Progressive Embedding

HANXIAO SHEN, New York University
ZHONGSHI JIANG, New York University
DENIS ZORIN, New York University
DANIELE PANOZZO, New York University

Tutte embedding is one of the most common building blocks in geome-
try processing algorithms due to its simplicity and provable guarantees.
Although provably correct in infinite precision arithmetic, it fails in chal-
lenging cases when implemented using floating point arithmetic, largely
due to the induced exponential area changes.

We propose Progressive Embedding, with similar theoretical guarantees
to Tutte embedding, but more resilient to the rounding error of floating
point arithmetic. Inspired by progressive meshes, we collapse edges on
an invalid embedding to a valid, simplified mesh, then insert points back
while maintaining validity. We demonstrate the robustness of our method
by computing embeddings for a large collection of disk topology meshes.

By combining our robust embedding with a variant of the matchmaker
algorithm, we propose a general algorithm for the problem of mapping
multiply connected domains with arbitrary hard constraints to the plane,
with applications in texture mapping and remeshing.

CCS Concepts: « Computing methodologies — Shape modeling.

ACM Reference Format:

Hanxiao Shen, Zhongshi Jiang, Denis Zorin, and Daniele Panozzo. 2019.
Progressive Embedding. ACM Trans. Graph. 38, 4, Article 32 (July 2019),
13 pages. https://doi.org/10.1145/3306346.3323012

1 INTRODUCTION

Piecewise linear surface-to-plane maps, or parametrizations, are
ubiquitous in computer graphics, geometry processing, mechanical
engineering, and scientific visualization. Depending on the appli-
cations, the maps are required to exhibit different properties, most
commonly, low distortion, local injectivity, and global bijectivity.
The last two properties are challenging to guarantee for discrete
maps. Most algorithms with guarantees use Tutte embedding as a
component. Tutte embedding is a construction that is guaranteed
to create bijective mappings under minimal assumptions, if both do-
mains are simply connected and the target planar domain is convex.
However, the guarantee only holds if the computation is performed
in arbitrary precision rather than floating point arithmetic, as it is
commonly done. Failure due to floating point approximation is not
as uncommon as one would assume, as the algorithm is likely to
create an extreme variation of scale and aspect ratios in complex

This work was supported in part through the NYU IT High Performance Computing
resources, services, and staff expertise. This work was partially supported by the NSF
CAREER award with number 1652515, the NSF grant IIS-1320635, the NSF grant DMS-
1436591, the NSF grant 1835712, a gift from Adobe Research, and a gift from nTopology.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2019/7-ART32 $15.00

https://doi.org/10.1145/3306346.3323012

1018

¢ 10
100
10°
108

Fig. 1. The Tutte embedding of this Hele-Shaw polygon (left) contains 46
flipped triangles, due to numerical rounding errors. Our progressive embed-
ding (right) produces a valid embedding, without any inverted element and
with lower distortion. The colors represent the distortion of the triangles,

measured using the symmetric Dirichlet energy.

mapping cases. To quantitatively evaluate this issue, we computed
Tutte embeddings on 2718 models (all the genus 0 models from
Thingil0k [Zhou and Jacobson 2016]) using double precision, and
observed 80 failures. To the best of our knowledge, this problem has
not been addressed before in the literature.

This rate of failure is problematic for batch processing large ge-
ometrical collections (for example for processing geometric deep
learning datasets) or when the embedding has to be computed many
times (for example in cross-parametrization [Kraevoy et al. 2003;
Schreiner et al. 2004]). In these scenarios, a failure rate of 2.9% may
not be tolerable, since it is not realistic to manually fix hundreds
of problematic cases, and if failure happens on large meshes with
millions of triangles it might not even be possible to fix them by
hand.

A simple solution to this problem is the use of multi-precision
(or rational) arithmetic [Granlund 2018]: if enough bits are used to
represent the mantissa and exponent of the floating point represen-
tation, Tutte embedding will succeed, since the solution of a linear
system can be computed exactly. However, the result in high preci-
sion is not directly usable by downstream applications, and requires
to be rounded (or “snapped” [Halperin and Packer 2002]) to floating
point coordinates. This is a surprisingly challenging problem for
which, to the best of our knowledge, no solution applicable to our
setting exists (Section 3.1).

Instead, we propose a progressive algorithm to directly generate
an embedding using floating point coordinates. We start from an
initial, possibly invalid, floating point planar parametrization, and

ACM Trans. Graph., Vol. 38, No. 4, Article 32. Publication date: July 2019.

32:2 « Hanxiao Shen, Zhongshi Jiang, Denis Zorin, and Daniele Panozzo

we make it valid by collapsing all flipped and degenerate parts
of the (possibly invalid) embedding produced, e.g., by a floating-
point Tutte algorithm. We re-insert one vertex of the original mesh
at a time, preserving the validity of the map at every step. This
approach is inspired by [Schreiner et al. 2004], which proposes a
progressive algorithm for computing cross-parametrizations based
on progressive meshes [Hoppe 1996]. Our algorithm differs since
we do not know a valid position for the inserted vertices, and we
thus have to compute it as the vertices are added back. We provide
a formal proof of correctness of our method in arbitrary precision
(obtaining the same formal guarantees as Tutte embedding), and we
practically demonstrate its superior robustness by parametrizing a
large collection of 10k models.

Using our new embedding method and the matchmaker algorithm
[Kraevoy and Sheffer 2004; Kraevoy et al. 2003] as a foundation,
we develop an algorithm for mapping between multiply-connected
domains with arbitrary constraints, supporting fully general self-
overlapping domains as the target. We experimentally show that our
algorithm is very robust, producing valid and distortion-optimized
maps even for challenging cases where the original matchmaker
algorithm fails due to numerical problems. We demonstrate the prac-
tical utility of our algorithm for UV mapping and quadrangulation
applications.

To foster replicability of results and to maximize the practical
impact of our algorithm, we also attach a reference implementation.
https://github.com/hankstag/progressive_embedding

2 RELATED WORK
2.1 Planar Embedding of Graphs and Meshes

Fary’s theorem [Fary 1948] states that any planar graph can be
embedded in the plane with straight edges. Tutte [Tutte 1963] ex-
tends this result to the case of fixed convex boundary with a spring
analogue, and [Floater 1997] established its connection to the param-
eterization methods in the geometry processing community, and
extend Tutte’s uniform weight to arbitrary positive ones. In both
cases, the problem is reduced to solving a linear system of equations
and the resulting embeddings’ minimum area might even be nega-
tive exponential with respect to the number of vertices. There has
been active effort in the graph drawing community to address these
issues, by bounding the total area when drawing on integer grids, or
equivalently, controlling the minimum resolution [Chambers et al.
2011] under fixed diameter. Most notably, [Schnyder 1990] shows
an algorithm to embed a planar graph onto integer grids inside a
triangle region, and [Chambers et al. 2011] proves an upper polyno-
mial bound on the area while keeping a specified convex boundary
shape: the proof is constructive and may (potentially) be used as a
basis for a practical algorithm. In all cases, rounding problems will
affect these algorithms as the size of the graph grows (Section 3.1).

Orbifold Tutte Embedding. Multiple extensions of Tutte’s theorem
to map surfaces to different co-domains have been proposed. In
particular, the theorem has been extended to map surfaces to a
Euclidean orbifold [Aigerman and Lipman 2015], to a hyperbolic
orbifold [Aigerman and Lipman 2016], and to a spherical orbifold
[Aigerman et al. 2017]. All three methods support hard positional
constraints and ensure the generation of a bijective map between

ACM Trans. Graph., Vol. 38, No. 4, Article 32. Publication date: July 2019.

the surface and the orbifold in infinite precision arithmetic. These
methods also suffer from similar numerical issue as Tutte’s, and
extending our algorithm to orbifold embeddings is an interesting
direction for future work.

2.2 Progressive Meshes

The well-known progressive meshes algorithm [Hoppe 1996; Sander
et al. 2001] shows how a triangle mesh can be simplified by col-
lapsing one edge at a time, and reconstructed applying the inverse
topological operations in the inverse order. This scheme has been
introduced as an efficient way to store, transmit, and render large
meshes, where the per-vertex properties of the removed vertex are
stored together with the information required to insert them back.
This work has been later applied to compute inter-surface mappings
[Schreiner et al. 2004], by jointly simplifying two meshes into a
common base mesh, then starting from optimizing their isometric
distortion while reinserting the vertices in the base mesh.

We use the same idea to eliminate problematic regions of an
existing embedding (either flipped, or with a high distortion), and
then reinserting one vertex at a time, while preserving the quality
of the triangulation. Differently from progressive meshes, in our
case we do not have geometrical information available that could
help us decide where the vertex should be inserted to obtain a valid

embedding.

2.3 Distortion-Minimizing Mappings
In this section, we focus on the recent works closely related to gen-
erating distortion-minimizing discrete locally injective and globally
bijective discrete maps, and we refer to [Floater and Hormann 2005;
Hormann et al. 2007; Sheffer et al. 2006] for a comprehensive treat-
ment of earlier parametrization methods without these properties.
A discrete locally injective map requires that triangles maintain
their orientation (i.e. they do not flip) and if the sum of (unsigned)
triangle angles around each internal vertex is precisely 2z [Weber
and Zorin 2014]. Three main families of methods have been proposed
to deal with this challenging constraint: barrier, convexification, and
hybrid algorithms.

Barrier Algorithms. Barrier algorithms require a valid initial so-
lution, and then optimize its quality without leaving the feasible
space. The key idea is to adopt quality metrics diverging to infinity
when triangles become degenerate, thus inhibiting flips. Popular
choices strive to preserve angles [Degener et al. 2003; Hormann
and Greiner 2000] or lengths [Aigerman et al. 2014; Poranne and
Lipman 2014; Sander et al. 2001; Smith and Schaefer 2015; Sorkine
et al. 2002]. Alternatively, a barrier functions can be added to exist-
ing energies to enforce local injectivity [Schiiller et al. 2013]. These
non-linear energies are difficult to minimize, stemming a series of
methods specifically targeting this problem. They include coordi-
nate descent [Hormann and Greiner 2000; Labsik et al. 2000], parallel
gradient descent [Fu et al. 2015], Anderson Acceleration [Peng et al.
2018], as well as other quasi-newton approaches [Claici et al. 2017;
Kovalsky et al. 2016; Liu et al. 2018; Rabinovich et al. 2017; Shtengel
et al. 2017; Smith and Schaefer 2015; Zhu et al. 2018].

All these methods support hard-constraints if they are already
satisfied in the initial map, which is the key idea used in MatchMaker

[Kraevoy et al. 2003]. Our progressive embedding can be used to
robustly generate the initial map, that can then be improved by any
of the previous techniques (Section 5).

Projection Algorithms. An essential component of these methods
is a convexified form of the injectivity constraints [Kovalsky et al.
2015; Lipman 2012]. While these methods naturally support hard
injectivity constraints, they might fail to find a feasible solution,
with no output generated. The only known way to guarantee that a
feasible solution exists is to formulate the convexified constraints
using a reference frame derived from a valid (although potentially
very high distortion) solution.

Hybrid Algorithms. Hybrid algorithms are an interesting mix
between these two approaches [Fu and Liu 2016; Poranne et al.
2017]. The initial guess is produced by separating all triangles and
isometrically rotating them into the UV space. A barrier method is
then used to prevent them from flipping, while trying to seal the
seams. This approach might fail to seal all the seams, not producing
a valid map.

Globally Bijective Maps. For simply connected domains, bijective
maps are locally injective maps whose boundary does not intersect.
All embeddings described in Section 2.1 satisfy this property. These
methods have been extended to non-convex, self-overlapping poly-
gons [Weber and Zorin 2014] and polyhedrons [Campen et al. 2016],
but they still require a fixed boundary. Few methods can produce
bijective maps while letting the boundary free, relying on either col-
lision detection [Smith and Schaefer 2015] or scaffolding elements
[Gotsman and Surazhsky 2001; Jiang et al. 2017; Miiller et al. 2015;
Zhang et al. 2005]. All free boundary methods require a starting
point: our algorithm can be used to generate it, enabling these al-
gorithms to create bijective maps with hard constraints (Section
4).

Hard Positional Constraints and Refinement. Matchmaker [Kraevoy
et al. 2003] introduced hard positional constraints for texture map-
ping applications. The algorithm uses a two-step approach, first
generating a valid map, and then optimizing its geometrical quality.
The method is one of the few using refinement to guarantee the
existence of feasible solutions. The method has been extended by
adding an intermediate warping stage to align the constraints in
[Lee et al. 2008]. We show in section 4 how our embedding can
be used withtin Matchmaker to increase its robustness, and we
also show how to extend Matchmaker to support self-overlapping
polygonal target domains.

Cross-Parametrization. Cross-parametrization, i.e. the computa-
tion of a map between two surfaces, is another problem that often
relies on planar embeddings. [Schreiner et al. 2004] and [Kraevoy
and Sheffer 2004] proposed the first provably guaranteed solutions
to compute maps between surfaces, by reducing the problem to
mapping both surfaces to a common subdomain by either using
Tutte’s embedding or a simplification approach. A similar construc-
tion that cuts open the surface into a single topological disc has
been proposed in [Aigerman et al. 2014], and extended to allow even
the optimization of the seams positions in [Aigerman et al. 2015].
Floating point rounding errors have not been considered in any of

o 323

Fig. 2. A selection of failed Tutte’s embedding (left) and our bijective pro-
gressive embeddings (right). Note that the progressive embeddings have a
much lower area distortion (colors).

these works, which are more prone to fail as the resolution of the
mesh increase or whenever the user-provided constraints introduce
a high distortion (Section 5).

Global Parametrization. Field-aligned parametrization methods
[Bommes et al. 2009] strive to compute a locally injective map
[Bommes et al. 2013] whose gradient is aligned with a user-provided
directional field. We refer an interested reader to [Bommes et al.
2012] for a comprehensive overview of these techniques. Our em-
bedding algorithm can be used to compute parametrizations to a
target self-overlapping polygon, enabling to robustly generate these
parametrization if a valid boundary polygon is provided (Section 5).

3 PROGRESSIVE EMBEDDING
3.1 Analysis of Tutte Embedding in Floating Points

We discuss in detail when Tutte embedding implemented in floating
point may fail, and also show that straightforward solutions with
off-the-shelves geometry processing tools do not solve these issues.

Tutte Embedding implemented in Floating Points. We use the im-
plementation of Tutte embedding in libigl [Jacobson et al. 2016],
and apply it to all the 2718 genus 0 models of the Thingil0k dataset
[Zhou and Jacobson 2016], after cleaning them up and improving
their quality using TetWild [Hu et al. 2018], to ensure that no de-
generate triangles are present. We also ensure that the meshes are
3-connected by refining them locally. For every model, we randomly
pick and delete a triangle, and map the resulting boundary to an
equilateral triangle. We compute the Tutte embedding, and check
for flips using CGAL’s exact floating point predicates [Bronnimann
et al. 2018]. The check fails for 80 models, due to the numerical
errors introduced in the mapping. In retrospect, this is not surpris-
ing since it is well-known that Tutte planar drawing may admit
exponential area when drawing on integer grids. Two problematic
cases are shown in Figure 2, where the embedding introduces a
large variation of scale, and the flip occurs on triangles with small
areas.

Multi-Precision Tutte Embedding with Snap Rounding. A straight-
forward way to address this problem is to increase the number of
bits used in the floating point representation. We double the number
of bits using the library MPFR [Fousse et al. 2007], which is directly

ACM Trans. Graph., Vol. 38, No. 4, Article 32. Publication date: July 2019.

32:4 « Hanxiao Shen, Zhongshi Jiang, Denis Zorin, and Daniele Panozzo

Fig. 3. A progressive embedding (right) of the retinal model (left) is gener-
ated starting from a randomized initial parametrization (middle). The red
color indicates the amount of isometric distortion, and yellow indicates
inverted elements. Note that the model is cut open to have disk topology.

integrated into Eigen, and can thus be used with the Tutte embed-
ding in libigl with minimal code changes. With this setup, all the
problematic cases are solved. However, the runtime is increased by
around one order of magnitude, and, most importantly, the results
generated cannot be rounded back to floating point since trivial
rounding introduces flips. Snap rounding [Packer 2018] could be
used to avoid them, but it will collapse possibly large regions of the
mesh: 6.3% of the vertices of the model shown in the bottom left
of Figure 8 are collapsed when using a snap rounding resolution of
10716 times the diagonal of the bounding box of the embedding,

Multi-Precision Tutte Embedding with Quality Optimization. The
problem with rounding to floats is induced by the small triangles
(and correspondingly small edges) which leads to flips after snapping.
A possible way to address this issue is to use a mesh optimization
algorithm, using multi-precision representation, before rounding
to floats. We tested two approaches: (1) SLIM [Rabinovich et al.
2017] adapted to run in multiprecision, and (2) minimizing the
symmetric Dirichlet energy by moving one vertex at a time using
coordinate descent [Hormann and Greiner 2000]. The first approach
is prohibitively slow, due to the linear solve in high precision and
the very small steps due to the elements with almost zero area. The
second one succeeds on 57 models, but still fails on 23, even after
24 hours of running time.

3.2 Progressive Embedding

Our approach draws on the ideas of progressive meshes [Hoppe
1996] and inter-surface mappings [Schreiner et al. 2004], which are,
in turn, closely related to theoretical ideas from PL topology (e.g.,
[Hudson and Shaneson 1969]).

Our algorithm does not require Tutte embedding and can be
used to construct an embedding from scratch or from a random
initial mapping (Figure 3). It can be accelerated by using an existing,
possibly invalid, embedding as a starting point. A triangle is invalid
if its signed area is negative, or if its quality measure is below
a threshold (we use the symmetric Dirichlet energy [Smith and
Schaefer 2015] with respect to a canonical equilateral triangle whose
area is the area of the target boundary polygon divided by the
number of triangles and mark invalid if it is above 7 = 1e20). Using
a quality measure in addition to signed area is important, since
triangles with small, positive areas might cause numerical problems
during the vertex insertion (Phase 2 below).

Starting from an invalid embedding, our algorithm (1) performs
edge collapses until the simplified mesh has no invalid triangles

ACM Trans. Graph., Vol. 38, No. 4, Article 32. Publication date: July 2019.

Algorithm 1: Collapse Invalid Triangles

Input :Planar mesh M

Output: Valid mesh M, and a recorded collapse sequence R
1 invalid_set = set of invalid triangles in M;
2 while invalid_set is not empty do

3 if only one internal vertex left then
4 Set to the barycenter of & M and return
5 for T € invalid_set do
6 for e € T, internal(e) and link(e) do
// Try only internal edges with link condition
satisfied
7 collapse(M, e) and record to R;
8 Remove T from invalid_set;
9 break ; // Try next triangle

10 if nothing got collapsed then
// Expand the set with neighborhoods

11 for T € invalid_set do
12 Add neighbors of T to invalid_set;

v Vg vs Vg
Collapse Ve,
vg vg
Insertion
vy vr
v vy v vo

Fig. 4. Collapsing v, to vy and the corresponding fans of triangles.

s
S

(Algorithm 1), and (2) progressively inserts back each vertex in the
same order (Algorithm 2), with feasibility of insertion ensured at
each step.

Stage 1: Simplification. At this stage, we iteratively find an interior
edge that can be collapsed until all invalid elements are removed
from the initial embedding, or a single interior vertex is left (Al-
gorithm 1). A theorem in [Mijatovi¢ 2003] and our Theorem A.8
guarantees that a sequence of collapses reducing the mesh to a mesh

V5 U v Vg
\
Ve, Ve,
v3 v3
vr vr
vy Vo 1 Vo

Fig. 5. The two admissible insertion positions from Lemma A.11. The dark
region on the left shows the valid positions for v, while fixing vy. The right
case is the opposite. Our algorithm opts for the left case for stability, since
the calculation of the valid sector in the right case involves intersection of
the prolonged edge (dashed lines) and the 1-ring neighbors. We pick the
valid sector as the one that has an inner angle sum smaller than 7.

Algorithm 2: Single Vertex Insertion

Input :Mesh M, v, is to be split from v, with position py
F = neighboring faces of vy or vy,
V = adjacent vertices of vy in the valid sector
E = midpoints of edges in the link of vy in the valid sector
% = a map from the mesh vertices to 2D positions
Output: P with relaxed positions, along with newly assigned P (v;,)

1 Loop
2 foreach v € V+E do
// Backtracking line search, from p, towards #(v), until
F all valid
3 P(vm) = linesearch (pg, P(v));
4 candidate_score = max ey Energy (f);
5 Record P(vy,) if candidate_score < oo
6 if Record is not empty then // Insertion succeeds
7 Select P(v;y,) with the minimum candidate_score.;
8 Relax vertex positions with 10 iterations of local smoothing;
9 break;
10 else // Insertion fails, improve quality and try again
11 ‘ Relax vertex positions with 50 iterations of local smoothing;

with a single interior vertex can always be found; as the boundary
embedding is convex, we can also always find a position for this
vertex to create a valid embedding for the fully simplified mesh.
The simplification algorithm starts by tagging all invalid triangles
(Line 1), and attempts to collapse all their edges. If this procedure
is successful in eliminating all invalid triangles, the algorithm ter-
minates, otherwise all the triangles adjacent to tagged triangles are
tagged (Line 12), and their edges collapsed. Note that we only allow
edge collapses on internal edges to avoid changes to the boundary.
This algorithm is guaranteed to terminate, since in the worst case
it will tag the entire mesh and Theorem A.8 ensures that at least
one edge will be collapsible. If only one internal vertex is left (Line
4), we move it to the barycenter of the boundary vertices (which
is inside the convex boundary by construction, but might fail in
degenerate cases, as discussed in Section 6). Once the algorithm
terminates, the resulting simplified mesh has no inverted triangles
and by Proposition A.9, also has sums of triangle angles at each
vertex equal to 27.

Stage 2: Insertion. Starting from the valid embedding computed
after Stage 1, we perform a sequence of splits reverting the collapses,
while maintaining embedding validity at every step (Algorithm
2). Lemma A.11 ensures that this is always possible (in infinite
precision), as the area of each triangle after insertion is always
positive, whenever the newly inserted points lie in the valid sector
(Figure 5). The algorithm first computes candidate directions in
the valid sector, then performs a flip-avoiding line search [Smith
and Schaefer 2015] (Line 3) to find candidate positions (vy,) for
the newly inserted vertex vy, such that the 1-ring neighborhoods
are valid. In our experiments, we use step length a = 0.8, and cap
the number of line search iterations to 75. If at least one candidate
is found, the split is performed using the candidate resulting in a
mesh minimizing the error measured as the maximum of the 1-ring
energy. Since a candidate position always exist in infinite precision
(Lemma A.11), the only possible cause for not finding it is a lack of

« 325

Energy

Time

Fig. 6. Max of Symmetric Dirichlet energy per triangle at the insertion stage
of the arch model. Every vertex insertion can decrease the local quality of
the mesh, which is then restored using smoothing. Every peak in the energy
graph corresponds to a vertex insertion.

representation power in the floating point representation. We thus
improve the quality of the mesh (Line 11) until a candidate is found.

This algorithm may still fail to find a candidate in degenerate
configurations. However, we experimentally found that the con-
strained mesh smoothing is very effective at ameliorating this issue,
keeping the mesh quality sufficiently high during the insertion to
allow split operations to succeed (Figure 6). In all our experiments
we only found one failure case, where the prescribed target bound-
ary is a numerically degenerate triangle (Section 6). All our other
experiments, even on a large data set and with complex boundary
conditions (Section 5) were successful.

Local Smoothing. To improve the quality of the map in the inser-
tion step (Algorithm 2, line 8 and 11), we minimize the symmetric
Dirichlet energy [Smith and Schaefer 2015], optimizing one vertex
position at a time using Newton iterations, similarly to [Fu et al.
2015; Hormann and Greiner 2000; Labsik et al. 2000]. We favor this
local approach since it is more robust to low quality elements, which
would otherwise badly affect both the numerical stability and the
step size of global optimization methods. Since our goal is to im-
prove the minimal quality of the mesh, we minimize the symmetric
Dirichlet energy only for the invalid triangles (using reference shape
as an equilateral triangle with area equal to the average of triangles
in the 2D domain), and use the scaffold energy [Jiang et al. 2017] (i.e.
we use the element itself as the reference triangle for the symmetric
Dirichlet energy) for the valid ones, which allows them to move
more freely. In our experiments, the local smoothing is performed
for 10 iterations after every insertion step. If a valid insertion candi-
date cannot be found, we keep improving the quality with batches
of 50 smoothing iterations until a candidate is found (Algorithm
2 line 11). Furthermore, at each smoothing phase, we perform a
greedy coloring of the edge graph [Kucera 1991], and the vertices
inside each color are optimized in parallel.

4 MATCHMAKER++

The computation of locally injective maps is important in geometry
processing (Section 2), with the majority of the methods focusing
on efficient and scalable quality optimization. However, few method
guarantees positional constraints: the notable MatchMaker algo-
rithm [Kraevoy et al. 2003] reduces the problem to a number of

ACM Trans. Graph., Vol. 38, No. 4, Article 32. Publication date: July 2019.

32:6 « Hanxiao Shen, Zhongshi Jiang, Denis Zorin, and Daniele Panozzo

convex planar embeddings, which are computed with Tutte’s algo-
rithm. However, as we observe in some cases (Section 5.2), such
embeddings can be numerically challenging. Replacing Tutte embed-
ding with progressive embedding enables matchmaker to robustly
compute maps with very challenging configurations of constraints.
In this Section, we describe an extension of [Kraevoy et al. 2003]
that (1) makes use of progressive embedding to increase robustness,
and (2) supports weakly self-overlapping polygons as co-domains
[Weber and Zorin 2014].

Overview. Combining our progressive embedding algorithm and
the matchmaker algorithm, we describe an algorithm for solving
the following problem: Given a simply-connected 3d mesh, equipped
with with a set of user-defined hard positional constraints at vertices,
compute a valid piecewise-linear parametrization, such that (1) the
map is valid in the following sense: there are no flipped triangles,
and for each vertex, the map restricted to the one ring of triangle
of that vertex is bijective, unless it is a singular boundary vertex, as
defined below and (2) the parametrization bitwise exactly satisfies the
user-defined positional constraints. We tackle this in three steps: we
decompose the target domain into convex polygonal subdomains,
match these domains to the subdomains of the source domain, com-
pute an initial bijective map by stitching progressive embeddings for
each subdomain, and final globally optimize the mapping distortion.

User input. We distinguish between two cases, chosen by the
user (1) the required map is a global embedding, (2) the map is an
immersion. For the first case, the constraint specification is more
flexible: the user only has to provide a set of point or line constraints.
For the second case, the target domain is not a subset of the plane,
but rather, an everywhere flat surface with overlaps. We require
the user to prescribe constraints for the whole boundary of the
polygon to define the target domain unambiguously (some parts
may be marked as movable, but an initial position is needed) and
to provide a path connecting each point or line constraint to the
boundary, which allows to define its location on the target surface
implied by the boundary specification. In this case, target boundary
polygon has to be weakly self-overlapping [Weber and Zorin 2014],
otherwise, the map does not exist.

Phase 1: Subdivision of the Target Domain. In the global embedding
case, the target domain is generated by triangulating the bound-
ing box of the input with Triangle [Shewchuk 1996]. In the second
case, the self-overlapping domain is triangulated using a modifica-
tion of the Shor-Van Wyck algorithm [Shor and Van Wyk 1992],
described in [Weber and Zorin 2014]. In both cases we ensure that
the hard positional constraints are vertices of the triangulation. We
then merge triangles into convex polygons in a greedy manner, by
dropping edges if the resulting subdomains are convex. While this
merging step is optional (the algorithm works also without it) it
reduces the number of subdomains and vertices, making the next
steps more efficient. In the case when an immersion is computed,
by construction, it will be an embedding on subdomains computed
starting from the Shor-Van Wyck triangulation.

Phase 2: Path Tracing on the Original Mesh. After the target do-
main is subdivided into convex polygons, we match this decomposi-
tion to the input mesh. The goal is to find non-intersecting paths

ACM Trans. Graph., Vol. 38, No. 4, Article 32. Publication date: July 2019.

Fig. 7. Starting from a triangulation generated from only boundary seg-
ments and internal constraint points (left). Instead of treating triangles
as sub-domains as in [Kraevoy et al. 2003], we merge triangles to convex
polygons (middle). Then we find paths (bold, right) connecting constraint
points to the boundary without new cycles, and prioritize their tracing.

connecting each of these pairs in 3D mesh, subdividing the whole
mesh into same number of patches.

At the tracing stage, we perform a reordering of the paths to
make sure that no previously traced path will block the future
ones (Figure 7). In the case of embedding, the algorithm finds paths
that connect all positional constraints to the boundary without
creating additional loops (than the existing boundary). In practice,
these paths are found by dropping one segment on the boundary,
and then grow the minimum spanning tree (over the edges of the
polygonal mesh) from the incomplete boundary loop. We first trace
the paths on the minimum spanning tree and then the remaining
ones, connecting the boundary to the constraints. The correctness
of this procedure can be found in [Praun et al. 2001].

For the tracing of each path on the surface, we follow [Kraevoy
et al. 2003] to find the shortest path connecting two endpoints, and
add Steiner points on the edges if no path, not intersecting other
paths, can be found.

Phase 3: Bijective Mapping. After establishing a correspondence
between each patch of the 3D mesh and a convex polygon in the
target domain, we can first subdivide the 2D paths in the target
domain to match the number of vertices on the corresponding 3D
path to obtain the one-to-one correspondence between them. We
observe that up to this point, the algorithm is largely combinatorial
(while some vertices are inserted on edges, their geometric position
is trivially determined and is very unlikely to result in numerical
problems; none were observed in our experiments). At this point, the
map is defined for boundaries of the subdomains corresponding to
the convex subdomains in the target. Next, we extend the map to the
interior of each region using our progressive embedding algorithm
(Section 3.2). Notice that when the mesh patch is not 3-connected,
we need to split the edges with two endpoints on the boundary.

Phase 4: Quality Optimization. The map obtained in the previ-
ous steps is valid, according to the definition of the weakly self-
overlapping map [Weber and Zorin 2014]. Therefore, its quality can
be optimized using any locally injective map improvement algo-
rithm (Section 2). We opt for [Rabinovich et al. 2017], since it is
efficient for large models and the implementation is readily available
[Jacobson et al. 2016]. The implementation is modified to support
hard positional constraints, by eliminating the corresponding vari-
ables.

5 RESULTS AND DISCUSSION

We implemented our algorithm in C++, using Eigen [Guennebaud
et al. 2010] for linear algebra, and libigl [Jacobson et al. 2016] for

Name #V #F | #invalid #flipped | PE(s)
Octopus 5034 10063 2351 524 245.1
Swirl 11754 23503 9317 638 | 2273.1
Deer 8720 17434 15728 7831 | 3916.8
Rabbit 7253 14500 8743 4233 | 1198.6
HeleShaw 3505 5355 437 46 62.1
Retinal 3791 7282 3533 3533 95.0
Arch 973 1941 790 270 21.9
Propeller 787 1569 484 70 11.6

Table 1. Statistics of the input and output meshes in the planar embedding
test (Section 5.1). From left to right: Name of the dataset, number of vertices,
number of faces, number of invalid elements (positive area, but with energy
above 1e20) after Tutte embedding, number of flipped elements after Tutte
embedding, progressive embedding (Section 3) running time in seconds.

Name #V #F | #invalid #flipped | PE(s) MM++(s)
Fertility 16508 33028 0 0 NA 582.4
3 holes 7440 14886 0 0 NA 107.4
Robot Cat 4117 7512 0 0 NA 0.8
Aircraft 2523 4656 0 0 NA 0.5
Twirl 5562 10402 0 0 NA 1.1
Filigree 49872 100000 32 0 72.4 30.8
Botijo 43786 83788 0 0 NA 3.9
Beetle 20619 39276 0 0 NA 1.1
Casting 21236 39438 67 40 27.4 13
Oil pump | 54135 103778 5 0 2.3 4.8

Table 2. Statistics of the input and output meshes of the MatchMaker++
test (Section 5.2). From left to right: Name of the dataset, number of vertices,
number of faces, number of invalid elements (positive area, but with energy
above 1e20) after Tutte embedding, number of flipped elements after Tutte
embedding, progressive embedding (Section 3) running time in seconds,
and MatchMaker++ (Section 4) running time in seconds.

geometry processing and visualization. The reference source code,
the data used, and the scripts to reproduce the results are attached
in the additional material. The timings and statistics for the datasets
shown in the paper are summarized in Table 1 and Table 2.

We first present results computed using only our progressive
embedding (Section 5.1), and then demonstrate the generation of
low distortion, locally bijective maps created with our extension of
MatchMaker (Section 5.2).

5.1 Progressive Embedding

Planar Embedding for the Thingil0k Dataset [Zhou and Jacobson
2016]. By computing Tutte’s embedding for the genus-zero models
in 2718 surface mesh models on a triangle boundary, we observed
there are 80 cases where the generated parametrization has flipped
elements due to floating point rounding errors. Using our progres-
sive strategy, we are able to fix all failed cases. A selection of the
parametrization results are shown in Figure 2.

Integration with OptCuts [Li et al. 2018]. OptCuts is a joint opti-
mization method to create UV seam from a 3D model, balancing
seam length and parameterization quality. It relies on a valid ini-
tialization, which for genus 0 model, is compute through randomly
cutting two adjacent edges as seams, then flatten it on the plane
with Tutte embedding. In Figure 8, we show two examples where
this initialization fail. Both models can be processed if progressive

Fig. 8. Three UV maps generated by OptCuts [Li et al. 2018] using an initial
embedding created by our algorithm. OptCuts fails to process both models
if Tutte embedding is used instead.

embedding is used instead of Tutte embedding, allowing OptCuts
to proceed and optimize the UV map.

Mapping an Hele-Shaw Polygon to a Square. Hele-Shaw flow is
a two-dimensional Stokes flow of mixing liquids between two par-
allel flat surfaces separated by a small gap. In Figure 1, we show
an example mesh generated using the Hele-Shaw simulation pro-
posed in [Segall et al. 2016]. One way to compute a bijective map
of the interior of the polygon between different frames is a cross-
parameterization using a square as the common domain, with no
internal constraints. Tutte embedding fails in this case, introduc-
ing 46 flipped faces (Figure 1, left), while progressive embedding
produces a valid map with lower distortion (Figure 1, right).

5.2 Matchmaker++ [Kraevoy et al. 2003]

Self-Overlapping Locally-Injective Maps. By introducing Shor Van
Wyck algorithm into the matchmaker pipeline, we are able to map-
ping a surface mesh with disk topology to self-overlaping bound-
aries as in [Weber and Zorin 2014]. Similarly to [Weber and Zorin
2014] our algorithm can generate locally-injective, self-overlapping
parametrizations (Figure 9), which are commonly used by quadran-
gulation algorithms [Bommes et al. 2012].

Comparison with [Kovalsky et al. 2015]. We parametrized the
global parametrization benchmark introduced in [Myles et al. 2014],
using the seams in the obj files, and fixing in random positions
3 random points of each mesh. This is a challenging task, since
the random constraints introduce a large distortion. Our method
succeeded on all 102 models: a selection of the most challenging
ones is shown in Figure 10. We also run the same experiment using
the most recent projection method [Kovalsky et al. 2015] (which is
one of the few methods that supports similar constraints without
requiring a fully specified target domain), using LSCM [Lévy et al.
2002] as an initial guess. The method failed on 28 models over 102

ACM Trans. Graph., Vol. 38, No. 4, Article 32. Publication date: July 2019.

32:8 « Hanxiao Shen, Zhongshi Jiang, Denis Zorin, and Daniele Panozzo

Fig. 9. Two seamless maps with hard positional constraints and fixed bound-
aries are generated by our algorithm.

Fig. 10. A selection of locally injective parametrizations computed by our
algorithm by fixing 3 random points to 3 random points in UV space.

(27%). We show three failed cases using their method with flipped
elements in the output, and the quality is considerably lower than
our approach, as shown in Figure 11. Note that this is a comparison
that favours our method, since we are allowed to remesh the map,
while [Kovalsky et al. 2015] preserves the original connectivity.

Stress Test. To further evaluate the robustness and applicability of
our algorithm, we performed an additional stress test, by parametriz-
ing the 102 models of [Myles et al. 2014] into a planar space filling
curve, and adding 3 random positional constraints. These exper-
iments push the algorithm to the limit: MatchMaker fails on 5 if
Tutte embedding is used, while it succeeds in all cases, producing
bijective maps exactly satisfying the hard positional constraints,
with progressive embedding (Figure 12).

ACM Trans. Graph., Vol. 38, No. 4, Article 32. Publication date: July 2019.

Fig. 11. Our parametrizations (bottom) have no flipped elements and have
a higher quality than those generated by [Kovalsky et al. 2015] (top) using
the same positional constraints.

Fig. 12. To stress test the robustness of MatchMaker++, we parametrize com-
plex surface meshes inside a space filling curve, with 3 additional random
positional constraints in its interior.

6 LIMITATIONS AND CONCLUDING REMARKS.

We introduced a robust algorithm to compute planar embeddings,
and demonstrated its practical utility in common geometry process-
ing tasks. Our algorithm is provably correct in infinite precision
and is designed to work robustly with floating point coordinates:
unfortunately we cannot guarantee that an output is produced in
the latter case since a solution of the local point placement problem
might not exist. Consider the example in Figure 13: the bounding box
of the triangle has short sides (the difference between the floating
point coordinate representation is only in the least significant bit of
the mantissa). Assume that our algorithm needs to split off a vertex
from the vertex with numerically flat angle A, placing the result-
ing point in the interior. In this situation, our algorithm fails, since
the average of the coordinates (in floating point) of the boundary
triangle does not lie inside the triangle due to numerical rounding.

Except for this extreme case, we have not observed any other
failure cases for our algorithm, which produced robustly thousands
of embeddings, and, when paired with matchmaker, enables the
robust generation of constrained locally injective maps.

7777777777777777 A

|

!

B b ©

Fig. 13. A failure case of our implementation in double precision floating
point: a triangle without possible points inside. A, B, and C has coordinates
0,1+ h), (=b/2, 1), and (b/2, 1) resp., where h = 2753(The illustration is
not to scale.)

REFERENCES

Noam Aigerman, Shahar Z. Kovalsky, and Yaron Lipman. 2017. Spherical Orbifold
Tutte Embeddings. ACM Trans. Graph. 36, 4, Article 90 (July 2017), 13 pages. https:
//doi.org/10.1145/3072959.3073615

Noam Aigerman and Yaron Lipman. 2015. Orbifold Tutte Embeddings. ACM Trans.
Graph. 34, 6, Article 190 (Oct. 2015), 12 pages. https://doi.org/10.1145/2816795.
2818099

Noam Aigerman and Yaron Lipman. 2016. Hyperbolic Orbifold Tutte Embeddings.
ACM Trans. Graph. 35, 6, Article 217 (Nov. 2016), 14 pages. https://doi.org/10.1145/
2980179.2982412

Noam Aigerman, Roi Poranne, and Yaron Lipman. 2014. Lifted Bijections for Low
Distortion Surface Mappings. ACM Trans. Graph. 33, 4 (2014), 69:1-69:12.

Noam Aigerman, Roi Poranne, and Yaron Lipman. 2015. Seamless Surface Mappings.
ACM Trans. Graph. 34, 4, Article 72 (July 2015), 13 pages. https://doi.org/10.1145/
2766921

David Bommes, Marcel Campen, Hans-Christian Ebke, Pierre Alliez, and Leif Kobbelt.
2013. Integer-grid Maps for Reliable Quad Meshing. ACM Trans. Graph. 32, 4, Article
98 (July 2013), 12 pages. https://doi.org/10.1145/2461912.2462014

D. Bommes, B. Lévy, N. Pietroni, E. Puppo, C. Silv a, M. Tarini, and D. Zorin. 2012. State
of the Art in Quad Meshing. In Eurographics STARS.

David Bommes, Henrik Zimmer, and Leif Kobbelt. 2009. Mixed-integer Quadrangulation.
ACM Trans. Graph. 28, 3, Article 77 (July 2009), 10 pages. https://doi.org/10.1145/
1531326.1531383

Hervé Bronnimann, Andreas Fabri, Geert-Jan Giezeman, Susan Hert, Michael Hoffmann,
Lutz Kettner, Sylvain Pion, and Stefan Schirra. 2018. 2D and 3D Linear Geometry
Kernel. In CGAL User and Reference Manual (4.13 ed.). CGAL Editorial Board.
https://doc.cgal.org/4.13/Manual/packages html#PkgKernel23Summary

Marcel Campen, Claudio T. Silva, and Denis Zorin. 2016. Bijective Maps from Simplicial
Foliations. ACM Trans. Graph. 35, 4, Article 74 (July 2016), 15 pages.

Erin W. Chambers, David Eppstein, Michael T. Goodrich, and Maarten Loffler. 2011.
Drawing Graphs in the Plane with a Prescribed Outer Face and Polynomial Area. In
Proceedings of the 18th International Conference on Graph Drawing (GD’10). Springer-
Verlag, Berlin, Heidelberg, 129-140. http://dlLacm.org/citation.cfm?id=1964371.
1964384

S. Claici, M. Bessmeltsev, S. Schaefer, and J. Solomon. 2017. Isometry-Aware Precondi-
tioning for Mesh Parameterization. Comput. Graph. Forum 36, 5 (Aug. 2017), 37-47.
https://doi.org/10.1111/cgf.13243

P. Degener, J. Meseth, and R. Klein. 2003. An Adaptable Surface Parameterization
Method. In Proceedings of the 12th International Meshing Roundtable. 201-213.

Tamal K Dey, Herbert Edelsbrunner, Sumanta Guha, and Dmitry V Nekhayev. 1999.
Topology preserving edge contraction. Publ. Inst. Math.(Beograd)(NS) 66, 80 (1999),
23-45.

Istvan Fary. 1948. On straight line representation of planar graphs. Acta Univ. Szeged.
Sect. Sci. Math. 11 (1948), 229-233.

Michael S. Floater. 1997. Parametrization and smooth approximation of surface trian-
gulations. Computer Aided Geometric Design 14 (1997), 231-250.

Michael S. Floater and Kai Hormann. 2005. Surface Parameterization: a Tutorial and
Survey. In In Advances in Multiresolution for Geometric Modelling, Mathematics and
Visualization. Springer Verlag, 157-186.

Laurent Fousse, Guillaume Hanrot, Vincent Lefévre, Patrick Pélissier, and Paul Zim-
mermann. 2007. MPFR: A Multiple-precision Binary Floating-point Library with
Correct Rounding. ACM Trans. Math. Softw. 33, 2, Article 13 (June 2007). https:
//doi.org/10.1145/1236463.1236468

Xiao-Ming Fu and Yang Liu. 2016. Computing Inversion-free Mappings by Simplex
Assembly. ACM Trans. Graph. 35, 6, Article 216 (Nov. 2016), 12 pages. https:
//doi.org/10.1145/2980179.2980231

Xiao-Ming Fu, Yang Liu, and Baining Guo. 2015. Computing Locally Injective Mappings
by Advanced MIPS. ACM Trans. Graph. 34, 4, Article 71 (July 2015), 12 pages.

Craig Gotsman and Vitaly Surazhsky. 2001. Guaranteed intersection-free polygon
morphing. Computers & Graphics 25, 1 (2001), 67-75.

Torbjérn Granlund. 2018. GNU MP: The GNU Multiple Precision Arithmetic Library
(5.0.5 ed.). http://gmplib.org/.

« 329

Gaél Guennebaud, Benoit Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.

Dan Halperin and Eli Packer. 2002. Iterated snap rounding. Computational Geometry
23, 2(2002), 209 - 225. https://doi.org/10.1016/S0925-7721(01)00064-5

Hugues Hoppe. 1996. Progressive Meshes. In Proceedings of the 23rd Annual Conference
on Computer Graphics and Interactive Techniques (SSGGRAPH *96). ACM, New York,
NY, USA, 99-108. https://doi.org/10.1145/237170.237216

K. Hormann and G. Greiner. 2000. MIPS: An Efficient Global Parametrization Method.
In Curve and Surface Design: Saint-Malo 1999. 153-162.

Kai Hormann, Bruno Lévy, and Alla Sheffer. 2007. Mesh Parameterization: Theory and
Practice. In ACM SIGGRAPH 2007 Courses (SIGGRAPH °07). ACM, New York, NY,
USA.

Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo.
2018. Tetrahedral Meshing in the Wild. ACM Trans. Graph. 37, 4, Article 60 (July
2018), 14 pages. hitps://doi.org/10.1145/3197517.3201353

John FP Hudson and Julius L Shaneson. 1969. Piecewise linear topology. Vol. 11. WA
Benjamin New York.

Alec Jacobson, Daniele Panozzo, et al. 2016. libigl: A simple C++ geometry processing
library. http://libigl.github.io/libigl/.

Zhongshi Jiang, Scott Schaefer, and Daniele Panozzo. 2017. Simplicial Complex Aug-
mentation Framework for Bijective Maps. ACM Trans. Graph. 36, 6, Article 186 (Nov.
2017), 9 pages. https://doi.org/10.1145/3130800.3130895

Shahar Z. Kovalsky, Noam Aigerman, Ronen Basri, and Yaron Lipman. 2015. Large-scale
Bounded Distortion Mappings. ACM Trans. Graph. 34, 6, Article 191 (Oct. 2015),
10 pages. https://doi.org/10.1145/2816795.2818098

Shahar Z. Kovalsky, Meirav Galun, and Yaron Lipman. 2016. Accelerated Quadratic
Proxy for Geometric Optimization. ACM Trans. Graph. 35, 4, Article 134 (July 2016),
11 pages. https://doi.org/10.1145/2897824.2925920

Vladislav Kraevoy and Alla Sheffer. 2004. Cross-parameterization and Compatible
Remeshing of 3D Models. ACM Trans. Graph. 23, 3 (Aug. 2004), 861-869. https:
//doi.org/10.1145/1015706.1015811

Vladislav Kraevoy, Alla Sheffer, and Craig Gotsman. 2003. Matchmaker: Constructing
Constrained Texture Maps. ACM Trans. Graph. 22, 3 (July 2003), 326-333.

Ludek Kucera. 1991. The greedy coloring is a bad probabilistic algorithm. Journal of
Algorithms 12, 4 (1991), 674 — 684. https://doi.org/10.1016/0196-6774(91)90040-6

Ulf Labsik, Kai Hormann, and Guenther Greiner. 2000. Using Most Isometric
Parametrizations for Remeshing Polygonal Surfaces. In Proceedings of the Geometric
Modeling and Processing 2000 (GMP 2000). IEEE Computer Society, Washington, DC,
USA.

T.Y. Lee, S. W. Yen, and L. C. Yeh. 2008. Texture Mapping with Hard Constraints Using
Warping Scheme. IEEE Transactions on Visualization and Computer Graphics 14, 2
(March 2008), 382-395. https://doi.org/10.1109/TVCG.2007.70432

Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot. 2002. Least Squares
Conformal Maps for Automatic Texture Atlas Generation. ACM Trans. Graph. 21,3
(July 2002), 362-371.

Minchen Li, Danny M Kaufman, Vladimir G Kim, Justin Solomon, and Alla Sheffer. 2018.
OptCuts: joint optimization of surface cuts and parameterization. In SSGGRAPH
Asia 2018 Technical Papers. ACM, 247.

Yaron Lipman. 2012. Bounded Distortion Mapping Spaces for Triangular Meshes. ACM
Trans. Graph. 31, 4 (2012), 108:1-108:13.

Yaron Lipman. 2014. Bijective mappings of meshes with boundary and the degree in
mesh processing. SIAM Journal on Imaging Sciences 7, 2 (2014), 1263-1283.

Ligang Liu, Chunyang Ye, Ruiqi Ni, and Xiao-Ming Fu. 2018. Progressive Param-
eterizations. ACM Trans. Graph. 37, 4, Article 41 (July 2018), 12 pages. https:
//doi.org/10.1145/3197517.3201331

Aleksandar Mijatovi¢. 2003. Simplifying triangulations of S*. Pacific journal of mathe-
matics 208, 2 (2003), 291-324.

Matthias Miiller, Nuttapong Chentanez, Tae-Yong Kim, and Miles Macklin. 2015. Air
Meshes for Robust Collision Handling. ACM Trans. Graph. 34, 4, Article 133 (July
2015), 9 pages.

Ashish Myles, Nico Pietroni, and Denis Zorin. 2014. Robust Field-aligned Global
Parametrization. ACM Trans. Graph. 33, 4, Article 135 (July 2014), 14 pages. https:
//doi.org/10.1145/2601097.2601154

Eli Packer. 2018. 2D Snap Rounding. In CGAL User and Reference Manual (4.13
ed.). CGAL Editorial Board. https://doc.cgal.org/4.13/Manual/packages.html#
PkgSnapRounding2Summary

Yue Peng, Bailin Deng, Juyong Zhang, Fanyu Geng, Wenjie Qin, and Ligang Liu. 2018.
Anderson Acceleration for Geometry Optimization and Physics Simulation. ACM
Trans. Graph. 37, 4, Article 42 (July 2018), 14 pages. https://doi.org/10.1145/3197517.
3201290

Roi Poranne and Yaron Lipman. 2014. Provably Good Planar Mappings. ACM Trans.
Graph. 33, 4, Article 76 (July 2014), 11 pages.

Roi Poranne, Marco Tarini, Sandro Huber, Daniele Panozzo, and Olga Sorkine-Hornung.
2017. Autocuts: Simultaneous Distortion and Cut Optimization for UV Mapping.
ACM Trans. Graph. 36, 6, Article 215 (Nov. 2017), 11 pages. https://doi.org/10.1145/
3130800.3130845

ACM Trans. Graph., Vol. 38, No. 4, Article 32. Publication date: July 2019.

32:10 « Hanxiao Shen, Zhongshi Jiang, Denis Zorin, and Daniele Panozzo

Emil Praun, Wim Sweldens, and Peter Schroder. 2001. Consistent Mesh Parame-
terizations. In Proceedings of the 28th Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH °01). ACM, New York, NY, USA, 179-184.
https://doi.org/10.1145/383259.383277

Michael Rabinovich, Roi Poranne, Daniele Panozzo, and Olga Sorkine-Hornung. 2017.
Scalable Locally Injective Mappings. ACM Trans. Graph. 36, 2, Article 16 (April
2017), 16 pages. https://doi.org/10.1145/2983621

Pedro V. Sander, John Snyder, Steven J. Gortler, and Hugues Hoppe. 2001. Texture
Mapping Progressive Meshes. In ACM SIGGRAPH. 409-416.

Walter Schnyder. 1990. Embedding Planar Graphs on the Grid. In Proceedings of the
First Annual ACM-SIAM Symposium on Discrete Algorithms (SODA *90). Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 138-148. http:
//dLacm.org/citation.cfm?id=320176.320191

John Schreiner, Arul Asirvatham, Emil Praun, and Hugues Hoppe. 2004. Inter-surface
Mapping. ACM Trans. Graph. 23, 3 (Aug. 2004), 870-877. https://doi.org/10.1145/
1015706.1015812

Christian Schiiller, Ladislav Kavan, Daniele Panozzo, and Olga Sorkine-Hornung.
2013. Locally Injective Mappings. In Proceedings of the Eleventh Eurograph-
ics/ACMSIGGRAPH Symposium on Geometry Processing (SGP ’13). Eurographics
Association, Aire-la-Ville, Switzerland, Switzerland, 125-135. https://doi.org/10.
1111/cgf.12179

Aviv Segall, Orestis Vantzos, and Mirela Ben-Chen. 2016. Hele-Shaw flow simulation
with interactive control using complex barycentric coordinates. In Proceedings of
the ACM SIGGRAPH/Eurographics symposium on computer animation. Eurographics
Association, 85-95.

Alla Sheffer, Emil Praun, and Kenneth Rose. 2006. Mesh Parameterization Methods and
Their Applications. Found. Trends. Comput. Graph. Vis. 2, 2 (2006), 105-171.

Jonathan Richard Shewchuk. 1996. Triangle: Engineering a 2D Quality Mesh Generator
and Delaunay Triangulator. In Applied Computational Geometry: Towards Geometric
Engineering, Ming C. Lin and Dinesh Manocha (Eds.). Lecture Notes in Computer
Science, Vol. 1148. Springer-Verlag, 203-222. From the First ACM Workshop on
Applied Computational Geometry.

Peter W Shor and Christopher J Van Wyk. 1992. Detecting and decomposing self-
overlapping curves. Computational Geometry 2, 1 (1992), 31-50.

Anna Shtengel, Roi Poranne, Olga Sorkine-Hornung, Shahar Z. Kovalsky, and Yaron
Lipman. 2017. Geometric Optimization via Composite Majorization. ACM Trans.
Graph. 36, 4, Article 38 (July 2017), 11 pages. https://doi.org/10.1145/3072959.
3073618

Jason Smith and Scott Schaefer. 2015. Bijective Parameterization with Free Boundaries.
ACM Trans. Graph. 34, 4, Article 70 (July 2015), 9 pages.

Olga Sorkine, Daniel Cohen-Or, Rony Goldenthal, and Dani Lischinski. 2002. Bounded-
distortion Piecewise Mesh Parameterization. In Proceedings of the Conference on
Visualization. 355-362.

W.T Tutte. 1963. How to draw a graph. Proc. London Math. Soc., 3 (1963), 743-768.

Ofir Weber and Denis Zorin. 2014. Locally Injective Parametrization with Arbitrary
Fixed Boundaries. ACM Trans. Graph. 33, 4, Article 75 (July 2014), 12 pages. https:
//doi.org/10.1145/2601097.2601227

Eugene Zhang, Konstantin Mischaikow, and Greg Turk. 2005. Feature-based Surface
Parameterization and Texture Mapping. ACM Trans. Graph. 24, 1 (Jan. 2005), 1-27.

Qingnan Zhou and Alec Jacobson. 2016. Thingil0K: A Dataset of 10,000 3D-Printing
Models. arXiv preprint arXiv:1605.04797 (2016).

Yufeng Zhu, Robert Bridson, and Danny M. Kaufman. 2018. Blended Cured Quasi-
newton for Distortion Optimization. ACM Trans. Graph. 37, 4, Article 40 (July 2018),
14 pages. https://doi.org/10.1145/3197517.3201359

ACM Trans. Graph., Vol. 38, No. 4, Article 32. Publication date: July 2019.

A PROOFS

The proof of the existence of the collapse sequence for two-dimensional
manifold meshes can be found, e.g., in [Mijatovi¢ 2003], where it is
derived from the shellability of two-dimensional manifold meshes
homeomorphic to a disk (i.e., the possibility of removing trian-
gles one-by-one, keeping the topology of the remaining part of
the mesh unchanged), and make use of a specific composition of
Pachner moves equivalent to edge collapse. We present a different
proof, based on proving the existence of a collapsible edge, which is
aligned with the structure of our algorithm and helps us to show
the existence of the inverse vertex split sequence.

A.1 Existence of the Collapse Sequence

We assume that the input mesh connectivity (Vo, Fy) is manifold,
i.e., each edge is shared by no more than two triangles, and the
triangles incident at a vertex can be arranged in a sequence so
that two sequential triangles share an edge. For interior vertices,
the sequence is circular, i.e. the first and last triangles also share
an edge. With the topology of a 2D disc, the graphs of edges of
such meshes are planar i.e., can be embedded in the plane, with
positions Py = {p; € R?} assigned to vertices v;. By the Fary’s
theorem, [Fary 1948] there is a straight-edge embedding of this
graph in the plane with non-intersecting edges (Fary embedding). In
subsequent lemmas, we use geometric images of vertices and edges
under this embedding. Only the existence of this embedding, but
not the specific construction, is used to prove the existence of the
collapse sequence.

The following sequence of lemmas focuses on the one-ring neigh-
borhood of an interior vertex, and shows that at least one of the
adjacent edges satisfies the link condition. This observation further
leads to Theorem A.8: a valid sequence of edge collapses can be
used to reduce the mesh to a mesh with a single interior vertex. A
vertex of the mesh is interior if it does not lie on the boundary, and
an edge is interior if its two endpoints are interior vertices.

Definition A.1. An interior edge v;0; satisfies the link condition
if IN; N Nj| = 2, where Nj is the set of the adjacent vertices of v;.

LEMMA A.2. Letvg be an interior vertex of degree d (Figure 14). We
enumerate its neighbors counterclockwise around the vertex (using
Fary embedding), denoting them vy, vy, . . ., vg. Assume vgov1 violates
the link condition, i.e., NoN Ny contains a vertex vy, k = min(NyN N7\
{2,d}). (1) If the triangle Avyvi vy is oriented counterclockwise, then
the set N, consisting of adjacent vertices of v lies within Avyvivg,
forany 1 < i < k. (2) If Avgvyvy is oriented clockwise, then Nj is
within Avgv1vg fork < i <d.

Proor. Without the loss of generality, consider Avyv; vy orients
counterclockwise. Consider the segment vgv;, for 1 < i < k. The
half-line starting at v and containing this segment is between half-
lines containing v; and v, because the vertices were numbered
counterclockwise. Therefore the half-line contains a point in the
interior of Avgv; vy, by continuity. If v; is outside or on the boundary
of Avgvyvy then the half-line connects an interior and non-interior
point different from vy, and intersects v1vg. which contradicts the
assumption on the embedding. Thus, v; is in the interior of Avgv;vy.

Vd

Orientatio®
Fig. 14. Neighbors of v as described as in Lemma A.2

Similarly, all points in Nj are either in the interior of Avyv;vg, or on
its vertices, as the edges of the embedding do not intersect except
at vertices. O

Without loss of generality, we assume that the first case of the
lemma and take a closer look at Avgv;vg. Intuitively, one can think
of an edge that violates the link condition as having two endpoints
which are connected to (at least) three common vertices. Therefore,
on one of the sides of the edge, there would be at least two vertices
connected to it. The next lemma establishes the fact that if a se-
quence of edges violates the link condition, then the “lower”(smaller
indices) side of the edge always has only one vertex connected to
its endpoints.

LEmMMA A.3. Suppose an edge vgv; violates the link condition, and
k is defined as in Lemma A.2. Suppose, W.L.O.G., Avpvj vy is oriented
counterclockwise, and let 1 < i < k. If additionally for all 1 <t < i,
vgu; violates the link condition, then v;_1 is the only vertex with index
in the range 1 < t < i—1 connected to v;.

Vo

Vg

”n

Fig. 15. Neighbors of vy as described as in the proof Lemma A.3, notice
that vj41 is enclosed in Avyvjvy,, so a connection to a previous vertex (red
dotted line) is forbidden.

Proor. We prove the Lemma by induction. The base case, i = 2
the proposition clearly holds. Suppose for all i < j holds. Since vgv;
violates the link condition, No N N; contains vj4+1 and vy, for some
Jj+1 < n < k (see Figure 15), by the inductive assumption. vj+1
is in the interior of Avgvjv, by Lemma A.2. Form < j— 1, vp, is
outside Avgvjvy, because the half-line vgv; is between Vg0, and
0ov; by the choice of numbering. It follows that in order to connect
vj41 to a previous vertex vy, U110, would have to intersect the
boundary of Avgv;jvy,, which contradicts that fact that we are using
an intersection-free Fary embedding. This proves the induction
step.]

o 32:1

We conclude that under the assumptions of Lemma A.2, first
case, vj,1 < i < k are interior vertices in the triangle Avyvivg,
thus interior vertices of the mesh. Then vyv; . . . Doy _] are interior
edges. The next lemma shows that at least one of them satisfies the
link condition

LEmMMA A.4. Following the first case in Lemma A.2. If for all n < k-1,
voUy violates the link condition, the interior edge Dovg_q, satisfies the
link condition.

Proor. By definition, Ngo N Ni_; is not empty. By Lemma A.3, the
only vertex with index less than k — 1 contained in Nj._; is vg_5. On
the other hand, the only remaining vertex of Ny with index greater
than k — 1 inside Avgv; vy is vg. So we have exactly two vertices in
Ny N Ni_1, i.e., Dgvj_; satisfies the link condition. O

Definition A.5. A fan of triangles ¥ (vo; v1 ... vg441), centered at
Vo, with v; enumerated counterclockwise around vy, is a sequence
of non-repeating triangles {Avov;v;+1)|i = 1...d}. A fan is closed,
if vy, = v1, otherwise it is open.

Definition A.6. Given a triangulation of a polygonal planar do-
main, with two interior vertices vy, v, whose neighbors are Ny
and Ny,, a collapse operation from vy, to vy connects all vertices
v € N \ Np to vg, and removes vy, with incident edges. A collapse
operation is valid if Dgv,, satisfies the link condition, and neither
of the end points is a boundary vertex.

To define a collapse operation in a reversible way, in addition to
specifying the pair of vertices, we define a fan ¥ (vo; vy . . . v) in the
mesh obtained after the collapse. The vertices vy .. . vy are the ver-
tices that were connected to v, before the collapse. In other words,
we record a collapse operation, transforming the mesh (V;, F;) to
(Vi+1, Fis1), as the pair C; = (v, F (vo;v1 - . . vt)), where vy, is the
removed vertex in V;, and ¥ is a fan of triangles in F;;.

LEMMA A.7. A 3-connected and planar mesh, is still 3-connected
and planar after any interior edge collapse C = (v, F (vo;v1 . . . U)).

Proor. The link condition ensures that the mesh remains mani-
fold after an edge collapse [Dey et al. 1999]. 3-connectedness of a
triangle mesh is equivalent to the requirement that no two boundary
vertices are connected by an interior edge. As no collapses involving
boundary vertices are allowed, if there are no such edges before the
collapse, no such edge may appear after the collapse: the only new
edges connect vertices of the fan of v, to vg, which is interior. O

THEOREM A.8. If the edge graph of a mesh (V,F) is planar and
3-connected, there is always an edge that can be collapsed to obtain a
planar and 3-connected mesh with one less vertex, unless there is only
one interior vertex left.

ProOF. Suppose no edge in (V, F) can be collapsed. This means
that either there are no edges with two interior endpoints, or all
such edges violate the link condition. But by Lemma A 4, the second
option is not possible. If there are no edges connecting two interior
vertices, then all edges incident at interior vertices have the other
endpoint on the boundary. Then all edges in the link of an interior
vertex have two endpoints on the boundary. By 3-connectedness,
these edges should be boundary edges. Therefore, the link of each

ACM Trans. Graph., Vol. 38, No. 4, Article 32. Publication date: July 2019.

32:12 « Hanxiao Shen, Zhongshi Jiang, Denis Zorin, and Daniele Panozzo

interior vertex forms a complete boundary loop. As we assume the
mesh to be simply connected, then there is only one boundary loop.
So the whole boundary has to coincide with the link of any interior
vertex, from which it follows that there is only one. O

We remark that when there is only one interior vertex left, if the
boundary vertices v;, i > 1, are assigned positions p;, so that they
form a star-shaped simple polygon, there is a position (within the
interior of the kernel of the boundary) pg for the remaining interior
vertex v that results in a valid straight-edge embedding.

As a result of sequentially collapsing edges, we obtain a sequence
(Vi, Fi,Ci),i = 1,2,...,k with the following properties: |V;| =
|Vi1| = 1, (Vi, Fx) is a valid triangulation, boundary vertices are
the same for all V;, and C; is a valid collapse.

PROPOSITION A.9. Suppose the vertices v; of the disk-topology
manifold mesh (V, F) are assigned parametric positions p; in the plane,
and the map is bijective on the boundary so that the triangles all have
positive orientation. Then the sum of the angles of triangles incident
at an interior vertex is 27.

PRrROOF. Assign, e.g., unit length to all edges of the mesh; this
associates a a surface M with the mesh, with each combinatorial
triangle corresponding to an equilateral triangle. Then the positions
pi define a PL map from M to the plane. By Theorem 1 from [Lipman
2014], this map is globally bijective; the statement of the proposition
immediately follows. O

A2 Vertex split

Definition A.10. Let (V, F) be a mesh with a valid straight-edge
embedding in the plane given by vertex positions P. Consider a
closed fan of triangles # (vp; v1 . . . vg441) centered at an interior ver-
tex vg, with vz, 1 = v1, and an open sub-fan F (vp; vy . . . v). Vertex
split introduces a new vertex vy, with a position p,,, ¥ (vo; v1 - . . V),
replaces it with a fan F (vp,; 01 . . . vt), and adds triangles Avgvi vy,
and Avgvy, vy We denote such a split S by (v, pm, F (Vo501 - . . V).

A split S = (U, pm, F (vo;v1 - . . vE)), in terms of connectivity
modification, is the inverse of a collapse C = (v, F(vo; 01 . . . Vk)):
the connectivity of the mesh obtained by applying the split is iden-
tical to the mesh that the collapse was applied to.

The following lemma establishes that we can perform a split
reversing any collapse while maintaining the validity of the embed-
ding, if the initial embedding is valid.

LEMMA A.11. Consider a fan of triangles F (vo; v1 . . . vy) (Figure
5), with positive signed areas {A(Avovi—1vi)}1<i<k and with an-
gles of triangles incident at vy summing up to 2. The kernel of the
fan has a non-empty interior. Then a new vertex position py, corre-
sponding to a new vertex vy, located in the interior of the fan, can be
split off po, so that min o ; < A(Avvi—1v;) > 0, A(Avgvivm,) > 0,
A(Avgumvy) > 0, and angles of triangles in both resulting fans at vy
and vy sum up to 2.

Proor. Define a function f(px) = min; A(Avyv;—1v;). This is a
continuous function of the coordinates py of the point vy. Because
f(po) > 0, there is a disk B(py, €), of radius ¢ > 0, such that f(px) > 0
for any px € B(po,¢), i.e. for all i, A(Avpvi—1v;) > 0, if we pick

ACM Trans. Graph., Vol. 38, No. 4, Article 32. Publication date: July 2019.

Ppm inside B(vy, €). Suppose we initially place p,, at pg, with new
triangles added as a result of the split having zero angles at v;
and vy. We note that the for each of vy and v; in this degenerate
configuration the angles of incident triangles sum up to 27. The
angles of triangles also change continuously as functions of vertex
position py, so does their sum. On the other hand, if each triangle
remains positively oriented (A(Avpvi—1v;) > 0), then the sum of
the angles can only change discretely, and has to be of the form 27n,
n € Z (n-fold cover). We conclude that n has to remain one, as it is
one for the initial position.

Consider the intersection C of the half-planes bounded by lines
containing pop1 and popy (for each segment, we choose the half-line
on the side of the interior of the fan). If p,, € C N B(po, ¢), then
A(Avgvivm) > 0, A(Avyvmog) > 0 also hold. |

The following theorem is a straightforward application of Lemma
A1,

THEOREM A.12. Suppose we have a sequence of valid collapses
(Vi, Fi,Ci), i = 0...N — 2, where N = |Vy|, the number of interior
vertices in the initial mesh, all (V;, F;)i =0...N — 1 are 3-connected
planar, and the last mesh (Vn_1, FN—1) with a single interior vertex
has a valid straight-edge embedding in the plane with vertex positions
PN_1. Suppose Ci = (vl,, F (v, 0l*1 . vl’:'l)).

Then the sequence of vertex splits S; that are inverses of C;, results in
a valid straight-edge embedding of (Vo, Fy), given by vertex positions
P.

Proor. Vn_1, FN—1 with positions Py_; is valid by assumption.
Each step of vertex split with S; results in a straight-edge embedding
of (V;, F;) by Lemma A.11. By induction, the embedding of (Vy, Fo)
obtained by the sequence of splits reverting the sequence of collapses
is a straight-edge embedding. O

B MATCHMAKER

A W G = ((6] =) <—0—
/ \) X |@7T>
= \ o [5) |
)& 7 e o NG o
N / |/
\V N\ I3} /
(a) (b)]

Fig. 16. lllustation of the MatchMaker algorithm. The regions surrounded by
solid black lines with the same numbering have one to one correspondence
throughout the 3 subfigures (a), (b), and (c). (a) unconstrained parametriza-
tion embedded in a triangulation of the bounding box. The dashed lines
are the triangulation of the regions between the mesh and virtual bound-
ary. (b) triangulated virtual boundary with three constrained parametric
positions (edges are splitted accordingly). (c) result of Tutte embedding for
every individual patch glued together.

MatchMaker [Kraevoy et al. 2003] tackles the problem of planar
parametrizaton of a surface with hard positional constraints. The
general idea is to decompose the mesh into patches and map them
to convex domains using Tutte embedding to generate a bijective

Fig. 17. The scenario that the red tracing path is invalid. (a) The extended
unconstrained parametrization M, a new tracing path is generated (red

line) to match the purple edge in (b). (b) Triangulated virtual boundary M;.

The internal edge(purple line) separate the mesh into two sub-regions, while
the two hard constriants land in the same sub-region. It differs from the

configuration in (a), where the constraint points are in different sub-regions.

(c) The purple tracing path is valid since the hard constraints lies in the
same sub-region, while red tracing path blocks future necessary tracing
paths, such as the green one.

parametrization. We briefly summarize the pipeline of the original
MatchMaker method.

Triangulate Virtual Boundary. Use a conventional unconstrained
parametrization method to get a planar mesh My (the dark region
in Figure 16(b)). Embed My in a rectangular bounding box, and use
the constrained Delaunay triangulation to triangulate the region
between the planar mesh and the virtual boundary, to obtain M;]

e 3213

(Figure 16(a)). Similarly, create a constrained Delaunay trianglua-
tion of the same bounding box with hard constraints at prescribed
position using [Shewchuk 1996], to obtain the mesh in Figure 16 (a).
We call this mesh M;.

Matching Patches. For each internal edge of Mj, trace an edge
path between the two corresponding points on M using Dijsktra’s
shortest path algorithm. This process is performed sequentially, one
edge each time. Every new paths traced must meet the following
criteria: (1) it does not intersect with any other paths; (2) it does not
block necessary future paths. This is achieved using the minimum
spanning tree as described in Section 4. Steiner points may be needed
to make sure a valid path can always be found (red dot in Figure 17
(c)). As the result of this step, extended planar mesh Mg is subdivided
into patches, and every patch is matched with a triangle in Mj.

Embedding. At the previous step, the problem is reduced to map-
ping a patch of a planar mesh to a convex boundary, i.e., a problem
solved by Tutte embedding [Tutte 1963]. Additional edge splitting
operation is needed to match the boundary vertices number of tri-
angles in My to vertices number on corresponding paths in Mj, as
shown in Figure 16 (b).

Smoothing and Post-processing. The parametrization generated
at the embedding stage can be optimized using any technique pre-
venting triangles from changing their orientations.

ACM Trans. Graph., Vol. 38, No. 4, Article 32. Publication date: July 2019.

	Abstract
	1 Introduction
	2 Related work
	2.1 Planar Embedding of Graphs and Meshes
	2.2 Progressive Meshes
	2.3 Distortion-Minimizing Mappings

	3 Progressive Embedding
	3.1 Analysis of Tutte Embedding in Floating Points
	3.2 Progressive Embedding

	4 Matchmaker++
	5 Results and Discussion
	5.1 Progressive Embedding
	5.2 Matchmaker++ Kraevoy:2003

	6 Limitations and Concluding Remarks.
	References
	A Proofs
	A.1 Existence of the Collapse Sequence
	A.2 Vertex split

	B Matchmaker

