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5 Abstract—One of the well-known challenges in computer vision tasks is the visual diversity of images, which could result in an

6 agreement or disagreement between the learned knowledge and the visual content exhibited by the current observation. In this work,

7 we first define such an agreement in a concepts learning process as congruency. Formally, given a particular task and sufficiently large

8 dataset, the congruency issue occurs in the learning process whereby the task-specific semantics in the training data are highly

9 varying. We propose a Direction Concentration Learning (DCL) method to improve congruency in the learning process, where

10 enhancing congruency influences the convergence path to be less circuitous. The experimental results show that the proposed DCL

11 method generalizes to state-of-the-art models and optimizers, as well as improves the performances of saliency prediction task,

12 continual learning task, and classification task. Moreover, it helps mitigate the catastrophic forgetting problem in the continual learning

13 task. The code is publicly available at https://github.com/luoyan407/congruency.

14 Index Terms—Optimization, machine learning, computer vision, accumulated gradient, congruency

Ç

15 1 INTRODUCTION

16 DEEP learning has been receiving considerable attention
17 due to its success in various computer vision tasks [4],
18 [13], [16], [27] and challenges [6], [32]. To prevent model
19 overfitting and enhance the generalization ability, a training
20 process often sequentially updates the model with gradients
21 w.r.t. a mini-batch of training samples, as opposed to using
22 a larger batch [12]. Due to the complexity and diversity in
23 the nature of image data and task-specific semantics, the
24 discrepancy between current and previous observed mini-
25 batches could result in a circuitous convergence path, which
26 possibly hinders the convergence to a local minimum.
27 To better understand the circuitousness/straightfor-
28 wardness in a learning process, we introduce congruency to
29 quantify the agreement between new information used for
30 an update and the knowledge learned from previous itera-
31 tions. The word “congruency” is borrowed from a psychol-
32 ogy study [51] that inspects the influence of an object which
33 is inconsistent with the scene in the visual attention percep-
34 tion task. In this work, we define congruency n as the cosine
35 similarity between the gradient g to be used for update and
36 a referential gradient ĝ that indicates a general descent
37 direction resulting from previous updates, i.e.,

n ¼ cosaðg; ĝÞ; (1)
3939

40(The detailed formulation is presented in Section 3). Fig. 1
41presents an illustration of congruency in the saliency predic-
42tion task. Due to similar scene (i.e., dining) and similar fixa-
43tions on faces and foods, the update of sample S2 (i.e., DwS2 )
44is congruent with DwS1 . In contrast, the scene and fixations
45in sample S3 are different from sample S1 and S2. This leads
46to a large angle (> 90�) between DwS3 and DwS2 (or DwS1 ).

47Congruency reflects the diversity of task-specific seman-
48tics in training samples (i.e., images and the corresponding
49ground-truths). In the visual attention task, attention is
50explained by various hypotheses [2], [3], [50] and can be
51affected by many factors, such as bottom-up feature, top-
52down feature guidance, scene structure, and meaning [55].
53As a result, objects in the same category may exhibit dis-
54agreements with each other in various images in terms of
55attracting attention. Therefore, there is a high variability in
56the mapping between visual appearance and the corre-
57sponding fixations. Another task that has a considerable
58amount of diversity is continual learning, which is able to
59learn continually from a stream of data that is related to
60new concepts (i.e., unseen labels) [33]. The diversity of the
61data among multiple classification subtasks may be so
62much discrepant such that learning from new data violates
63previously established knowledge (i.e., catastrophic for-
64getting) in the learning process. Moreover, congruency can
65also be found in the classification task. Compared to
66saliency prediction and continual learning, the source of
67diversity in classification task is relatively simple, namely,
68diverse visual appearances w.r.t. various labels in the real-
69world images. In summary, saliency prediction, continual
70learning, and classification are challenging scenarios sus-
71ceptible to the effects of congruency.
72In machine learning, congruency can be considered as a
73factor that influences the convergence of optimization
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74 methods, such as stochastic gradient descent (SGD) [42],
75 RMSProp [14], or Adam [23]. Without specific rectification,
76 the diversity among training samples is implicitly and pas-
77 sively involved in a learning process and affects the descent
78 direction in convergence. To understand the effects of congru-
79 ency on convergence, we explicitly formulate a direction con-
80 centration learning (DCL) method by sensing and restricting
81 the angle of deviation between an update gradient and a refer-
82 ential gradient that indicates the descent direction according
83 to the previous updates. Inspired by Nesterov’s accelerated
84 gradient [37],we consider the accumulated gradient as the ref-
85 erential gradient in the proposedDCLmethod.
86 We comprehensively evaluate the proposed DCL method
87 with various models and optimizers in saliency prediction,
88 continual learning, and classification tasks. The experimental
89 results show that the constraints restricting the angle devia-
90 tion between the gradient for an update and the accumulated
91 referential gradient can help the learning process to converge
92 efficiently, comparing to the approaches without such con-
93 straints. Furthermore, we present the congruency patterns to
94 show how the task-specific semantics affect congruency in a
95 learning process. Last but not least, our analysis shows that
96 enhancing congruency in continual learning can improve
97 backward transfer.
98 The main contributions in this work are as follows:

99 � We define congruency to quantify the agreement
100 between new information and the learned knowl-
101 edge in a learning process, which is useful to under-
102 stand the model convergence in terms of tractability.
103 � We propose a direction concentration learning (DCL)
104 method to enhance congruency so that the disagree-
105 ment between new information and the learned
106 knowledge can be alleviated. It also generally adapts
107 to various optimizers (e.g., SGD, RMSProp and
108 Adam) and various tasks (e.g., saliency prediction,
109 continual learning and classification).
110 � The experimental results from continual learning task
111 demonstrate that enhancing congruency can improve

112backward transfer. Note that large negative backward
113transfer is known as catastrophic forgetting [33].
114� A general method analyzing congruency is pre-
115sented and it can be used within both conventional
116models and models with the proposed DCL method.
117Comprehensive analyses w.r.t saliency prediction
118and classification show that our DCL method gener-
119ally enhances the congruencies of the corresponding
120learning processes.
121The rest of the paper is organized as follows. We begin
122by highlighting related works in Section 2. Then, we formu-
123late the problem of congruency and discuss its factors
124in Section 3. The proposed DCL method is introduced in
125Section 4. Moreover, the experiments and analyses are pro-
126vided in Sections 5 and 6, respectively. Section 7 concludes
127the paper.

1282 RELATED WORKS

1292.1 State-of-the-Art Models for Classification

130Convolutional networks (ConvNets) [13], [16], [27], [56]
131have exhibited their powers in the classification task. Alex-
132Net [27] is a typical ConvNet and consists of a series of con-
133volutional, pooling, activation, and fully-connected layers,
134it achieves the best performance on ILSVRC 2012 [6]. Since
135then, there are more and more attempts to delve into the
136architecture of ConvNets. He et al. proposed residual blocks
137to solve the vanishing gradient problem and the resulting
138model, i.e., ResNet [13], achieves best performance on
139ILSVRC 2015. Along with a similar line of ResNet, ResNeXt
140[56] is proposed to extend residual blocks to multi-branch
141architecture and DenseNet [16] is devised to establish the
142connections between each layer and later layers in a feed-
143forward fashion. Both models achieve desirable perfor-
144mance. Recently, Tan and Le [47] study how network depth,
145width, and resolution influence the classification perfor-
146mance and propose EfficientNet that achieves state-of-the-
147art performance on ImageNet. In this work, we use ResNet,
148ResNeXt, DenseNet, and EfficientNet in the image classifi-
149cation experiments.
150Yang et al. [60] introduce a regularized feature selection
151framework for multi-task classification. Specifically, the
152trace norm of a low rank matrix is used in the objective
153function to share common knowledge across multiple clas-
154sification tasks. Congruency generally works with gradient
155based optimization methods, whereas trace norm works
156with a specific optimization method. Moreover, congru-
157ency measures the agreement (or disagreement) between
158new information learned from a sample and the estab-
159lished knowledge, whereas trace norm is based on the
160weights of multiple classifiers and only measures the corre-
161lation between established knowledge w.r.t. different clas-
162sification tasks.

1632.2 Computational Modelling of Visual Attention

164Saliency prediction is an attentional mechanism that focuses
165limited perceptual and cognitive resources on the most perti-
166nent subset of the available sensory data. Itti et al. [19] imple-
167ment the first computational model to predict saliency maps
168by integrating bottom-up features. Recently, Huang et al. [17]
169propose a data-driven DNN model, named SALICON, to

Fig. 1. An illustration of congruency in the saliency prediction task.
Assuming training samples are provided in a sequential manner, an
incongruency occurs since the food item is related to different saliency
values across these samples. Here, Sj stands for sample j ¼ f1; 2; 3g,
wi is the weight at time step i, DwSj is the weight update generated with
Sj for wi, and the arrows indicate updates for the model. Specifically,
DwSj ¼ �hgSj where h is the learning rate and gSj is the gradient w.r.t.
Sj. The update of S2 (i.e., DwS2 ) is congruent with DwS1 , whereas DwS3
is incongruent with DwS1 and DwS2 .
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170 model visual attention. Cornia et al. [5] propose a convo-
171 lutional LSTM to iteratively refine the predictions and
172 Kummerer et al. [28] design a readout network that is fed
173 with the output features of VGG [46] to improve saliency pre-
174 diction. Yang et al. [59] introduce an end-to-endDilated Incep-
175 tion Network (DINet) to capture multi-scale contextual
176 features for saliency prediction and achieves state-of-the-art
177 performance. In this work, we adopt the SALICON model
178 andDINet in the saliency prediction experiments.
179 There are several insightful works [11], [51], [52] exp-
180 loring the effects of congruency/incongruency in visual
181 attention. In particular, according to the perception experi-
182 ments, Gordon finds that the object which is inconsistent
183 with the scene, e.g., a live chicken standing on a kitchen
184 table, has significant influence on attentive allocation [11].
185 Underwood and Foulsham [51] find an unexpected interac-
186 tion between saliency and negative congruency in the
187 search task, that is, the congruency of the conspicuous
188 object does not influence the delay in its fixation, but it is
189 fixated earlier when the other object in the scene is incon-
190 gruent. Furthermore, Underwood et al. [52] investigate
191 whether the effects of semantic inconsistency appear in free
192 viewing. In their studies, inconsistent objects were fixated
193 for significantly longer duration than consistent objects.
194 These works inspire us to explore the congruency between
195 the current and previous updates. In saliency prediction,
196 negative congruency may result from the disagreement
197 among the training samples in terms of visual appearance
198 and ground-truth.

199 2.3 Catastrophic Forgetting

200 Catastrophic forgetting problem has been extensively stud-
201 ied in [9], [10], [35], [39]. McCloskey and Cohen [35] study
202 the problem that new learning may interfere catastrophi-
203 cally with old learning when models are trained sequen-
204 tially. New learning may alter weights that are involved in
205 representing old learning, and this may lead to catastrophic
206 interference. Along the same line, Ratcliff [39] further inves-
207 tigates the causes of catastrophic forgetting, and two prob-
208 lems are observed: 1) sequential learning is prone to rapidly
209 forget well-learned information as new information is
210 learned; 2) discrimination between observed samples and
211 unobserved samples either decreases or is non-monotonic
212 as a function of learning. To address the catastrophic for-
213 getting problem, there are several works [24], [33], [40] pro-
214 posed to solve the problem by using episodic memory.
215 Kirkpatrick et al. [24] propose an algorithm named elastic
216 weight consolidation (EWC), which can adjust learning to
217 minimize changes in parameters important for previously
218 seen task. Moreover, Lopez and Ranzato [33] introduce the
219 gradient episodic memory (GEM) method to alleviate cata-
220 strophic forgetting problem. However, there could exist
221 incongruency in the training process of GEM.

222 3 CONGRUENCY IN MACHINE LEARNING

223 3.1 Problem Statement

224 We first review the general goal in machine learning. With-
225 out loss of generality, given a training set D ¼ fðIi; yiÞgni¼1,
226 where a pair ðIi; yiÞ represents a training sample composed of
227 an image Ii 2 RNI (NI is the dimension of images) and the

228corresponding ground-truth yi 2 Y, the goal is to learn a
229model f : RNI !Y . Specifically, a Deep Neural Network
230(DNN) model has a trunk net to generate discriminative fea-
231tures xi 2 X and a classifier fw : X w!Y to fulfill the task,
232where w is the weights of classifier. Note that we consider
233that DNN is a classifier as whole and the input is raw RGB
234images.
235To accomplish the learning process, the conventional
236approach is to first specify and initialize a model. Next, the
237empirical risk minimization (ERM) principle [53] is emplo-
238yed to find a desirable w w.r.t. f by minimizing a loss func-
239tion ‘ : Y � Y ! ½0;1Þ penalizing prediction errors, i.e.,

240minimizew
1
jDj

P
ðxi;yiÞ2D ‘ðfwðxiÞ; yiÞ. At time step k, the gra-

241dient computed by the loss is used to update the model, i.e.,
242wkþ1 :¼ wk þ Dwk, where Dwk is an update as well as a func-
243tion of gradient gðwk;xk; ykÞ ¼ rwk

‘ðfwk
ðxkÞ; ykÞ. Optimizers,

244such as SGD [42], RMSProp [14], or Adam [23], determine
245Dwkðgðwk;xk; ykÞÞ. Without loss of generality, we assume
246the optimizer is SGD in the following for convenience.
247There exist two challenges w.r.t. congruency for practical
248use. First, due to the dynamic nature of the learning process,
249how to find a stable referential direction which can quantify
250the agreement between current and previous updates. Sec-
251ond, how to guarantee the referential direction is beneficial
252to search for a local minimum.
253As the gradient at a training step implies the direction
254towards a local minimum by the currently observed mini-
255batch, the accumulation of all previous gradients provides
256an overall direction towards a local minimum. Hence, it
257provides a good referential direction to measure the agree-
258ment between a specific update and its previous updates.
259We denote the accumulated gradient as

ĝkjwm ¼
Xk
i¼m

gi; (2)

261261

262where wm is the weights learned at time step m and ĝkjwm

263indicates that the accumulation starts from wm at time step
264k. If there is no explicit wm indicated, ĝk ¼ ĝkjw1

. Fig. 2 shows
265an example of accumulated gradient, where the gradient of
266S3 deviates from the accumulated gradient of S1 and S2.
267This also elicits our solution to measure congruency in a
268training process.

2693.2 Definition

270Congruency n is a metric to measure the agreement of
271updates in a training process. In general, it is directly related
272to an angle between the gradient for an update and the
273accumulated gradient, i.e., aðĝk�1jwm; gkÞ 2 ½0;p�. Smaller
274angle indicates higher congruency. Practically, we use
275cosine similarity to approximate the angle for computa-
276tional simplicity. Mathematically, at time step k, nk can be
277defined as follows:

nkjwm ¼ cosaðgk; ĝk�1jwmÞ ¼
ĝ>k�1jwm

gk

kĝk�1jwmkkgkk
; m � k; (3)

279279

280where wm is the weight learned at time step m and taken as
281a reference point in weight space. aðĝk; gkÞ is the angle
282between ĝk and gk. Based on nk�1jwm , the congruency of a
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283 training process that starts from wj to learn out wn can be
284 defined as

nwj!wnjwm ¼
1

n� jþ 1

Xn
i¼j

nijwm; m � j < n: (4)

286286

287 Since the concept of congruency is built upon cosine similar-
288 ity, nkjwm will range from ½�1; 1�. Another advantage of
289 using cosine similarity is the tractability. The gradient com-
290 puted from the loss is considered as a vector in weight
291 space. Hence, cosine similarity can take any pair of gra-
292 dients, such as the accumulated gradient and the gradient
293 computed by a training sample, or two gradients computed
294 by two respective training samples.

295 3.3 Task-Specific Factors

296 Congruency is semantics-aware. As congruency is based on
297 the gradients which are computed with the images and the
298 semantic ground-truth, such as class label in the classification
299 task or human fixation in the saliency prediction task. There-
300 fore, congruency reflects the task-specific semantics. We dis-
301 cuss congruency task-by-task in the following subsection.
302 Saliency Prediction. Visual attention is attracted to visually
303 salient stimuli and is affected by many factors, such as scale,
304 spatial bias, context and scene composition, oculomotor
305 constraints, and so on. These factors result in high variabil-
306 ities over fixations across various persons. The variabilities
307 of visual semantics imply that same class objects in two
308 images may have different salience levels, i.e., one object is
309 predicted as salient object while the other same class object
310 is not. In this sense, negative congruency in learning for
311 saliency prediction may result from both feature-level and
312 label-label disagreement across the images.
313 Continual Learning. In the continual learning setting [24],
314 [33], [40], a classification model is learned with past
315 observed classes and samples. New samples w.r.t. the unob-
316 served classes may be distinct from previously seen samples
317 in terms of both visual appearance and label. This leads to
318 negative congruency in learning.
319 Classification. For classification, the class labels are usu-
320 ally deterministic to human. The factors that cause negative
321 congruency in learning lie in visual appearances. Due to the
322 variability of real-world images, visual appearance of

323samples from the same class may be very different from
324each other in different images.

3254 METHODOLOGY

326In this section, we first overview the proposed DCLmethod.
327Then, we introduce its formulation and properties in detail.
328Finally, we discuss the lower bound of congruency with
329gradient descent methods. For simplicity, we assume it is at
330time step k and omit underscored k in the following formu-
331lations unless we explicitly indicate it.

3324.1 Overview

333Fig. 2 demonstrates the basic idea of the proposed DCL
334method. Given training sample ðI; yÞ, where I is an image
335and y is the ground-truth, the corresponding feature x are
336first generated by the sample before it is passed to the classi-
337fier for computing the predictions ŷ ¼ fwðxÞ. Convention-
338ally, the derivatives g of the loss ‘ðŷ; yÞ are computed to
339determine the update Dw by an optimizer to back-propagate
340the error layer by layer. In the proposed DCL method, g is
341taken to estimate a corrected gradient ~g that is congruent
342with previous updates. For example, as shown in Fig. 2, the
343gradient of S3 is expected to have a large deviation angle a

344to the accumulated anti-gradient �P2
i¼1 gsi because S1 and

345S2 share similar visual appearance, but S3 is different from
346them. The proposed DCL method aims to estimate a cor-
347rected ~gwhich has a smaller deviation angle ~a to �P2

i¼1 gSi .

3484.2 Direction Concentration Learning

349The core idea of the proposed DCL method is to concentrate
350the current update to a certain search direction. The accu-
351mulated gradient ĝ is the direction voted by previous
352updates which provides information towards the possible
353local minimum. Ideally, according to the definition of con-
354gruency, i.e., Eqs. (3) and (4), cosine similarity should be
355considered in optimization. However, minimizing cosine
356similarity with constraints is complicated. Therefore, similar
357to GEM [33], we adopt an alternative that optimizes the
358inner product, instead of the cosine similarity. According to
359Eq. (3), < g1; g2 >� 0 indicates that the angle between the
360two vectors is less than or equal to 90�.

Fig. 2. An illustration of model training with the proposed DCL module. Here, 3 samples are observed in a sequential manner. The gradient generated
by S3 is expected to be different with the gradients generated by S1 and S2. Hence, to tackle the expected violation between the update�hgS3 and the
accumulated update �hP2

i¼1 gSi , the proposed DCL method finds a corrected update �h~gS3 (the pink arrow) by solving a quadratic programming
problem (5). In this way, the angle between �h~gS3 and �h

P2
i¼1 gSi (the blue arrow), i.e., ~a, is guaranteed to be equal to or less than a. Note that the

gradient descent processes with or without the proposed DCL module is identical in the test phase.
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361 As shown in Fig. 2, the proposed DCL method uses the
362 accumulated gradient as a referential direction to compute
363 a corrected gradient ~g, i.e.,

minimize
~g

1

2
k~g� gk22

s.t. h�ĝri ;�~gi � 0; 1 � i � Nr;

(5)

365365

366 where ri is a reference point in weight space, ĝri is the accu-
367 mulated gradient that starts the accumulation from ri, and
368 Nr is the number of reference points. The accumulated gra-
369 dient ĝri indicates that the accumulation starts from the ref-
370 erence ri to the current weights w. The proposed DCL
371 method can take Nr points as the references frij1 � i � Nrg.
372 Assume that the weights at time step t is taken as the refer-
373 ence ri, i.e., ri ¼ wt, we denote subð	Þ as a function to find
374 the index of a point in weight space. For example, with
375 t ¼ subðriÞ ¼ subðwtÞ, we can compute the accumulated gra-
376 dient ĝri ¼

P
j¼subðriÞ gj. On the other hand, the function

377
1
2 k~g� gk22 is widely used in gradient-based methods [15],

378 [25], [33], [44], [48] and forces ~g to be close to g in euclidean

space as much as possible. The constraints h�ĝri ;�~gi � 0

are to guarantee that the gradient that is used for an update

should not substantially deviate from the accumulated

gradient.
379 In practice, instead of directly computing ĝri by its defini-
380 tion (2)), we compute it by subtracting the current point w
381 with the reference point ri, i.e., ĝri ¼ w� ri ¼ �h

P
j¼i gj.

382 Hence, the constraints can be deformed in a matrix form

Að�~gÞ ¼ �1�
ðw� r1Þ>
ðw� r2Þ>

..

.

ðw� rNrÞ>

26664
37775~g � 0: (6)

384384

385 Fig. 3 demonstrates the effect of constraints in optimization.
386 The dashed line in the same color indicates the border of
387 feasible region with regards to �ĝri ; i 2 f1; 2g as Constraint
388 (6) forces ~g to have an angle smaller than 90�. Due to two
389 references in this example, the intersection between two

390feasible regions, i.e., the shaded region, is the intersected
391feasible region for optimization. Note that an accumulated
392gradient determines half-plane (hyperplane) as feasible
393region, instead of the full plane (hyperplane) in conven-
394tional gradient descent case.
395The optimization (5) becomes a classic quadratic program-
396ming problem and we can easily solve it by off-the-shelf solv-
397ers like quadprog1 or CVXOPT.2 However, since the size of ~g
398can be sufficiently large, straightforward solution may be
399computationally expensive in terms of both time and storage.
400As introduced by Dorn [7], we apply a primal-dual method
401for quadratic programs to solve it efficiently.
402Given a general quadratic problem, it can be formulated
403as follows:

minimize
z

1

2
z>Czþ q>z s.t. Bz � b; (7)

405405

406whereas the corresponding dual problem to Problem (7) is

minimize
u;v

1

2
u>Cuþ b>v

s.t. B>v� Cu ¼ q; v � 0:

(8)

408408

409Dorn provides the proof of the connection between Prob-
410lems (7) and (8).

411Theorem 4.1 (Duality). if z ¼ z
 is a solution to Problem (7)
412then a solution ðu; vÞ ¼ ðu
; v
Þ exists to Problem (8). Con-
413versely, if a solution ðu; vÞ ¼ ðu
; v
Þ to Problem (8) exists then
414a solution which satisfies Cz ¼ Cu
 to Problem (7) also exists.

415Due to the equality constraint B>v� Cu ¼ q, assume C is
416full rank, we can plug u ¼ C�1ðB>v� qÞ back to the objec-
417tive function to further simplify Problem (8), i.e.,

minimize
v

1

2
v>BðC�1Þ>B>vþ ðb� p>B>Þv

s.t. v � 0:
(9)

419419

420Now it turns out to be a quadratic problem w.r.t. v only.
421The DCL quadratic problem can be solved by the afore-
422mentioned primal-dual method. Specifically, k~g� gk22 ¼ ð~g�
423gÞ>ð~g� gÞ ¼ ~g>~g� 2g>~gþ g>g. By omitting the constant
424term g>g, it turns to a quadratic problem form ~g>~g� 2g>~g.
425Since we know the primal problem (7) can be converted to
426its dual problem (8), the related coefficient matrices/vectors
427are easily determined by

C ¼ I; B ¼ �A; b ¼ 00; p ¼ �g;
429429

430where I is a unit matrix. With these coefficients at hand, we
431have the corresponding dual problem

minimize
v

1

2
v>AA>v� g>A>v s.t. v � 0: (10)

433433

434

435By solving (10), we have v
. On the other hand, C~g ¼
436Cu
; C ¼ I and we can have the solution ~g
 by

~g
 ¼ Cu
 ¼ B>v� q ¼ �A>vþ g: (11)
438438

Fig. 3. An illustration of DCL constraints with two reference points
r0 ¼ w0; r1 ¼ w1. ĝr0 is the pink arrow while ĝr1 is the green one. The col-
ored dashed line indicates the border of feasible region with regards to
�ĝri ; i 2 f0; 1g, since Constraint (6) forces �h~gk to have an angle which
is smaller than or equal to 90� w.r.t. ĝr0 and ĝr1 .

1. https://github.com/rmcgibbo/quadprog
2. https://cvxopt.org/
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439 Note that ~g; u 2 Rp, v 2 RNr , A 2 RNr�p, and b 2 RNr where p
440 is the size of w. If taking the fully-connected layer of ResNet
441 as w, p ¼ 2048. In contrast with p, Nr is usually smaller, i.e.,
442 1,2, or 3. As Nr becomes larger, it increases the possibility
443 that the constraints are inconsistent. Thus, Nr � p. This
444 implies that solving Problem (10) in RNr is more efficient
445 than solving Problem (5) in Rp.

446 4.3 Theoretical Lower Bound

447 Here, we discuss about the congruency lower bound with
448 gradient descent methods. First, we recall the theoretical
449 characteristics w.r.t. gradient descent methods.

450 Proposition 4.2 (Quadratic upper bound [36]). If the gra-
451 dient of a function f : Rn ! R is Lipschitz continuous with
452 Lipschitz constant L for any x; y 2 Rn, i.e.,

krfðyÞ � rfðxÞk � Lky� xk; (12)
454454

455 then

fðyÞ � fðxÞ þ rfðxÞ>ðy� xÞ þ L

2
ky� xk2: (13)457457

458

459 On the other hand, there is a proved bound w.r.t. the
460 loss.

461 Corollary 4.3 (The bound on the loss at one iteration [8],
462 [49]). Let xk be the kth iteration result of gradient descent
463 and hk � 0 the kth step size. If rf is L-Lipschitz continu-
464 ous, then

fðxkþ1Þ � fðxkÞ � hk 1� Lhk
2

� �
krfðxkÞk2: (14)466466

467

468 By adding up a collection of inequalities, we can move
469 further along this line to have the following corollary.

470 Corollary 4.4. Let xk be the kth iteration result of gradient
471 descent and hk � 0 the kth step size. If rf is L-Lipschitz con-
472 tinuous, then

fðxkÞ � fðx0Þ �
Xk�1
i¼0

hi 1� Lhi
2

� �
krfðxiÞk2: (15)

474474

475

476 Theorem 4.5 (Congruency lower bound). Assume the gra-
477 dient descent method uses a fixed step size h and the gradi-
478 ent of the loss function f : Rn ! R is Lipschitz continuous
479 with Lipschitz constant L, the congruency nkjx0 referring to
480 the initial point x0 at the kth iteration has the following
481 lower bound

nkjx0 � max

(
ð1� LhÞ

Xk�1
i¼0

krfðxiÞk
krfðxkÞk

� Lh

Pk�1
i¼0 krfðxiÞkk

Pi�1
j¼0rfðxjÞk

krfðxkÞkk
Pk�1

i¼0 rfðxiÞk
;�1

)
:

(16)
483483

484

485 Proof. Given xk and x0, according to Proposition 4.2 we
486 have

rfðxkÞ>ðxk � x0Þ � fðxkÞ � fðx0Þ þ L

2
kxk � x0k2:

488488

489Since xk ¼ x0 � h
Pk�1

i¼0 rfðxiÞ and nkjx0 ¼ ð�rfðxkÞÞ>
490ð�Pk�1

i¼0 rfðxiÞÞ=ðkrfðxkÞk k
Pk�1

i¼0 rfðxiÞkÞ, we can

have

rfðxkÞ>ðxk � x0Þ ¼ � hð�rfðxkÞÞ>
�
�
Xk�1
i¼0
rfðxiÞ

�

¼� hkrfðxkÞkk
Xk�1
i¼0
rfðxiÞknkjx0 :

Plugging this in the inequality, it yields

nkjx0 �
1

h

fðx0Þ � fðxkÞ � Lh2

2 k
Pk�1

i¼0 rfðxiÞk2
krfðxkÞkk

Pk�1
i¼0 rfðxiÞk

:

According to Corollary 4.4, the inequality can be rewrit-
ten as

nkjx0 �
ð1� Lh

2 Þ
Pk�1

i¼0 krfðxiÞk2 � Lh
2 k

Pk�1
i¼0 rfðxiÞk2

krfðxkÞkk
Pk�1

i¼0 rfðxiÞk
:

(17)

491By using polynomial expansion and the Cauchy-Schwarz
492inequality, we can expand the term kPk�1

i¼0 rfðxiÞk2 as
493follows:

k
Xk�1
i¼0
rfðxiÞk2 ¼ krfðxk�1Þ þ

Xk�2
i¼0
rfðxiÞk2

�krfðxk�1Þk2 þ 2krfðxk�1Þkk
Xk�2
i¼0
rfðxiÞk þ k

Xk�2
i¼0
rfðxiÞk2:

495495

496Recursively, kPk�2
i¼0 rfðxiÞk2, k

Pk�3
i¼0 rfðxiÞk2, . . ., till

497kP1
i¼0rfðxiÞk2 can be expanded, e.g.,

k
X1
i¼0
rfðxiÞk2 ¼ krfðx1Þ þ rfðx0Þk2

�krfðx1Þk2 þ 2krfðx1Þkkrfðx0Þk þ krfðx0Þk2:

The above inequalities yield

k
Xk�1
i¼0
rfðxiÞk2 �

Xk�1
i¼0
krfðxiÞk2 þ 2

Xk�1
i¼0
krfðxiÞkk

Xi�1
j¼0
rfðxjÞk:

Plugging it into Inequality (17), we have

nkjx0 �ð1� LhÞ
Pk�1

i¼0 krfðxiÞk2
krfðxkÞkk

Pk�1
i¼0 rfðxiÞk

� Lh

Pk�1
i¼0 krfðxiÞkk

Pi�1
j¼0rfðxjÞk

krfðxkÞkk
Pk�1

i¼0 rfðxiÞk
:

Due to

Pk�1
i¼0 krfðxiÞk

k
Pk�1

i¼0 rfðxiÞk
� 1, the congruency lower bound can

498be further simplified as
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nkjx0 � ð1� LhÞ
Xk�1
i¼0

krfðxiÞk
krfðxkÞk

� Lh

Pk�1
i¼0 krfðxiÞkk

Pi�1
j¼0rfðxjÞk

krfðxkÞkk
Pk�1

i¼0 rfðxiÞk
:

Combining with the fact nkjx0 � �1, we complete the
proof. tu

499 Remark 4.6. Theorem 4.5 implies that when we apply gra-
500 dient descent method to search a local minimum, the con-
501 gruency lower bound at a certain iteration in the learning
502 process is determined by the gradients at current iteration
503 and previous iterations.

504 Remark 4.7. Theorem 4.5 implies that the lower bound of
505 congruencywith a small step size, i.e., h < 1

L, is tighter than
506 the one of congruencywith a large step size, i.e., h � 1

L. This
507 is consistent with the fact the large step size could lead to a
508 zigzag convergence path. The negative lower bound of con-
509 gruency when h � 1

L indicates the huge turnaround would
510 possibly occur in the learning process.

511 4.4 Adaptivity to Learning

512 As the reference is used to compute the accumulated gra-
513 dient for narrowing down the search direction, a desirable
514 referential direction should orient to a local minimum. Con-
515 versely, an inappropriate referential direction could mislead
516 the training and slow down the convergence. Therefore, it is
517 important to update the references to adapt to the target
518 optimization problem.
519 In this work, we update the references with a short
520 temporal window so as to yield a locally stable and reli-
521 able referential direction. For instance, Fig. 4 shows an
522 unfavorable case that takes w0 as the reference, where
523 the convergence path is spiral. Due to the circuitous
524 manifold, w0 results in a misleading direction �hĝ10jw0

.
525 In contrast, if taking w7 as a reference, it can yield the
526 appropriate search direction to reach w11. Therefore, we
527 introduce an “effective window” to allow the proposed
528 DCL method to find an appropriate search direction. The

529effective window forces the proposed DCL method to
530only accumulate the gradients within the window. In
531Fig. 4, the proposed DCL method with a small window
532size would converge, whereas the one with a large win-
533dow size would diverge. We denote the window size as
534bw and the reference offset as bo. When the time step t
535satisfies

t mod bw ¼ bo; (18)

537537

538where mod is the modulo operator, it would trigger the reset
539mechanism, i.e., starting over to set references ri  wt;
5401 � i � Nr. bo indicates the first reference weight point.
541Once the reset process starts, the proposed DCL method
542would use g, instead of ~g, for update until all the Nr referen-
543ces are reset.

5444.5 Effect of DCL

545To intuitively understand the effect of the proposed DCL
546method, we present visual comparisons of the convergence
547paths with three popular optimizers, i.e., SGD [42], RMSProp
548[14], andAdam [23], on a publicly available problem.3

549In particular, given the problem z ¼ fðx; yÞ, we apply
550the three optimizers to compute a local minimum ðx
; y
Þ.
551Unlike image classification, the problem does not need ran-
552domized data sequence as input so there is no stochastic
553process. For a fair comparison, except the learning rate, we
554keep the settings and hyperparameters the same between
555ALGO and ALGO DCL, where ALGO={GD, RMSProp,
556Adam} and GD stands for gradient descent. The conver-
557gence paths w.r.t. the optimization algorithms are shown
558in Figs. 5a, 5b, and 5c, while the corresponding z versus
559iteration curves are plotted in Figs. 5d, 5e, and 5f.
560We can see that all the baseline curves are circuitous, i.e.,
561a sharp turn at the ridge region between two local minima.
562Moreover, different learning rates lead to different local
563minima. It implies that the training process in this case is
564influenceable and fickle in terms of the direction of the con-
565vergence. The proposed DCL method noticeably improves
566the convergence direction by choosing a relatively straight-
567forward path over the three optimization algorithms. Note
568that as the objective function (5) implies, if we do not take
569any the accumulated gradients (i.e., no constraints), or take
570the gradient for the coming update as the accumulated gra-
571dient (i.e., ĝri ¼ g), the proposed DCL method would
572become the baseline (i.e., ~g ¼ g).

5734.6 DCL in Continual Learning

574In previous subsections, we introduce the proposed DCL
575method in mini-batch learning. By its very nature, it can
576also work in continual learning manner. GEM [33] is a
577recent method proposed for continual learning. The objec-
578tive function of GEM is the same as the proposed DCL
579method, whereas the constraints of GEM and the proposed
580DCL method are devised for respective purposes. To apply
581the proposed DCL method in continual learning, we can
582merge the constraints of the proposed method with the ones
583of GEM. Hence, we have a new A as follows:

Fig. 4. An illustration to demonstrate the concept of the effective window.
Given the spiral convergence path,�hĝ10jw0

restricts the search direction
and the minimum (i.e., the red star) and w11 are unreachable according
to the search direction. In contrast, w11 can be reached along the search
direction of �hĝ10jw7

. To adaptively yield appropriate accumulated gra-
dients that converge to the minimum, we define an effective window to
periodically update the reference.

3. https://github.com/Jaewan-Yun/optimizer-visualization
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A ¼

ðw� r1Þ>
..
.

ðw� rNrÞ>
�gðxS1 ; yS1Þ>

..

.

�gðxSNm
; ySNm

Þ>

26666666664

37777777775
; Si 2 M; (19)

585585

586 whereM is the memory and Nm is the size of the memory.
587 With the proposed DCL constraints, the corrected ~g is forced
588 to be consistent with both the accumulated gradients and the
589 directions of gradients generated by the samples inmemory.

590 4.7 Comparison With Memory-Based Constraints

591 Now,wediscuss thedifference between theproposedDCL con-
592 straints and thememory-based constraints used inGEM [33].
593 There are two main differences between the DCL con-
594 straints and the GEM constraints. First, as shown in Fig. 6,
595 the descent direction in the proposed DCL method is regu-
596 lated by the accumulated gradient, whereas the gradient for
597 an update in GEM is regulated to avoid the violation with
598 the gradients of the memory samples (i.e., images and the
599 corresponding ground-truths). Since the weights are itera-
600 tively updated and the memory samples are preserved, the
601 gradients of the memory samples could be changed at each
602 iteration so the direction of the adjusted gradient could be
603 dynamically varying. Second, the proposed DCL method
604 only needs to memorize the references, whereas GEMmem-
605 orizes the images and the corresponding ground-truths.
606 The proposed DCL constraints are efficiently computed by
607 a subtraction in Eq. (6), other than by computing the corre-
608 sponding gradients like GEM.
609 Although the proposed DCL constraints are different
610 from GEM constraints in terms of definition, they are able

611to work with each other in continual learning. We will
612dive into the details in the following experiment section.
613Moreover, GEM computes the gradients on all the parame-
614ters of a DNN. This works in the situations that input
615image resolution is relatively small, e.g., 784 for MNIST [29]
616or 3,072 for CIFAR-10/100 [26]. The networks used to clas-
617sify these images have small number of weights like MLP
618and ResNet-18. However, the number of parameters in a
619DNN could be huge. For example, ResNeXt-29 (16� 64)
620[56] has 68 million parameters. Although GEM applies
621primal-dual method to reduce the computation in optimi-
622zation, the overall computation is still considerably high.
623In this work, we instead compute the gradients on the
624highest-level layer to generalize the proposed DCL method
625to any general DNN.

Fig. 5. An example demonstrating the effect of the proposed DCL method on three optimizers, i.e., gradient descent (GD), RMSProp, and Adam.
Given a problem z ¼ fðx; yÞ, we use these optimization algorithms to compute the local minima, i.e., ðx
; y
Þ that yield the minimal z
. In the
experiment, except the learning rate, the setting and hyperparameters are the same for ALGO and ALGO DCL, where ALGO={GD, RMSProp,
Adam}. The proposed DCL method encourages the convergence paths to be as straight as possible.

Fig. 6. An illustration demonstrating the difference between DCL (left) and
GEM [33] (right). The search direction inDCL is determined by the accumu-
lated gradientwhile the adjusted gradient (solid line) ofGEM is optimized by
avoiding the violation between the gradient (dashed line) and memory
samples’ gradients (green line). Since the weights are iteratively updated
and the memory samples are preserved, the direction of the adjusted
gradient of thememory samples could be dynamically varying.
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626 5 EXPERIMENTS

627 5.1 Experimental Setup

628 To comprehensively evaluate the proposed DCL method,
629 we conduct experiments on three tasks, i.e., saliency predic-
630 tion, continual learning, and classification.

631 5.1.1 Datasets

632 For saliency prediction task, we use SALICON [20] (the 2017
633 version), MIT1003 [22], and OSIE [58]. For continual learn-
634 ing task, we follow the same experimental settings in GEM
635 [33] to use MNIST Permutations (MNIST-P), MNIST Rota-
636 tions (MNIST-R), and incremental CIFAR-100 (iCIFAR-100).
637 For classification, we use CIFAR [26], Tiny ImageNet, and
638 ImageNet [6].

639 5.1.2 Models

640 For saliency prediction, we adopt an improved SALICON
641 saliency model [17] and DINet [59] as the baselines. Both
642 the baseline models takes ResNet-50 [13] as the backbone
643 architecture.
644 For continual learning, we adopt the same models used
645 in GEM, i.e., Multiple Layer Perceptron (MLP) and ResNet-
646 18, as well as EfficientNet-B1 [47] as the backbone architec-
647 ture for evaluation. EWC [24] and GEM are used for
648 comparison.
649 For classification, we use the state-of-the-art model
650 without any architecture modifications for a fair evaluation.

651ResNeXt [56] (i.e., ResNeXt-29), DenseNet [16] (i.e.,
652DenseNet-100-12), and EfficientNet-B1 [47] are used in
653the evaluation of CIFAR-10 and CIFAR-100. ResNet (i.e.,
654ResNet-101), DenseNet (i.e., DenseNet-169-32), and Effi-
655cientNet-B1 [47] are used in the experiments on Tiny Image-
656Net. ResNet (i.e., ResNet-34 and ResNet-50) is used in the
657experiments on ImageNet.

6585.1.3 Notation

659For convenience, we notate model name + optimizer name +
660DCL-bw-Nr for key experimental details in Tables 1, 2, 6 and
6617. bw ¼ 1 indicates it never resets the references when the
662initialization of references is finished.

6635.1.4 Evaluation Metrics

664For saliency prediction, we report the performance using
665the commonly use metrics, namely area under curve
666(AUC) [1], [21], shuffled AUC (sAUC) [1], [45], normalized
667scanpath saliency (NSS) [18], [43], and correlation coefficient
668(CC) [38]. Human fixations are used to form the positive set
669while the points from the saliency map are sampled to form
670the negative set. With the two sets, an ROC curve of true
671positive rate versus false positive rate would be plotted by
672thresholding over the saliency map. If the points are sam-
673pled in a uniform distribution, it is AUC. If the points are
674sampled from the human fixation points, it is sAUC. NSS
675would average the response values at human eye positions

TABLE 1
Saliency Prediction Performance of the Models Which are Trained on SALICON 2017

Training Set and Evaluated on SALICON 2017 Validation Set

NSS sAUC AUC CC

ResNet-50 RMSP 1.7933 � 0.0083 0.8311 � 0.0017 0.8393 � 0.0039 0.8472 � 0.0048
ResNet-50 RMSP GEM 1.7522 � 0.0150 0.8267 � 0.0017 0.8341 � 0.0016 0.8291 � 0.0033
ResNet-50 RMSP DCL-1-1 1.8226 � 0.0014 0.8376 � 0.0017 0.8445 � 0.0016 0.8569 � 0.0032

ResNet-50 Adam 1.7978 � 0.0019 0.8328 � 0.0007 0.8405 � 0.0011 0.8495 � 0.0004
ResNet-50 Adam GEM 1.7962 � 0.0034 0.8344 � 0.0021 0.8399 � 0.0009 0.8494 � 0.0034
ResNet-50 Adam DCL-1-1 1.8019 � 0.0024 0.8360 � 0.0023 0.8430 � 0.0023 0.8548 � 0.0038

DINet Adam [59] 1.8786 � 0.0063 0.8426 � 0.0008 0.8489 � 0.0008 0.8799 � 0.0010
DINet Adam GEM 1.8746 � 0.0067 0.8423 � 0.0014 0.8492 � 0.0012 0.8791 � 0.0030
DINet Adam DCL-500-1 1.8857 � 0.0006 0.8430 � 0.0002 0.8493 � 0.0002 0.8804 � 0.0009

Higher score is better in all the metrics. Each experiment is repeated for 3 times and the mean and std of the scores are reported. We follow [59] to only use Adam
as the optimizer for DINet.

TABLE 2
Saliency Prediction Performance of the Models Which are Trained on OSIE and Tested on MIT1003

NSS sAUC AUC CC

ResNet-50 RMSP 2.4047 � 0.0055 0.7612 � 0.0019 0.8455 � 0.0028 0.7595 � 0.0002
ResNet-50 RMSP GEM 2.3960 � 0.0057 0.7566 � 0.0045 0.8412 � 0.0055 0.7500 � 0.0037
ResNet-50 RMSP DCL-1-1 2.4252 � 0.0053 0.7620 � 0.0018 0.8469 � 0.0027 0.7658 � 0.0016

ResNet-50 Adam 2.4064 � 0.0015 0.7597 � 0.0012 0.8429 � 0.0021 0.7618 � 0.0005
ResNet-50 Adam GEM 2.3685 � 0.0065 0.7594 � 0.0007 0.8427 � 0.0017 0.7524 � 0.0011
ResNet-50 Adam DCL-1-1 2.4108 � 0.0063 0.7613 � 0.0007 0.8442 � 0.0008 0.7617 � 0.0007

DINet Adam 2.4406 � 0.0058 0.7570 � 0.0005 0.8442 � 0.0016 0.7534 � 0.0005
DINet Adam GEM 2.4456 � 0.0037 0.7571 � 0.0005 0.8432 � 0.0003 0.7540 � 0.0006
DINet Adam DCL-120-1 2.4566 � 0.0007 0.7611 � 0.0011 0.8476 � 0.0008 0.7597 � 0.0008

Each experiment is repeated for 3 times and the mean and std of the scores are reported.
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677 be zero-mean and with unit standard deviation. CC meas-
678 ures the strength of a linear correlation between a ground-
679 truth map and a predicted saliency map. For continual
680 learning, we use the same metrics used in GEM [33], i.e.,
681 accuracy, backward transfer (BWT), and forward transfer
682 (FWT). For classification, we evaluate the proposed DCL
683 method with top 1 error rate metric on the CIFAR experi-
684 ments while both top 1 and top 5 error rate are reported in
685 the experiments of Tiny ImageNet and ImageNet.

686 5.1.5 Experimental and Training Details

687 In the experiments of saliency prediction, we use Adam [23]
688 and RMSProp (RMSP) [14] optimizers. In the setting with
689 Adam,we use h ¼ 0:0002, weight decay 1e-5while h ¼ 0:0005,
690 weight decay 1e-5 are used within the setting of RMSP. The
691 momentum is set to 0.9 for both Adam and RMSP. h would
692 be adjusted along with the epochs, i.e., hkþ1  h0 � 0:5k�1,
693 where k is the current epoch. The batch size is 8 by default.
694 To fairly evaluate the performances of the models, we use
695 cross-dataset validation technique, i.e., the models are trai-
696 ned on the SALICON 2017 training set and evaluated on the
697 SALICON 2017 validation set, and trained on OSIE and evalu-
698 ated onMIT1003.
699 We follow the experimental settings in [33] for continual
700 learning. Specifically, MNIST-P and MNIST-R have 20 tasks
701 and each task has 1,000 examples from 10 different classes.
702 On iCIFAR-100, there are 20 tasks and each task has 2,500
703 examples from 5 different classes. For each task, the first 256
704 training samples will be selected and stored as the memory
705 on MNIST-P, MNIST-R, and iCIFAR-100. In this work, GEM
706 constraints are concatenated with the DCL constraints by
707 Eq. (19). As the different concepts are learned across the epi-
708 sodes, i.e., the tasks, we only consider that the accumulation
709 of gradients would take place in each episode.
710 In the classification task, we evaluate the models with SGD
711 optimizer [42]. The hyperparameters are kept by default, i.e.,
712 weight decay 5e-4, initial h ¼ 0:1, the number of total epochs
713 300. h would be changed to 0.01 and 0.001 at epoch 150 and
714 225, respectively. For the Tiny ImageNet experiments, wewill
715 train the models in 30 epochs with weight decay 1e-4, initial
716 h ¼ 0:001. h would be changed to 1e-4 and 1e-5 at epoch 11
717 and 21, respectively. The momentum is 0.9 by default. The
718 batch size is 128 in the CIFAR experiments and 64 in the Tiny
719 ImageNet experiments. In the ImageNet experiments, we use
720 batch size of 512 to train ResNet-50.
721 In addition, we present the performance of GEM for ref-
722 erence as well. Note that more samples in memory may

723lead to inconsistent constraints. We set memory size to 1
724and reset the memory at each epoch beginning, which is
725analogous to the case that GEM for continual learning
726would reset the memory at each beginning of the episode.
727The implementations of this work are built upon PyTorch4

728and quadprog package is employed to solve quadratic pro-
729gramming problems.

7305.2 Performance Evaluation

7315.2.1 Saliency Prediction

732Table 1 reports the mean and standard deviation (std) of the
733scores in NSS, sAUC, AUC, and CC over 3 runs on the SAL-
734ICON 2017 validation set. We can see that the proposed
735DCL method overall improves the saliency prediction per-
736formance with both ResNet-50 and DINet over all the met-
737rics. Moreover, small values of stds w.r.t. the proposed DCL
738method show that the randomness caused by the stochastic
739process does not contribute much to the improvement.
740Table 2 shows that the proposed DCL method trained on
741OSIE consistently improves the saliency prediction perfor-
742mance on MIT1003.
743Note that Adam and RMSP optimizer are different algo-
744rithms to compute effective step sizes based on the gra-
745dients. The consistency of the improvement with both
746optimizers shows that the proposed DCL method generally
747works with these optimizers.

7485.2.2 Continual Learning

749As introduced in Section 4, we apply the proposed DCL
750method to enhance the congruency of the learning process
751for continual learning. Specifically, following Eq. (19), we
752concatenate the DCL constraints with the GEM constraints
753[33]. As reported in Table 3, the proposed DCL method
754improves the classification accuracy by 0.7 percent on
755MNIST-R. Similarly, the proposed DCL method improves
756the classification accuracy on MNIST-P as well (see Table 4).
757The marginal improvement may results from the difference
758between MNIST-R and MNIST-P. Permuting the pixels of
759the digits is harder to recognize than rotating the digits by
760a fixed angle, and makes the accumulated gradient less
761informative in terms of leading to the solution. We observe
762that shorter effective window size is helpful to improve
763the accuracy in the continual learning task. This is because
764the training process of continual learning is one-off and a
765fast variation could be caused by the limited images with
766brand new labels in each episode. The experiments on

TABLE 3
Performances on MNIST-R in Continual Learning

Setting Using SGD [42] as the Optimizer

Accuracy BWT FWT

EWC 54.61 -0.2087 0.5574
GEM 83.35 -0.0047 0.6521
MLP DCL-30-1 MEM 84.08 0.0094 0.6423
MLP DCL-40-1 MEM 84.02 0.0127 0.6351
MLP DCL-50-1 MEM 82.77 0.0238 0.6111

The reported accuracy is in percentage. MEM indicates that the constraints of
GEM [33] are concatenated to use as Eq. (19) describes.

TABLE 4
Performances on MNIST-P in Continual Learning

Setting Using SGD as the Optimizer

Accuracy BWT FWT

EWC 59.31 -0.1960 -0.0075
GEM 82.44 0.0224 -0.0095
MLP DCL-3-1 MEM 82.30 0.0248 -0.0038
MLP DCL-4-1 MEM 82.58 0.0402 -0.0092
MLP DCL-5-1 MEM 82.10 0.0464 -0.0095

4. https://github.com/pytorch/pytorch

10 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 41, NO. X, XXXXX 2019

https://github.com/pytorch/pytorch


IEE
E P

ro
of

767 iCIFAR-100 in Table 5 confirm this pattern. The proposed
768 DCL method with ResNet and bw ¼ 4 improves the accu-
769 racy by 1.25 percent on iCIFAR-100.
770 There are another two metrics for continual learning, i.e.,
771 forward transfer (FWT) and backward transfer (BWT). FWT
772 is that learning a task is helpful in learning for the future
773 tasks. Particularly, positive FWT is correlated to n-shot
774 learning. Since the proposed DCL method utilizes the direc-
775 tional information of the past updates, it has less influence/
776 correlation to FWT. Hence, we will focus on BWT. BWT is
777 the influence that learning a task has on the performance on
778 the previous tasks. Positive BWT is correlated to congru-
779 ency in the learning process, while large negative BWT is
780 referred as catastrophic forgetting. Tables 3 and 4 show that
781 the proposed DCL method is useful in improving BWT on
782 MNIST-R and MNIST-P. The BWT of GEM is negative
783 (-0.0047) and the proposed DCL method improves it to
784 0.0238 on MNIST-R. Similarly, the BWT of GEM is 0.0224
785 and the proposed DCL method improves it to 0.0464 on
786 MNIST-P. Similarly, in Table 5, the proposed DCL method
787 with ResNet improves BWT of GEM from 0.0001 to 0.0305,
788 while the proposed DCL method with EfficientNet [47]
789 improves BWT to 0.0602.

7905.2.3 Classification

791Table 6 reports the top 1 error rates on CIFAR-10 and
792CIFAR-100 with ResNeXt, DenseNet, and EfficientNet. In
793all cases, the proposed DCL method outperforms the base-
794line, i.e., ResNeXt-29 SGD, DenseNet-100-12 SGD, and Effi-
795cientNet-B1 SGD. Specifically, the proposed DCL method
796with ResNeXt decreases the error rate by 0.2 percent on
797CIFAR-10 and by 0.28 percent on CIFAR-100, while the pro-
798posed DCL method with EfficientNet decreases the error
799rate by 0.12 percent on CIFAR-10 and by 0.16 percent on
800CIFAR-100. Similar improvements can be found in the
801experiments with DenseNet and this shows that the pro-
802posed DCL method is generally able to work with various
803models. Moreover, it can be seen in Table 6 that GEM has
804a higher error rate than the baseline in the experiments
805with ResNeXt, DenseNet, and EfficientNet. Because of the
806dynamical update process in learning, the gradient of the
807samples in memory does not guarantee that the direction
808leads to the solution. The direction can be even worse, e.g.,
809it is possible to go in an opposite way to the solution.
810A consistent improvement w.r.t. the proposed DCL
811method can be found in the experiments on Tiny ImageNet
812(see Table 7). The proposed DCL method decreases top 1
813error rate by 0.45 percent with ResNet, by 0.69 percent with
814DenseNet, and by 0.12 percent with EfficientNet. Also, the
815performance degradation caused by GEM [33] can be
816observed that top 1 error rate generated by GEM with
817ResNeXt is increased by almost 4.44 percent, comparing to
818the baseline ResNet.
819Table 8 reports the mean and std of 1-crop valida-
820tion error of ResNet-50 on ImageNet. Comparing to Tiny
821ImageNet and CIFAR, ImageNet has more categories and
822more high resolution images. Given such difficulties, the

TABLE 5
Performances on iCIFAR-100 in Continual Learning

Setting Using SGD as the Optimizer

Accuracy BWT FWT

EWC 48.33 -0.1050 0.0216
iCARL 51.56 -0.0848 0.0000
ResNet GEM 66.67 0.0001 0.0108
ResNet DCL-4-1 MEM 67.92 0.0063 0.0102
ResNet DCL-8-1 MEM 67.27 0.0104 0.0190
ResNet DCL-12-1 MEM 66.58 0.0089 0.0139
ResNet DCL-20-1 MEM 66.56 0.0030 0.0102
ResNet DCL-24-1 MEM 64.97 0.0082 0.0238
ResNet DCL-32-1 MEM 66.10 0.0305 0.0176
ResNet DCL-50-1 MEM 64.86 0.0244 0.0125

EffNet GEM 80.80 0.0318 -0.0050
EffNet DCL-4-1 MEM 81.55 0.0383 -0.0048
EffNet DCL-8-1 MEM 80.84 0.0367 0.0068
EffNet DCL-12-1 MEM 79.45 0.0322 0.0011
EffNet DCL-20-1 MEM 79.33 0.0316 -0.0095
EffNet DCL-24-1 MEM 79.05 0.0375 -0.0006
EffNet DCL-32-1 MEM 79.97 0.0452 -0.0145
EffNet DCL-50-1 MEM 77.87 0.0602 -0.0101

EffNet stands for EfficientNet [47].

TABLE 6
Top 1 Error Rate (in%) on CIFARWith Various Models

CIFAR-10 CIFAR-100

ResNeXt-29 SGD 3.53 17.30
ResNeXt-29 SGD GEM 7.70 32.70
ResNeXt-29 SGD DCL-1-1 3.33 17.02

DenseNet-100-12 SGD 4.54 22.88
DenseNet-100-12 SGD GEM 6.92 33.72
DenseNet-100-12 SGD DCL-90-1 4.32 22.16

EfficientNet-B1 SGD [47] 1.91 11.81
EfficientNet-B1 SGD GEM 3.06 19.48
EfficientNet-B1 SGD DCL-5-1 1.79 11.65

TABLE 7
Top 1 and Top 5 Error Rate (in%) on the Validation

Set of Tiny ImageNet With Various Models

Top 1 error Top 5 error

ResNet-101 SGD 17.34 4.82
ResNet-101 SGD GEM 21.78 7.21
ResNet-101 SGD DCL-60-1 16.89 4.50

DenseNet-169-32 SGD 20.24 6.11
DenseNet-169-32 SGD GEM 26.81 9.43
DenseNet-169-32 SGD DCL-50-1 19.55 6.09

EfficientNet-B1 SGD 15.73 3.90
EfficientNet-B1 SGD GEM 28.74 11.31
EfficientNet-B1 SGD DCL-8-1 15.61 3.75

TABLE 8
Top 1 and Top 5 1-Crop Validation Error (in%)

on ImageNet With SGD Optimizer

Top 1 error Top 5 error

ResNet-50 [13] 24.70 7.80

ResNet-50 (reproduced) 24.33 � 0.08 7.30 � 0.07
ResNet-50 DCL 24.09 � 0.03 7.23 � 0.02

bw ¼ 5 and Nr ¼ 1 are used for ResNet-50 DCL. Within the same experimen-
tal settings, ResNet-50 GEM does not converge in this experiment. The mean
and std of errors are computed over three runs.

LUO ET AL.: DIRECTION CONCENTRATION LEARNING: ENHANCING CONGRUENCY IN MACHINE LEARNING 11
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824 0.24 percent over three runs. In summary, the improvement
825 gained by the proposed DCL method is benefited from the
826 better solution searched by optimizing DCL quadratic pro-
827 gramming problem (5).

828 6 ANALYSIS

829 In this section,wefirst validate the defined congruency by com-
830 paring through qualitative examples. Then, an ablation study
831 w.r.t. b and Nr is presented. Moreover, we provide a congru-
832 ency analysis in the training processes for the three tasks. In the
833 end, the comparison between training from scratch and fine-
834 tuning, aswell as the computational cost are provided.

835 6.1 Validity of Congruency Metric

836 In this subsection, we conduct a sanity check on the validity
837 of the defined congruency. To do this, we consider a simple
838 case where we directly take the gradients (i.e., gS1 and gS2 )
839 of two samples (i.e., S1 and S2) to compute the correspond-

840 ing congruency, i.e., n ¼ g>
S1

gS2
kgS1 kkgS2 k

. For comparison purposes,

841 the cosine similarity, Sim, between raw image S1 and S2 is

842 also computed by Sim ¼ S>
1
S2

kS1kkS2k. Note that congruency is

843 semantics-aware, whereas cosine similarity between the
844 two raw images is semantics-blind. This is because the gra-
845 dients are computed by images and its semantic ground
846 truth, e.g., the class label in the classification task or human
847 fixation in the saliency prediction task.
848 For the analysis in the saliency prediction task, we sam-
849 ple 3 subsets, where 20 training samples w.r.t. person, 20
850 training samples w.r.t. food, and 20 training samples w.r.t.
851 various scenes and categories were sampled from SALI-
852 CON. For the analysis in the classification task, 3 subsets
853 were sampled from Tiny ImageNet, which comprised of
854 100 images of tabby cat and Egyptian cat to form a intra-
855 similar-class subset, 100 images of tabby cat and German
856 shepherd dog to form a inter-class subset, and 50 images
857 from various classes to form a mixed subset. In this way,
858 we can analyze the correlation between the samples in
859 terms of congruency. With these subsets, we use the base-
860 lines, i.e., ResNet-50 for saliency prediction and ResNet-
861 101 for classification, to yield the samples gradients with-
862 out updating the model.
863 Fig. 7 demonstrates the congruencies w.r.t. the references
864 and various samples (image + fixation map). In contrast to

865the deterministic nature in the classification task, saliency is
866context-related and semantics-based. It implies that the
867same objects within two different scenarios may have differ-
868ent saliency labels. Hence, we select the examples of same/
869similar objects for this experiment. In Fig. 7, the first and
870second block on left are based on the person subset within
871various scenarios. The first block consists of the images of
872person and dining table. Taking the first row sample as ref-
873erence, the sample in the second row has higher congruency
874(0.4155) when compared to bottom row sample (0.3699).
875Although all the fixation maps of all the samples are dif-
876ferent, pizza in the second image is more similar to the
877reference image whereas food in the bottom sample is
878inconspicuous. In the second block, both the portrait of the
879fisher (reference) and the portrait of the baseball player (sec-
880ond sample) are similar in terms of the layout, comparing to
881the persons in dining room (third sample). Their fixation
882maps are similar as well.
883The congruency of the reference and second sample
884(0.6377) are higher than the one of the reference and third
885sample (0.2731). In the third block, the image of the refer-
886ence is three hot dogs and its fixation maps is similar to
887the fixation maps of the second sample. The two hog dog
888samples have similar visual appearance and layout of fixa-
889tions to yield a higher congruency (0.6696). In contrast, third
890sample is different from the reference in terms of visual
891appearance and layout of fixations, which yields a lower
892congruency (0.5075). The rightmost block shows an interest-
893ing fact that two outdoor samples yield a positive congru-
894ency 0.1667, whereas the outdoor reference and the indoor
895sample yield a negative congruency �0:1965. One possible
896reason is that the fixation pattern are different between the
897reference and the bottom indoor sample. In addition, the
898visual appearance like illumination may be the another fac-
899tor causing such the discrepancy.
900For classification, Fig. 8 shows the congruencies w.r.t. the
901references and given samples in each subset. In all cases, we
902first observe that images with same genuine class as referen-
903ces yield high congruency, i.e., larger than 0.94 for all cases.
904These show that the gradients of the same labels are similar
905in the direction of the updates. Another observation is that
906the congruency of pairs with different labels are signifi-
907cantly smaller than the matched label counterpart. In Fig. 8,
908the congruencies of the reference (Tabby cat) and Egyptian
909cat images are below 0.03, while the congruencies of the ref-
910erence and German shepherd dog images are below 0.016 in

Fig. 7. The congruencies (Cong.) generated by the given references (Ref.) and samples with the baseline ResNet-50 RMSP in Table 2. The cosine
similarities (Sim.) between referred images and sample images are provided for comparison purposes. Source images and the corresponding
ground-truths, i.e., fixation maps, are displayed along with the congruencies. The first and second block are the results of subset that contains per-
sons in various scenes. The third block is examples of food subset. The rightmost block shows subset with mixed image categories, i.e., contain
objects of various categories in various scenes.
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911 the middle block. These demonstrate that the gradients of
912 inter-class samples are nearly perpendicular to each other.
913 The reference of class ‘Dugong’ has positive congruencies
914 w.r.t. all the images that fall in the category of animal,
915 except for the image of chain, which falls into a non-animal
916 category. Last but not least, given the images with different
917 labels, similar visual appearance would lead to relatively
918 higher congruency. For example, the congruencies between
919 tabby cat and Egyptian cat are overall higher than the ones
920 between tabby cat and German shepherd dog. In summary,
921 the labels are an important factor to influence the direction
922 of the gradient in the classification task. Second, the visual
923 appearance is another factor for congruency.
924 In contrast with congruency, cosine similarity between two
925 raw images make less sense in the context of a specific task.
926 For example, two similar dining scenes in the first column in
927 Fig. 7 yield a negative cosine similarity�0:0066 in the saliency
928 prediction task. Similarly, the first two cat images in the first
929 row in Fig. 8,which are cast to the same category, yield a nega-
930 tive cosine similarity �0:0013. The negative cosine similarity
931 between two images with the same or similar ground truth
932 are counterintuitive. It results from the fact that cosine similar-
933 ity between two images only focuses on the difference
934 between two sets of pixels and ignores the semantics associ-
935 ated to the pixels.

936 6.2 Ablation Study

937 In this subsection,we study the effects of effectivewindow size
938 bw and reference number Nr on saliency prediction task (with
939 SALICON) and classification task (with Tiny ImageNet).
940 In the saliency prediction experiment, Fig. 9a shows the
941 curve of sAUC versus bw based on DCL-bw-1, while Fig. 9b
942 shows the curve of sAUC versus Nr based on DCL-1-Nr.

943Note that for the reference number study, the training
944process on SALICON consists of 12,500 iterations so bw �
94512500 is equivalent to bw ¼ 1, which means that it never
946resets the references in the whole learning process. It can be
947observed that different bw andNr yield relatively similar per-
948formance in sAUC. This alignswith the nature of saliency pre-
949diction, where it maps features to the salient label and the
950non-salient label. The featuresw.r.t. the salient label are highly
951related to each other so bw andNr would pervasively help the
952learning processmake use of congruency.
953In the classification experiment, Fig. 9c shows the curve
954of top 1 error versus bw based on DCL-bw-1. We can see that

Fig. 8. The congruencies (Cong.) generated by the given references (Ref.) and samples with the baseline ResNet-101 SGD in Table 7. The images
with its labels are displayed along with the congruencies. The cosine similarities (Sim.) between referred images and sample images are provided
for comparison purposes. The first block is the results of the intra-similar-class subset consisting of images of tabby cat and Egyptian cat. The middle
block is the results of the inter-class subset consisting of images of tabby cat and German shepherd dog. The value in bracket indicates number of
images. The bottom block is the results of images of various labels.

Fig. 9. Ablation study w.r.t. effective window size bw and references
number Nr. (a) and (b) are the experimental results on the SALICON
validation set, while (c) and (d) are with the Tiny ImageNet validation
set. bw ¼ 1 in (b) and bw ¼ 50 in (d).

LUO ET AL.: DIRECTION CONCENTRATION LEARNING: ENHANCING CONGRUENCY IN MACHINE LEARNING 13
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956 tively lower errors than the other bw values. On the other
957 hand, Fig. 9d shows that only using one reference is helpful
958 in the learning process for classification. Different from the
959 pattern shown in Figs. 9a and 9b, where the curves are rela-
960 tively flat, the pattern in Figs. 9c and 9d implies that the
961 gradients in the learning process for classification are dra-
962 matically changed in angle to satisfy the 200-way predic-
963 tion. Hence, the learning process for classification does not
964 prefer large bw andNr.
965 In summary, the nature of the task should be taken into
966 account to determine the values of bw and Nr. Both parame-
967 ters can lead to significantly different performances if the
968 task-specific semantics in the data are highly varying. Spe-
969 cifically, as Nr increases, the feasible region for searching a
970 local minimum possibly becomes narrow as shown in
971 Fig. 3. If the local minimum is not in the narrowed feasible
972 region, large Nr could lead to a slower convergence or even
973 a divergence.

974 6.3 Congruency Analysis

975 In this section, we focus on analyzing the patterns of con-
976 gruency on saliency prediction, continual learning, and
977 classification. For saliency prediction and classification, to
978 study how the gradients of GEM and the proposed DCL
979 method vary in the training process, we compute the con-
980 gruency of each epoch in the training process by Eq. (4).
981 Specifically, it turns to be nwes!weejw1

, where wes and wee is

982 the weights at the first and last iteration of each epoch,
983 respectively. Here, w0 is randomly initialized and w1 re-
984 presents the starting point of the training. For conveni-
985 ence, we simplify the notation of the average congruency
986 nwes!weejw1

for each epoch as nw1
. Correspondingly, we

987 define the average magnitude dw1
of the accumulated gra-

988 dients over the iterations in an epoch, i.e.,

dw1
¼ 1

subðweeÞ � subðwesÞ þ 1

XsubðweeÞ

i¼subðwesÞ
kwi � w1k2; (20)

990990

991 where dw1
indicates the measurement of magnitudes of

992 the accumulated gradients takes w1 as the reference.
993 Note that Eq. (20) does work not only with an absolute
994 reference (e.g., w1), but can work with a relative refer-
995 ence (e.g., wi�1) as well. Specifically, we can substitute
996 wi�1 for w1 in Eq. (20) to compute dwi�1 . Eq. (20) can
997 allow us to peek into the convergence process in the
998 high dimensional weight space, where it is difficult to

999visualize the convergence. By taking an absolute refer-
1000ence (e.g., w1) as the reference, it is able to provide an
1001overview about how the learning process converges to
1002the local minimum from the fixed reference, while a
1003relative reference (e.g., wi�1) is helpful to reveal the itera-
1004tive pattern.
1005For the experiments of continual learning, since GEM uses
1006the samples inmemory to regulate the optimization direction,
1007we follow this setting to check the effect of the proposed DCL
1008method on the cosine similarities between the corrected gradi-
1009ent and the gradients generated by the samples inmemory for
1010analysis. More concretely, the average cosine similarity is

1011defined as 1
kNitk

1
kMk

PNit
i¼1

P
s2M cos ðgs; gGEMiÞ, where Nit is

1012the number of iterations in an epoch and gGEMi is the gradient
1013of GEM at ith iteration.

10146.3.1 Saliency Prediction

1015We analyze the models from Table 2, i.e., ResNet-50 Adam
1016(baseline), ResNet-50 Adam GEM (GEM), and ResNet-50
1017Adam DCL-1-1 (DCL). As the training samples sequence is
1018affected by the stochastic process and it may be a factor
1019influencing the proposed DCL method, we present two set-
1020tings, i.e., within the independent stochastic process and
1021within the same stochastic process amid the training of the
1022three models, to gauge the influence of the stochastic pro-
1023cess on the proposed DCL method. Specifically, Figs. 10a
1024and 10b are the curves with the independent stochastic pro-
1025cess on OSIE and SALICON, respectively, whereas the
1026same permuted samples sequences are used in the trainings
1027of the three models in Figs. 10c and 10d. We can see that
1028they are similar in pattern and it implies that the permuta-
1029tion of the training samples has less influence on the pro-
1030posed DCL method. Moreover, the proposed DCL method
1031consistently gives rise to a more congruent learning process
1032than the baseline and GEM.

10336.3.2 Continual Learning

1034Figs. 11a, 11b, and 11c shows the congruency along the tasks
1035which are the episodes to learn the new classes. It can be
1036seen that the proposed DCL method significantly enhances
1037the cosine similarities between the gradients for updates
1038and the gradients generated by the samples in memory on
1039MNIST-R. There are improvements made by the proposed
1040DCL method on early tasks on MNIST-P. Moreover, an
1041overall consistent improvement of the proposed DCL
1042method can be observed on iCIFAR-100. Overall, the

Fig. 10. Congruencies along the epochs in saliency prediction learning, as defined in Eq. (4). The samples sequences for training models are deter-
mined by independent stochastic processes in Fig. 10a and 10b, while the permuted samples sequences are pre-determined and fixed for all models
in Fig. 10c and 10d. The baseline, GEM, and DCL are ResNeXt-29 SGD, ResNeXt-29 SGD GEM, and ResNeXt-29 SGD DCL-1-1 (see Table 6),
respectively.
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1043 corrected updates for the model are computed by proposed
1044 DCL method to be more congruent with its previous
1045 updates. This consistently results in the improvement of
1046 BWT in Tables 3, 4, and 5.

1047 6.3.3 Classification

1048 We analyze the models from Table 6, i.e., ResNeXt-29 SGD
1049 (baseline), ResNeXt-29 SGD GEM (GEM), and ResNeXt-29
1050 SGD DCL-1-1 (DCL), in term of the resulting congruency
1051 of each epoch in the learning process on CIFAR. Similarly,
1052 ResNet-101 SGD, ResNet-101 SGD GEM, and ResNet-101
1053 SGD DCL-50-1 in Table 7 are used for analysis on Tiny
1054 ImageNet. The curves of the average congruencies are
1055 shown in Figs. 12a, 12d, and 12g, while Figs. 12b, 12e, and
1056 12h show the average magnitudes.

1057As shown in Figs. 12a, 12d, and 12g, the congruency of
1058the proposed DCL method is significantly higher than the
1059baseline and GEM along all epochs on CIFAR-10 and
1060CIFAR-100. Higher congruency indicates the convergence
1061path would be flatter and smoother. For example, if all the
1062congruencies of each epoch are 0, the convergence path
1063would be a straight line.
1064On the other hand, the average magnitudes of the
1065proposed DCL method are relatively flat and smooth in
1066Figs. 12b, 12e, and 12h, comparing to the baseline and
1067GEM. Connecting the magnitudes with the congruencies
1068in Figs. 12a, 12d, and 12g, we can infer two points. First,
1069the proposed DCL method finds a nearer local minimum
1070to its initialized weights on CIFAR-10 and CIFAR-100.
1071Because the magnitudes of the proposed DCL method is
1072the smallest among the three methods. Second, the con-
1073vergence path of the proposed DCL method is the least
1074oscillatory because its congruencies are overall higher
1075than the other two methods and its magnitudes are the
1076lowest among the three methods.
1077We take a further look at the training error versus itera-
1078tion curves to better understand the convergences in Fig. 13.
1079To give an overview along all epochs, we compute the
1080mean and standard deviation of the training errors at each
1081epoch and plot them at a logarithm scale in Figs. 13a and
108213b, respectively. The results show that the proposed DCL
1083method yields lower training errors from epoch 1 to epoch
108416. From epoch 15 onwards, the proposed DCL method is
1085little different from the baseline in terms of the mean
1086because they are both around 0.1. Therefore, we plot the

Fig. 11. The average congruencies over epochs in training on the three
datasets for continual learning.

Fig. 12. Analyses of the congruencies and magnitudes along the epochs
in classification task, as defined in Eq. (4) and (20).

Fig. 13. Training error vs. iteration on Tiny ImageNet with ResNet-101.
(a) and (b) plot the mean and standard deviation of training errors at
each epoch, respectively. Specifically, we show four representative
curves of training error vs. iteration at epoch 1, 5, 10, and 15 in (c) – (f),
respectively.
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1087 representative curve at epoch 1, 5, 10, and 15 in Figs. 13c,
1088 13d, 13e, and 13f.

1089 6.4 Empirical Convergence

1090 Fig. 14 shows the validation losses w.r.t. the three tasks, i.e.,
1091 saliency prediction (a), continual learning (b), and classifica-
1092 tion (c). In general, the proposed DCL method achieves
1093 lower loss than the baseline and GEM, which is aligned
1094 with the fact that the proposed DCL method outperforms
1095 the baseline and GEM. Note that classification losses of
1096 GEM are above 1.0 so they are not shown in Fig. 14c.

1097 6.5 Training From Scratch Versus Fine-Tuning

1098 We analyze the proposed approach with two types of
1099 training scheme on the validation set of Tiny ImageNet.
1100 The first training scheme train the models from scratch
1101 using the training set of the target dataset, whereas the
1102 second training scheme fine-tunes the pre-trained Image-
1103 Net models on Tiny ImageNet. For ease of comparison,
1104 the experimental results of training the models from
1105 scratch on Tiny ImageNet as the fine-tuning results are
1106 shown in Table 9. Similar to the results of fine-tuning,
1107 the proposed DCL method achieves lower top 1 error
1108 (i.e., 67.56 percent) and top 5 error (i.e., 40.74 percent)
1109 than the baseline and GEM.

11106.6 Computational Cost

1111We report computational cost on Tiny ImageNet, SALICON
1112and ImageNet in Tables 10 and 11, respectively. Specifically,
1113the number of parameters of the models and the corre-
1114sponding processing time per image are presented. The
1115processing time per image is computed by ðbatch time
1116�data timeÞ=batch size, where batch time is the time to com-
1117plete the process of a batch of images, and data time is the
1118time to load a batch of images. Note that the processes of
1119gradient descent with or without the proposed DCL method
1120are the same in the testing phase. We train the models on 3
1121NVIDIA 1080 Ti graphics cards for the experiments on Tiny
1122ImageNet and SALICON, and on 8 NVIDIA V100 graphics
1123cards for the experiment on ImageNet.
1124ResNet-101 DCL on Tiny ImageNet is with bw ¼ 60 and
1125Nr ¼ 1. ResNet-50 DCL is with bw ¼ 1 andNr ¼ 1 on SALI-
1126CON, and bw ¼ 1 and Nr ¼ 1 on ImageNet. ResNet-50 GEM
1127is withNr ¼ 1 on all the datasets. The difference of the num-
1128bers of parameters between the baseline and the proposed
1129DCL method (or GEM) lies in the final layer, i.e., 1� 1 con-
1130volutional layer for saliency prediction and the fully con-
1131nected layer for classification. The proposed DCL method
1132has more parameters to store the weights of the final layer
1133for the references.
1134In the experiment on Tiny ImageNet, the proposed DCL
1135method with ResNet-101 takes 2 more milliseconds than the
1136baseline to solve the constrained quadratic problem (5).
1137Similarly, with ResNet-50, it takes 1 and 2 more millisec-
1138onds than the baseline on SALICON and ImageNet, respec-
1139tively. This shows that quadratic problems with high
1140dimensional input can be efficiently solved by the tool
1141quadprog. Hence, the proposed DCL method is practically
1142accessible. On the other hand, GEM [33] is less efficient than
1143the other two methods across the three datasets. This is
1144because GEM has to compute the gradients according to the
1145memory, i.e., the input features of the final layer, at each
1146iteration. Instead, the proposed DCL method uses a subtrac-
1147tion operation (i.e., Eq. (6)) to compute the accumulated gra-
1148dient. Thus, it is faster than GEM.

TABLE 9
Top 1 and Top 5 Error Rate (in %) on the

Validation Set of Tiny ImageNet

Top 1 error Top 5 error

TFS FT TFS FT

ResNet-101 SGD 68.21 17.34 42.72 4.82
ResNet-101 SGD GEM 77.20 21.78 53.18 7.21
ResNet-101 SGD DCL 67.56 16.89 40.74 4.50

We compare of (1) training the models from scratch (TFS) on Tiny ImageNet,
and (2) fine-tuning (FT) the pre-trained ImageNet models on Tiny ImageNet.
ResNet-101 SGD DCL is with bw ¼ 60 and Nr ¼ 1. The validation errors of
FT are from Table 7.

TABLE 11
Computational Cost of Training Models on

SALICON and ImageNet

SALICON ImageNet

# params proc time # params proc time

ResNet-50 23.51M 64 ms 23.50M 6 ms
ResNet-50 GEM 23.51M 102 ms 25.55M 10 ms
ResNet-50 DCL 23.51M 65 ms 25.55M 8 ms

TABLE 10
Computational Cost of Training Models on Tiny ImageNet

# params proc time

ResNet-101 42.50M 47 ms
ResNet-101 GEM 42.91M 78 ms
ResNet-101 DCL 42.91M 49 ms

The processing time (proc time) per image is calculated by ðbatch time
�data timeÞ=batch size.

Fig. 14. Validation loss vs. epoch/task. In (c), the dashed blue curve indi-
cates that the classification losses of GEM on Tiny ImageNet are all
above 1.0 so they are not shown in the figure for clarity.
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1150 computational cost here. The computational cost w.r.t. bw and
1151 Nr with ResNet on Tiny ImageNet is reported in Table 12. As
1152 bw indicates the effective window, it is implemented by a sub-
1153 traction operation according to Eq. (6) and updating the refer-
1154 ence point is a copying operation in RAM which is fast.
1155 Therefore, bw would not affect computational cost. On the
1156 other hand, the time difference between various Nr is small
1157 because we only apply the proposed DCL method to the
1158 downstream layer, i.e., the final layer, where the parameters
1159 are much fewer than the ones used by the whole network. For
1160 example, there are only 2,304 parameters in the final convolu-
1161 tional layer for saliency prediction. Any quadratic program-
1162 ming solver like quadprop can efficiently handle the
1163 corresponding dual problem (8) in a small scale.

1164 6.7 Discussion of Generalization

1165 Incongruency is ubiquitous in the learning process. It
1166 results from the diversity of the input data, e.g., real-world
1167 images, and rich task-specific semantics. The proposed DCL
1168 method can effectively alleviate the incongruency problem
1169 in saliency prediction, continual learning, and classification.
1170 Specifically, saliency prediction can be seen as a typical
1171 regression problem while continual learning and classifica-
1172 tion can be seen as a typical learning problem that aims to
1173 predict a discrete label. In this sense, the input-output map-
1174 ping and the learning settings of the three tasks are funda-
1175 mental to other vision tasks.
1176 From the point of view of task-dependent incongruency,
1177 here we consider general vision tasks to be cast into three
1178 groups according to the form of input and output. The first
1179 group consists of visual tasks that take images as input for clas-
1180 sification or regression, e.g., object detection [41] and visual
1181 sentiment analysis [61]. In object detection, visual appearance
1182 of a region of interest could be diverse in terms of its label and
1183 location, while an arbitrary sentiment class can have a number
1184 of visual representations in visual sentiment analysis. Since
1185 tasks in this group has similar incongruency as that in image
1186 classification, i.e., the diversity of raw image features w.r.t. a
1187 certain label, the proposed DCL method is expected to boost
1188 this type of vision tasks. The second group consists of visual
1189 tasks that have complex outputs of regression or classification,
1190 e.g., visual relationship detection [30], [34] and human object
1191 interaction [31], [57] whose output can involve multiple possi-
1192 ble relationships among two ormore objects that belong to var-
1193 ious visual concepts. The incongruency of tasks in this group
1194 lies in the diversity of raw image features w.r.t. a higher
1195 dimensional variable, e.g., a relationship which involves

1196multiple objects and corresponding predicates. Last but not
1197least, the third group consists of visual tasks that take a series
1198of images, e.g., action recognition [54]. Usually, it takes a clip
1199of videos as input and incorporates temporal information. The
1200incongruency of tasks in this group lies in the diversity of tem-
1201poral raw image features w.r.t. a certain label, and the feature
1202space with clips is often more complicated than that in static
1203images. Therefore, the incongruency of tasks in the second and
1204third groups could be more remarkable than that of tasks in
1205the first group. Note that the proposed DCL method is gradi-
1206ent-based and not restricted to specific forms of input or out-
1207put. Therefore, it could naturally generalize or be used as a
1208starting point to alleviate incongruency for tasks with different
1209forms of input and output in the three groups.

12107 CONCLUSION

1211In this work, we define congruency as the agreement
1212between new information and the learned knowledge in a
1213learning process. We propose a Direction Concentration
1214Learning (DCL) method to take into account the congruency
1215in a learning process to search for a local minimum. We
1216study the congruency in the three tasks, i.e., saliency predic-
1217tion, continual learning, and classification. The proposed
1218DCL method generally improves the performances of the
1219three tasks. More importantly, our analysis shows that the
1220proposed DCL method improves catastrophic forgetting.
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