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Abstract—One of the well-known challenges in computer vision tasks is the visual diversity of images, which could result in an
agreement or disagreement between the learned knowledge and the visual content exhibited by the current observation. In this work,
we first define such an agreement in a concepts learning process as congruency. Formally, given a particular task and sufficiently large
dataset, the congruency issue occurs in the learning process whereby the task-specific semantics in the training data are highly
varying. We propose a Direction Concentration Learning (DCL) method to improve congruency in the learning process, where
enhancing congruency influences the convergence path to be less circuitous. The experimental results show that the proposed DCL
method generalizes to state-of-the-art models and optimizers, as well as improves the performances of saliency prediction task,
continual learning task, and classification task. Moreover, it helps mitigate the catastrophic forgetting problem in the continual learning
task. The code is publicly available at https://github.com/luoyan407/congruency.

Index Terms—Optimization, machine learning, computer vision, accumulated gradient, congruency
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INTRODUCTION

1

EEP learning has been receiving considerable attention
Ddue to its success in various computer vision tasks [4],
[13], [16], [27] and challenges [6], [32]. To prevent model
overfitting and enhance the generalization ability, a training
process often sequentially updates the model with gradients
w.r.t. a mini-batch of training samples, as opposed to using
a larger batch [12]. Due to the complexity and diversity in
the nature of image data and task-specific semantics, the
discrepancy between current and previous observed mini-
batches could result in a circuitous convergence path, which
possibly hinders the convergence to a local minimum.

To better understand the circuitousness/straightfor-
wardness in a learning process, we introduce congruency to
quantify the agreement between new information used for
an update and the knowledge learned from previous itera-
tions. The word “congruency” is borrowed from a psychol-
ogy study [51] that inspects the influence of an object which
is inconsistent with the scene in the visual attention percep-
tion task. In this work, we define congruency v as the cosine
similarity between the gradient g to be used for update and
a referential gradient § that indicates a general descent
direction resulting from previous updates, i.e.,
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(The detailed formulation is presented in Section 3). Fig. 1
presents an illustration of congruency in the saliency predic-
tion task. Due to similar scene (i.e., dining) and similar fixa-
tions on faces and foods, the update of sample S, (i.e., Awsg,)
is congruent with Awg,. In contrast, the scene and fixations
in sample S are different from sample S; and S». This leads
to alarge angle (> 90°) between Awg, and Awg, (or Aws,).

Congruency reflects the diversity of task-specific seman-
tics in training samples (i.e., images and the corresponding
ground-truths). In the visual attention task, attention is
explained by various hypotheses [2], [3], [50] and can be
affected by many factors, such as bottom-up feature, top-
down feature guidance, scene structure, and meaning [55].
As a result, objects in the same category may exhibit dis-
agreements with each other in various images in terms of
attracting attention. Therefore, there is a high variability in
the mapping between visual appearance and the corre-
sponding fixations. Another task that has a considerable
amount of diversity is continual learning, which is able to
learn continually from a stream of data that is related to
new concepts (i.e., unseen labels) [33]. The diversity of the
data among multiple classification subtasks may be so
much discrepant such that learning from new data violates
previously established knowledge (i.e., catastrophic for-
getting) in the learning process. Moreover, congruency can
also be found in the classification task. Compared to
saliency prediction and continual learning, the source of
diversity in classification task is relatively simple, namely,
diverse visual appearances w.r.t. various labels in the real-
world images. In summary, saliency prediction, continual
learning, and classification are challenging scenarios sus-
ceptible to the effects of congruency.

In machine learning, congruency can be considered as a
factor that influences the convergence of optimization
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Fig. 1. An illustration of congruency in the saliency prediction task.
Assuming training samples are provided in a sequential manner, an
incongruency occurs since the food item is related to different saliency
values across these samples. Here, S; stands for sample j = {1,2,3},
w; is the weight at time step 4, Awg; is the weight update generated with
S; for w;, and the arrows indicate updates for the model. Specifically,
Awg; = —ngs; where 7 is the learning rate and gg; is the gradient w.r.t.
S;. The update of S, (i.e., Awg,) is congruent with Awg, , whereas Awg,
is incongruent with Awg, and Awg, .

methods, such as stochastic gradient descent (SGD) [42],
RMSProp [14], or Adam [23]. Without specific rectification,
the diversity among training samples is implicitly and pas-
sively involved in a learning process and affects the descent
direction in convergence. To understand the effects of congru-
ency on convergence, we explicitly formulate a direction con-
centration learning (DCL) method by sensing and restricting
the angle of deviation between an update gradient and a refer-
ential gradient that indicates the descent direction according
to the previous updates. Inspired by Nesterov’s accelerated
gradient [37], we consider the accumulated gradient as the ref-
erential gradient in the proposed DCL method.

We comprehensively evaluate the proposed DCL method
with various models and optimizers in saliency prediction,
continual learning, and classification tasks. The experimental
results show that the constraints restricting the angle devia-
tion between the gradient for an update and the accumulated
referential gradient can help the learning process to converge
efficiently, comparing to the approaches without such con-
straints. Furthermore, we present the congruency patterns to
show how the task-specific semantics affect congruency in a
learning process. Last but not least, our analysis shows that
enhancing congruency in continual learning can improve
backward transfer.

The main contributions in this work are as follows:

e We define congruency to quantify the agreement
between new information and the learned knowl-
edge in a learning process, which is useful to under-
stand the model convergence in terms of tractability.

e  We propose a direction concentration learning (DCL)
method to enhance congruency so that the disagree-
ment between new information and the learned
knowledge can be alleviated. It also generally adapts
to various optimizers (e.g.,, SGD, RMSProp and
Adam) and various tasks (e.g., saliency prediction,
continual learning and classification).

e The experimental results from continual learning task
demonstrate that enhancing congruency can improve

backward transfer. Note that large negative backward
transfer is known as catastrophic forgetting [33].

e A general method analyzing congruency is pre-
sented and it can be used within both conventional
models and models with the proposed DCL method.
Comprehensive analyses w.r.t saliency prediction
and classification show that our DCL method gener-
ally enhances the congruencies of the corresponding
learning processes.

The rest of the paper is organized as follows. We begin
by highlighting related works in Section 2. Then, we formu-
late the problem of congruency and discuss its factors
in Section 3. The proposed DCL method is introduced in
Section 4. Moreover, the experiments and analyses are pro-
vided in Sections 5 and 6, respectively. Section 7 concludes
the paper.

2 RELATED WORKS

2.1 State-of-the-Art Models for Classification
Convolutional networks (ConvNets) [13], [16], [27], [56]
have exhibited their powers in the classification task. Alex-
Net [27] is a typical ConvNet and consists of a series of con-
volutional, pooling, activation, and fully-connected layers,
it achieves the best performance on ILSVRC 2012 [6]. Since
then, there are more and more attempts to delve into the
architecture of ConvNets. He et al. proposed residual blocks
to solve the vanishing gradient problem and the resulting
model, i.e., ResNet [13], achieves best performance on
ILSVRC 2015. Along with a similar line of ResNet, ResNeXt
[56] is proposed to extend residual blocks to multi-branch
architecture and DenseNet [16] is devised to establish the
connections between each layer and later layers in a feed-
forward fashion. Both models achieve desirable perfor-
mance. Recently, Tan and Le [47] study how network depth,
width, and resolution influence the classification perfor-
mance and propose EfficientNet that achieves state-of-the-
art performance on ImageNet. In this work, we use ResNet,
ResNeXt, DenseNet, and EfficientNet in the image classifi-
cation experiments.

Yang et al. [60] introduce a regularized feature selection
framework for multi-task classification. Specifically, the
trace norm of a low rank matrix is used in the objective
function to share common knowledge across multiple clas-
sification tasks. Congruency generally works with gradient
based optimization methods, whereas trace norm works
with a specific optimization method. Moreover, congru-
ency measures the agreement (or disagreement) between
new information learned from a sample and the estab-
lished knowledge, whereas trace norm is based on the
weights of multiple classifiers and only measures the corre-
lation between established knowledge w.r.t. different clas-
sification tasks.

2.2 Computational Modelling of Visual Attention

Saliency prediction is an attentional mechanism that focuses
limited perceptual and cognitive resources on the most perti-
nent subset of the available sensory data. Itti ef al. [19] imple-
ment the first computational model to predict saliency maps
by integrating bottom-up features. Recently, Huang et al. [17]
propose a data-driven DNN model, named SALICON, to
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model visual attention. Cornia ef al. [5] propose a convo-
lutional LSTM to iteratively refine the predictions and
Kummerer et al. [28] design a readout network that is fed
with the output features of VGG [46] to improve saliency pre-
diction. Yang et al. [59] introduce an end-to-end Dilated Incep-
tion Network (DINet) to capture multi-scale contextual
features for saliency prediction and achieves state-of-the-art
performance. In this work, we adopt the SALICON model
and DINet in the saliency prediction experiments.

There are several insightful works [11], [51], [52] exp-
loring the effects of congruency/incongruency in visual
attention. In particular, according to the perception experi-
ments, Gordon finds that the object which is inconsistent
with the scene, e.g., a live chicken standing on a kitchen
table, has significant influence on attentive allocation [11].
Underwood and Foulsham [51] find an unexpected interac-
tion between saliency and negative congruency in the
search task, that is, the congruency of the conspicuous
object does not influence the delay in its fixation, but it is
fixated earlier when the other object in the scene is incon-
gruent. Furthermore, Underwood et al. [52] investigate
whether the effects of semantic inconsistency appear in free
viewing. In their studies, inconsistent objects were fixated
for significantly longer duration than consistent objects.
These works inspire us to explore the congruency between
the current and previous updates. In saliency prediction,
negative congruency may result from the disagreement
among the training samples in terms of visual appearance
and ground-truth.

2.3 Catastrophic Forgetting

Catastrophic forgetting problem has been extensively stud-
ied in [9], [10], [35], [39]. McCloskey and Cohen [35] study
the problem that new learning may interfere catastrophi-
cally with old learning when models are trained sequen-
tially. New learning may alter weights that are involved in
representing old learning, and this may lead to catastrophic
interference. Along the same line, Ratcliff [39] further inves-
tigates the causes of catastrophic forgetting, and two prob-
lems are observed: 1) sequential learning is prone to rapidly
forget well-learned information as new information is
learned; 2) discrimination between observed samples and
unobserved samples either decreases or is non-monotonic
as a function of learning. To address the catastrophic for-
getting problem, there are several works [24], [33], [40] pro-
posed to solve the problem by using episodic memory.
Kirkpatrick et al. [24] propose an algorithm named elastic
weight consolidation (EWC), which can adjust learning to
minimize changes in parameters important for previously
seen task. Moreover, Lopez and Ranzato [33] introduce the
gradient episodic memory (GEM) method to alleviate cata-
strophic forgetting problem. However, there could exist
incongruency in the training process of GEM.

3 CONGRUENCY IN MACHINE LEARNING

3.1 Problem Statement

We first review the general goal in machine learning. With-
out loss of generality, given a training set D = {(I;,y;)}\,,
where a pair (I;, y;) represents a training sample composed of

an image I; € R™ (NN} is the dimension of images) and the

corresponding ground-truth y; € ), the goal is to learn a
model f:R™ _ Y. Specifically, a Deep Neural Network
(DNN) model has a trunk net to generate discriminative fea-
tures x; € X and a classifier f,: X ﬂy to fulfill the task,
where w is the weights of classifier. Note that we consider
that DNN is a classifier as whole and the input is raw RGB
images.

To accomplish the learning process, the conventional
approach is to first specify and initialize a model. Next, the
empirical risk minimization (ERM) principle [53] is emplo-
yed to find a desirable w w.r.t. f by minimizing a loss func-
tion ¢:) x ) — [0,00) penalizing prediction errors, i.e.,
minimize,, ﬁz(%yi)e p U(fuw(i),vi). At time step k, the gra-
dient computed by the loss is used to update the model, i.e.,
Wi+1 = wy, + Awy, where Awy, is an update as well as a func-
tion of gradient g(wy; xr, Yr) = Vg l(fu, (2k), y&). Optimizers,
such as SGD [42], RMSProp [14], or Adam [23], determine
Awy(g(wy; xx, yr)). Without loss of generality, we assume
the optimizer is SGD in the following for convenience.

There exist two challenges w.r.t. congruency for practical
use. First, due to the dynamic nature of the learning process,
how to find a stable referential direction which can quantify
the agreement between current and previous updates. Sec-
ond, how to guarantee the referential direction is beneficial
to search for a local minimum.

As the gradient at a training step implies the direction
towards a local minimum by the currently observed mini-
batch, the accumulation of all previous gradients provides
an overall direction towards a local minimum. Hence, it
provides a good referential direction to measure the agree-
ment between a specific update and its previous updates.
We denote the accumulated gradient as

k
gk|urm - Zgu

i=m

(2)

where w,, is the weights learned at time step m and gy,
indicates that the accumulation starts from wy, at time step
k. If there is no explicit w,, indicated, g = Gkjw, - Fig. 2 shows
an example of accumulated gradient, where the gradient of
S3 deviates from the accumulated gradient of S; and 5.
This also elicits our solution to measure congruency in a
training process.

3.2 Definition

Congruency v is a metric to measure the agreement of
updates in a training process. In general, it is directly related
to an angle between the gradient for an update and the
accumulated gradient, i.e., o(Gi—1ju,,,9r) € [0,7]. Smaller
angle indicates higher congruency. Practically, we use
cosine similarity to approximate the angle for computa-
tional simplicity. Mathematically, at time step k, v; can be
defined as follows:

~T
gk_ 1{wm 9k

-, M <
Hgk—l\wm I[1lgxl '

E, (3)

Vi|w,, = COS a(gky Grk—1}wy, )

where w,, is the weight learned at time step m and taken as
a reference point in weight space. «(gi, gr) is the angle
between g; and g;. Based on vj_y,,,, the congruency of a
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Fixation

Image

(. J

A g

Weight space

Visualize
~ A

g
‘ DCL module }~ ----- >

Fig. 2. Anillustration of model training with the proposed DCL module. Here, 3 samples are observed in a sequential manner. The gradient generated
by S is expected to be different with the gradients generated by S| and S,. Hence, to tackle the expected violation between the update —nggs, and the
accumulated update '722 1 9s;, the proposed DCL method finds a corrected update —n9s; (the pink arrow) by solving a quadratic programming
problem (5). In this way, the angle between —ngs, and —n Z/ 1 9s; (the blue arrow), i.e., @, is guaranteed to be equal to or less than «. Note that the
gradient descent processes with or without the proposed DCL module is identical in the test phase.

training process that starts from w; to learn out w, can be
defined as

1

v,

Wj—Wn |Wm,

Z‘)tlww m<j<n.

Since the concept of congruency is built upon cosine similar-
ity, Vpjw,, will range from [—1,1]. Another advantage of
using cosine similarity is the tractability. The gradient com-
puted from the loss is considered as a vector in weight
space. Hence, cosine similarity can take any pair of gra-
dients, such as the accumulated gradient and the gradient
computed by a training sample, or two gradients computed
by two respective training samples.

3.3 Task-Specific Factors

Congruency is semantics-aware. As congruency is based on
the gradients which are computed with the images and the
semantic ground-truth, such as class label in the classification
task or human fixation in the saliency prediction task. There-
fore, congruency reflects the task-specific semantics. We dis-
cuss congruency task-by-task in the following subsection.

Saliency Prediction. Visual attention is attracted to visually
salient stimuli and is affected by many factors, such as scale,
spatial bias, context and scene composition, oculomotor
constraints, and so on. These factors result in high variabil-
ities over fixations across various persons. The variabilities
of visual semantics imply that same class objects in two
images may have different salience levels, i.e., one object is
predicted as salient object while the other same class object
is not. In this sense, negative congruency in learning for
saliency prediction may result from both feature-level and
label-label disagreement across the images.

Continual Learning. In the continual learning setting [24],
[33], [40], a classification model is learned with past
observed classes and samples. New samples w.r.t. the unob-
served classes may be distinct from previously seen samples
in terms of both visual appearance and label. This leads to
negative congruency in learning.

Classification. For classification, the class labels are usu-
ally deterministic to human. The factors that cause negative
congruency in learning lie in visual appearances. Due to the
variability of real-world images, visual appearance of

samples from the same class may be very different from
each other in different images.

4 METHODOLOGY

In this section, we first overview the proposed DCL method.
Then, we introduce its formulation and properties in detail.
Finally, we discuss the lower bound of congruency with
gradient descent methods. For simplicity, we assume it is at
time step k and omit underscored k in the following formu-
lations unless we explicitly indicate it.

4.1 Overview

Fig. 2 demonstrates the basic idea of the proposed DCL
method. Given training sample (I,y), where I is an image
and y is the ground-truth, the corresponding feature x are
first generated by the sample before it is passed to the classi-
fier for computing the predictions § = f,,(z). Convention-
ally, the derivatives g of the loss ¢(¢,y) are computed to
determine the update Aw by an optimizer to back-propagate
the error layer by layer. In the proposed DCL method, g is
taken to estimate a corrected gradient § that is congruent
with previous updates. For example, as shown in Fig. 2, the
gradient of S is expected to have a large deviation angle o
to the accumulated anti-gradient — Y7 | g,; because S; and
Sy share similar visual appearance, but S; is different from
them. The proposed DCL method aims to estimate  cor-
rected § which has a smaller deviation angle & to — Z 1 95;-

4.2 Direction Concentration Learning

The core idea of the proposed DCL method is to concentrate
the current update to a certain search direction. The accu-
mulated gradient § is the direction voted by previous
updates which provides information towards the possible
local minimum. Ideally, according to the definition of con-
gruency, i.e., Eqs. (3) and (4), cosine similarity should be
considered in optimization. However, minimizing cosine
similarity with constraints is complicated. Therefore, similar
to GEM [33], we adopt an alternative that optimizes the
inner product, instead of the cosine similarity. According to
Eq. 3), < g1,92 >> 0 indicates that the angle between the
two vectors is less than or equal to 90°.
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Feasible
region

Fig. 3. An illustration of DCL constraints with two reference points
ro = wy, T = Wi. Gy, IS the pink arrow while g,, is the green one. The col-
ored dashed line indicates the border of feasible region with regards to
—gr;»1 € {0,1}, since Constraint (6) forces —ng;. to have an angle which
is smaller than or equal to 90° w.r.t. g,, and g, .

As shown in Fig. 2, the proposed DCL method uses the
accumulated gradient as a referential direction to compute
a corrected gradient g, i.e.,

inimize = |5 — g2
minimize — — P
g g9k ®)

s.t. <_g7‘i7 _g> Z 07 1 S 1 S N7‘7

where r; is a reference point in weight space, g, is the accu-
mulated gradient that starts the accumulation from 7;, and
N, is the number of reference points. The accumulated gra-
dient g,, indicates that the accumulation starts from the ref-
erence 7; to the current weights w. The proposed DCL
method can take NN, points as the references {r;|1 <i < N, }.
Assume that the weights at time step ¢ is taken as the refer-
ence r;, i.e., ; = w;, we denote sub(-) as a function to find
the index of a point in weight space. For example, with
t = sub(r;) = sub(w;), we can compute the accumulated gra-
dient g, =>4, 95~ On the other hand, the function
g - gll5 is widely used in gradient-based methods [15],
[25], [33], [44], [48] and forces § to be close to g in euclidean
space as much as possible. The constraints (—g,,, —g) >0
are to guarantee that the gradient that is used for an update
should not substantially deviate from the accumulated
gradient.

In practice, instead of directly computing g,, by its defini-
tion (2)), we compute it by subtracting the current point w
with the reference point 7y, ie., §, =w—r;=—1 Zj:i, gj.
Hence, the constraints can be deformed in a matrix form

(w— 7’1)T
~ (w—r2)" |
A(=g)=—-1x . g>0. (6)
(w—ra)T

Fig. 3 demonstrates the effect of constraints in optimization.
The dashed line in the same color indicates the border of
feasible region with regards to —g,,,7 € {1,2} as Constraint
(6) forces g to have an angle smaller than 90°. Due to two
references in this example, the intersection between two

feasible regions, i.e., the shaded region, is the intersected
feasible region for optimization. Note that an accumulated
gradient determines half-plane (hyperplane) as feasible
region, instead of the full plane (hyperplane) in conven-
tional gradient descent case.

The optimization (5) becomes a classic quadratic program-
ming problem and we can easily solve it by off-the-shelf solv-
ers like quadprog' or CVXOPT.? However, since the size of §
can be sufficiently large, straightforward solution may be
computationally expensive in terms of both time and storage.
As introduced by Dorn [7], we apply a primal-dual method
for quadratic programs to solve it efficiently.

Given a general quadratic problem, it can be formulated
as follows:

)

1
minimize §ZTCZ +q'z st. Bz>b,
whereas the corresponding dual problem to Problem (7) is

1
minimize =u'Cu+b'v
w,v 2 (8)
st. Blo—Cu= q, v>0.

Dorn provides the proof of the connection between Prob-
lems (7) and (8).

Theorem 4.1 (Duality). if z = 2" is a solution to Problem (7)
then a solution (u,v) = (u*,v*) exists to Problem (8). Con-
versely, if a solution (u,v) = (u*,v*) to Problem (8) exists then
a solution which satisfies Cz = Cu* to Problem (7) also exists.

Due to the equality constraint B'v — Cu = ¢, assume C is
full rank, we can plug u = C~!(B"v — ¢) back to the objec-
tive function to further simplify Problem (8), i.e.,

1
minimize ivTB(Cfl)TBTv +(b—p"'BMv ©
st. v>0.

Now it turns out to be a quadratic problem w.r.t. v only.
The DCL quadratic problem can be solved by the afore-
mentioned primal-dual method. Specifically, ||§ — gl = (§—
9) (G—9)=3"G—-29"G+9"g. By omitting the constant
term g'g, it turns to a quadratic problem form g'g—2¢"g.
Since we know the primal problem (7) can be converted to
its dual problem (8), the related coefficient matrices/vectors
are easily determined by
C=1, B=-A,

b:()a pP=-g

where I is a unit matrix. With these coefficients at hand, we
have the corresponding dual problem

1
minimize EUTAAT’U - gTATv s.t. v>0. (10)
By solving (10), we have v*. On the other hand, Cg =
Cu*,C = I and we can have the solution §* by

g =Cu" = Blv— q= —ATv+ g. (11)

1. https:/ / github.com/rmcgibbo/quadprog
2. https:/ /cvxopt.org/
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Note that §,u € R?, v € RV, A € RV*?, and b € R" where p
is the size of w. If taking the fully-connected layer of ResNet
as w, p = 2048. In contrast with p, N, is usually smaller, i.e.,
1,2, or 3. As N, becomes larger, it increases the possibility
that the constraints are inconsistent. Thus, N, < p. This
implies that solving Problem (10) in R is more efficient
than solving Problem (5) in R”.

4.3 Theoretical Lower Bound

Here, we discuss about the congruency lower bound with
gradient descent methods. First, we recall the theoretical
characteristics w.r.t. gradient descent methods.

Proposition 4.2 (Quadratic upper bound [36]). If the gra-
dient of a function f:R" — R is Lipschitz continuous with
Lipschitz constant L for any x,y € R", i.e.,

IVf(y) = V@) <Ly —=|, (12)

then

£6) < £(0) + V@) (=) + 5 Iy — (1)

On the other hand, there is a proved bound w.r.t. the
loss.

Corollary 4.3 (The bound on the loss at one iteration [8],
[49]). Let wy, be the kth iteration result of gradient descent
and n;, > 0 the kth step size. If V f is L-Lipschitz continu-
ous, then

F@er) < Flow) nk( L”k)nw DIl 19

By adding up a collection of inequalities, we can move
further along this line to have the following corollary.

Corollary 4.4. Let x;, be the kth iteration result of gradient
descent and n;, > 0 the kth step size. If V f is L-Lipschitz con-
tinuous, then

k-1
fo < e - Son(1- 50 IS o)

i=0

Theorem 4.5 (Congruency lower bound). Assume the gra-
dient descent method uses a fixed step size n and the gradi-
ent of the loss function f:R™ — R is Lipschitz continuous
with Lipschitz constant L, the congruency vy, referring to
the initial point x, at the kth iteration has the following
lower bound

[V f(i)]]
Vifzg = max{ LX; Y@l
_ank_l IV f(z i)HIIZ;_EVf( ;)| _1}'
IV F@) S V@)

(16)

Proof. Given z; and z(, according to Proposition 4.2 we
have

Vk|zg >

V) (o w0) < o) — Fan) + g i — ol

488
Since =z —n Y10 Vf(z;) and Vijzy = (— Vf(xy))' a0
(= 3200 V@) /UIVF@ll I125 VHE)l),

have

we can 49

Vf(mk)T(xk - xU)

— (=Y f(1)) ( ZW%‘?)
= LAl S V5w e
i=0

Plugging this in the inequality, it yields

1 flao) ~ S ~ BT V@I
1INl S V@)

Vi|a >

According to Corollary 4.4, the inequality can be rewrit-
ten as

(=50 S5 IVF@)l* — 512 Vf(xi)llz'
IV a1l S8 Vf(%)\l
an

By using polynomial expansion and the Cauchy-Schwarz 491
inequality, we can expand the term || ZZ o Vf (z;)|” as 492
follows: 493

k—2

||ZVf Pl =195t + 3 Vi)

k—2
<V f @) I + 20V f @)l Z Vi@l + 1) V)P
=0 =0

495

Recursively, || S0V f(z)|?, |22V )|? ..., till a0

| 31— V£(:)||” can be expanded, e.g., 497

1
1Y Vi)l =
i=0

<IVF)|? + 20V @)V (o)l + 1V f (o) I,

IV f(21) + ¥V f (o) |

The above inequalities yield

k-1 k-1 k-1 i1
1D V@I <D IV +2D VAl Vi)l
i=0 =0 =0 =0

Plugging it into Inequality (17), we have

Yo \Vf(xz)ll2
IIVf(wk)IIHZ o V)l
LnZL o IVF(= JIIIIZ? o Vi 2l
IV £ @)l i VS ()]

Z;’O HVf @l

1y Vil
be further simplified as 498

Due to > 1, the congruency lower bound can
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Fig. 4. An illustration to demonstrate the concept of the effective window.
Given the spiral convergence path, —ngi., restricts the search direction
and the minimum (i.e., the red star) and w;; are unreachable according
to the search direction. In contrast, w; can be reached along the search
direction of —ngg.,,. To adaptively yield appropriate accumulated gra-
dients that converge to the minimum, we define an effective window to
periodically update the reference.

vk\lo =

||Vf(9€z
ZHVf ()]
LUZE |Vf($i)|H|Zi'7é Vf(l’j)”.
IV f)lll Soi V£ ()

Combining with the fact vj,, > —1, we complete the
proof. 0

Remark 4.6. Theorem 4.5 implies that when we apply gra-
dient descent method to search a local minimum, the con-
gruency lower bound at a certain iteration in the learning
process is determined by the gradients at current iteration
and previous iterations.

Remark 4.7. Theorem 4.5 implies that the lower bound of
congruency with a small step size,i.e.,, n < 7, is tighter than
the one of congruency with a large step s1ze, ie,n >+ This
is consistent with the fact the large step size could Iead toa
zigzag convergence path. The negative lower bound of con-
gruency when 7 > 1 indicates the huge turnaround would
possibly occur in the learning process.

4.4 Adaptivity to Learning

As the reference is used to compute the accumulated gra-
dient for narrowing down the search direction, a desirable
referential direction should orient to a local minimum. Con-
versely, an inappropriate referential direction could mislead
the training and slow down the convergence. Therefore, it is
important to update the references to adapt to the target
optimization problem.

In this work, we update the references with a short
temporal window so as to yield a locally stable and reli-
able referential direction. For instance, Fig. 4 shows an
unfavorable case that takes w, as the reference, where
the convergence path is spiral. Due to the circuitous
manifold, wy results in a misleading direction —ngigu,-
In contrast, if taking w; as a reference, it can yield the
appropriate search direction to reach wj;. Therefore, we
introduce an “effective window” to allow the proposed
DCL method to find an appropriate search direction. The
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effective window forces the proposed DCL method to 529
only accumulate the gradients within the window. In 530
Fig. 4, the proposed DCL method with a small window 531
size would converge, whereas the one with a large win- 532
dow size would diverge. We denote the window size as 533
B, and the reference offset as B, When the time step ¢ 534
satisfies 535

t mod B, = B,, (18)

537
where mod is the modulo operator, it would trigger the reset 53s
mechanism, i.e., starting over to set references r; « wy, 539

1 <i < N,. B, indicates the first reference weight point. 540
Once the reset process starts, the proposed DCL method 541
would use g, instead of g, for update until all the N, referen- 542
ces are reset. 543

4.5 Effect of DCL 544
To intuitively understand the effect of the proposed DCL 545
method, we present visual comparisons of the convergence 546
paths with three popular optimizers, i.e., SGD [42], RMSProp 547
[14], and Adam [23], on a publicly available problem.” 548

In particular, given the problem z= f(z,y), we apply 54
the three optimizers to compute a local minimum (z*, y*). 550
Unlike image classification, the problem does not need ran- 551
domized data sequence as input so there is no stochastic 552
process. For a fair comparison, except the learning rate, we 553
keep the settings and hyperparameters the same between 554
ALGO and ALGO DCL, where ALGO={GD, RMSProp, 555
Adam} and GD stands for gradient descent. The conver- 556
gence paths w.r.t. the optimization algorithms are shown 557
in Figs. 5a, 5b, and 5c, while the corresponding z versus 55s
iteration curves are plotted in Figs. 5d, 5e, and 5f. 559

We can see that all the baseline curves are circuitous, i.e., 560
a sharp turn at the ridge region between two local minima. 561
Moreover, different learning rates lead to different local 562
minima. It implies that the training process in this case is 563
influenceable and fickle in terms of the direction of the con- 564
vergence. The proposed DCL method noticeably improves 565
the convergence direction by choosing a relatively straight- 566
forward path over the three optimization algorithms. Note 567
that as the objective function (5) implies, if we do not take 568
any the accumulated gradients (i.e., no constraints), or take 569
the gradient for the coming update as the accumulated gra- 570
dient (i.e., g, =g), the proposed DCL method would 571
become the baseline (i.e., g = g). 572

4.6 DCL in Continual Learning 573
In previous subsections, we introduce the proposed DCL 574
method in mini-batch learning. By its very nature, it can 575
also work in continual learning manner. GEM [33] is a 576
recent method proposed for continual learning. The objec- 577
tive function of GEM is the same as the proposed DCL 578
method, whereas the constraints of GEM and the proposed 579
DCL method are devised for respective purposes. To apply 580
the proposed DCL method in continual learning, we can 581
merge the constraints of the proposed method with the ones 5s2
of GEM. Hence, we have a new A as follows: 583

3. https:/ /github.com/Jaewan-Yun/optimizer-visualization
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GD (Ir=0.1)
——— GD (=02

GD DCL (Ir=0.1)
——— GD DAL (k=02)

RMSP (Ir=0.02)
RMSP (Ir=0.04)

RMSP DCL (Ir=0.02)
RMSP DCL (Ir=0.04)

Adam DCL (Ir=0.05)
Adam DCL (Ir=0.1)

B ey R L e L R e e
10 20 30 40 50 50 75 100 125 150 50 100 150 200
Iteration 1teration 1teration

(d) Curves of z v.s. iteration with GD

(e) Curves of z v.s. iteration with RMSProp

(f) Curves of z v.s. iteration with Adam

Fig. 5. An example demonstrating the effect of the proposed DCL method on three optimizers, i.e., gradient descent (GD), RMSProp, and Adam.

Given a problem z = f(z,y), we use these optimization algorithms to compute the local minima, i.e., (z*

,y*) that yield the minimal z*. In the

experiment, except the learning rate, the setting and hyperparameters are the same for ALGO and ALGO DCL, where ALGO={GD, RMSProp,
Adam}. The proposed DCL method encourages the convergence paths to be as straight as possible.

(w—r)"

(w—rx,)"

_g(mslaysl)-r (19)

SZ'EM,

’ T
L _g('rsf\“',n, ) ySNm ) A

where M is the memory and N,, is the size of the memory.
With the proposed DCL constraints, the corrected g is forced
to be consistent with both the accumulated gradients and the
directions of gradients generated by the samples in memory.

4.7 Comparison With Memory-Based Constraints
Now, we discuss the difference between the proposed DCL con-
straints and the memory-based constraints used in GEM [33].

There are two main differences between the DCL con-
straints and the GEM constraints. First, as shown in Fig. 6,
the descent direction in the proposed DCL method is regu-
lated by the accumulated gradient, whereas the gradient for
an update in GEM is regulated to avoid the violation with
the gradients of the memory samples (i.e., images and the
corresponding ground-truths). Since the weights are itera-
tively updated and the memory samples are preserved, the
gradients of the memory samples could be changed at each
iteration so the direction of the adjusted gradient could be
dynamically varying. Second, the proposed DCL method
only needs to memorize the references, whereas GEM mem-
orizes the images and the corresponding ground-truths.
The proposed DCL constraints are efficiently computed by
a subtraction in Eq. (6), other than by computing the corre-
sponding gradients like GEM.

Although the proposed DCL constraints are different
from GEM constraints in terms of definition, they are able

to work with each other in continual learning. We will
dive into the details in the following experiment section.
Moreover, GEM computes the gradients on all the parame-
ters of a DNN. This works in the situations that input
image resolution is relatively small, e.g., 784 for MNIST [29]
or 3,072 for CIFAR-10/100 [26]. The networks used to clas-
sify these images have small number of weights like MLP
and ResNet-18. However, the number of parameters in a
DNN could be huge. For example, ResNeXt-29 (16 x 64)
[56] has 68 million parameters. Although GEM applies
primal-dual method to reduce the computation in optimi-
zation, the overall computation is still considerably high.
In this work, we instead compute the gradients on the
highest-level layer to generalize the proposed DCL method
to any general DNN.

DCL GEM

Memory Sample A, B

-ng's

|
II

2
-n Zi:O gi

-N9B w2

Fig. 6. An illustration demonstrating the difference between DCL (left) and
GEM [33] (right). The search direction in DCL is determined by the accumu-
lated gradient while the adjusted gradient (solid line) of GEM is optimized by
avoiding the violation between the gradient (dashed line) and memory
samples’ gradients (green line). Since the weights are iteratively updated
and the memory samples are preserved, the direction of the adjusted
gradient of the memory samples could be dynamically varying.
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TABLE 1
Saliency Prediction Performance of the Models Which are Trained on SALICON 2017
Training Set and Evaluated on SALICON 2017 Validation Set

NSS sAUC AUC CcC
ResNet-50 RMSP 1.7933 £ 0.0083 0.8311 £0.0017 0.8393 £ 0.0039 0.8472 £ 0.0048
ResNet-50 RMSP GEM 1.7522 £ 0.0150 0.8267 £ 0.0017 0.8341 £ 0.0016 0.8291 + 0.0033
ResNet-50 RMSP DCL-o00-1 1.8226 + 0.0014 0.8376 £+ 0.0017 0.8445 + 0.0016 0.8569 + 0.0032
ResNet-50 Adam 1.7978 £+ 0.0019 0.8328 £ 0.0007 0.8405 £ 0.0011 0.8495 + 0.0004
ResNet-50 Adam GEM 1.7962 + 0.0034 0.8344 + 0.0021 0.8399 + 0.0009 0.8494 + 0.0034
ResNet-50 Adam DCL-co-1 1.8019 £ 0.0024 0.8360 + 0.0023 0.8430 4 0.0023 0.8548 + 0.0038
DINet Adam [59] 1.8786 £ 0.0063 0.8426 + 0.0008 0.8489 + 0.0008 0.8799 + 0.0010
DINet Adam GEM 1.8746 £+ 0.0067 0.8423 + 0.0014 0.8492 £ 0.0012 0.8791 £ 0.0030
DINet Adam DCL-500-1 1.8857 4 0.0006 0.8430 + 0.0002 0.8493 + 0.0002 0.8804 + 0.0009

Higher score is better in all the metrics. Each experiment is repeated for 3 times and the mean and std of the scores are reported. We follow [59] to only use Adam

as the optimizer for DINet.

TABLE 2
Saliency Prediction Performance of the Models Which are Trained on OSIE and Tested on MIT1003
NSS sAUC AUC CcC
ResNet-50 RMSP 2.4047 £+ 0.0055 0.7612 £+ 0.0019 0.8455 + 0.0028 0.7595 + 0.0002
ResNet-50 RMSP GEM 2.3960 + 0.0057 0.7566 £ 0.0045 0.8412 + 0.0055 0.7500 + 0.0037
ResNet-50 RMSP DCL-co-1 2.4252 + 0.0053 0.7620 + 0.0018 0.8469 + 0.0027 0.7658 + 0.0016
ResNet-50 Adam 2.4064 + 0.0015 0.7597 £+ 0.0012 0.8429 + 0.0021 0.7618 £ 0.0005
ResNet-50 Adam GEM 2.3685 + 0.0065 0.7594 £+ 0.0007 0.8427 + 0.0017 0.7524 + 0.0011
ResNet-50 Adam DCL-c0-1 2.4108 + 0.0063 0.7613 + 0.0007 0.8442 + 0.0008 0.7617 + 0.0007
DINet Adam 2.4406 + 0.0058 0.7570 =+ 0.0005 0.8442 + 0.0016 0.7534 + 0.0005
DINet Adam GEM 2.4456 + 0.0037 0.7571 £ 0.0005 0.8432 + 0.0003 0.7540 + 0.0006
DINet Adam DCL-120-1 2.4566 + 0.0007 0.7611 + 0.0011 0.8476 £ 0.0008 0.7597 + 0.0008

Each experiment is repeated for 3 times and the mean and std of the scores are reported.

5 [EXPERIMENTS

5.1 Experimental Setup

To comprehensively evaluate the proposed DCL method,
we conduct experiments on three tasks, i.e., saliency predic-
tion, continual learning, and classification.

5.1.1 Datasets

For saliency prediction task, we use SALICON [20] (the 2017
version), MIT1003 [22], and OSIE [58]. For continual learn-
ing task, we follow the same experimental settings in GEM
[33] to use MNIST Permutations (MNIST-P), MNIST Rota-
tions (MNIST-R), and incremental CIFAR-100 GCIFAR-100).
For classification, we use CIFAR [26], Tiny ImageNet, and
ImageNet [6].

5.1.2 Models

For saliency prediction, we adopt an improved SALICON
saliency model [17] and DINet [59] as the baselines. Both
the baseline models takes ResNet-50 [13] as the backbone
architecture.

For continual learning, we adopt the same models used
in GEM, i.e., Multiple Layer Perceptron (MLP) and ResNet-
18, as well as EfficientNet-B1 [47] as the backbone architec-
ture for evaluation. EWC [24] and GEM are used for
comparison.

For classification, we use the state-of-the-art model
without any architecture modifications for a fair evaluation.

ResNeXt [56] (i.e., ResNeXt-29), DenseNet [16] (i.e.,
DenseNet-100-12), and EfficientNet-B1 [47] are used in
the evaluation of CIFAR-10 and CIFAR-100. ResNet (.e.,
ResNet-101), DenseNet (i.e., DenseNet-169-32), and Effi-
cientNet-B1 [47] are used in the experiments on Tiny Image-
Net. ResNet (i.e., ResNet-34 and ResNet-50) is used in the
experiments on ImageNet.

5.1.3 Notation

For convenience, we notate model name + optimizer name +
DCL-B,,-N, for key experimental details in Tables 1, 2, 6 and
7. B, = oo indicates it never resets the references when the
initialization of references is finished.

5.1.4 Evaluation Metrics

For saliency prediction, we report the performance using
the commonly use metrics, namely area under curve
(AUCQC) [1], [21], shuffled AUC (sAUC) [1], [45], normalized
scanpath saliency (NSS) [18], [43], and correlation coefficient
(CC) [38]. Human fixations are used to form the positive set
while the points from the saliency map are sampled to form
the negative set. With the two sets, an ROC curve of true
positive rate versus false positive rate would be plotted by
thresholding over the saliency map. If the points are sam-
pled in a uniform distribution, it is AUC. If the points are
sampled from the human fixation points, it is SAUC. NSS
would average the response values at human eye positions
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TABLE 3
Performances on MNIST-R in Continual Learning
Setting Using SGD [42] as the Optimizer

TABLE 4
Performances on MNIST-P in Continual Learning
Setting Using SGD as the Optimizer

Accuracy BWT FWT Accuracy BWT FWT
EWC 54.61 -0.2087 0.5574 EWC 59.31 -0.1960 -0.0075
GEM 83.35 -0.0047 0.6521 GEM 82.44 0.0224 -0.0095
MLP DCL-30-1 MEM 84.08 0.0094 0.6423 MLP DCL-3-1 MEM 82.30 0.0248 -0.0038
MLP DCL-40-1 MEM 84.02 0.0127 0.6351 MLP DCL-4-1 MEM 82.58 0.0402 -0.0092
MLP DCL-50-1 MEM 82.77 0.0238 0.6111 MLP DCL-5-1 MEM 82.10 0.0464 -0.0095

The reported accuracy is in percentage. MEM indicates that the constraints of
GEM [33] are concatenated to use as Eq. (19) describes.

in an predicted saliency map which has been normalized to
be zero-mean and with unit standard deviation. CC meas-
ures the strength of a linear correlation between a ground-
truth map and a predicted saliency map. For continual
learning, we use the same metrics used in GEM [33], i.e,,
accuracy, backward transfer (BWT), and forward transfer
(FWT). For classification, we evaluate the proposed DCL
method with top 1 error rate metric on the CIFAR experi-
ments while both top 1 and top 5 error rate are reported in
the experiments of Tiny ImageNet and ImageNet.

5.1.5 Experimental and Training Details

In the experiments of saliency prediction, we use Adam [23]
and RMSProp (RMSP) [14] optimizers. In the setting with
Adam, we use n = 0.0002, weight decay 1le-5 while = 0.0005,
weight decay le-5 are used within the setting of RMSP. The
momentum is set to 0.9 for both Adam and RMSP. n would
be adjusted along with the epochs, i.e., 1., < ny x 0.557%,
where £ is the current epoch. The batch size is 8 by default.
To fairly evaluate the performances of the models, we use
cross-dataset validation technique, i.e., the models are trai-
ned on the SALICON 2017 training set and evaluated on the
SALICON 2017 validation set, and trained on OSIE and evalu-
ated on MIT1003.

We follow the experimental settings in [33] for continual
learning. Specifically, MNIST-P and MNIST-R have 20 tasks
and each task has 1,000 examples from 10 different classes.
On iCIFAR-100, there are 20 tasks and each task has 2,500
examples from 5 different classes. For each task, the first 256
training samples will be selected and stored as the memory
on MNIST-P, MNIST-R, and iCIFAR-100. In this work, GEM
constraints are concatenated with the DCL constraints by
Eq. (19). As the different concepts are learned across the epi-
sodes, i.e., the tasks, we only consider that the accumulation
of gradients would take place in each episode.

In the classification task, we evaluate the models with SGD
optimizer [42]. The hyperparameters are kept by default, i.e.,
weight decay 5e-4, initial 7 = 0.1, the number of total epochs
300. n would be changed to 0.01 and 0.001 at epoch 150 and
225, respectively. For the Tiny ImageNet experiments, we will
train the models in 30 epochs with weight decay le-4, initial
n = 0.001. n would be changed to 1e-4 and 1e-5 at epoch 11
and 21, respectively. The momentum is 0.9 by default. The
batch size is 128 in the CIFAR experiments and 64 in the Tiny
ImageNet experiments. In the ImageNet experiments, we use
batch size of 512 to train ResNet-50.

In addition, we present the performance of GEM for ref-
erence as well. Note that more samples in memory may

lead to inconsistent constraints. We set memory size to 1
and reset the memory at each epoch beginning, which is
analogous to the case that GEM for continual learning
would reset the memory at each beginning of the episode.
The implementations of this work are built upon PyTorch*
and quadprog package is employed to solve quadratic pro-
gramming problems.

5.2 Performance Evaluation
5.2.1 Saliency Prediction

Table 1 reports the mean and standard deviation (std) of the
scores in NSS, sAUC, AUC, and CC over 3 runs on the SAL-
ICON 2017 validation set. We can see that the proposed
DCL method overall improves the saliency prediction per-
formance with both ResNet-50 and DINet over all the met-
rics. Moreover, small values of stds w.r.t. the proposed DCL
method show that the randomness caused by the stochastic
process does not contribute much to the improvement.
Table 2 shows that the proposed DCL method trained on
OSIE consistently improves the saliency prediction perfor-
mance on MIT1003.

Note that Adam and RMSP optimizer are different algo-
rithms to compute effective step sizes based on the gra-
dients. The consistency of the improvement with both
optimizers shows that the proposed DCL method generally
works with these optimizers.

5.2.2 Continual Learning

As introduced in Section 4, we apply the proposed DCL
method to enhance the congruency of the learning process
for continual learning. Specifically, following Eq. (19), we
concatenate the DCL constraints with the GEM constraints
[33]. As reported in Table 3, the proposed DCL method
improves the classification accuracy by 0.7 percent on
MNIST-R. Similarly, the proposed DCL method improves
the classification accuracy on MNIST-P as well (see Table 4).
The marginal improvement may results from the difference
between MNIST-R and MNIST-P. Permuting the pixels of
the digits is harder to recognize than rotating the digits by
a fixed angle, and makes the accumulated gradient less
informative in terms of leading to the solution. We observe
that shorter effective window size is helpful to improve
the accuracy in the continual learning task. This is because
the training process of continual learning is one-off and a
fast variation could be caused by the limited images with
brand new labels in each episode. The experiments on

4. https:/ / github.com/pytorch/pytorch
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TABLE 5
Performances on iCIFAR-100 in Continual Learning
Setting Using SGD as the Optimizer

TABLE 7
Top 1 and Top 5 Error Rate (in %) on the Validation
Set of Tiny ImageNet With Various Models

Accuracy BWT FWT Toplerror  Top 5 error
EWC 48.33 -0.1050 0.0216 ResNet-101 SGD 17.34 4.82
iCARL 51.56 -0.0848 0.0000 ResNet-101 SGD GEM 21.78 7.21
ResNet GEM 66.67 0.0001 0.0108 ResNet-101 SGD DCL-60-1 16.89 4.50
ResNet DCL-4-1 MEM 67.92 0.0063 0.0102 DenseNet-169-32 SGD 20.24 611
ResNet DCL-8-1 MEM 67.27 0.0104 0.0190
DenseNet-169-32 SGD GEM 26.81 9.43
ResNet DCL-12-1 MEM 66.58 00089 00139 e oD DCLiS01 1985 609
ResNet DCL-20-1 MEM 66.56 0.0030 0.0102 . :
ResNet DCL-24-1 MEM 64.97 0.0082 0.0238 EfficientNet-B1 SGD 15.73 3.90
ResNet DCL-32-1 MEM 66.10 0.0305 0.0176 EfficientNet-B1 SGD GEM 28.74 11.31
ResNet DCL-50-1 MEM 64.86 0.0244 0.0125 EfficientNet-B1 SGD DCL-8-1 15.61 3.75
EffNet GEM 80.80 0.0318 -0.0050
EffNet DCL-4-1 MEM 81.55 0.0383 -0.0048 .
EffNet DCL-8-1 MEM 80.84 0.0367  0.0068 9.2.3 Classification
EffNet DCL-12-1 MEM 79.45 0.0322 0.0011  Table 6 reports the top 1 error rates on CIFAR-10 and
ggN et Bcigg-l Vi s 00516 D00 CIFAR-100 with ResNeXt, DenseNet, and EfficientNet. In
Net DCL-24-1 9.05 0.0375 “0:0006 411 cases, the proposed DCL method outperforms the base-
EffNet DCL-32-1 MEM 79.97 0.0452 -0.0145 i . d Effi
EffNet DCL-50-1 MEM 77.87 0.0602 -0.0101 e, 1.e., ResNeXt—29 SGD, DenseNet-100-12 SGD, and Effi-

EffNet stands for EfficientNet [47].

iCIFAR-100 in Table 5 confirm this pattern. The proposed
DCL method with ResNet and 8, = 4 improves the accu-
racy by 1.25 percent on iCIFAR-100.

There are another two metrics for continual learning, i.e.,
forward transfer (FWT) and backward transfer (BWT). FWT
is that learning a task is helpful in learning for the future
tasks. Particularly, positive FWT is correlated to n-shot
learning. Since the proposed DCL method utilizes the direc-
tional information of the past updates, it has less influence/
correlation to FWT. Hence, we will focus on BWT. BWT is
the influence that learning a task has on the performance on
the previous tasks. Positive BWT is correlated to congru-
ency in the learning process, while large negative BWT is
referred as catastrophic forgetting. Tables 3 and 4 show that
the proposed DCL method is useful in improving BWT on
MNIST-R and MNIST-P. The BWT of GEM is negative
(-0.0047) and the proposed DCL method improves it to
0.0238 on MNIST-R. Similarly, the BWT of GEM is 0.0224
and the proposed DCL method improves it to 0.0464 on
MNIST-P. Similarly, in Table 5, the proposed DCL method
with ResNet improves BWT of GEM from 0.0001 to 0.0305,
while the proposed DCL method with EfficientNet [47]
improves BWT to 0.0602.

cientNet-B1 SGD. Specifically, the proposed DCL method
with ResNeXt decreases the error rate by 0.2 percent on
CIFAR-10 and by 0.28 percent on CIFAR-100, while the pro-
posed DCL method with EfficientNet decreases the error
rate by 0.12 percent on CIFAR-10 and by 0.16 percent on
CIFAR-100. Similar improvements can be found in the
experiments with DenseNet and this shows that the pro-
posed DCL method is generally able to work with various
models. Moreover, it can be seen in Table 6 that GEM has
a higher error rate than the baseline in the experiments
with ResNeXt, DenseNet, and EfficientNet. Because of the
dynamical update process in learning, the gradient of the
samples in memory does not guarantee that the direction
leads to the solution. The direction can be even worse, e.g.,
it is possible to go in an opposite way to the solution.

A consistent improvement w.r.t. the proposed DCL
method can be found in the experiments on Tiny ImageNet
(see Table 7). The proposed DCL method decreases top 1
error rate by 0.45 percent with ResNet, by 0.69 percent with
DenseNet, and by 0.12 percent with EfficientNet. Also, the
performance degradation caused by GEM [33] can be
observed that top 1 error rate generated by GEM with
ResNeXt is increased by almost 4.44 percent, comparing to
the baseline ResNet.

Table 8 reports the mean and std of 1-crop valida-
tion error of ResNet-50 on ImageNet. Comparing to Tiny
ImageNet and CIFAR, ImageNet has more categories and
more high resolution images. Given such difficulties, the

TABLE 6
Top 1 Error Rate (in %) on CIFAR With Various Models
TABLE 8
CIFAR-10 CIFAR-100 Top 1 and Top 5 1-Crop Validation Error (in %)

ResNeXt-29 SGD 3.53 17.30 on ImageNet With SGD Optimizer
ResNeXt-29 SGD GEM 7.70 32.70
ResNeXt-29 SGD DCL-co-1 3.33 17.02 Top 1 error Top 5 error
DenseNet-100-12 SGD 4.54 22.88 ResNet-50 [13] 24.70 7.80
e 2 D e o0 PSS 2372 ResNet-50 (reproduced) 2433 = 0.08 7.30 + 0.07

chsevet 7 il : : ResNet-50 DCL 24.09 + 0.03 7.23 +0.02
EfficientNet-B1 SGD [47] 1.91 11.81
EfficientNet-B1 SGD GEM 3.06 19.48 B, = b and N, = 1 are used for ResNet-50 DCL. Within the same experimen-
EfficientNet-B1 SGD DCL-5-1 1.79 11.65 tal settings, ResNet-50 GEM does not converge in this experiment. The mean

and std of errors are computed over three runs.
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L

Sim.

0.1667

-0.1788

-0.1965
-0.5603

Fig. 7. The congruencies (Cong.) generated by the given references (Ref.) and samples with the baseline ResNet-50 RMSP in Table 2. The cosine
similarities (Sim.) between referred images and sample images are provided for comparison purposes. Source images and the corresponding
ground-truths, i.e., fixation maps, are displayed along with the congruencies. The first and second block are the results of subset that contains per-
sons in various scenes. The third block is examples of food subset. The rightmost block shows subset with mixed image categories, i.e., contain

objects of various categories in various scenes.

proposed DCL method reduces the mean of top 1 errors by
0.24 percent over three runs. In summary, the improvement
gained by the proposed DCL method is benefited from the
better solution searched by optimizing DCL quadratic pro-
gramming problem (5).

6 ANALYSIS

In this section, we first validate the defined congruency by com-
paring through qualitative examples. Then, an ablation study
w.r.t. f and N, is presented. Moreover, we provide a congru-
ency analysis in the training processes for the three tasks. In the
end, the comparison between training from scratch and fine-
tuning, as well as the computational cost are provided.

6.1 Validity of Congruency Metric

In this subsection, we conduct a sanity check on the validity
of the defined congruency. To do this, we consider a simple
case where we directly take the gradients (i.e., gs, and gs,)
of two samples (i.e., S; and S3) to compute the correspond-

ing congruency, i.e., v = For comparison purposes,

95,95,
llgs, Mgs,[I*
the cosine similarity, Sim, beTtween raw image S; and 95 is
also computed by Sim = % Note that congruency is
semantics-aware, whereas cosine similarity between the
two raw images is semantics-blind. This is because the gra-
dients are computed by images and its semantic ground
truth, e.g., the class label in the classification task or human
fixation in the saliency prediction task.

For the analysis in the saliency prediction task, we sam-
ple 3 subsets, where 20 training samples w.r.t. person, 20
training samples w.r.t. food, and 20 training samples w.r.t.
various scenes and categories were sampled from SALI-
CON. For the analysis in the classification task, 3 subsets
were sampled from Tiny ImageNet, which comprised of
100 images of tabby cat and Egyptian cat to form a intra-
similar-class subset, 100 images of tabby cat and German
shepherd dog to form a inter-class subset, and 50 images
from various classes to form a mixed subset. In this way,
we can analyze the correlation between the samples in
terms of congruency. With these subsets, we use the base-
lines, i.e., ResNet-50 for saliency prediction and ResNet-
101 for classification, to yield the samples gradients with-
out updating the model.

Fig. 7 demonstrates the congruencies w.r.t. the references
and various samples (image + fixation map). In contrast to

the deterministic nature in the classification task, saliency is
context-related and semantics-based. It implies that the
same objects within two different scenarios may have differ-
ent saliency labels. Hence, we select the examples of same/
similar objects for this experiment. In Fig. 7, the first and
second block on left are based on the person subset within
various scenarios. The first block consists of the images of
person and dining table. Taking the first row sample as ref-
erence, the sample in the second row has higher congruency
(0.4155) when compared to bottom row sample (0.3699).
Although all the fixation maps of all the samples are dif-
ferent, pizza in the second image is more similar to the
reference image whereas food in the bottom sample is
inconspicuous. In the second block, both the portrait of the
fisher (reference) and the portrait of the baseball player (sec-
ond sample) are similar in terms of the layout, comparing to
the persons in dining room (third sample). Their fixation
maps are similar as well.

The congruency of the reference and second sample
(0.6377) are higher than the one of the reference and third
sample (0.2731). In the third block, the image of the refer-
ence is three hot dogs and its fixation maps is similar to
the fixation maps of the second sample. The two hog dog
samples have similar visual appearance and layout of fixa-
tions to yield a higher congruency (0.6696). In contrast, third
sample is different from the reference in terms of visual
appearance and layout of fixations, which yields a lower
congruency (0.5075). The rightmost block shows an interest-
ing fact that two outdoor samples yield a positive congru-
ency 0.1667, whereas the outdoor reference and the indoor
sample yield a negative congruency —0.1965. One possible
reason is that the fixation pattern are different between the
reference and the bottom indoor sample. In addition, the
visual appearance like illumination may be the another fac-
tor causing such the discrepancy.

For classification, Fig. 8 shows the congruencies w.r.t. the
references and given samples in each subset. In all cases, we
first observe that images with same genuine class as referen-
ces yield high congruency, i.e., larger than 0.94 for all cases.
These show that the gradients of the same labels are similar
in the direction of the updates. Another observation is that
the congruency of pairs with different labels are signifi-
cantly smaller than the matched label counterpart. In Fig. 8,
the congruencies of the reference (Tabby cat) and Egyptian
cat images are below 0.03, while the congruencies of the ref-
erence and German shepherd dog images are below 0.016 in
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0.0217
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0.1596
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Seashore Chain
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Sea fan | Goose

Fig. 8. The congruencies (Cong.) generated by the given references (Ref.) and samples with the baseline ResNet-101 SGD in Table 7. The images
with its labels are displayed along with the congruencies. The cosine similarities (Sim.) between referred images and sample images are provided
for comparison purposes. The first block is the results of the intra-similar-class subset consisting of images of tabby cat and Egyptian cat. The middle
block is the results of the inter-class subset consisting of images of tabby cat and German shepherd dog. The value in bracket indicates number of

images. The bottom block is the results of images of various labels.

the middle block. These demonstrate that the gradients of
inter-class samples are nearly perpendicular to each other.
The reference of class ‘Dugong’ has positive congruencies
w.r.t. all the images that fall in the category of animal,
except for the image of chain, which falls into a non-animal
category. Last but not least, given the images with different
labels, similar visual appearance would lead to relatively
higher congruency. For example, the congruencies between
tabby cat and Egyptian cat are overall higher than the ones
between tabby cat and German shepherd dog. In summary,
the labels are an important factor to influence the direction
of the gradient in the classification task. Second, the visual
appearance is another factor for congruency.

In contrast with congruency, cosine similarity between two
raw images make less sense in the context of a specific task.
For example, two similar dining scenes in the first column in
Fig. 7 yield a negative cosine similarity —0.0066 in the saliency
prediction task. Similarly, the first two cat images in the first
row in Fig. 8, which are cast to the same category, yield a nega-
tive cosine similarity —0.0013. The negative cosine similarity
between two images with the same or similar ground truth
are counterintuitive. It results from the fact that cosine similar-
ity between two images only focuses on the difference
between two sets of pixels and ignores the semantics associ-
ated to the pixels.

6.2 Ablation Study
In this subsection, we study the effects of effective window size
B., and reference number N, on saliency prediction task (with
SALICON) and classification task (with Tiny ImageNet).

In the saliency prediction experiment, Fig. 9a shows the
curve of sAUC versus B, based on DCL-g,,-1, while Fig. 9b
shows the curve of sAUC versus N, based on DCL-0o-N,.

Note that for the reference number study, the training
process on SALICON consists of 12,500 iterations so g, >
12500 is equivalent to B, = oo, which means that it never
resets the references in the whole learning process. It can be
observed that different 8, and N, yield relatively similar per-
formance in sAUC. This aligns with the nature of saliency pre-
diction, where it maps features to the salient label and the
non-salient label. The features w.r.t. the salient label are highly
related to each other so 8, and N, would pervasively help the
learning process make use of congruency.

In the classification experiment, Fig. 9c shows the curve
of top 1 error versus 8, based on DCL-g,-1. We can see that
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Fig. 9. Ablation study w.r.t. effective window size g, and references
number N,. (a) and (b) are the experimental results on the SALICON
validation set, while (c) and (d) are with the Tiny ImageNet validation
set. B, = ocin (b) and B, = 50 in (d).
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Fig. 10. Congruencies along the epochs in saliency prediction learning, as defined in Eq. (4). The samples sequences for training models are deter-
mined by independent stochastic processes in Fig. 10a and 10b, while the permuted samples sequences are pre-determined and fixed for all models
in Fig. 10c and 10d. The baseline, GEM, and DCL are ResNeXt-29 SGD, ResNeXt-29 SGD GEM, and ResNeXt-29 SGD DCL-cc-1 (see Table 6),

respectively.

only a small g, range, i.e., between 20 and 70, yields rela-
tively lower errors than the other g, values. On the other
hand, Fig. 9d shows that only using one reference is helpful
in the learning process for classification. Different from the
pattern shown in Figs. 9a and 9b, where the curves are rela-
tively flat, the pattern in Figs. 9c and 9d implies that the
gradients in the learning process for classification are dra-
matically changed in angle to satisfy the 200-way predic-
tion. Hence, the learning process for classification does not
prefer large g, and N,.

In summary, the nature of the task should be taken into
account to determine the values of 8, and N,. Both parame-
ters can lead to significantly different performances if the
task-specific semantics in the data are highly varying. Spe-
cifically, as NN, increases, the feasible region for searching a
local minimum possibly becomes narrow as shown in
Fig. 3. If the local minimum is not in the narrowed feasible
region, large N, could lead to a slower convergence or even
a divergence.

6.3 Congruency Analysis

In this section, we focus on analyzing the patterns of con-
gruency on saliency prediction, continual learning, and
classification. For saliency prediction and classification, to
study how the gradients of GEM and the proposed DCL
method vary in the training process, we compute the con-
gruency of each epoch in the training process by Eq. (4).
Specifically, it turns to be vy, ., |w, ,» Where w,, and w. is
the weights at the first and last iteration of each epoch,
respectively. Here, wy is randomly initialized and w; re-
presents the starting point of the training. For conveni-
ence, we simplify the notation of the average congruency
Vs —weelw; fOr each epoch as v, . Correspondingly, we
define the average magnitude d,, of the accumulated gra-
dients over the iterations in an epoch, i.e.,

1 sub(wee)
dy, = —wll,, (20
U sub(wee) — sub(wes) + 1 i:suit;(z:m) lw; — w1, (20)

where d,, indicates the measurement of magnitudes of
the accumulated gradients takes w; as the reference.
Note that Eq. (20) does work not only with an absolute
reference (e.g., wy), but can work with a relative refer-
ence (e.g., w;—1) as well. Specifically, we can substitute
wi—1 for w; in Eq. (20) to compute d,; ,. Eq. (20) can
allow us to peek into the convergence process in the
high dimensional weight space, where it is difficult to

visualize the convergence. By taking an absolute refer-
ence (e.g., wi) as the reference, it is able to provide an
overview about how the learning process converges to
the local minimum from the fixed reference, while a
relative reference (e.g., w;_1) is helpful to reveal the itera-
tive pattern.

For the experiments of continual learning, since GEM uses
the samples in memory to regulate the optimization direction,
we follow this setting to check the effect of the proposed DCL
method on the cosine similarities between the corrected gradi-
ent and the gradients generated by the samples in memory for
analysis. More concretely, the average cosine similarity is

: 11 N s ;
defined as mmzz¥3 > sem €08 (gs, garni), where Ny is

the number of iterations in an epoch and g¢ gy is the gradient
of GEM at ith iteration.

6.3.1 Saliency Prediction

We analyze the models from Table 2, i.e., ResNet-50 Adam
(baseline), ResNet-50 Adam GEM (GEM), and ResNet-50
Adam DCL-00-1 (DCL). As the training samples sequence is
affected by the stochastic process and it may be a factor
influencing the proposed DCL method, we present two set-
tings, i.e., within the independent stochastic process and
within the same stochastic process amid the training of the
three models, to gauge the influence of the stochastic pro-
cess on the proposed DCL method. Specifically, Figs. 10a
and 10b are the curves with the independent stochastic pro-
cess on OSIE and SALICON, respectively, whereas the
same permuted samples sequences are used in the trainings
of the three models in Figs. 10c and 10d. We can see that
they are similar in pattern and it implies that the permuta-
tion of the training samples has less influence on the pro-
posed DCL method. Moreover, the proposed DCL method
consistently gives rise to a more congruent learning process
than the baseline and GEM.

6.3.2 Continual Learning

Figs. 11a, 11b, and 11c shows the congruency along the tasks
which are the episodes to learn the new classes. It can be
seen that the proposed DCL method significantly enhances
the cosine similarities between the gradients for updates
and the gradients generated by the samples in memory on
MNIST-R. There are improvements made by the proposed
DCL method on early tasks on MNIST-P. Moreover, an
overall consistent improvement of the proposed DCL
method can be observed on iCIFAR-100. Overall, the
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Fig. 11. The average congruencies over epochs in training on the three
datasets for continual learning.

corrected updates for the model are computed by proposed
DCL method to be more congruent with its previous

updates. This consistently results in the improvement of
BWT in Tables 3, 4, and 5.

6.3.3 Classification

We analyze the models from Table 6, i.e., ResNeXt-29 SGD
(baseline), ResNeXt-29 SGD GEM (GEM), and ResNeXt-29
SGD DCL-o0o-1 (DCL), in term of the resulting congruency
of each epoch in the learning process on CIFAR. Similarly,
ResNet-101 SGD, ResNet-101 SGD GEM, and ResNet-101
SGD DCL-50-1 in Table 7 are used for analysis on Tiny
ImageNet. The curves of the average congruencies are
shown in Figs. 12a, 12d, and 12g, while Figs. 12b, 12e, and
12h show the average magnitudes.
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Fig. 12. Analyses of the congruencies and magnitudes along the epochs
in classification task, as defined in Eq. (4) and (20).
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Fig. 13. Training error vs. iteration on Tiny ImageNet with ResNet-101.
(a) and (b) plot the mean and standard deviation of training errors at
each epoch, respectively. Specifically, we show four representative
curves of training error vs. iteration at epoch 1, 5, 10, and 15 in (c) — (f),
respectively.

As shown in Figs. 12a, 12d, and 12g, the congruency of
the proposed DCL method is significantly higher than the
baseline and GEM along all epochs on CIFAR-10 and
CIFAR-100. Higher congruency indicates the convergence
path would be flatter and smoother. For example, if all the
congruencies of each epoch are 0, the convergence path
would be a straight line.

On the other hand, the average magnitudes of the
proposed DCL method are relatively flat and smooth in
Figs. 12b, 12e, and 12h, comparing to the baseline and
GEM. Connecting the magnitudes with the congruencies
in Figs. 12a, 12d, and 12g, we can infer two points. First,
the proposed DCL method finds a nearer local minimum
to its initialized weights on CIFAR-10 and CIFAR-100.
Because the magnitudes of the proposed DCL method is
the smallest among the three methods. Second, the con-
vergence path of the proposed DCL method is the least
oscillatory because its congruencies are overall higher
than the other two methods and its magnitudes are the
lowest among the three methods.

We take a further look at the training error versus itera-
tion curves to better understand the convergences in Fig. 13.
To give an overview along all epochs, we compute the
mean and standard deviation of the training errors at each
epoch and plot them at a logarithm scale in Figs. 13a and
13b, respectively. The results show that the proposed DCL
method yields lower training errors from epoch 1 to epoch
16. From epoch 15 onwards, the proposed DCL method is
little different from the baseline in terms of the mean
because they are both around 0.1. Therefore, we plot the
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(a) Saliency prediction on SALICON. (b) Continual learning on iCIFAR-100.
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(c) Classification on Tiny ImageNet.

Fig. 14. Validation loss vs. epoch/task. In (c), the dashed blue curve indi-
cates that the classification losses of GEM on Tiny ImageNet are all
above 1.0 so they are not shown in the figure for clarity.

representative curve at epoch 1, 5, 10, and 15 in Figs. 13c,
13d, 13e, and 13f.

6.4 Empirical Convergence

Fig. 14 shows the validation losses w.r.t. the three tasks, i.e.,
saliency prediction (a), continual learning (b), and classifica-
tion (c). In general, the proposed DCL method achieves
lower loss than the baseline and GEM, which is aligned
with the fact that the proposed DCL method outperforms
the baseline and GEM. Note that classification losses of
GEM are above 1.0 so they are not shown in Fig. 14c.

6.5 Training From Scratch Versus Fine-Tuning

We analyze the proposed approach with two types of
training scheme on the validation set of Tiny ImageNet.
The first training scheme train the models from scratch
using the training set of the target dataset, whereas the
second training scheme fine-tunes the pre-trained Image-
Net models on Tiny ImageNet. For ease of comparison,
the experimental results of training the models from
scratch on Tiny ImageNet as the fine-tuning results are
shown in Table 9. Similar to the results of fine-tuning,
the proposed DCL method achieves lower top 1 error
(i.e., 67.56 percent) and top 5 error (i.e., 40.74 percent)
than the baseline and GEM.

TABLE 9
Top 1 and Top 5 Error Rate (in %) on the
Validation Set of Tiny ImageNet

Top 1 error Top 5 error
TFS FT TFS FT

ResNet-101 SGD 68.21 17.34 42.72 4.82
ResNet-101 SGD GEM 77.20 21.78 53.18 7.21
ResNet-101 SGD DCL 67.56 16.89 40.74 4.50

We compare of (1) training the models from scratch (TFS) on Tiny ImageNet,
and (2) fine-tuning (FT) the pre-trained ImageNet models on Tiny ImageNet.

ResNet-101 SGD DCL is with B, = 60 and N, = 1. The validation errors of  ResNet-50 DCL

FT are from Table 7.

TABLE 10
Computational Cost of Training Models on Tiny ImageNet
# params proc time
ResNet-101 42.50M 47 ms
ResNet-101 GEM 42 91IM 78 ms
ResNet-101 DCL 42.91M 49 ms

The processing time (proc time) per image is calculated by (batch time
—data time)/batch size.

6.6 Computational Cost

We report computational cost on Tiny ImageNet, SALICON
and ImageNet in Tables 10 and 11, respectively. Specifically,
the number of parameters of the models and the corre-
sponding processing time per image are presented. The
processing time per image is computed by (batch time
—data time)/batch size, where batch time is the time to com-
plete the process of a batch of images, and data time is the
time to load a batch of images. Note that the processes of
gradient descent with or without the proposed DCL method
are the same in the testing phase. We train the models on 3
NVIDIA 1080 Ti graphics cards for the experiments on Tiny
ImageNet and SALICON, and on 8 NVIDIA V100 graphics
cards for the experiment on ImageNet.

ResNet-101 DCL on Tiny ImageNet is with g, = 60 and
N, = 1. ResNet-50 DCL is with 8,, = co and N, = 1 on SALI-
CON, and B,, =1 and N, = 1 on ImageNet. ResNet-50 GEM
is with N, = 1 on all the datasets. The difference of the num-
bers of parameters between the baseline and the proposed
DCL method (or GEM) lies in the final layer, i.e., 1 x 1 con-
volutional layer for saliency prediction and the fully con-
nected layer for classification. The proposed DCL method
has more parameters to store the weights of the final layer
for the references.

In the experiment on Tiny ImageNet, the proposed DCL
method with ResNet-101 takes 2 more milliseconds than the
baseline to solve the constrained quadratic problem (5).
Similarly, with ResNet-50, it takes 1 and 2 more millisec-
onds than the baseline on SALICON and ImageNet, respec-
tively. This shows that quadratic problems with high
dimensional input can be efficiently solved by the tool
quadprog. Hence, the proposed DCL method is practically
accessible. On the other hand, GEM [33] is less efficient than
the other two methods across the three datasets. This is
because GEM has to compute the gradients according to the
memory, i.e., the input features of the final layer, at each

iteration. Instead, the proposed DCL method uses a subtrac-
tion operation (i.e., Eq. (6)) to compute the accumulated gra-
dient. Thus, it is faster than GEM.
TABLE 11
Computational Cost of Training Models on
SALICON and ImageNet
SALICON ImageNet
# params proctime # params proc time

ResNet-50 23.51M 64 ms 23.50M 6 ms
ResNet-50 GEM  23.51M 102 ms 25.55M 10 ms

23.51M 65 ms 25.55M 8 ms
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TABLE 12
The Effect of 8, and N, on Computational Cost (i.e., Proc Time)
With ResNet on Tiny ImageNet

Bw (Ny = 1)  proc time N, (Bw = 50)  proc time
10 49 ms 1 49 ms
20 49 ms 5 51 ms
30 49 ms 10 53 ms
40 49 ms 15 54 ms
50 49 ms 20 54 ms

Note that B,, would not affect computational cost because B, indicates the
effective window and resetting the references is implemented as a subtraction
operation according to Eq. (6).

Moreover, we discuss the effects of B, and N, on the
computational cost here. The computational cost w.r.t. 8, and
N, with ResNet on Tiny ImageNet is reported in Table 12. As
B,, indicates the effective window, it is implemented by a sub-
traction operation according to Eq. (6) and updating the refer-
ence point is a copying operation in RAM which is fast.
Therefore, 8,, would not affect computational cost. On the
other hand, the time difference between various N, is small
because we only apply the proposed DCL method to the
downstream layer, i.e., the final layer, where the parameters
are much fewer than the ones used by the whole network. For
example, there are only 2,304 parameters in the final convolu-
tional layer for saliency prediction. Any quadratic program-
ming solver like quadprop can efficiently handle the
corresponding dual problem (8) in a small scale.

6.7 Discussion of Generalization

Incongruency is ubiquitous in the learning process. It
results from the diversity of the input data, e.g., real-world
images, and rich task-specific semantics. The proposed DCL
method can effectively alleviate the incongruency problem
in saliency prediction, continual learning, and classification.
Specifically, saliency prediction can be seen as a typical
regression problem while continual learning and classifica-
tion can be seen as a typical learning problem that aims to
predict a discrete label. In this sense, the input-output map-
ping and the learning settings of the three tasks are funda-
mental to other vision tasks.

From the point of view of task-dependent incongruency,
here we consider general vision tasks to be cast into three
groups according to the form of input and output. The first
group consists of visual tasks that take images as input for clas-
sification or regression, e.g., object detection [41] and visual
sentiment analysis [61]. In object detection, visual appearance
of a region of interest could be diverse in terms of its label and
location, while an arbitrary sentiment class can have a number
of visual representations in visual sentiment analysis. Since
tasks in this group has similar incongruency as that in image
classification, i.e., the diversity of raw image features w.r.t. a
certain label, the proposed DCL method is expected to boost
this type of vision tasks. The second group consists of visual
tasks that have complex outputs of regression or classification,
e.g., visual relationship detection [30], [34] and human object
interaction [31], [57] whose output can involve multiple possi-
ble relationships among two or more objects that belong to var-
ious visual concepts. The incongruency of tasks in this group
lies in the diversity of raw image features w.r.t. a higher
dimensional variable, e.g., a relationship which involves

multiple objects and corresponding predicates. Last but not
least, the third group consists of visual tasks that take a series
of images, e.g., action recognition [54]. Usually, it takes a clip
of videos as input and incorporates temporal information. The
incongruency of tasks in this group lies in the diversity of tem-
poral raw image features w.r.t. a certain label, and the feature
space with clips is often more complicated than that in static
images. Therefore, the incongruency of tasks in the second and
third groups could be more remarkable than that of tasks in
the first group. Note that the proposed DCL method is gradi-
ent-based and not restricted to specific forms of input or out-
put. Therefore, it could naturally generalize or be used as a
starting point to alleviate incongruency for tasks with different
forms of input and output in the three groups.

7 CONCLUSION

In this work, we define congruency as the agreement
between new information and the learned knowledge in a
learning process. We propose a Direction Concentration
Learning (DCL) method to take into account the congruency
in a learning process to search for a local minimum. We
study the congruency in the three tasks, i.e., saliency predic-
tion, continual learning, and classification. The proposed
DCL method generally improves the performances of the
three tasks. More importantly, our analysis shows that the
proposed DCL method improves catastrophic forgetting.
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