

Our algorithm optimizes a deformation for both the object inside

and surrounding empty space, thus allowing for travel paths and

auxiliary structures (e.g. supports) to be properly curved alongside

the object. The pipeline is illustrated in Figure 2.

The crux of the problem is how to computeM (and its inverse)

so as to enforce all constraints while minimizing surface defects.

In terms of constraints, we have to ensure that no collisions occur

and that the deposition thickness remains within minimum and

maximum bounds after mapping (Section 3.1). In terms of objective,

we seek to improve surface inish, to reduce staircasing and to

accurately follow the initial surface (Sections 3.2 and 3.3).

3.1 Fabrication constraints

In this work we face two main fabrication constraints. The irst

relates to avoiding collision between the extrusion device (nozzle,

extruder and carriage) while the second relates to feasible deposition

thicknesses. We assume the printer to be equipped with a pointed,

conical nozzle without a lat area around the exit hole.

We model the collision constraint

as an inverted cone. The Figure in-

set shows the cone constraint (dashed

line), the printer nozzle (orange), the

carriage (gray) and the object below

(blue). The constraint cone has its

apex aligned with the nozzle tip and

represents the forbidden space above it (lighter orange hatches). It

has to guarantee that if the part remains below the cone’s surface, no

collisions can occur with any part of the printerÐirst and foremost

the nozzle itself.

The collision conemust at least contain the nozzle, which typically

has a conic geometry. We denote the angle of the nozzle cone with
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respect to the horizontal by θnozzle (see Figure ??). We denote by

θmax the collision cone angle with respect to the horizontal. It is

obtained as θmax =min(θnozzle , tan
−1 h

e ), where h is the distance

between the nozzle tip and carriage and e the maximum XY extent

of the printed object.

During deposition, we have to ensure that no already printed path

enters the forbidden cone. This translates into a local constraint on

the slope of the paths after inverse mapping: how quickly they are

allowed to raise in Z by units of X and Y.

Deposition thicknesses are bounded by a maximum and mini-

mum. The maximum stems from the nozzle exit diameter. A general

rule of thumb is that the maximum thickness should stay within

[0.1d, 0.75d]whered is the nozzle diameter. This gives from 0.04mm

to 0.3 mm for a typical 0.4 mm nozzle. The minimal thickness con-

straint is also impacted by printer mechanical quality and calibration

accuracy. Indeed, as thickness decreases, even small calibration er-

rors start to have a large impact. For do-it-yourself printers, the

typical minimal thickness is 0.1 mm ś even though well calibrated

printers reliably print at 0.05 mm or less. We denote by τmin and

τmax the minimum and maximum thicknesses.

3.2 Improving surfaces

The main defect produced by planar slicing is the so-called staircas-

ing efect: the emergence of visible steps along the build direction.

The defect is more pronounced when the slope of the surfaces de-

creases: the vertical sampling density of the planar slices is no longer

suicient to prevent large steps from appearing between slices (see

Figure 3). This leads to the observation that printed vertical walls

exhibit minimal staircase, while gently sloped surfaces sufer the

largest staircase defects. While using thinner slices reduces the

size of the defect, it remains visible on surfaces with low slopes. In

addition, thinner slices imply longer print times.

There is, however, a notable special case: a surface that is exactly

lat produces no staircase, and thus is ideally reproduced if a slice

exactly aligns with the surface.

To improve surface reproduction, we seek to minimize the stair-

case error of the printed part. The approach we propose is to attempt

to make all surfaces either vertical or lat during the slicing step as

both cases lead to minimal errors. The efect is to curve the slices,

locally adapting to the surface slopes, as illustrated in Figure 4. Of

course, due to the fabricability constraints, this ideal objective can

only be approximated.

Note that to avoid errors during slicing on lat areas, the surface

has to exactly align with the top of a slice. Otherwise, large errors

occur due to misalignment. This is a speciic source of concern that

we address in our approach.

3.3 Choosing whether to flaten surfaces

A key question when computing the deformation is which set of

surfaces should be lattened. Our proposal is that ideally we would

like to latten as many faces as possibleÐthese regions later print as

curved surfaces with no staircase error, and ofer accurate reproduc-

tion when well aligned with the tops of slices. However, if we seek

to latten a surface, we have to ensure it ends up being reproduced

by a single, well aligned slice. A misalignment or residual slope

would have the surface intersect a slicing plane, resulting in a large

staircase error.

We therefore initially attempt to latten all surfaces that could

be possibly reproduced under the maximum printable slope θmax .

This typically leads to the most accurate results (we provide mea-

surements in Section 5.3). Optionally the user can choose a smaller

initial set; this allows for selection of which surfaces are lattened.

The initial set usually leads to an infeasible problem due to fabri-

cation constraints. The freedom required to incline, compress, or

stretch slices around large lattened surfaces is often not available.

This leads to a challenging problem: lattening cannot be simply

expressed as soft constraints as any small violation immediately

results in worst-case stairstepping errors. Instead, we propose an

iterative scheme were we eliminate infeasible lattening require-

ments progressively, turning them into surfaces to be inclined. The

scheme is described in Section 4.4.

Note that we never attempt to latten downward facing trian-

gles, as in general these could not print without adding supports

in a 3-axis system. There is one exception. The triangles that are

lat in the inputÐeither downward facing or upward facingÐare

always constrained to remain lat. This, in particular, implies that

the object’s bottom remains lat.

4 ALGORITHM

Prior to any computation, we remesh the input with TetWild [Hu

et al. 2018], to obtain a tetrahedral mesh Γ for both the inside and

outside volume, as well as the triangle mesh Ω at their interface.

Minimizing staircases amounts to making surfaces either exactly

lat, or making them as vertical as possible (Sections 3.2 and 3.3). To

Fig. 3. Slicing a part with uniform slicing, side view (actual result). The
model outline to be matched is in orange, the slices are shown in green/blue.
The staircase is more pronounced when the slope of the surfaces decreases:
the let part sufers less from the staircase defect than the right part.

Fig. 4. Slicing a part with curved slicing, side view (actual result). The model
outline to be matched is in orange, the slices are shown in green/blue. Our
algorithm curves the slices to accurately follow the object surface whenever
possible. In this case the slice thicknesses are allowed to vary from 0.1mm
to 0.6mm, while the maximum slope is constrained to θmax = 30 degrees.
The inset shows the deformed space where slices have been produced. Note
the alignment of the top surface with the top of the last slice.

ACM Trans. Graph., Vol. 38, No. 4, Article 81. Publication date: July 2019.



CurviSlicer: Slightly curved slicing for 3-axis printers • 81:5

achieve this we optimize for a mapping that deforms the surfaces

along the vertical direction only, locally compressing or stretching

the initial solid and changing surface slopes. This parameterization

of the problem is in line with the constrainedmotions of a 3śaxis sys-

tem, while leading to a practical optimization scheme only involving

minimizing for quadratic objectives under linear constraints.

We represent the mappingM as a deformation ield of Γ, comput-

ing a new vertical position h(p) for each of its vertices p. These new

positions deine a continuous deformation ield within the volume

of Γ: any point inside can be mapped through linear interpolation

from the enclosing tetrahedron vertices. Swapping optimized and

original coordinates switches betweenM andM−1.

The unknown variables of the problem are thus the values h(p),

which will be optimized to deine a mapping under the desired

objective and constraints.

Additional notation. In the following we denote by x(p), y(p) and

z(p) the coordinates of vertices p of Γ in the original, undeformed

space. We denote by F the set of surface triangles in Γ, that is

the tetrahedron faces that lie on the boundary of the solid. We

denote by F the set of triangles to be lattened and by F = F \ F

its complement: the triangles that we seek to incline. Since these

sets change during optimization and relaxation, we index them as

F 0
, ...,F i .

We denote by t =< p0,p1,p2 > a triangle in F and nt its nor-

mal. We denote by z the vertical (build) direction. Faces pointing

upwards verify nt · z > 0. We similarly denote tetrahedrons as

< p0,p1,p2,p3 > in Γ, and denote by ΓI the set of inner tetrahedrons

and by ΓO the set of outer tetrahedrons.

Finally, we denote asMh the mapping obtained within Γ from a

vector of vertical positions h.

4.1 Main algorithm

Our main algorithm is iterative: each iteration starts with a previous

solution (initialized with h0 = z) and a set of surfaces to latten. It

then solves for new vertical positions hi+1 by minimizing an ob-

jective function on Γ under fabrication constraints. The objective

attempts to latten surfaces in F i and to incline surfaces in F
i
to-

wards the vertical. The lattening requirements are often unfeasible

if strictly enforced. Thus, we express lattening as a soft constraint

(objective with a high weight).

Once hi+1 is obtained, the surfaces in F i Ð connected compo-

nents of neighboring triangles Ð are checked for latness. If all are

suiciently lat, the loop terminates and we proceed with slicing. If

not, we relax the lattening objective by keeping only a subset of

triangles from F i in F i+1.

Note that the constrained minimization has at least one solution:

the identity deformation h = z. Therefore, at worst this process

always terminates as the latness test passes for F = � ; or rather,

when F contains only the set of surfaces already lat in the input

as these are never relaxed. In practice, the algorithm succeeded in

lattening more surfaces on all our test cases.

All main steps are described in the next Sections: Fabrication con-

straints in Section 4.2, optimization of hi in Section 4.3, relaxation

in Section 4.4, slicing and toolpath mapping in Section 4.5.

1 Initialize F 0, h0 ← z

2 Setup fabrication constraints on Γ

3 Loop over i , from i ← 1

4 hi ← argminh E(h,h
i−1
,F i−1

,F
i−1
) on Γ

5 If surfaces in F i−1 using hi are lat, or F i−1
== �

6 set h ← hi

7 break

8 EndIf

9 F i ← Relax(F i−1
,hi )

10 EndLoop

11 T ← sliceMh (Ω)

12 returnM−1
h
(T )

4.2 Fabrication constraints

Thickness constraints. The thickness constraints are captured by

limiting the local stretch that the mapping is allowed to introduce.

The minimum and maximum allowed stretches are respectively 1

and τmax

τmin
with τmin and τmax respectively the min/max admissible

thicknesses on the target printer. We slice the model at τmax before

deformation byM−1.

Using this setup, a stretch of 1 inM will lead to having curved

slices with a local thickness of τmax , while a stretch of τmax

τmin
results

in a local thickness along the curved slices of τmin . Any stretch

above or below that range would violate the fabrication constraints.

The deformation ield is deined by linear interpolation within

the tetrahedrons. Within each tetrahedron, the gradient ∇h of the

vertical coordinates h is thus constant. We formulate the thickness

constraint directly on the gradient ∇h.

Let us consider a tetrahedron with vertices < p0,p1,p2,p3 >.

The gradient of a function f deined on the vertices and linearly

interpolated within is obtained as ∇f =
∑2
i=0wk (fk − f3), where

fk = f (pk ) and wk are vector weights in R3. These weights (nine

unknowns) can be computed ahead of time for each tetrahedron,

setting f = x , f = y and f = z to obtain nine equations. For more

details, we refer the reader to literature on linear tetrahedra.

For each tetrahedron t ∈ ΓI we write the constraints as:

1 ≤ z(∇ht ) ≤
τmax

τmin

where z(∇ht ) =
∑2
k=0

z(wt
k
) · (hk −h3) with z(w

t
k
) the Z coordinate

of the weight k of t and hk = h(pk ).

Slope constraints. The maximum admissible slope θmax depends

on the printer setup and printed part, as detailed in Section 3.1. The

constraint is applied to ∇h within each tetrahedron, preventing the

gradients along X and Y from varying too fast with respect to the

gradient along Z. We write the constraints for each tetrahedron

t ∈ ΓI as:

−z(∇ht ) ≤
x(∇ht )

tan (θmax )
≤ z(∇ht )

−z(∇ht ) ≤
y(∇ht )

tan (θmax )
≤ z(∇ht )

where z(∇ht ) =
∑2
k=0

z(wt
k
) · (hk −h3) with z(w

t
k
) the Z coordinate

of weight k for the gradient within t and hk = h(pk ). The terms

x(∇ht ) and y(∇ht ) are similarly deined.

ACM Trans. Graph., Vol. 38, No. 4, Article 81. Publication date: July 2019.



81:6 • J. Etienne, N. Ray, D. Panozzo, S. Hornus, C. C. L. Wang, J. Martínez, S. McMains, M. Alexa, B. Wyvill, S. Lefebvre

4.3 Objective function

The objective is optimized under strict fabrication constraints (see

Section 4.2). We also add a set of constraints to prevent foldovers in

ΓO . This is done by imposing for all t ∈ ΓO that z(∇ht ) > 0. Note

that foldovers cannot occur in ΓI thanks to thickness constraints.

Given the set of surfaces F and F and a previous solution hi−1,

the objective to minimize is made of four diferent terms :

E(h,hi−1,F ,F ) =λf Ef lat (h,F ) + λaEaliдn (h,h
i−1
,F )

+λs Eslope (h,F ) + λm Esmooth (h)

Ef lat attempts to latten selected triangles while Ealiдn encourages

lat areas to align with slice tops. Eslope rotates other triangles

towards the vertical. Esmooth regularizes the problem by guiding

it towards smooth solutions, in particular in the less constrained

empty regions. The λi weights control the tradeof between the

terms. For our target object scales (300 mm maximum in extent)

and layer thicknesses (0.05 to 0.6 mm) we determined that a good

tradeof is given by λf = 30, λa = 1, λs = 0.1 and λm = 0.02. We

use this setup for all results.

If signiicantly diferent scales are targeted, the λi weights should

be rescaled noting that Ef lat and Ealiдn have the scale of τ 2max ,

Eslope has the scale of L2 with L the maximum object size (printer

bed extent), and Esmooth is dimensionless.

Flattening. The objective Ef lat is written as:

Ef lat (h,F ) =
∑

t ∈F

A({t})

A(F )

(
∑

i, j ∈[0,2]
i<j

(

h(ti ) − h(tj )
)2

)

with t a triangle, ti its i-th vertex and where A(.) computes the area

of a set of triangles in the initial model. This attempts to put all

vertices of each triangle in F to be at the same height.

Aligning. The alignment objective encourages lattened areas to

be aligned with slice tops. We slice the object after deformation

using uniform slicing, therefore the slices are located every k · τmax

with k an integer. This allows to compute an alignment error with

respect to the result of the previous iteration hi−1. To perform the

alignment we consider connected components c of triangles to be

lattened Ð sets of neighboring triangles in F . We attempt to snap

the average height of each lat component to a slice top. We compute

the height of a component c as a weighted average of its triangle

positions, H (c,h) =
∑

t ∈c
A({t })
A(c)

∑2
i=0 h(ti )

3 . We deine the snapping

position from the previous iteration as:

Snap(c,hi−1) = τmax

⌊

0.5 +
H (c,hi−1)

τmax

⌋

The alignment objective is deined as:

Ealiдn (h,h
i−1
,F ) =

∑

c ∈C(F)

Flat(c)
A(c)

A(F )

(

H (c,h) − Snap(c,hi−1)

)2

where C(F ) are connected components of F . Flat(c) selects which

alignment objectives are active, returning 1 or 0. An objective is

active if 1) the connected component c is lat ś as deined next

Fig. 5. Let: 3D view of the triangle with normal nt , tangent frame ut , qt .
Right: Side view of the z, vt plane, showing the rotation of qt around ut .

ś and 2) all larger components are also lat. The second rule pre-

vents deciding on an alignment on small components before larger

components are properly aligned.

Component latness. We evaluate the non-latness of a component

in F by computing the average max height diference between

triangle vertices, weighted by triangle area:

err (c,h) =
∑

t ∈c

A({t})

A(c)
max

i, j ∈[0,2]
i<j

(

h(ti ) − h(tj )
)2

This takes into account the fact that smaller triangles contribute

less to the inal error. A component is said lat if err (c,h) < ( τmin

8 )
2.

However, we reject as non lat any component where a triangle

would have vertices separated by more than τmax

2 : these could cross

a slice boundary, producing a staircase.

Changing slope. The objective Eslope seeks to make surfaces in F

vertical. Given a triangle t with normal nt , we compute a tangential

frame with vectors ut =
nt∧z
| |nt∧z | |

and qt = ut ∧ nt . When changing

the vertices heights qt rotates around ut (see Figure 5). The objective

attempts to align qt with z, and thus we deine a target vertical

direction qt = siдn(qt ·z) ·zwhere siдn(.) returns −1 if its argument

is negative, 1 otherwise.

The objective seeks to obtain the correct distances between the

vertices along qt , that is:

Eslope (h,η) =

∑

t ∈F

A({t})

A(F )

(
∑

i, j ∈[0,2]
i<j

(

ai − aj +
(

(aj − ai ) · qt
)

· qt
)2

)

where t is the triangle < p0,p1,p2 > and ai is a vector using the

original vertex XY coordinates and the variable height as the Z

coordinate: (x(pi ),y(pi ),h(pi )).

We exclude triangles that are already vertical, since no change of

vertex heights can modify their angle. It is logical to exclude them,

since there will be no staircase defect on a vertical slope, regardless

of the slice thickness.

Smoothness. The smoothness term encourages neighboring tetra-

hedrons to be modiied in a similar manner, that is, to have the same

gradient. This is written as:

Esmooth (h) =
∑

t ∈Γ

∑

n∈N(t )

V ({t}) +V ({n})

V (Γ)

(

∇ht − ∇hn

)2
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where N(t) is the set of tetrahedrons sharing a face with t , V (.)

returns the volume of a set of tetrahedrons, and ∇ht is the (vector)

gradient of t .

Solver. The problem we formulate is a quadratic objective mini-

mization under linear constraints. We use the Gurobi solver [2018]

to obtain a solution at each iteration.

4.4 Relaxing flatness constraints

After obtaining a solution hi for the current iteration, we check

whether connected components in F i−1 are all properly lattened.

If not, we proceed to remove some of the lattening requirements.

This process is reminiscent of segmentation techniques in PolyCube

optimization [Gregson et al. 2011].

Removing many triangles from F at each iteration would quickly

lead to satisfying solutions, but may miss opportunities to latten

some areas. Removing them one by oneÐcanceling the triangle

with maximum vertex height diferencesÐwould require as many

iterations as there are triangles in F 0, which is unreasonable.

We propose the following strategy. We observe that in most cases

the error is concentrated along the boundaries of the connected

components of F i−1. We therefore relax all the boundary triangles

that exceed the latness threshold. In this process, we consider as

boundary triangles only those whose neighbors were relaxed be-

fore. The rationale is that it is best to relax the lattened region

progressively along the same front.

If there is no boundary triangle in a componentÐwhich is always

the case on the irst iterationÐwe relax the triangle with the largest

vertex height diferences. Intuitively, this opens a tear in the non-lat

component that will then grow to relax the problem.

Note that, at each iteration, we relax all components which ac-

count for less than 5% of the total area to be lattened.

4.5 Applying the mapping and its inverse

The optimization gives us the mappingMh from the initial space

to the slicing space. We irst apply the mapping to the input model,

in order to obtain the mesh that will be sliced with a standard slicer.

The mapping has been optimized to use τmax as uniform slicing

thickness.

After slicing we obtain a set of toolpaths in the form of G-code

for ilament printers. We apply the inverse mappingM−1
h

to the

toolpath coordinates to obtain the inal curved toolpaths.

As the deformation may vary along each toolpath, we irst re-

sample the toolpaths using a sampling rate matching the nozzle

diameter. We then transform each point back to the inital space.

As the toolpath points lie on the top of each slice, we irst ofset

them down by half a layer thickness, τmax

2 . We then locate each

point withinM(Γ). Having identiied the enclosing tetrahedra, we

interpolate the z coordinate of the point from the original tetrahe-

dron vertices. This gives us a new point in the inital object space,

located in the middle of a slice.

We ofset it back to the slice top. This requires knowing the local

thickness. This information is directly available from the gradient

of h within the enclosing tetrahedra. We similarly adjust the ma-

terial low, and adjust the deposition speed to maintain a constant

extrusion rate.

Fig. 6. Anklebase model with diferent slicing algorithms, all using 38 slices.
Top: views of distance maps between the input mesh with curved slicing
(let) and uniform slicing (right). A lighter color indicates a reduced error.
Botom: Sides views of curved slicing print (let) and adaptive slicing (right).
All staircasing is eliminated while closely following the input.

4.6 Controlling the number of layers

By attempting to make surfaces vertical, our optimizer tends to

make the object as tall as possible in the slicing space ś equivalently

using the thinnest slices. To control the number of layers we simply

constrain the vertices of F to never exceed a certain height. That is,

to obtain n layers we add the constraint:

forall p ∈ F ,h(p) < h(pbottom ) + n · τmax

where pbottom is the lowest vertex of F .

This afords for a timeśquality trade-of that can be convenient

for the user.

5 RESULTS

We show a variety of prints in Section 5.1, we explore the inluence of

the input parameters in Section 5.2, andwe providemeasurements of

surface accuracy in Section 5.3, comparing our technique to optimal

discrete adaptive slicing [Alexa et al. 2017].

5.1 Printed models

We produced a number of results using an of-the-shelf Ultimaker2

(UM2) printer with minor modiications. It is equipped with a 0.8mm

nozzle and we allow thicknesses from 0.6mm down to 0.1mm (1/6

ratio). To allow for increased freedom of motion we removed the

metal part holding the fans around the nozzle. We use a wider nozzle

to print with thicker layers, so as to clearly reveal the efect of curved

slicing. We also used a standard Anet A8 printer for Figure 8.

ACM Trans. Graph., Vol. 38, No. 4, Article 81. Publication date: July 2019.



81:8 • J. Etienne, N. Ray, D. Panozzo, S. Hornus, C. C. L. Wang, J. Martínez, S. McMains, M. Alexa, B. Wyvill, S. Lefebvre

Model # Tets # Iter. Optimization time

Wing 9 711 4 < 1 minute

Foil cutter 19 740 3 < 1 minute

Anklebase 25 607 3 < 1 minutes

Frog (small) 36 224 3 < 1 minute

Sports car 58 708 17 20 minutes

Kitten 133 838 3 14 minutes

Frog (big) 200 743 3 22 minutes

Table 1. Statistics for all models, with 0.1-0.6 mm layer thickness and
θmax = 30. The first column is the number of tetrahedrons, the second
column is the number of relaxation iteration and the third column reports
total optimization times (Intel i7-4790K, 4 cores).

Fig. 7. Frog model, adaptive slicing (let) and curved slicing (right) with 27
slices. Printed on the UM2. Note the diference in the silhouete.

All models use the same 30 degrees angle constraint θmax and the

algorithm attempts to latten all surfaces below this angle, unless

otherwise speciied. Table 1 summarizes the main statistics and

optimization times for the models shown in the paper. Optimization

typically takes a few minutes, with the time depending essentially

on the input size and number of relaxation iterations.

Figure 6 shows a mechanical part with a slanted area. Curved

slicing closely follows the surfaces, printing the entire part around

the hole with a matching slope. Note how the slices go from lat to

curved in the bottom part. Figure 6 also compares with the result of

uniform and adaptive slicing for the same number of slices.

Figure 7 shows a frog model sliced with our technique and adap-

tive slicing, using a low number of slices. Figure 8 shows the same

model printed with thinner layers on a standard Anet A8 (cooling

fan removed for clearance). In both Figures, note the smooth curved

top of the frog. A bigger frog model is also shown in Figure 9. Note

how the slices match the overall angle of the main body, and how

the slices become thicker at the vertical extremity (mouth).

Figure 1 shows a wing cross-section model, revealing how curved

slicing can accurately reproduce an entire curved top. The model is

more accurately reproduced with our approach.

Figure 10 compares two car model prints, one via curved slicing

and the other via adaptive slicing. The curved slices nicely follow

the car outline at the top of the part, as well as reproducing the

wheels more accurately. This reveals how fewer slices can be used

to better reproduce slanted surfaces, allowing the reallocation of

other slices to the more detailed parts of the model.

5.2 Influence of optimization parameters

We now study the impact of the optimization parameters. Figure 11

illustrates the efect of the angle constraint θmax on an example

Fig. 8. Small frog model printed with curved slicing on an Anet A8 printer,
with a 0.4mm nozzle and 103 layers between 0.3mm and 0.05mm. Layers
at the top smoothly follow the curvature.

Fig. 9. Big frog printed on the UM2 with 68 curved layers. Note how the
layers have been curved to follow the overall shape of the body, and how
they become thicker near the mouth.

model, showing the deformation obtained on printers ofering difer-

ent degrees of freedom in terms of achievable angles. The results use

a similar number of slices, but smaller areas are lattened: increased

angular freedom leads to larger smooth surfaces.

Figure 12 illustrates the efect of the thickness ratio τmax

τmin
on the

same model. A ratio closer to one leaves little freedom to deform

the model upwards, resulting in using fewer slices. However, the

same set of surfaces are lattened.

In summary, increasing θmax allows larger curved surfaces, while

increasing τmax

τmin
leads to thinner slices.

Finally, Figure 13 illustrates the use of the number of layers target

(Section 4.6). Please note, however, that models obtained this way are

usually less accurate (in terms of volume error) than those obtained

automatically.

5.3 uality

We compare the surface accuracy of our results to that of uniform

slicing and adaptive slicing in Figure 14. We use the volume assign-

ment error, computed by discretization [Alexa et al. 2017]. We run
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Fig. 10. Sport car model printed on the UM2 using 34 layers, using our
approach (top and then let) and adaptive slicing (botom and then right).
The two side views reveal the smooth outline of the curved layers version.
Note the improved surface finish of the roof and hood, as well as the way
the curved layers uncompress to produce the lateral windows. Adaptive
slicing uses most layers around the hood.

an optimization of our models to obtain the reference number of

slices for comparison, and run each slicing algorithm on Ω using

the same number of slices. As can be seen from the left column of

each comparison in Figure 14, curved slicing generally results in

superior accuracy.

To evaluate the importance of lattening, we force the optimiza-

tion to start from artiicially smaller sets of surfaces to latten F

(all but irst columns of each comparison in Figure 14). As expected,

curved slicing is less accurate with less lattening: lattened surfaces

Ð equivalently curved surfaces in the original space Ð are those

that beneit the most from our approach. Nevertheless, thanks to

verticalizing, even when little lattening is performed curved slicing

produces results which are better than uniform slicing, even though

less accurate than adaptive slicing on some models.

5.4 Discussion

Overall we can see that our technique outperforms both uniform

and adaptive slicing. This is true both in terms of accuracy (volume

error) and surface inish.

It is especially remarkable that our technique produces results that

are more accurate than optimal adaptive slicing. This is explained by

several factors. At low numbers of slices, adaptive slicing has little

freedom, whereas we curve the deposition and align with surfaces.

Adaptive slicing cannot perform local adaptations, while by curving

our algorithm can reallocate slice thicknesses as required. This is

true within the same region of the object but also for disconnected

components within a slice. Finally, adaptive slicing allocates many

slices to low slopes, while we capture low slopes with a single slice.

However, optimal discrete slicing [Alexa et al. 2017] is orders of

magnitude faster as it computes slicing plans for all slices at once.

Also, while we can target a speciic number of slices (Section 4.6),

we cannot guarantee that the target is reached.

In many cases the visual aspect of the prints does not relect the

actual volumetric error. This is for instance the case on the cars in

Figure 15: The orientation of the top surface ill Ð the zigzag pattern

Ð changes the perceived smoothness. The surface is nevertheless

smoother than that of the planar slicing result. To reduce such issues

the slicer could be made aware of a preferred direction for the covers.

It is worth noting that we leave vertical surfaces free in our ap-

proach. In the idealized vertical slice model, a vertical wall produces

no error regardless of the layering thickness. In practice, on ilament

printers, slices have a rounded proile that changes the perceived

appearance. We could add a penalty requiring vertical surfaces to

be as tall as possible (and hence use as thin as possible slices). Nev-

ertheless, we found that leaving them free adds lexibility to the

solver and generally results in better solutions.

Finally, we did not consider structural properties in this eval-

uation. Based on observations from previous work prototyping

curved 3D printing, we expect the prints to be stronger [Huang and

Singamneni 2012; Lim et al. 2016; Singamneni et al. 2012] than those

obtained with planar slicing. As future work we will quantitatively

evaluate the change in structural properties.

6 LIMITATIONS AND FUTURE WORK

A irst limitation of our approach is the relatively high running

time. Since we perform the optimization in a volume, the number of

variables grows quickly. As future work, it would be interesting to

consider a multi-resolution approach, and use a coarse solution to

bootstrap the deformation of a high-resolution version of the model.

Note, however, that the number of slices and the mesh optimization

are not correlated. Optimizing a scaled version of a model costs the

same, and slicing is fast.

A practical limitation relates to the range of 3D printers where

this technique is applicable. Some printers have very short extrusion

nozzles, and in such cases there is very little angular freedom (see

Figure 11 to see the impact of a reduced Θmax ). Another practical

concern, on devices mounting relatively heavy plates on the Z axisÐ

such as the UM2Ðis that the speed has to be limited to obtain a

smooth Z motion and deposition. We typically printed twice as slow

as for a normal UM2 print. The lighter carriage of the A8 did not

impose lower speeds. A delta printer would be ideal [Allen and Trask

2015]. Another practical diiculty relates to abrupt low variations,

which can result in some defects where they occur.

Our iterative scheme favors lattening. This is a reasonable choice

as revealed in Figure 14: the accuracy is generally better with in-

creased lattening. However, it is clear that in some situations locally

relaxing lattening could improve the overall solution. Our optimizer

cannot currently detect such cases. A possible approach would be

to relax lattened areas that do not align well with the slice tops.

Allowing the user to select which faces to keep lattened would be

a good alternative, enabling application-dependent choices.

Finally, a better integration with the slicer would help further

improve perceived surface quality, in particular aligning the ill

patterns with the slope direction (see Section 5.4). Another potential
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Fig. 11. Optimization of kiten model for θmax = 10, 20, 30, 40, and 50 degrees. This shows both the object and the empty space around (cut open). The stripes
correspond to slices. The 3D models shown inset are obtained ater mappingM(Ω). The original model is shown in the letmost botom corner. Note how
additional angular freedom results in more areas being curved and smoothly reproduced.

Fig. 12. Optimization of the frog model for diferent min/max thickness
ratios. The same surfaces are flatened, but the additional freedom leads to
using thinner layers (taller models imply more layers). The red frog (ratio
1.0) is deemed unfeasible by the optimizer ; this is due to numerical issues
as we request all slices to have exactly the same thickness.

Fig. 13. Optimization of the frog model targeting 16, 19, 21, 24, and 27
layers of 1mm, using the approach from Section 4.6. The renderings show
the models for 16 and 27 slices. Lighting enhanced to highlight slices.

approach is the ironing technique, where the print head performs

multiple passes to heat and smooth surfaces.

We hope our technique will encourage further adoption of curved

slicing on standard 3-axis machines. We expect this technique will

lead to future work regarding curved slicing using additional degrees

of freedom.
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3D MODELS
• wing https://www.thingiverse.com/thing:95502

• anklebase (50% scale) http://inmoov.fr/inmoov-stl-3d/?bodyparts=

Legs-Ankle&parts=AnkleBaseV1.stl

• frog (small) https://www.thingiverse.com/thing:3284

• frog (large) https://www.thingiverse.com/thing:182144

• kitten https://www.thingiverse.com/thing:12694

• sportscar https://www.thingiverse.com/thing:1587558
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quality. The efect also depends on lighting and view angle.
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