Direction Concentration Learning: Enhancing Congruency in Machine Learning

Yan Luo[®], Yongkang Wong[®], *Member, IEEE*, Mohan Kankanhalli[®], *Fellow, IEEE*, and Qi Zhao, *Member, IEEE*

Abstract—One of the well-known challenges in computer vision tasks is the visual diversity of images, which could result in an agreement or disagreement between the learned knowledge and the visual content exhibited by the current observation. In this work, we first define such an agreement in a concepts learning process as congruency. Formally, given a particular task and sufficiently large dataset, the congruency issue occurs in the learning process whereby the task-specific semantics in the training data are highly varying. We propose a Direction Concentration Learning (DCL) method to improve congruency in the learning process, where enhancing congruency influences the convergence path to be less circuitous. The experimental results show that the proposed DCL method generalizes to state-of-the-art models and optimizers, as well as improves the performances of saliency prediction task, continual learning task, and classification task. Moreover, it helps mitigate the catastrophic forgetting problem in the continual learning task. The code is publicly available at https://github.com/luoyan407/congruency.

Index Terms—Optimization, machine learning, computer vision, accumulated gradient, congruency

1 Introduction

10

11

12

18

25

26

27

33

35

Deep learning has been receiving considerable attention due to its success in various computer vision tasks [4], [13], [16], [27] and challenges [6], [32]. To prevent model overfitting and enhance the generalization ability, a training process often sequentially updates the model with gradients w.r.t. a mini-batch of training samples, as opposed to using a larger batch [12]. Due to the complexity and diversity in the nature of image data and task-specific semantics, the discrepancy between current and previous observed mini-batches could result in a circuitous convergence path, which possibly hinders the convergence to a local minimum.

To better understand the circuitousness/straightforwardness in a learning process, we introduce *congruency* to quantify the agreement between new information used for an update and the knowledge learned from previous iterations. The word "congruency" is borrowed from a psychology study [51] that inspects the influence of an object which is inconsistent with the scene in the visual attention perception task. In this work, we define congruency ν as the cosine similarity between the gradient g to be used for update and a referential gradient g that indicates a general descent direction resulting from previous updates, i.e.,

$$\nu = \cos \alpha(g, \hat{g}),\tag{1}$$

- Y. Luo and Q. Zhao are with the Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455.
 E-mail: luoxx648@umn.edu, qzhao@cs.umn.edu.
- Y. Wong and M. Kankanhalli are with the School of Computing, National University of Singapore, Singapore 117417.
 E-mail: yongkang.wong@nus.edu.sg, mohan@comp.nus.edu.sg.

Manuscript received 16 Aug. 2019; revised 16 Dec. 2019; accepted 21 Dec. 2019. Date of publication 0 . 0000; date of current version 0 . 0000. (Corresponding author: Qi Zhao.)
Recommended for acceptance by H. Ling.

Digital Object Identifier no. 10.1109/TPAMI.2019.2963387

(The detailed formulation is presented in Section 3). Fig. 1 40 presents an illustration of congruency in the saliency prediction task. Due to similar scene (i.e., dining) and similar fixations on faces and foods, the update of sample S_2 (i.e., Δw_{S_2}) 43 is congruent with Δw_{S_1} . In contrast, the scene and fixations 44 in sample S_3 are different from sample S_1 and S_2 . This leads 45 to a large angle ($>90^\circ$) between Δw_{S_2} and Δw_{S_2} (or Δw_{S_1}). 46

Congruency reflects the diversity of task-specific seman- 47 tics in training samples (i.e., images and the corresponding 48 ground-truths). In the visual attention task, attention is 49 explained by various hypotheses [2], [3], [50] and can be 50 affected by many factors, such as bottom-up feature, top- 51 down feature guidance, scene structure, and meaning [55]. 52 As a result, objects in the same category may exhibit dis- 53 agreements with each other in various images in terms of 54 attracting attention. Therefore, there is a high variability in 55 the mapping between visual appearance and the corre- 56 sponding fixations. Another task that has a considerable 57 amount of diversity is continual learning, which is able to 58 learn continually from a stream of data that is related to 59 new concepts (i.e., unseen labels) [33]. The diversity of the 60 data among multiple classification subtasks may be so 61 much discrepant such that learning from new data violates 62 previously established knowledge (i.e., catastrophic for- 63 getting) in the learning process. Moreover, congruency can 64 also be found in the classification task. Compared to 65 saliency prediction and continual learning, the source of 66 diversity in classification task is relatively simple, namely, 67 diverse visual appearances w.r.t. various labels in the real- 68 world images. In summary, saliency prediction, continual 69 learning, and classification are challenging scenarios sus- 70 ceptible to the effects of congruency.

In machine learning, congruency can be considered as a 72 factor that influences the convergence of optimization 73

78

80

82

84

86

87

89

91

92

93

94

95

96

97

98

100

102

104

105

106

107

108

109

110

111

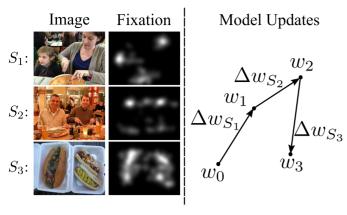


Fig. 1. An illustration of congruency in the saliency prediction task. Assuming training samples are provided in a sequential manner, an incongruency occurs since the food item is related to different saliency values across these samples. Here, S_j stands for sample $j=\{1,2,3\}$, w_i is the weight at time step i, Δw_{S_j} is the weight update generated with S_j for w_i , and the arrows indicate updates for the model. Specifically, $\Delta w_{S_j} = -\eta g_{S_j}$ where η is the learning rate and g_{S_j} is the gradient w.r.t. S_j . The update of S_2 (i.e., Δw_{S_2}) is congruent with Δw_{S_1} , whereas Δw_{S_3} is incongruent with Δw_{S_3} , and Δw_{S_5} .

methods, such as stochastic gradient descent (SGD) [42], RMSProp [14], or Adam [23]. Without specific rectification, the diversity among training samples is implicitly and passively involved in a learning process and affects the descent direction in convergence. To understand the effects of congruency on convergence, we explicitly formulate a direction concentration learning (DCL) method by sensing and restricting the angle of deviation between an update gradient and a referential gradient that indicates the descent direction according to the previous updates. Inspired by Nesterov's accelerated gradient [37], we consider the accumulated gradient as the referential gradient in the proposed DCL method.

We comprehensively evaluate the proposed DCL method with various models and optimizers in saliency prediction, continual learning, and classification tasks. The experimental results show that the constraints restricting the angle deviation between the gradient for an update and the accumulated referential gradient can help the learning process to converge efficiently, comparing to the approaches without such constraints. Furthermore, we present the congruency patterns to show how the task-specific semantics affect congruency in a learning process. Last but not least, our analysis shows that enhancing congruency in continual learning can improve backward transfer.

The main contributions in this work are as follows:

- We define congruency to quantify the agreement between new information and the learned knowledge in a learning process, which is useful to understand the model convergence in terms of tractability.
- We propose a direction concentration learning (DCL)
 method to enhance congruency so that the disagreement between new information and the learned
 knowledge can be alleviated. It also generally adapts
 to various optimizers (e.g., SGD, RMSProp and
 Adam) and various tasks (e.g., saliency prediction,
 continual learning and classification).
- The experimental results from continual learning task demonstrate that enhancing congruency can improve

- backward transfer. Note that large negative backward 112 transfer is known as catastrophic forgetting [33].
- A general method analyzing congruency is pre- 114 sented and it can be used within both conventional 115 models and models with the proposed DCL method. 116 Comprehensive analyses w.r.t saliency prediction 117 and classification show that our DCL method gener- 118 ally enhances the congruencies of the corresponding 119 learning processes.

The rest of the paper is organized as follows. We begin 121 by highlighting related works in Section 2. Then, we formulate the problem of congruency and discuss its factors 123 in Section 3. The proposed DCL method is introduced in 124 Section 4. Moreover, the experiments and analyses are provided in Sections 5 and 6, respectively. Section 7 concludes 126 the paper.

128

2 RELATED WORKS

2.1 State-of-the-Art Models for Classification

Convolutional networks (ConvNets) [13], [16], [27], [56] 130 have exhibited their powers in the classification task. Alex-131 Net [27] is a typical ConvNet and consists of a series of convolutional, pooling, activation, and fully-connected layers, 133 it achieves the best performance on ILSVRC 2012 [6]. Since 134 then, there are more and more attempts to delve into the 135 architecture of ConvNets. He et al. proposed residual blocks 136 to solve the vanishing gradient problem and the resulting 137 model, i.e., ResNet [13], achieves best performance on 138 ILSVRC 2015. Along with a similar line of ResNet, ResNeXt 139 [56] is proposed to extend residual blocks to multi-branch 140 architecture and DenseNet [16] is devised to establish the 141 connections between each layer and later layers in a feed- 142 forward fashion. Both models achieve desirable perfor- 143 mance. Recently, Tan and Le [47] study how network depth, 144 width, and resolution influence the classification perfor- 145 mance and propose EfficientNet that achieves state-of-the- 146 art performance on ImageNet. In this work, we use ResNet, 147 ResNeXt, DenseNet, and EfficientNet in the image classifi- 148 cation experiments.

Yang et al. [60] introduce a regularized feature selection 150 framework for multi-task classification. Specifically, the 151 trace norm of a low rank matrix is used in the objective 152 function to share common knowledge across multiple classification tasks. Congruency generally works with gradient 154 based optimization methods, whereas trace norm works 155 with a specific optimization method. Moreover, congruency measures the agreement (or disagreement) between 157 new information learned from a sample and the established knowledge, whereas trace norm is based on the 159 weights of multiple classifiers and only measures the correlation between established knowledge w.r.t. different classification tasks.

2.2 Computational Modelling of Visual Attention

Saliency prediction is an attentional mechanism that focuses 164 limited perceptual and cognitive resources on the most perti- 165 nent subset of the available sensory data. Itti *et al.* [19] imple- 166 ment the first computational model to predict saliency maps 167 by integrating bottom-up features. Recently, Huang *et al.* [17] 168 propose a data-driven DNN model, named SALICON, to 169

model visual attention. Cornia *et al.* [5] propose a convolutional LSTM to iteratively refine the predictions and Kummerer *et al.* [28] design a readout network that is fed with the output features of VGG [46] to improve saliency prediction. Yang *et al.* [59] introduce an end-to-end Dilated Inception Network (DINet) to capture multi-scale contextual features for saliency prediction and achieves state-of-the-art performance. In this work, we adopt the SALICON model and DINet in the saliency prediction experiments.

170

171

172

173

174

175

177

178

179

180

181

182

183

184

185

186

188

190

191

192

193

194

195

196

197

199

200

201

202

204205

206

207

208

209

210

211

213

214

215

217

218

219

220

221

222

223

224

225

There are several insightful works [11], [51], [52] exploring the effects of congruency/incongruency in visual attention. In particular, according to the perception experiments, Gordon finds that the object which is inconsistent with the scene, e.g., a live chicken standing on a kitchen table, has significant influence on attentive allocation [11]. Underwood and Foulsham [51] find an unexpected interaction between saliency and negative congruency in the search task, that is, the congruency of the conspicuous object does not influence the delay in its fixation, but it is fixated earlier when the other object in the scene is incongruent. Furthermore, Underwood et al. [52] investigate whether the effects of semantic inconsistency appear in free viewing. In their studies, inconsistent objects were fixated for significantly longer duration than consistent objects. These works inspire us to explore the congruency between the current and previous updates. In saliency prediction, negative congruency may result from the disagreement among the training samples in terms of visual appearance and ground-truth.

2.3 Catastrophic Forgetting

Catastrophic forgetting problem has been extensively studied in [9], [10], [35], [39]. McCloskey and Cohen [35] study the problem that new learning may interfere catastrophically with old learning when models are trained sequentially. New learning may alter weights that are involved in representing old learning, and this may lead to catastrophic interference. Along the same line, Ratcliff [39] further investigates the causes of catastrophic forgetting, and two problems are observed: 1) sequential learning is prone to rapidly forget well-learned information as new information is learned; 2) discrimination between observed samples and unobserved samples either decreases or is non-monotonic as a function of learning. To address the catastrophic forgetting problem, there are several works [24], [33], [40] proposed to solve the problem by using episodic memory. Kirkpatrick et al. [24] propose an algorithm named elastic weight consolidation (EWC), which can adjust learning to minimize changes in parameters important for previously seen task. Moreover, Lopez and Ranzato [33] introduce the gradient episodic memory (GEM) method to alleviate catastrophic forgetting problem. However, there could exist incongruency in the training process of GEM.

3 CONGRUENCY IN MACHINE LEARNING

3.1 Problem Statement

We first review the general goal in machine learning. Without loss of generality, given a training set $D = \{(I_i, y_i)\}_{i=1}^n$, where a pair (I_i, y_i) represents a training sample composed of an image $I_i \in \mathbb{R}^{N_I}$ (N_I is the dimension of images) and the

corresponding ground-truth $y_i \in \mathcal{Y}$, the goal is to learn a 228 model $f: \mathbb{R}^{N_I} \longrightarrow Y$. Specifically, a Deep Neural Network 229 (DNN) model has a trunk net to generate discriminative features $x_i \in \mathcal{X}$ and a classifier $f_w: \mathcal{X} \stackrel{w}{\longrightarrow} \mathcal{Y}$ to fulfill the task, 231 where w is the weights of classifier. Note that we consider 232 that DNN is a classifier as whole and the input is raw RGB 233 images.

To accomplish the learning process, the conventional 235 approach is to first specify and initialize a model. Next, the 236 empirical risk minimization (ERM) principle [53] is emplo-237 yed to find a desirable w w.r.t. f by minimizing a loss func-238 tion $\ell: \mathcal{Y} \times \mathcal{Y} \to [0, \infty)$ penalizing prediction errors, i.e., 239 minimize $\frac{1}{|\mathcal{D}|} \sum_{(x_i,y_i)\in \mathcal{D}} \ell(f_w(x_i),y_i)$. At time step k, the gradient computed by the loss is used to update the model, i.e., 241 $w_{k+1} := w_k + \Delta w_k$, where Δw_k is an update as well as a func-242 tion of gradient $g(w_k; x_k, y_k) = \nabla_{w_k} \ell(f_{w_k}(x_k), y_k)$. Optimizers, 243 such as SGD [42], RMSProp [14], or Adam [23], determine 244 $\Delta w_k(g(w_k; x_k, y_k))$. Without loss of generality, we assume 245 the optimizer is SGD in the following for convenience.

There exist two challenges w.r.t. congruency for practical 247 use. First, due to the dynamic nature of the learning process, 248 how to find a stable referential direction which can quantify 249 the agreement between current and previous updates. Second, how to guarantee the referential direction is beneficial 251 to search for a local minimum.

As the gradient at a training step implies the direction 253 towards a local minimum by the currently observed mini- 254 batch, the accumulation of all previous gradients provides 255 an overall direction towards a local minimum. Hence, it 256 provides a good referential direction to measure the agree- 257 ment between a specific update and its previous updates. 258 We denote the accumulated gradient as 259

$$\hat{g}_{k|w_m} = \sum_{i=m}^k g_i,\tag{2}$$

where w_m is the weights learned at time step m and $\hat{g}_{k|w_m}$ 262 indicates that the accumulation starts from w_m at time step 263 k. If there is no explicit w_m indicated, $\hat{g}_k = \hat{g}_{k|w_1}$. Fig. 2 shows 264 an example of accumulated gradient, where the gradient of 265 S_3 deviates from the accumulated gradient of S_1 and S_2 . 266 This also elicits our solution to measure congruency in a 267 training process.

3.2 Definition

Congruency ν is a metric to measure the agreement of 270 updates in a training process. In general, it is directly related 271 to an angle between the gradient for an update and the 272 accumulated gradient, i.e., $\alpha(\hat{g}_{k-1|w_m},g_k)\in[0,\pi]$. Smaller 273 angle indicates higher congruency. Practically, we use 274 cosine similarity to approximate the angle for computa-275 tional simplicity. Mathematically, at time step k, ν_k can be 276 defined as follows:

$$\nu_{k|w_m} = \cos \alpha(g_k, \hat{g}_{k-1|w_m}) = \frac{\hat{g}_{k-1|w_m}^{\top} g_k}{\|\hat{g}_{k-1|w_m}\|\|q_k\|}, \ m \le k, \tag{3}$$

where w_m is the weight learned at time step m and taken as 280 a reference point in weight space. $\alpha(\hat{g}_k, g_k)$ is the angle 281 between \hat{g}_k and g_k . Based on $v_{k-1|w_m}$, the congruency of a 282

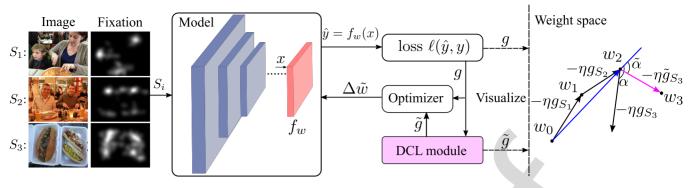


Fig. 2. An illustration of model training with the proposed DCL module. Here, 3 samples are observed in a sequential manner. The gradient generated by S_3 is expected to be different with the gradients generated by S_1 and S_2 . Hence, to tackle the expected violation between the update $-\eta g_{S_3}$ and the accumulated update $-\eta \sum_{i=1}^2 g_{S_i}$, the proposed DCL method finds a corrected update $-\eta \tilde{g}_{S_3}$ (the pink arrow) by solving a quadratic programming problem (5). In this way, the angle between $-\eta \tilde{g}_{S_3}$ and $-\eta \sum_{i=1}^2 g_{S_i}$ (the blue arrow), i.e., $\tilde{\alpha}$, is guaranteed to be equal to or less than α . Note that the gradient descent processes with or without the proposed DCL module is identical in the test phase.

training process that starts from w_j to learn out w_n can be defined as

$$\nu_{w_j \to w_n | w_m} = \frac{1}{n - j + 1} \sum_{i=j}^n \nu_{i | w_m}, \ m \le j < n.$$
 (4)

Since the concept of congruency is built upon cosine similarity, $\nu_{k|w_m}$ will range from [-1,1]. Another advantage of using cosine similarity is the tractability. The gradient computed from the loss is considered as a vector in weight space. Hence, cosine similarity can take any pair of gradients, such as the accumulated gradient and the gradient computed by a training sample, or two gradients computed by two respective training samples.

3.3 Task-Specific Factors

Congruency is semantics-aware. As congruency is based on the gradients which are computed with the images and the semantic ground-truth, such as class label in the classification task or human fixation in the saliency prediction task. Therefore, congruency reflects the task-specific semantics. We discuss congruency task-by-task in the following subsection.

Saliency Prediction. Visual attention is attracted to visually salient stimuli and is affected by many factors, such as scale, spatial bias, context and scene composition, oculomotor constraints, and so on. These factors result in high variabilities over fixations across various persons. The variabilities of visual semantics imply that same class objects in two images may have different salience levels, i.e., one object is predicted as salient object while the other same class object is not. In this sense, negative congruency in learning for saliency prediction may result from both feature-level and label-label disagreement across the images.

Continual Learning. In the continual learning setting [24], [33], [40], a classification model is learned with past observed classes and samples. New samples w.r.t. the unobserved classes may be distinct from previously seen samples in terms of both visual appearance and label. This leads to negative congruency in learning.

Classification. For classification, the class labels are usually deterministic to human. The factors that cause negative congruency in learning lie in visual appearances. Due to the variability of real-world images, visual appearance of

samples from the same class may be very different from 323 each other in different images. 324

4 METHODOLOGY

In this section, we first overview the proposed DCL method. 326 Then, we introduce its formulation and properties in detail. 327 Finally, we discuss the lower bound of congruency with 328 gradient descent methods. For simplicity, we assume it is at 329 time step k and omit underscored k in the following formulations unless we explicitly indicate it. 331

4.1 Overview

Fig. 2 demonstrates the basic idea of the proposed DCL 333 method. Given training sample (I,y), where I is an image 334 and y is the ground-truth, the corresponding feature x are 335 first generated by the sample before it is passed to the classifier for computing the predictions $\hat{y} = f_w(x)$. Conventionally, the derivatives g of the loss $\ell(\hat{y},y)$ are computed to 338 determine the update Δw by an optimizer to back-propagate 339 the error layer by layer. In the proposed DCL method, g is 340 taken to estimate a corrected gradient \tilde{g} that is congruent 341 with previous updates. For example, as shown in Fig. 2, the 342 gradient of S_3 is expected to have a large deviation angle α 343 to the accumulated anti-gradient $-\sum_{i=1}^2 g_{s_i}$ because S_1 and 344 S_2 share similar visual appearance, but S_3 is different from 345 them. The proposed DCL method aims to estimate a corrected \tilde{g} which has a smaller deviation angle $\tilde{\alpha}$ to $-\sum_{i=1}^2 g_{s_i}$. 347

4.2 Direction Concentration Learning

The core idea of the proposed DCL method is to concentrate the current update to a certain search direction. The accumulated gradient \hat{g} is the direction voted by previous updates which provides information towards the possible local minimum. Ideally, according to the definition of congruency, i.e., Eqs. (3) and (4), cosine similarity should be similarity with constraints is complicated. Therefore, similar to GEM [33], we adopt an alternative that optimizes the similar product, instead of the cosine similarity. According to the Eq. (3), $\langle g_1, g_2 \rangle \geq 0$ indicates that the angle between the two vectors is less than or equal to 90° .

Fig. 3. An illustration of DCL constraints with two reference points $r_0=w_0, r_1=w_1, \, \hat{g}_{r_0}$ is the pink arrow while \hat{g}_{r_1} is the green one. The colored dashed line indicates the border of feasible region with regards to $-\hat{g}_{r_i}, \, i \in \{0,1\},$ since Constraint (6) forces $-\eta \tilde{g}_k$ to have an angle which is smaller than or equal to 90° w.r.t. \hat{g}_{r_0} and \hat{g}_{r_1} .

As shown in Fig. 2, the proposed DCL method uses the accumulated gradient as a referential direction to compute a corrected gradient \tilde{g} , i.e.,

362

363

365

366

367

368

369

370

371

372

373

374

375

377

379

380 381

382

384

385

386

387

minimize
$$\frac{1}{\hat{g}} \|\tilde{g} - g\|_2^2$$
s.t. $\langle -\hat{g}_{r_i}, -\tilde{g} \rangle \ge 0, \quad 1 \le i \le N_r,$ (5)

where r_i is a reference point in weight space, \hat{g}_{r_i} is the accumulated gradient that starts the accumulation from r_i , and N_r is the number of reference points. The accumulated gradient \hat{g}_{r_i} indicates that the accumulation starts from the reference r_i to the current weights w. The proposed DCL method can take N_r points as the references $\{r_i | 1 \le i \le N_r\}$. Assume that the weights at time step t is taken as the reference r_i , i.e., $r_i = w_t$, we denote $sub(\cdot)$ as a function to find the index of a point in weight space. For example, with $t = sub(r_i) = sub(w_t)$, we can compute the accumulated gradient $\hat{g}_{r_i} = \sum_{j=sub(r_i)} g_j$. On the other hand, the function $\frac{1}{2} \|\tilde{g} - g\|_2^2$ is widely used in gradient-based methods [15], [25], [33], [44], [48] and forces \tilde{q} to be close to q in euclidean space as much as possible. The constraints $\langle -\hat{g}_{r_i}, -\tilde{g} \rangle \geq 0$ are to guarantee that the gradient that is used for an update should not substantially deviate from the accumulated gradient.

In practice, instead of directly computing \hat{g}_{r_i} by its definition (2)), we compute it by subtracting the current point w with the reference point r_i , i.e., $\hat{g}_{r_i} = w - r_i = -\eta \sum_{j=i} g_j$. Hence, the constraints can be deformed in a matrix form

$$A(-\tilde{g}) = -1 \times \begin{bmatrix} (w - r_1)^{\top} \\ (w - r_2)^{\top} \\ \vdots \\ (w - r_{N_r})^{\top} \end{bmatrix} \tilde{g} \ge 0.$$
 (6)

Fig. 3 demonstrates the effect of constraints in optimization. The dashed line in the same color indicates the border of feasible region with regards to $-\hat{g}_{r_i}, i \in \{1,2\}$ as Constraint (6) forces \tilde{g} to have an angle smaller than 90°. Due to two references in this example, the intersection between two

feasible regions, i.e., the shaded region, is the intersected 390 feasible region for optimization. Note that an accumulated 391 gradient determines half-plane (hyperplane) as feasible 392 region, instead of the full plane (hyperplane) in conventional gradient descent case.

The optimization (5) becomes a classic quadratic programming problem and we can easily solve it by off-the-shelf solvers like quadprog¹ or CVXOPT.² However, since the size of \tilde{g} 397 can be sufficiently large, straightforward solution may be 398 computationally expensive in terms of both time and storage. 399 As introduced by Dorn [7], we apply a primal-dual method 400 for quadratic programs to solve it efficiently. 401

Given a general quadratic problem, it can be formulated as follows:

$$\underset{z}{\text{minimize}} \quad \frac{1}{2} z^{\top} C z + q^{\top} z \quad \text{s.t.} \quad B z \ge b, \tag{7}$$

whereas the corresponding dual problem to Problem (7) is

minimize
$$\frac{1}{2}u^{\top}Cu + b^{\top}v$$
s.t. $B^{\top}v - Cu = q, \quad v \ge 0.$ (8)

Dorn provides the proof of the connection between Problems (7) and (8).

Theorem 4.1 (Duality). if $z = z^*$ is a solution to Problem (7) 411 then a solution $(u, v) = (u^*, v^*)$ exists to Problem (8). Con-412 versely, if a solution $(u, v) = (u^*, v^*)$ to Problem (8) exists then 413 a solution which satisfies $Cz = Cu^*$ to Problem (7) also exists. 414

Due to the equality constraint $B^{\top}v - Cu = q$, assume C is 415 full rank, we can plug $u = C^{-1}(B^{\top}v - q)$ back to the objective function to further simplify Problem (8), i.e.,

minimize
$$\frac{1}{2}v^{\top}B(C^{-1})^{\top}B^{\top}v + (b - p^{\top}B^{\top})v$$
s.t. $v \ge 0$. (9)

Now it turns out to be a quadratic problem w.r.t. v only.

The DCL quadratic problem can be solved by the afore- 421 mentioned primal-dual method. Specifically, $\|\tilde{g} - g\|_2^2 = (\tilde{g} - 422 g)^\top (\tilde{g} - g) = \tilde{g}^\top \tilde{g} - 2g^\top \tilde{g} + g^\top g$. By omitting the constant 423 term $g^\top g$, it turns to a quadratic problem form $\tilde{g}^\top \tilde{g} - 2g^\top \tilde{g}$. 424 Since we know the primal problem (7) can be converted to 425 its dual problem (8), the related coefficient matrices/vectors 426 are easily determined by

$$C = I$$
, $B = -A$, $b = \mathbf{0}$, $p = -g$,

where I is a unit matrix. With these coefficients at hand, we 430 have the corresponding dual problem 431

$$\underset{v}{\text{minimize}} \quad \frac{1}{2} v^{\top} A A^{\top} v - g^{\top} A^{\top} v \quad \text{s.t.} \quad v \ge 0.$$
 (10)

By solving (10), we have v^* . On the other hand, $C\tilde{g}=43$ $Cu^*, C=I$ and we can have the solution \tilde{g}^* by

$$\tilde{g}^* = Cu^* = B^{\mathsf{T}}v - q = -A^{\mathsf{T}}v + g.$$
 (11)

- 1. https://github.com/rmcgibbo/quadprog
- 2. https://cvxopt.org/

Note that $\tilde{g}, u \in \mathbb{R}^p, v \in \mathbb{R}^{N_r}, A \in \mathbb{R}^{N_r \times p}$, and $b \in \mathbb{R}^{N_r}$ where p is the size of w. If taking the fully-connected layer of ResNet as w, p = 2048. In contrast with p, N_r is usually smaller, i.e., 1,2, or 3. As N_r becomes larger, it increases the possibility that the constraints are inconsistent. Thus, $N_r \ll p$. This implies that solving Problem (10) in \mathbb{R}^{N_r} is more efficient than solving Problem (5) in \mathbb{R}^p .

4.3 Theoretical Lower Bound

Here, we discuss about the congruency lower bound with gradient descent methods. First, we recall the theoretical characteristics w.r.t. gradient descent methods.

Proposition 4.2 (Quadratic upper bound [36]). *If the gradient of a function* $f : \mathbb{R}^n \to \mathbb{R}$ *is Lipschitz continuous with Lipschitz constant L for any* $x, y \in \mathbb{R}^n$ *, i.e.,*

$$\|\nabla f(y) - \nabla f(x)\| \le L\|y - x\|,\tag{12}$$

then

$$f(y) \le f(x) + \nabla f(x)^{\top} (y - x) + \frac{L}{2} ||y - x||^2.$$
 (13)

On the other hand, there is a proved bound w.r.t. the loss.

Corollary 4.3 (The bound on the loss at one iteration [8], [49]). Let x_k be the kth iteration result of gradient descent and $\eta_k \geq 0$ the kth step size. If ∇f is L-Lipschitz continuous, then

$$f(x_{k+1}) \le f(x_k) - \eta_k \left(1 - \frac{L\eta_k}{2}\right) \|\nabla f(x_k)\|^2.$$
 (14)

By adding up a collection of inequalities, we can move further along this line to have the following corollary.

Corollary 4.4. Let x_k be the kth iteration result of gradient descent and $\eta_k \ge 0$ the kth step size. If ∇f is L-Lipschitz continuous, then

$$f(x_k) \le f(x_0) - \sum_{i=0}^{k-1} \eta_i \left(1 - \frac{L\eta_i}{2} \right) \|\nabla f(x_i)\|^2.$$
 (15)

Theorem 4.5 (Congruency lower bound). Assume the gradient descent method uses a fixed step size η and the gradient of the loss function $f: \mathbb{R}^n \to \mathbb{R}$ is Lipschitz continuous with Lipschitz constant L, the congruency $v_{k|x_0}$ referring to the initial point x_0 at the kth iteration has the following lower bound

$$\nu_{k|x_0} \ge \max \left\{ (1 - L\eta) \sum_{i=0}^{k-1} \frac{\|\nabla f(x_i)\|}{\|\nabla f(x_k)\|} - L\eta \frac{\sum_{i=0}^{k-1} \|\nabla f(x_i)\| \|\sum_{j=0}^{i-1} \nabla f(x_j)\|}{\|\nabla f(x_k)\| \|\sum_{i=0}^{k-1} \nabla f(x_i)\|}, -1 \right\}.$$
(16)

Proof. Given x_k and x_0 , according to Proposition 4.2 we have

$$\nabla f(x_k)^{\top} (x_k - x_0) \le f(x_k) - f(x_0) + \frac{L}{2} ||x_k - x_0||^2$$

Since $x_k = x_0 - \eta \sum_{i=0}^{k-1} \nabla f(x_i)$ and $\nu_{k|x_0} = (-\nabla f(x_k))^{\top}$ 489 $(-\sum_{i=0}^{k-1} \nabla f(x_i))/(\|\nabla f(x_k)\| \|\sum_{i=0}^{k-1} \nabla f(x_i)\|)$, we can 490 have

$$\nabla f(x_k)^{\top}(x_k - x_0) = -\eta(-\nabla f(x_k))^{\top} \left(-\sum_{i=0}^{k-1} \nabla f(x_i)\right)$$
$$= -\eta \|\nabla f(x_k)\| \|\sum_{i=0}^{k-1} \nabla f(x_i)\| \nu_{k|x_0}.$$

Plugging this in the inequality, it yields

$$\nu_{k|x_0} \ge \frac{1}{\eta} \frac{f(x_0) - f(x_k) - \frac{L\eta^2}{2} \|\sum_{i=0}^{k-1} \nabla f(x_i)\|^2}{\|\nabla f(x_k)\| \|\sum_{i=0}^{k-1} \nabla f(x_i)\|}.$$

According to Corollary 4.4, the inequality can be rewritten as

$$\nu_{k|x_0} \ge \frac{(1 - \frac{L\eta}{2}) \sum_{i=0}^{k-1} \|\nabla f(x_i)\|^2 - \frac{L\eta}{2} \|\sum_{i=0}^{k-1} \nabla f(x_i)\|^2}{\|\nabla f(x_k)\| \|\sum_{i=0}^{k-1} \nabla f(x_i)\|}.$$
(17)

By using polynomial expansion and the Cauchy-Schwarz 491 inequality, we can expand the term $\|\sum_{i=0}^{k-1} \nabla f(x_i)\|^2$ as 492 follows:

$$\|\sum_{i=0}^{k-1} \nabla f(x_i)\|^2 = \|\nabla f(x_{k-1}) + \sum_{i=0}^{k-2} \nabla f(x_i)\|^2$$

$$\leq \|\nabla f(x_{k-1})\|^2 + 2\|\nabla f(x_{k-1})\|\|\sum_{i=0}^{k-2} \nabla f(x_i)\| + \|\sum_{i=0}^{k-2} \nabla f(x_i)\|^2.$$

Recursively, $\|\sum_{i=0}^{k-2} \nabla f(x_i)\|^2$, $\|\sum_{i=0}^{k-3} \nabla f(x_i)\|^2$, ..., till 496 $\|\sum_{i=0}^{1} \nabla f(x_i)\|^2$ can be expanded, e.g.,

$$\| \sum_{i=0}^{1} \nabla f(x_i) \|^2 = \| \nabla f(x_1) + \nabla f(x_0) \|^2$$

$$\leq \| \nabla f(x_1) \|^2 + 2 \| \nabla f(x_1) \| \| \nabla f(x_0) \| + \| \nabla f(x_0) \|^2.$$

The above inequalities yield

$$\|\sum_{i=0}^{k-1} \nabla f(x_i)\|^2 \leq \sum_{i=0}^{k-1} \|\nabla f(x_i)\|^2 + 2\sum_{i=0}^{k-1} \|\nabla f(x_i)\|\|\sum_{j=0}^{i-1} \nabla f(x_j)\|.$$

Plugging it into Inequality (17), we have

$$\begin{split} \nu_{k|x_0} \geq & (1 - L\eta) \frac{\sum_{i=0}^{k-1} \|\nabla f(x_i)\|^2}{\|\nabla f(x_k)\| \|\sum_{i=0}^{k-1} \nabla f(x_i)\|} \\ & - L\eta \frac{\sum_{i=0}^{k-1} \|\nabla f(x_i)\| \|\sum_{j=0}^{i-1} \nabla f(x_j)\|}{\|\nabla f(x_k)\| \|\sum_{i=0}^{k-1} \nabla f(x_i)\|}. \end{split}$$

Due to $\frac{\sum_{i=0}^{k-1} \|\nabla f(x_i)\|}{\|\sum_{i=0}^{k-1} \nabla f(x_i)\|} \ge 1$, the congruency lower bound can be further simplified as

Fig. 4. An illustration to demonstrate the concept of the effective window. Given the spiral convergence path, $-\eta \hat{g}_{10|w_0}$ restricts the search direction and the minimum (i.e., the red star) and w_{11} are unreachable according to the search direction. In contrast, w_{11} can be reached along the search direction of $-\eta \hat{g}_{10|w_7}$. To adaptively yield appropriate accumulated gradients that converge to the minimum, we define an effective window to periodically update the reference.

$$\nu_{k|x_0} \ge (1 - L\eta) \sum_{i=0}^{k-1} \frac{\|\nabla f(x_i)\|}{\|\nabla f(x_k)\|} - L\eta \frac{\sum_{i=0}^{k-1} \|\nabla f(x_i)\|\|\sum_{j=0}^{i-1} \nabla f(x_j)\|}{\|\nabla f(x_k)\|\|\sum_{j=0}^{k-1} \nabla f(x_j)\|}.$$

Combining with the fact $\nu_{k|x_0} \ge -1$, we complete the proof.

Remark 4.6. Theorem 4.5 implies that when we apply gradient descent method to search a local minimum, the congruency lower bound at a certain iteration in the learning process is determined by the gradients at current iteration and previous iterations.

Remark 4.7. Theorem 4.5 implies that the lower bound of congruency with a small step size, i.e., $\eta < \frac{1}{L}$, is tighter than the one of congruency with a large step size, i.e., $\eta \geq \frac{1}{L}$. This is consistent with the fact the large step size could lead to a zigzag convergence path. The negative lower bound of congruency when $\eta \geq \frac{1}{L}$ indicates the huge turnaround would possibly occur in the learning process.

4.4 Adaptivity to Learning

500

502

503

504

505

506

507

508

510

511

512

513

514

515

516

517

518

519

520

521

523

524

525

526

527

As the reference is used to compute the accumulated gradient for narrowing down the search direction, a desirable referential direction should orient to a local minimum. Conversely, an inappropriate referential direction could mislead the training and slow down the convergence. Therefore, it is important to update the references to adapt to the target optimization problem.

In this work, we update the references with a short temporal window so as to yield a locally stable and reliable referential direction. For instance, Fig. 4 shows an unfavorable case that takes w_0 as the reference, where the convergence path is spiral. Due to the circuitous manifold, w_0 results in a misleading direction $-\eta \hat{g}_{10|w_0}$. In contrast, if taking w_7 as a reference, it can yield the appropriate search direction to reach w_{11} . Therefore, we introduce an "effective window" to allow the proposed DCL method to find an appropriate search direction. The

effective window forces the proposed DCL method to 529 only accumulate the gradients within the window. In 530 Fig. 4, the proposed DCL method with a small window 531 size would converge, whereas the one with a large win-532 dow size would diverge. We denote the window size as 533 β_w and the reference offset as β_o . When the time step t 534 catiofice

$$t \bmod \beta_w = \beta_o, \tag{18}$$

where mod is the modulo operator, it would trigger the reset 538 mechanism, i.e., starting over to set references $r_i \leftarrow w_t$, 539 $1 \le i \le N_r$. β_o indicates the first reference weight point. 540 Once the reset process starts, the proposed DCL method 541 would use g, instead of \tilde{g} , for update until all the N_r references are reset.

4.5 Effect of DCL

To intuitively understand the effect of the proposed DCL 545 method, we present visual comparisons of the convergence 546 paths with three popular optimizers, i.e., SGD [42], RMSProp 547 [14], and Adam [23], on a publicly available problem.³ 548

In particular, given the problem z=f(x,y), we apply 549 the three optimizers to compute a local minimum (x^*,y^*) . 550 Unlike image classification, the problem does not need randomized data sequence as input so there is no stochastic 552 process. For a fair comparison, except the learning rate, we 553 keep the settings and hyperparameters the same between 554 ALGO and ALGO DCL, where ALGO={GD, RMSProp, 555 Adam} and GD stands for gradient descent. The convergence paths w.r.t. the optimization algorithms are shown 557 in Figs. 5a, 5b, and 5c, while the corresponding z versus 558 iteration curves are plotted in Figs. 5d, 5e, and 5f.

We can see that all the baseline curves are circuitous, i.e., 560 a sharp turn at the ridge region between two local minima. 561 Moreover, different learning rates lead to different local 562 minima. It implies that the training process in this case is 563 influenceable and fickle in terms of the direction of the convergence. The proposed DCL method noticeably improves 565 the convergence direction by choosing a relatively straightforward path over the three optimization algorithms. Note 567 that as the objective function (5) implies, if we do not take 568 any the accumulated gradients (i.e., no constraints), or take 569 the gradient for the coming update as the accumulated gradient (i.e., $\hat{g}_{r_i} = g$), the proposed DCL method would 571 become the baseline (i.e., $\tilde{g} = g$).

4.6 DCL in Continual Learning

In previous subsections, we introduce the proposed DCL 574 method in mini-batch learning. By its very nature, it can 575 also work in continual learning manner. GEM [33] is a 576 recent method proposed for continual learning. The objective function of GEM is the same as the proposed DCL 578 method, whereas the constraints of GEM and the proposed 579 DCL method are devised for respective purposes. To apply 580 the proposed DCL method in continual learning, we can 581 merge the constraints of the proposed method with the ones 582 of GEM. Hence, we have a new A as follows:

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601 602

603

604

605

606

607

608

609

610

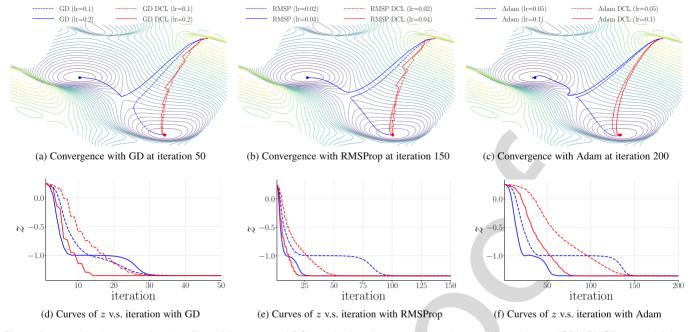


Fig. 5. An example demonstrating the effect of the proposed DCL method on three optimizers, i.e., gradient descent (GD), RMSProp, and Adam. Given a problem z=f(x,y), we use these optimization algorithms to compute the local minima, i.e., (x^*,y^*) that yield the minimal z^* . In the experiment, except the learning rate, the setting and hyperparameters are the same for ALGO and ALGO DCL, where ALGO={GD, RMSProp, Adam}. The proposed DCL method encourages the convergence paths to be as straight as possible.

$$A = \begin{bmatrix} (w - r_1)^{\top} \\ \vdots \\ (w - r_{N_r})^{\top} \\ -g(x_{S_1}, y_{S_1})^{\top} \\ \vdots \\ -g(x_{S_{N_m}}, y_{S_{N_m}})^{\top} \end{bmatrix}, \quad S_i \in \mathcal{M},$$

$$(19)$$

where \mathcal{M} is the memory and N_m is the size of the memory. With the proposed DCL constraints, the corrected \tilde{g} is forced to be consistent with both the accumulated gradients and the directions of gradients generated by the samples in memory.

4.7 Comparison With Memory-Based Constraints

Now, we discuss the difference between the proposed DCL constraints and the memory-based constraints used in GEM [33].

There are two main differences between the DCL constraints and the GEM constraints. First, as shown in Fig. 6, the descent direction in the proposed DCL method is regulated by the accumulated gradient, whereas the gradient for an update in GEM is regulated to avoid the violation with the gradients of the memory samples (i.e., images and the corresponding ground-truths). Since the weights are iteratively updated and the memory samples are preserved, the gradients of the memory samples could be changed at each iteration so the direction of the adjusted gradient could be dynamically varying. Second, the proposed DCL method only needs to memorize the references, whereas GEM memorizes the images and the corresponding ground-truths. The proposed DCL constraints are efficiently computed by a subtraction in Eq. (6), other than by computing the corresponding gradients like GEM.

Although the proposed DCL constraints are different from GEM constraints in terms of definition, they are able to work with each other in continual learning. We will 611 dive into the details in the following experiment section. 612 Moreover, GEM computes the gradients on all the parame- 613 ters of a DNN. This works in the situations that input 614 image resolution is relatively small, e.g., 784 for MNIST [29] 615 or 3,072 for CIFAR-10/100 [26]. The networks used to classify these images have small number of weights like MLP 617 and ResNet-18. However, the number of parameters in a 618 DNN could be huge. For example, ResNeXt-29 (16×64) 619 [56] has 68 million parameters. Although GEM applies 620 primal-dual method to reduce the computation in optimi- 621 zation, the overall computation is still considerably high. 622 In this work, we instead compute the gradients on the 623 highest-level layer to generalize the proposed DCL method 624 to any general DNN.

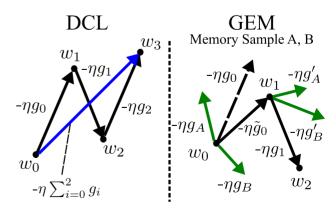


Fig. 6. An illustration demonstrating the difference between DCL (left) and GEM [33] (right). The search direction in DCL is determined by the accumulated gradient while the adjusted gradient (solid line) of GEM is optimized by avoiding the violation between the gradient (dashed line) and memory samples' gradients (green line). Since the weights are iteratively updated and the memory samples are preserved, the direction of the adjusted gradient of the memory samples could be dynamically varying.

TABLE 1
Saliency Prediction Performance of the Models Which are Trained on SALICON 2017
Training Set and Evaluated on SALICON 2017 Validation Set

	NSS	sAUC	AUC	CC
ResNet-50 RMSP ResNet-50 RMSP GEM ResNet-50 RMSP DCL-∞-1	$\begin{array}{c} 1.7933 \pm 0.0083 \\ 1.7522 \pm 0.0150 \\ \textbf{1.8226} \pm 0.0014 \end{array}$	$\begin{array}{c} 0.8311 \pm 0.0017 \\ 0.8267 \pm 0.0017 \\ \textbf{0.8376} \pm 0.0017 \end{array}$	$\begin{array}{c} 0.8393 \pm 0.0039 \\ 0.8341 \pm 0.0016 \\ \textbf{0.8445} \pm 0.0016 \end{array}$	$\begin{array}{c} 0.8472 \pm 0.0048 \\ 0.8291 \pm 0.0033 \\ \textbf{0.8569} \pm 0.0032 \end{array}$
ResNet-50 Adam ResNet-50 Adam GEM ResNet-50 Adam DCL-∞-1	1.7978 ± 0.0019 1.7962 ± 0.0034 1.8019 ± 0.0024	$0.8328 \pm 0.0007 \\ 0.8344 \pm 0.0021 \\ 0.8360 \pm 0.0023$	0.8405 ± 0.0011 0.8399 ± 0.0009 0.8430 ± 0.0023	$0.8495 \pm 0.0004 \\ 0.8494 \pm 0.0034 \\ 0.8548 \pm 0.0038$
DINet Adam [59] DINet Adam GEM DINet Adam DCL-500-1	1.8786 ± 0.0063 1.8746 ± 0.0067 1.8857 ± 0.0006	0.8426 ± 0.0008 0.8423 ± 0.0014 0.8430 ± 0.0002	0.8489 ± 0.0008 0.8492 ± 0.0012 0.8493 ± 0.0002	0.8799 ± 0.0010 0.8791 ± 0.0030 0.8804 ± 0.0009

Higher score is better in all the metrics. Each experiment is repeated for 3 times and the mean and std of the scores are reported. We follow [59] to only use Adam as the optimizer for DINet.

TABLE 2
Saliency Prediction Performance of the Models Which are Trained on OSIE and Tested on MIT1003

	NSS	sAUC	AUC	CC
ResNet-50 RMSP	2.4047 ± 0.0055	0.7612 ± 0.0019	0.8455 ± 0.0028	0.7595 ± 0.0002
ResNet-50 RMSP GEM	2.3960 ± 0.0057	0.7566 ± 0.0045	0.8412 ± 0.0055	0.7500 ± 0.0037
ResNet-50 RMSP DCL-∞-1	2.4252 ± 0.0053	0.7620 ± 0.0018	0.8469 ± 0.0027	0.7658 ± 0.0016
ResNet-50 Adam	2.4064 ± 0.0015	0.7597 ± 0.0012	$0.8429 \pm 0.0021 \\ 0.8427 \pm 0.0017 \\ \textbf{0.8442} \pm 0.0008$	0.7618 ± 0.0005
ResNet-50 Adam GEM	2.3685 ± 0.0065	0.7594 ± 0.0007		0.7524 ± 0.0011
ResNet-50 Adam DCL-∞-1	2.4108 ± 0.0063	0.7613 ± 0.0007		0.7617 ± 0.0007
DINet Adam	2.4406 ± 0.0058	0.7570 ± 0.0005	$\begin{array}{c} 0.8442 \pm 0.0016 \\ 0.8432 \pm 0.0003 \\ \textbf{0.8476} \pm 0.0008 \end{array}$	0.7534 ± 0.0005
DINet Adam GEM	2.4456 ± 0.0037	0.7571 ± 0.0005		0.7540 ± 0.0006
DINet Adam DCL-120-1	2.4566 ± 0.0007	0.7611 ± 0.0011		$\textbf{0.7597} \pm 0.0008$

Each experiment is repeated for 3 times and the mean and std of the scores are reported.

5 EXPERIMENTS

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

5.1 Experimental Setup

To comprehensively evaluate the proposed DCL method, we conduct experiments on three tasks, i.e., saliency prediction, continual learning, and classification.

5.1.1 Datasets

For saliency prediction task, we use SALICON [20] (the 2017 version), MIT1003 [22], and OSIE [58]. For continual learning task, we follow the same experimental settings in GEM [33] to use MNIST Permutations (MNIST-P), MNIST Rotations (MNIST-R), and incremental CIFAR-100 (iCIFAR-100). For classification, we use CIFAR [26], Tiny ImageNet, and ImageNet [6].

5.1.2 Models

For saliency prediction, we adopt an improved SALICON saliency model [17] and DINet [59] as the baselines. Both the baseline models takes ResNet-50 [13] as the backbone architecture.

For continual learning, we adopt the same models used in GEM, i.e., Multiple Layer Perceptron (MLP) and ResNet-18, as well as EfficientNet-B1 [47] as the backbone architecture for evaluation. EWC [24] and GEM are used for comparison.

For classification, we use the state-of-the-art model without any architecture modifications for a fair evaluation.

ResNeXt [56] (i.e., ResNeXt-29), DenseNet [16] (i.e., 651 DenseNet-100-12), and EfficientNet-B1 [47] are used in 652 the evaluation of CIFAR-10 and CIFAR-100. ResNet (i.e., 653 ResNet-101), DenseNet (i.e., DenseNet-169-32), and Effi-654 cientNet-B1 [47] are used in the experiments on Tiny Image-655 Net. ResNet (i.e., ResNet-34 and ResNet-50) is used in the 656 experiments on ImageNet.

5.1.3 Notation

For convenience, we notate *model name + optimizer name + 659 DCL-\beta_w-N_r* for key experimental details in Tables 1, 2, 6 and 660 7. $\beta_w = \infty$ indicates it never resets the references when the 661 initialization of references is finished.

5.1.4 Evaluation Metrics

For saliency prediction, we report the performance using 664 the commonly use metrics, namely area under curve 665 (AUC) [1], [21], shuffled AUC (sAUC) [1], [45], normalized 666 scanpath saliency (NSS) [18], [43], and correlation coefficient 667 (CC) [38]. Human fixations are used to form the positive set 668 while the points from the saliency map are sampled to form 669 the negative set. With the two sets, an ROC curve of true 670 positive rate versus false positive rate would be plotted by 671 thresholding over the saliency map. If the points are sampled in a uniform distribution, it is AUC. If the points are 673 sampled from the human fixation points, it is sAUC. NSS 674 would average the response values at human eye positions 675

677

678

679

680

681 682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

713

715

716

717

718

719

720

TABLE 3
Performances on MNIST-R in Continual Learning
Setting Using SGD [42] as the Optimizer

	Accuracy	BWT	FWT
EWC	54.61	-0.2087	0.5574
GEM	83.35	-0.0047	0.6521
MLP DCL-30-1 MEM	84.08	0.0094	0.6423
MLP DCL-40-1 MEM	84.02	0.0127	0.6351
MLP DCL-50-1 MEM	82.77	0.0238	0.6111

The reported accuracy is in percentage. MEM indicates that the constraints of GEM [33] are concatenated to use as Eq. (19) describes.

in an predicted saliency map which has been normalized to be zero-mean and with unit standard deviation. CC measures the strength of a linear correlation between a ground-truth map and a predicted saliency map. For continual learning, we use the same metrics used in GEM [33], i.e., accuracy, backward transfer (BWT), and forward transfer (FWT). For classification, we evaluate the proposed DCL method with top 1 error rate metric on the CIFAR experiments while both top 1 and top 5 error rate are reported in the experiments of Tiny ImageNet and ImageNet.

5.1.5 Experimental and Training Details

In the experiments of saliency prediction, we use Adam [23] and RMSProp (RMSP) [14] optimizers. In the setting with Adam, we use $\eta=0.0002$, weight decay 1e-5 while $\eta=0.0005$, weight decay 1e-5 are used within the setting of RMSP. The momentum is set to 0.9 for both Adam and RMSP. η would be adjusted along with the epochs, i.e., $\eta_{k+1} \leftarrow \eta_0 \times 0.5^{k-1}$, where k is the current epoch. The batch size is 8 by default. To fairly evaluate the performances of the models, we use cross-dataset validation technique, i.e., the models are trained on the SALICON 2017 training set and evaluated on the SALICON 2017 validation set, and trained on OSIE and evaluated on MIT1003.

We follow the experimental settings in [33] for continual learning. Specifically, MNIST-P and MNIST-R have 20 tasks and each task has 1,000 examples from 10 different classes. On iCIFAR-100, there are 20 tasks and each task has 2,500 examples from 5 different classes. For each task, the first 256 training samples will be selected and stored as the memory on MNIST-P, MNIST-R, and iCIFAR-100. In this work, GEM constraints are concatenated with the DCL constraints by Eq. (19). As the different concepts are learned across the episodes, i.e., the tasks, we only consider that the accumulation of gradients would take place in each episode.

In the classification task, we evaluate the models with SGD optimizer [42]. The hyperparameters are kept by default, i.e., weight decay 5e-4, initial $\eta=0.1$, the number of total epochs 300. η would be changed to 0.01 and 0.001 at epoch 150 and 225, respectively. For the Tiny ImageNet experiments, we will train the models in 30 epochs with weight decay 1e-4, initial $\eta=0.001$. η would be changed to 1e-4 and 1e-5 at epoch 11 and 21, respectively. The momentum is 0.9 by default. The batch size is 128 in the CIFAR experiments and 64 in the Tiny ImageNet experiments. In the ImageNet experiments, we use batch size of 512 to train ResNet-50.

In addition, we present the performance of GEM for reference as well. Note that more samples in memory may

TABLE 4
Performances on MNIST-P in Continual Learning
Setting Using SGD as the Optimizer

	Accuracy	BWT	FWT
EWC	59.31	-0.1960	-0.0075
GEM	82.44	0.0224	-0.0095
MLP DCL-3-1 MEM	82.30	0.0248	-0.0038
MLP DCL-4-1 MEM	82.58	0.0402	-0.0092
MLP DCL-5-1 MEM	82.10	0.0464	-0.0095

lead to inconsistent constraints. We set memory size to 1 723 and reset the memory at each epoch beginning, which is 724 analogous to the case that GEM for continual learning 725 would reset the memory at each beginning of the episode. 726 The implementations of this work are built upon PyTorch⁴ 727 and quadprog package is employed to solve quadratic pro- 728 gramming problems. 729

730

5.2 Performance Evaluation

5.2.1 Saliency Prediction

Table 1 reports the mean and standard deviation (std) of the 732 scores in NSS, sAUC, AUC, and CC over 3 runs on the SAL-733 ICON 2017 validation set. We can see that the proposed 734 DCL method overall improves the saliency prediction performance with both ResNet-50 and DINet over all the metrics. Moreover, small values of stds w.r.t. the proposed DCL 737 method show that the randomness caused by the stochastic 738 process does not contribute much to the improvement. 739 Table 2 shows that the proposed DCL method trained on 740 OSIE consistently improves the saliency prediction performance on MIT1003.

Note that Adam and RMSP optimizer are different algo- 743 rithms to compute effective step sizes based on the gra- 744 dients. The consistency of the improvement with both 745 optimizers shows that the proposed DCL method generally 746 works with these optimizers.

5.2.2 Continual Learning

As introduced in Section 4, we apply the proposed DCL 749 method to enhance the congruency of the learning process 750 for continual learning. Specifically, following Eq. (19), we 751 concatenate the DCL constraints with the GEM constraints 752 [33]. As reported in Table 3, the proposed DCL method 753 improves the classification accuracy by 0.7 percent on 754 MNIST-R. Similarly, the proposed DCL method improves 755 the classification accuracy on MNIST-P as well (see Table 4). 756 The marginal improvement may results from the difference 757 between MNIST-R and MNIST-P. Permuting the pixels of 758 the digits is harder to recognize than rotating the digits by 759 a fixed angle, and makes the accumulated gradient less 760 informative in terms of leading to the solution. We observe 761 that shorter effective window size is helpful to improve 762 the accuracy in the continual learning task. This is because 763 the training process of continual learning is one-off and a 764 fast variation could be caused by the limited images with 765 brand new labels in each episode. The experiments on 766

TABLE 5
Performances on iCIFAR-100 in Continual Learning
Setting Using SGD as the Optimizer

	Accuracy	BWT	FWT
EWC	48.33	-0.1050	0.0216
iCARL	51.56	-0.0848	0.0000
ResNet GEM	66.67	0.0001	0.0108
ResNet DCL-4-1 MEM	67.92	0.0063	0.0102
ResNet DCL-8-1 MEM	67.27	0.0104	0.0190
ResNet DCL-12-1 MEM	66.58	0.0089	0.0139
ResNet DCL-20-1 MEM	66.56	0.0030	0.0102
ResNet DCL-24-1 MEM	64.97	0.0082	0.0238
ResNet DCL-32-1 MEM	66.10	0.0305	0.0176
ResNet DCL-50-1 MEM	64.86	0.0244	0.0125
EffNet GEM	80.80	0.0318	-0.0050
EffNet DCL-4-1 MEM	81.55	0.0383	-0.0048
EffNet DCL-8-1 MEM	80.84	0.0367	0.0068
EffNet DCL-12-1 MEM	79.45	0.0322	0.0011
EffNet DCL-20-1 MEM	79.33	0.0316	-0.0095
EffNet DCL-24-1 MEM	79.05	0.0375	-0.0006
EffNet DCL-32-1 MEM	79.97	0.0452	-0.0145
EffNet DCL-50-1 MEM	77.87	0.0602	-0.0101

EffNet stands for EfficientNet [47].

iCIFAR-100 in Table 5 confirm this pattern. The proposed DCL method with ResNet and $\beta_w = 4$ improves the accuracy by 1.25 percent on iCIFAR-100.

There are another two metrics for continual learning, i.e., forward transfer (FWT) and backward transfer (BWT). FWT is that learning a task is helpful in learning for the future tasks. Particularly, positive FWT is correlated to n-shot learning. Since the proposed DCL method utilizes the directional information of the past updates, it has less influence/ correlation to FWT. Hence, we will focus on BWT. BWT is the influence that learning a task has on the performance on the previous tasks. Positive BWT is correlated to congruency in the learning process, while large negative BWT is referred as catastrophic forgetting. Tables 3 and 4 show that the proposed DCL method is useful in improving BWT on MNIST-R and MNIST-P. The BWT of GEM is negative (-0.0047) and the proposed DCL method improves it to 0.0238 on MNIST-R. Similarly, the BWT of GEM is 0.0224 and the proposed DCL method improves it to 0.0464 on MNIST-P. Similarly, in Table 5, the proposed DCL method with ResNet improves BWT of GEM from 0.0001 to 0.0305, while the proposed DCL method with EfficientNet [47] improves BWT to 0.0602

TABLE 6
Top 1 Error Rate (in %) on CIFAR With Various Models

	CIFAR-10	CIFAR-100
ResNeXt-29 SGD	3.53	17.30
ResNeXt-29 SGD GEM	7.70	32.70
ResNeXt-29 SGD DCL-∞-1	3.33	17.02
DenseNet-100-12 SGD	4.54	22.88
DenseNet-100-12 SGD GEM	6.92	33.72
DenseNet-100-12 SGD DCL-90-1	4.32	22.16
EfficientNet-B1 SGD [47]	1.91	11.81
EfficientNet-B1 SGD GEM	3.06	19.48
EfficientNet-B1 SGD DCL-5-1	1.79	11.65

TABLE 7
Top 1 and Top 5 Error Rate (in %) on the Validation
Set of Tiny ImageNet With Various Models

	Top 1 error	Top 5 error
ResNet-101 SGD	17.34	4.82
ResNet-101 SGD GEM	21.78	7.21
ResNet-101 SGD DCL-60-1	16.89	4.50
DenseNet-169-32 SGD	20.24	6.11
DenseNet-169-32 SGD GEM	26.81	9.43
DenseNet-169-32 SGD DCL-50-1	19.55	6.09
EfficientNet-B1 SGD EfficientNet-B1 SGD GEM EfficientNet-B1 SGD DCL-8-1	15.73 28.74 15.61	3.90 11.31 3.75

5.2.3 Classification

Table 6 reports the top 1 error rates on CIFAR-10 and 791 CIFAR-100 with ResNeXt, DenseNet, and EfficientNet. In 792 all cases, the proposed DCL method outperforms the base- 793 line, i.e., ResNeXt-29 SGD, DenseNet-100-12 SGD, and Effi-794 cientNet-B1 SGD. Specifically, the proposed DCL method 795 with ResNeXt decreases the error rate by 0.2 percent on 796 CIFAR-10 and by 0.28 percent on CIFAR-100, while the proposed DCL method with EfficientNet decreases the error 798 rate by 0.12 percent on CIFAR-10 and by 0.16 percent on 799 CIFAR-100. Similar improvements can be found in the 800 experiments with DenseNet and this shows that the pro- 801 posed DCL method is generally able to work with various 802 models. Moreover, it can be seen in Table 6 that GEM has 803 a higher error rate than the baseline in the experiments 804 with ResNeXt, DenseNet, and EfficientNet. Because of the 805 dynamical update process in learning, the gradient of the 806 samples in memory does not guarantee that the direction 807 leads to the solution. The direction can be even worse, e.g., 808 it is possible to go in an opposite way to the solution.

A consistent improvement w.r.t. the proposed DCL 810 method can be found in the experiments on Tiny ImageNet 811 (see Table 7). The proposed DCL method decreases top 1 812 error rate by 0.45 percent with ResNet, by 0.69 percent with 813 DenseNet, and by 0.12 percent with EfficientNet. Also, the 814 performance degradation caused by GEM [33] can be 815 observed that top 1 error rate generated by GEM with 816 ResNeXt is increased by almost 4.44 percent, comparing to 817 the baseline ResNet.

Table 8 reports the mean and std of 1-crop valida- 819 tion error of ResNet-50 on ImageNet. Comparing to Tiny 820 ImageNet and CIFAR, ImageNet has more categories and 821 more high resolution images. Given such difficulties, the 822

TABLE 8
Top 1 and Top 5 1-Crop Validation Error (in %) on ImageNet With SGD Optimizer

	Top 1 error	Top 5 error
ResNet-50 [13]	24.70	7.80
ResNet-50 (reproduced) ResNet-50 DCL	$\begin{array}{c} 24.33 \pm 0.08 \\ 24.09 \pm 0.03 \end{array}$	$7.30 \pm 0.07 \\ 7.23 \pm 0.02$

 $eta_w=5$ and $N_r=1$ are used for ResNet-50 DCL. Within the same experimental settings, ResNet-50 GEM does not converge in this experiment. The mean and std of errors are computed over three runs.

Fig. 7. The congruencies (*Cong.*) generated by the given references (*Ref.*) and samples with the baseline ResNet-50 RMSP in Table 2. The cosine similarities (*Sim.*) between referred images and sample images are provided for comparison purposes. Source images and the corresponding ground-truths, i.e., fixation maps, are displayed along with the congruencies. The first and second block are the results of subset that contains persons in various scenes. The third block is examples of food subset. The rightmost block shows subset with mixed image categories, i.e., contain objects of various categories in various scenes.

proposed DCL method reduces the mean of top 1 errors by 0.24 percent over three runs. In summary, the improvement gained by the proposed DCL method is benefited from the better solution searched by optimizing DCL quadratic programming problem (5).

6 ANALYSIS

824

826

828

829

830

831

832

833

834

835

836

837

838

840

841

842

843

844

845

846 847

848 849

850

851

852

853

855

856

857

858

859

860

861

862

863

In this section, we first validate the defined congruency by comparing through qualitative examples. Then, an ablation study w.r.t. β and N_r is presented. Moreover, we provide a congruency analysis in the training processes for the three tasks. In the end, the comparison between training from scratch and fine-tuning, as well as the computational cost are provided.

6.1 Validity of Congruency Metric

In this subsection, we conduct a sanity check on the validity of the defined congruency. To do this, we consider a simple case where we directly take the gradients (i.e., g_{S_1} and g_{S_2}) of two samples (i.e., S_1 and S_2) to compute the corresponding congruency, i.e., $\nu = \frac{g_{S_1}^{\top} g_{S_2}}{\|g_{S_1}\|\|g_{S_2}\|}$. For comparison purposes, the cosine similarity, Sim, between raw image S_1 and S_2 is also computed by $Sim = \frac{S_1^{\top} S_2}{\|S_1\|\|S_2\|}$. Note that congruency is semantics-aware, whereas cosine similarity between the two raw images is semantics-blind. This is because the gradients are computed by images and its semantic ground truth, e.g., the class label in the classification task or human fixation in the saliency prediction task.

For the analysis in the saliency prediction task, we sample 3 subsets, where 20 training samples w.r.t. person, 20 training samples w.r.t. food, and 20 training samples w.r.t. various scenes and categories were sampled from SALICON. For the analysis in the classification task, 3 subsets were sampled from Tiny ImageNet, which comprised of 100 images of tabby cat and Egyptian cat to form a intrasimilar-class subset, 100 images of tabby cat and German shepherd dog to form a inter-class subset, and 50 images from various classes to form a mixed subset. In this way, we can analyze the correlation between the samples in terms of congruency. With these subsets, we use the baselines, i.e., ResNet-50 for saliency prediction and ResNet-101 for classification, to yield the samples gradients without updating the model.

Fig. 7 demonstrates the congruencies w.r.t. the references and various samples (image + fixation map). In contrast to

the deterministic nature in the classification task, saliency is 865 context-related and semantics-based. It implies that the 866 same objects within two different scenarios may have differ- 867 ent saliency labels. Hence, we select the examples of same/ 868 similar objects for this experiment. In Fig. 7, the first and 869 second block on left are based on the person subset within 870 various scenarios. The first block consists of the images of 871 person and dining table. Taking the first row sample as ref- 872 erence, the sample in the second row has higher congruency 873 (0.4155) when compared to bottom row sample (0.3699). 874 Although all the fixation maps of all the samples are dif- 875 ferent, pizza in the second image is more similar to the 876 reference image whereas food in the bottom sample is 877 inconspicuous. In the second block, both the portrait of the 878 fisher (reference) and the portrait of the baseball player (sec- 879 ond sample) are similar in terms of the layout, comparing to 880 the persons in dining room (third sample). Their fixation 881 maps are similar as well.

The congruency of the reference and second sample 883 (0.6377) are higher than the one of the reference and third 884 sample (0.2731). In the third block, the image of the reference is three hot dogs and its fixation maps is similar to 886 the fixation maps of the second sample. The two hog dog 887 samples have similar visual appearance and layout of fixa- 888 tions to yield a higher congruency (0.6696). In contrast, third 889 sample is different from the reference in terms of visual 890 appearance and layout of fixations, which yields a lower 891 congruency (0.5075). The rightmost block shows an interesting fact that two outdoor samples yield a positive congru- 893 ency 0.1667, whereas the outdoor reference and the indoor 894 sample yield a negative congruency -0.1965. One possible 895 reason is that the fixation pattern are different between the 896 reference and the bottom indoor sample. In addition, the 897 visual appearance like illumination may be the another fac- 898 tor causing such the discrepancy.

For classification, Fig. 8 shows the congruencies w.r.t. the 900 references and given samples in each subset. In all cases, we 901 first observe that images with same genuine class as references yield high congruency, i.e., larger than 0.94 for all cases. 903 These show that the gradients of the same labels are similar 904 in the direction of the updates. Another observation is that 905 the congruency of pairs with different labels are significantly smaller than the matched label counterpart. In Fig. 8, 907 the congruencies of the reference (Tabby cat) and Egyptian 908 cat images are below 0.03, while the congruencies of the reference and German shepherd dog images are below 0.016 in 910

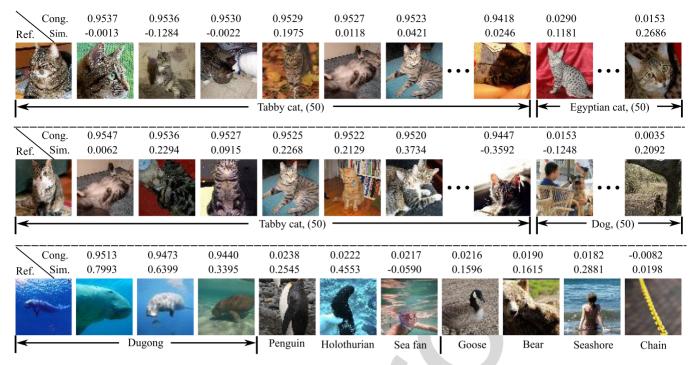


Fig. 8. The congruencies (*Cong.*) generated by the given references (*Ref.*) and samples with the baseline ResNet-101 SGD in Table 7. The images with its labels are displayed along with the congruencies. The cosine similarities (*Sim.*) between referred images and sample images are provided for comparison purposes. The first block is the results of the intra-similar-class subset consisting of images of tabby cat and Egyptian cat. The middle block is the results of the inter-class subset consisting of images of tabby cat and German shepherd dog. The value in bracket indicates number of images. The bottom block is the results of images of various labels.

the middle block. These demonstrate that the gradients of inter-class samples are nearly perpendicular to each other. The reference of class 'Dugong' has positive congruencies w.r.t. all the images that fall in the category of animal, except for the image of chain, which falls into a non-animal category. Last but not least, given the images with different labels, similar visual appearance would lead to relatively higher congruency. For example, the congruencies between tabby cat and Egyptian cat are overall higher than the ones between tabby cat and German shepherd dog. In summary, the labels are an important factor to influence the direction of the gradient in the classification task. Second, the visual appearance is another factor for congruency.

In contrast with congruency, cosine similarity between two raw images make less sense in the context of a specific task. For example, two similar dining scenes in the first column in Fig. 7 yield a negative cosine similarity -0.0066 in the saliency prediction task. Similarly, the first two cat images in the first row in Fig. 8, which are cast to the same category, yield a negative cosine similarity -0.0013. The negative cosine similarity between two images with the same or similar ground truth are counterintuitive. It results from the fact that cosine similarity between two images only focuses on the difference between two sets of pixels and ignores the semantics associated to the pixels.

6.2 Ablation Study

In this subsection, we study the effects of effective window size β_w and reference number N_r on saliency prediction task (with SALICON) and classification task (with Tiny ImageNet).

In the saliency prediction experiment, Fig. 9a shows the curve of sAUC versus β_w based on DCL- β_w -1, while Fig. 9b shows the curve of sAUC versus N_r based on DCL- ∞ - N_r .

Note that for the reference number study, the training 943 process on SALICON consists of 12,500 iterations so $\beta_w \geq 944$ 12500 is equivalent to $\beta_w = \infty$, which means that it never 945 resets the references in the whole learning process. It can be 946 observed that different β_w and N_r yield relatively similar performance in sAUC. This aligns with the nature of saliency pre-948 diction, where it maps features to the salient label and the 949 non-salient label. The features w.r.t. the salient label are highly 950 related to each other so β_w and N_r would pervasively help the 951 learning process make use of congruency.

In the classification experiment, Fig. 9c shows the curve 953 of top 1 error versus β_w based on DCL- β_w -1. We can see that 954

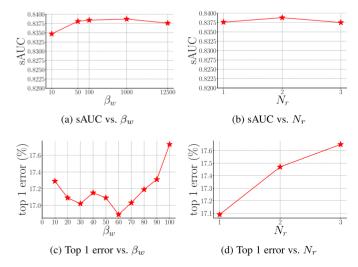


Fig. 9. Ablation study w.r.t. effective window size β_w and references number N_r . (a) and (b) are the experimental results on the SALICON validation set, while (c) and (d) are with the Tiny ImageNet validation set. $\beta_w = \infty$ in (b) and $\beta_w = 50$ in (d).

957

958

959

960

961

962

963

965

966

967 968

969

970

971

972

975

976

977

978

979

980

981

982

983

984

985

986

987

988

991

992

993

994

995

996

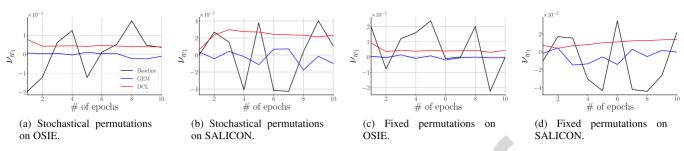


Fig. 10. Congruencies along the epochs in saliency prediction learning, as defined in Eq. (4). The samples sequences for training models are determined by independent stochastic processes in Fig. 10a and 10b, while the permuted samples sequences are pre-determined and fixed for all models in Fig. 10c and 10d. The baseline, GEM, and DCL are ResNeXt-29 SGD, ResNeXt-29 SGD GEM, and ResNeXt-29 SGD DCL-∞-1 (see Table 6), respectively.

only a small β_w range, i.e., between 20 and 70, yields relatively lower errors than the other β_w values. On the other hand, Fig. 9d shows that only using one reference is helpful in the learning process for classification. Different from the pattern shown in Figs. 9a and 9b, where the curves are relatively flat, the pattern in Figs. 9c and 9d implies that the gradients in the learning process for classification are dramatically changed in angle to satisfy the 200-way prediction. Hence, the learning process for classification does not prefer large β_w and N_r .

In summary, the nature of the task should be taken into account to determine the values of β_w and N_r . Both parameters can lead to significantly different performances if the task-specific semantics in the data are highly varying. Specifically, as N_r increases, the feasible region for searching a local minimum possibly becomes narrow as shown in Fig. 3. If the local minimum is not in the narrowed feasible region, large N_r could lead to a slower convergence or even a divergence.

6.3 Congruency Analysis

In this section, we focus on analyzing the patterns of congruency on saliency prediction, continual learning, and classification. For saliency prediction and classification, to study how the gradients of GEM and the proposed DCL method vary in the training process, we compute the congruency of each epoch in the training process by Eq. (4). Specifically, it turns to be $v_{wes \to wee|w_1}$, where w_{es} and w_{ee} is the weights at the first and last iteration of each epoch, respectively. Here, w_0 is randomly initialized and w_1 represents the starting point of the training. For convenience, we simplify the notation of the average congruency $v_{w_{es} \to w_{ee}|w_1}$ for each epoch as v_{w_1} . Correspondingly, we define the average magnitude d_{w_1} of the accumulated gradients over the iterations in an epoch, i.e.,

$$d_{w_1} = \frac{1}{sub(w_{ee}) - sub(w_{es}) + 1} \sum_{i=sub(w_{es})}^{sub(w_{ee})} ||w_i - w_1||_2,$$
 (20)

where d_{w_1} indicates the measurement of magnitudes of the accumulated gradients takes w_1 as the reference. Note that Eq. (20) does work not only with an absolute reference (e.g., w_1), but can work with a relative reference (e.g., w_{i-1}) as well. Specifically, we can substitute w_{i-1} for w_1 in Eq. (20) to compute $d_{w_{i-1}}$. Eq. (20) can allow us to peek into the convergence process in the high dimensional weight space, where it is difficult to

visualize the convergence. By taking an absolute refer- 999 ence (e.g., w_1) as the reference, it is able to provide an 1000 overview about how the learning process converges to 1001 the local minimum from the fixed reference, while a 1002 relative reference (e.g., w_{i-1}) is helpful to reveal the iterative pattern.

For the experiments of continual learning, since GEM uses 1005 the samples in memory to regulate the optimization direction, 1006 we follow this setting to check the effect of the proposed DCL 1007 method on the cosine similarities between the corrected gradient and the gradients generated by the samples in memory for 1009 analysis. More concretely, the average cosine similarity is 1010 defined as $\frac{1}{\|N_{it}\|} \frac{1}{\|\mathcal{M}\|} \sum_{i=1}^{N_{it}} \sum_{s \in \mathcal{M}} \cos{(g_s, g_{GEMi})}$, where N_{it} is 1011 the number of iterations in an epoch and g_{GEMi} is the gradient 1012 of GEM at ith iteration.

6.3.1 Saliency Prediction

We analyze the models from Table 2, i.e., ResNet-50 Adam 1015 (baseline), ResNet-50 Adam GEM (GEM), and ResNet-50 1016 Adam DCL-∞-1 (DCL). As the training samples sequence is 1017 affected by the stochastic process and it may be a factor 1018 influencing the proposed DCL method, we present two set- 1019 tings, i.e., within the independent stochastic process and 1020 within the same stochastic process amid the training of the 1021 three models, to gauge the influence of the stochastic pro- 1022 cess on the proposed DCL method. Specifically, Figs. 10a 1023 and 10b are the curves with the independent stochastic pro- 1024 cess on OSIE and SALICON, respectively, whereas the 1025 same permuted samples sequences are used in the trainings 1026 of the three models in Figs. 10c and 10d. We can see that 1027 they are similar in pattern and it implies that the permuta- 1028 tion of the training samples has less influence on the pro- 1029 posed DCL method. Moreover, the proposed DCL method 1030 consistently gives rise to a more congruent learning process 1031 than the baseline and GEM.

6.3.2 Continual Learning

Figs. 11a, 11b, and 11c shows the congruency along the tasks which are the episodes to learn the new classes. It can be 1035 seen that the proposed DCL method significantly enhances 1036 the cosine similarities between the gradients for updates 1037 and the gradients generated by the samples in memory on 1038 MNIST-R. There are improvements made by the proposed 1039 DCL method on early tasks on MNIST-P. Moreover, an 1040 overall consistent improvement of the proposed DCL 1041 method can be observed on iCIFAR-100. Overall, the 1042

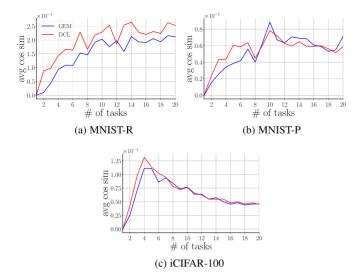


Fig. 11. The average congruencies over epochs in training on the three datasets for continual learning.

corrected updates for the model are computed by proposed DCL method to be more congruent with its previous updates. This consistently results in the improvement of BWT in Tables 3, 4, and 5.

6.3.3 Classification

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

We analyze the models from Table 6, i.e., ResNeXt-29 SGD (baseline), ResNeXt-29 SGD GEM (GEM), and ResNeXt-29 SGD DCL-∞-1 (DCL), in term of the resulting congruency of each epoch in the learning process on CIFAR. Similarly, ResNet-101 SGD, ResNet-101 SGD GEM, and ResNet-101 SGD DCL-50-1 in Table 7 are used for analysis on Tiny ImageNet. The curves of the average congruencies are shown in Figs. 12a, 12d, and 12g, while Figs. 12b, 12e, and 12h show the average magnitudes.

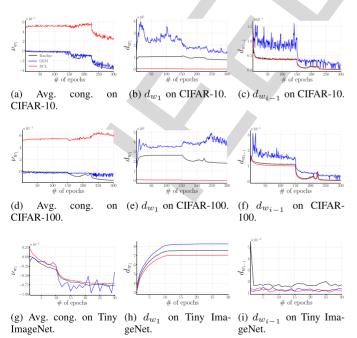


Fig. 12. Analyses of the congruencies and magnitudes along the epochs in classification task, as defined in Eq. (4) and (20).

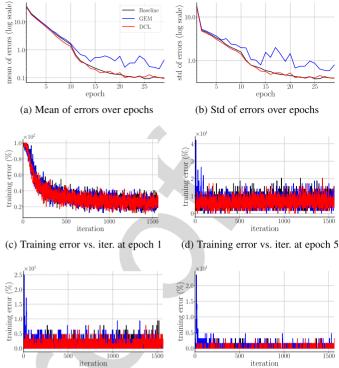


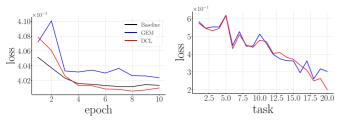
Fig. 13. Training error vs. iteration on Tiny ImageNet with ResNet-101. (a) and (b) plot the mean and standard deviation of training errors at each epoch, respectively. Specifically, we show four representative curves of training error vs. iteration at epoch 1, 5, 10, and 15 in (c) – (f), respectively.

(e) Training error vs. iter. at epoch 10 (f) Training error vs. iter. at epoch 15

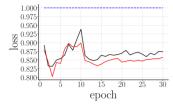
As shown in Figs. 12a, 12d, and 12g, the congruency of 1057 the proposed DCL method is significantly higher than the 1058 baseline and GEM along all epochs on CIFAR-10 and 1059 CIFAR-100. Higher congruency indicates the convergence 1060 path would be flatter and smoother. For example, if all the 1061 congruencies of each epoch are 0, the convergence path 1062 would be a straight line.

On the other hand, the average magnitudes of the 1064 proposed DCL method are relatively flat and smooth in 1065 Figs. 12b, 12e, and 12h, comparing to the baseline and 1066 GEM. Connecting the magnitudes with the congruencies 1067 in Figs. 12a, 12d, and 12g, we can infer two points. First, 1068 the proposed DCL method finds a nearer local minimum 1069 to its initialized weights on CIFAR-10 and CIFAR-100. 1070 Because the magnitudes of the proposed DCL method is 1071 the smallest among the three methods. Second, the convergence path of the proposed DCL method is the least 1073 oscillatory because its congruencies are overall higher 1074 than the other two methods and its magnitudes are the 1075 lowest among the three methods.

We take a further look at the training error versus iteration curves to better understand the convergences in Fig. 13. 1078 To give an overview along all epochs, we compute the 1079 mean and standard deviation of the training errors at each 1080 epoch and plot them at a logarithm scale in Figs. 13a and 1081 13b, respectively. The results show that the proposed DCL 1082 method yields lower training errors from epoch 1 to epoch 1083 16. From epoch 15 onwards, the proposed DCL method is 1084 little different from the baseline in terms of the mean 1085 because they are both around 0.1. Therefore, we plot the



(a) Saliency prediction on SALICON. (b) Continual learning on iCIFAR-100.



(c) Classification on Tiny ImageNet.

Fig. 14. Validation loss vs. epoch/task. In (c), the dashed blue curve indicates that the classification losses of GEM on Tiny ImageNet are all above 1.0 so they are not shown in the figure for clarity.

representative curve at epoch 1, 5, 10, and 15 in Figs. 13c, 13d, 13e, and 13f.

6.4 Empirical Convergence

Fig. 14 shows the validation losses w.r.t. the three tasks, i.e., saliency prediction (a), continual learning (b), and classification (c). In general, the proposed DCL method achieves lower loss than the baseline and GEM, which is aligned with the fact that the proposed DCL method outperforms the baseline and GEM. Note that classification losses of GEM are above 1.0 so they are not shown in Fig. 14c.

6.5 Training From Scratch Versus Fine-Tuning

We analyze the proposed approach with two types of training scheme on the validation set of Tiny ImageNet. The first training scheme train the models from scratch using the training set of the target dataset, whereas the second training scheme fine-tunes the pre-trained ImageNet models on Tiny ImageNet. For ease of comparison, the experimental results of training the models from scratch on Tiny ImageNet as the fine-tuning results are shown in Table 9. Similar to the results of fine-tuning, the proposed DCL method achieves lower top 1 error (i.e., 67.56 percent) and top 5 error (i.e., 40.74 percent) than the baseline and GEM.

TABLE 9
Top 1 and Top 5 Error Rate (in %) on the Validation Set of Tiny ImageNet

	Top 1	Top 1 error		error
	TFS	FT	TFS	FT
ResNet-101 SGD ResNet-101 SGD GEM ResNet-101 SGD DCL	68.21 77.20 67.56	17.34 21.78 16.89	42.72 53.18 40.74	4.82 7.21 4.50

We compare of (1) training the models from scratch (TFS) on Tiny ImageNet, and (2) fine-tuning (FT) the pre-trained ImageNet models on Tiny ImageNet. ResNet-101 SGD DCL is with $\beta_w=60$ and $N_r=1$. The validation errors of FT are from Table 7.

TABLE 10
Computational Cost of Training Models on Tiny ImageNet

	# params	proc time
ResNet-101	42.50M	47 ms
ResNet-101 GEM	42.91M	78 ms
ResNet-101 DCL	42.91M	49 ms

The processing time (proc time) per image is calculated by (batch time —data time)/batch size.

1110

6.6 Computational Cost

We report computational cost on Tiny ImageNet, SALICON 1111 and ImageNet in Tables 10 and 11, respectively. Specifically, 1112 the number of parameters of the models and the corresponding processing time per image are presented. The 1114 processing time per image is computed by (batch time 1115 —data time)/batch size, where batch time is the time to complete the process of a batch of images, and data time is the 1117 time to load a batch of images. Note that the processes of 1118 gradient descent with or without the proposed DCL method 1119 are the same in the testing phase. We train the models on 3 1120 NVIDIA 1080 Ti graphics cards for the experiments on Tiny 1121 ImageNet and SALICON, and on 8 NVIDIA V100 graphics 1122 cards for the experiment on ImageNet.

ResNet-101 DCL on Tiny ImageNet is with $\beta_w=60$ and 1124 $N_r=1$. ResNet-50 DCL is with $\beta_w=\infty$ and $N_r=1$ on SALI- 1125 CON, and $\beta_w=1$ and $N_r=1$ on ImageNet. ResNet-50 GEM 1126 is with $N_r=1$ on all the datasets. The difference of the numbers of parameters between the baseline and the proposed 1128 DCL method (or GEM) lies in the final layer, i.e., 1×1 convolutional layer for saliency prediction and the fully connected layer for classification. The proposed DCL method 1131 has more parameters to store the weights of the final layer 1132 for the references.

In the experiment on Tiny ImageNet, the proposed DCL method with ResNet-101 takes 2 more milliseconds than the method with ResNet-101 takes 2 more milliseconds than the method with ResNet-50, it takes 1 and 2 more milliseconds than the baseline on SALICON and ImageNet, respectively. This shows that quadratic problems with high method dimensional input can be efficiently solved by the tool method quadprog. Hence, the proposed DCL method is practically method than the other two methods across the three datasets. This is memory, i.e., the input features of the final layer, at each memory, i.e., the input features of the final layer, at each memory, i.e., the input features of the final layer, at each memory, i.e., the input features of the final layer, at each memory in the proposed DCL method uses a subtraction operation (i.e., Eq. (6)) to compute the accumulated gradient. Thus, it is faster than GEM.

TABLE 11
Computational Cost of Training Models on SALICON and ImageNet

	SALICON		Imag	geNet
	# params	proc time	# params	proc time
ResNet-50 ResNet-50 GEM ResNet-50 DCL	23.51M 23.51M 23.51M	64 ms 102 ms 65 ms	23.50M 25.55M 25.55M	6 ms 10 ms 8 ms

1087 1088

1089

1090

1097

1098

1107

1108

1237

1246

1247

1248

TABLE 12 The Effect of β_w and N_r on Computational Cost (i.e., Proc Time) With ResNet on Tiny ImageNet

$\beta_w \ (N_r = 1)$	proc time	$N_r (\beta_w = 50)$	proc time
10	49 ms	1	49 ms
20	49 ms	5	51 ms
30	49 ms	10	53 ms
40	49 ms	15	54 ms
50	49 ms	20	54 ms

Note that β_w would not affect computational cost because β_w indicates the effective window and resetting the references is implemented as a subtraction operation according to Eq. (6).

Moreover, we discuss the effects of β_w and N_r on the computational cost here. The computational cost w.r.t. β_w and N_r with ResNet on Tiny ImageNet is reported in Table 12. As β_w indicates the effective window, it is implemented by a subtraction operation according to Eq. (6) and updating the reference point is a copying operation in RAM which is fast. Therefore, β_w would not affect computational cost. On the other hand, the time difference between various N_r is small because we only apply the proposed DCL method to the downstream layer, i.e., the final layer, where the parameters are much fewer than the ones used by the whole network. For example, there are only 2,304 parameters in the final convolutional layer for saliency prediction. Any quadratic programming solver like quadprop can efficiently handle the corresponding dual problem (8) in a small scale.

Discussion of Generalization

1149

1150 1151

1152 1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177 1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

Incongruency is ubiquitous in the learning process. It results from the diversity of the input data, e.g., real-world images, and rich task-specific semantics. The proposed DCL method can effectively alleviate the incongruency problem in saliency prediction, continual learning, and classification. Specifically, saliency prediction can be seen as a typical regression problem while continual learning and classification can be seen as a typical learning problem that aims to predict a discrete label. In this sense, the input-output mapping and the learning settings of the three tasks are fundamental to other vision tasks.

From the point of view of task-dependent incongruency, here we consider general vision tasks to be cast into three groups according to the form of input and output. The first group consists of visual tasks that take images as input for classification or regression, e.g., object detection [41] and visual sentiment analysis [61]. In object detection, visual appearance of a region of interest could be diverse in terms of its label and location, while an arbitrary sentiment class can have a number of visual representations in visual sentiment analysis. Since tasks in this group has similar incongruency as that in image classification, i.e., the diversity of raw image features w.r.t. a certain label, the proposed DCL method is expected to boost this type of vision tasks. The second group consists of visual tasks that have complex outputs of regression or classification, e.g., visual relationship detection [30], [34] and human object interaction [31], [57] whose output can involve multiple possible relationships among two or more objects that belong to various visual concepts. The incongruency of tasks in this group lies in the diversity of raw image features w.r.t. a higher dimensional variable, e.g., a relationship which involves

multiple objects and corresponding predicates. Last but not 1196 least, the third group consists of visual tasks that take a series 1197 of images, e.g., action recognition [54]. Usually, it takes a clip 1198 of videos as input and incorporates temporal information. The 1199 incongruency of tasks in this group lies in the diversity of tem- 1200 poral raw image features w.r.t. a certain label, and the feature 1201 space with clips is often more complicated than that in static 1202 images. Therefore, the incongruency of tasks in the second and third groups could be more remarkable than that of tasks in the first group. Note that the proposed DCL method is gradi- 1205 ent-based and not restricted to specific forms of input or output. Therefore, it could naturally generalize or be used as a 1207 starting point to alleviate incongruency for tasks with different 1208 forms of input and output in the three groups.

CONCLUSION

In this work, we define congruency as the agreement 1211 between new information and the learned knowledge in a 1212 learning process. We propose a Direction Concentration 1213 Learning (DCL) method to take into account the congruency 1214 in a learning process to search for a local minimum. We 1215 study the congruency in the three tasks, i.e., saliency prediction, continual learning, and classification. The proposed 1217 DCL method generally improves the performances of the 1218 three tasks. More importantly, our analysis shows that the 1219 proposed DCL method improves catastrophic forgetting.

ACKNOWLEDGMENTS

This work was supported in part by the US National Sci- 1222 ence Foundation under Grants 1908711, 1849107, in part by 1223 the University of Minnesota Department of Computer Sci- 1224 ence and Engineering Start-up Fund (QZ), and in part by 1225 the National Research Foundation, Prime Minister's Office, 1226 Singapore under its Strategic Capability Research Centres 1227 Funding Initiative. The computational work for this article 1228 was partially performed on resources of the National 1229 Supercomputing Centre, Singapore (https://www.nscc.sg). 1230

REFERENCES

- A. Borji, D. N. Sihite, and L. Itti, "Quantitative analysis of 1232 human-model agreement in visual saliency modeling: A com- 1233 parative study," *IEEE Trans. Image Process.*, vol. 22, no. 1, 1234 pp. 55-69, Jan. 2013.
- N. Bruce and J. Tsotsos, "Attention based on information maximization," J. Vis., vol. 7, no. 9, pp. 950-950, 2007.
- G. A. Carpenter, S. Grossberg, and G. W. Lesher, "The what-andwhere filter: A spatial mapping neural network for object recognition and image understanding," Comput. Vis. Image Understanding, 1239 1240 vol. 69, no. 1, pp. 1–22, 1998. 1241
- X. Chang, Y.-L. Yu, Y. Yang, and E. P. Xing, "Semantic pooling for complex event analysis in untrimmed videos," IEEE Trans. Pattern 1243 Anal. Mach. Intell., vol. 39, no. 8, pp. 1617-1632, Aug. 2017.
- M. Cornia, L. Baraldi, G. Serra, and R. Cucchiara, "Predicting 1245 human eye fixations via an LSTM-based saliency attentive model," IEEE Trans. Image Process., vol. 27, no. 10, pp. 5142-5154,
- J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, 1249 "ImageNet: A large-scale hierarchical image database," in Proc. 1250 IEEE Conf. Comput. Vis. Pattern Recognit., 2009, pp. 248-255. 1251
- W. S. Dorn, "Duality in quadratic programming," Quart. Appl. 1252 Math., vol. 18, no. 2, pp. 155-162, 1960. 1253
- C. Fernandez-Granda, "Lecture notes: Optimization algorithms," 1254 Feb. 2016. [Online]. Available: https://math.nyu.edu/cfgranda/ 1255 pages/OBDA_spring16/material/optimization_algorithms.pdf 1256

1258

1259

1260

1261

1262

1263

1264

1265 1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278 1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320 1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

- R. M. French, "Catastrophic forgetting in connectionist networks," Trends Cogn. Sci., vol. 3, no. 4, pp. 128-135, 1999.
- [10] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio, "An empirical investigation of catastrophic forgetting in gradientbased neural networks," 2013, arXiv:1312.6211.
- [11] R. D. Gordon, "Attentional allocation during the perception of scenes," J. Exp. Psychol.: Hum. Perception Perform., vol. 30, no. 4, 2004, Art. no. 760.
- [12] P. Goyal et al., "Accurate, large minibatch SGD: Training Image-Net in 1 hour," 2017, arXiv: 1706.02677.
- K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 770-778.
- G. Hinton, N. Śrivastava, and K. Swersky, "Neural networks for machine learning: Lecture 6a-Overview of mini-batch gradient descent," 2012. [Online]. Available: https://www.cs.toronto.edu/ tijmen/csc321/slides/lecture_slides_lec6.pdf
- [15] S. C. H. Hoi, J. Wang, and P. Zhao, "LIBOL: A library for online learning algorithms," J. Mach. Learn. Res., vol. 15, no. 1, pp. 495-499, 2014.
- [16] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, "Densely connected convolutional networks," in Proc. IEEE Conf.
- Comput. Vis. Pattern Recognit., 2017, pp. 4700–4708. X. Huang, C. Shen, X. Boix, and Q. Zhao, "SALICON: Reducing the semantic gap in saliency prediction by adapting deep neural
- networks," in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 262–270. L. Itti, N. Dhavale, and F. Pighin, "Realistic avatar eye and head animation using a neurobiological model of visual attention," in Proc. SPIE 48th Annu. Int. Symp. Opt. Sci. Technol., 2003, pp. 64-78.
- L. Itti, C. Koch, and E. Niebur, "A model of saliency-based visual attention for rapid scene analysis," IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 11, pp. 1254-1259, Nov. 1998
- [20] M. Jiang, S. Huang, J. Duan, and Q. Zhao, "SALICON: Saliency in context," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1072-1080.
- [21] T. Judd, F. Durand, and A. Torralba, "A benchmark of computational models of saliency to predict human fixations, Comput. Sci. Artif. Intell. Lab., Cambridge, MA, USA, Tech. Rep. MIT-CSAIL-TR-2012-001, 2012.
- [22] T. Judd, K. Ehinger, F. Durand, and A. Torralba, "Learning to predict where humans look," in Proc. IEEE Int. Conf. Comput. Vis., 2009, pp. 2106-2113.
- D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," in Proc. Int. Conf. Learn. Representations, 2015.
- J. Kirkpatrick et al., "Overcoming catastrophic forgetting in neural networks," Proc. Nat. Academy Sci. United States America, vol. 114, no. 13, pp. 3521-3526, 2017.
- E. Knight and O. Lerner, "Natural gradient deep Q-learning," 2018, arXiv:1803.07482.
- [26] A. Krizhevsky and G. Hinton, "Learning multiple layers of features from tiny images," Univ. Toronto, Toronto, ON, Canada, Tech. Rep. 4, 2009.
- A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," in *Proc. Int.* Conf. Neural Inf. Process. Syst., 2012, pp. 1097-1105.
- M. Kummerer, T. S. A. Wallis, L. A. Gatys, and M. Bethge, "Understanding low- and high-level contributions to fixation prediction," in Proc. IEEE Int. Conf. Comput. Vis., 2017, pp. 4789–4798.
- [29] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998
- J. Li, Y. Wong, Q. Zhao, and M. S. Kankanhalli, "Dual-glance model for deciphering social relationships," in Proc. IEEE Int. Conf. Comput. Vis., 2017, pp. 2669-2678.
- [31] Y.-L. Li et al. "Transferable interactiveness knowledge for humanobject interaction detection," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019, pp. 3585-3594.
- T.-Y. Lin et al. "Microsoft COCO: Common objects in context," in Proc. Eur. Conf. Comput. Vis., 2014, pp. 740-755.
- D. Lopez-Paz and M. A. Ranzato, "Gradient episodic memory for continual learning," in Proc. Int. Conf. Neural Inf. Process. Syst., 2017, pp. 6470-6479.
- C. Lu, R. Krishna, M. Bernstein, and L. Fei-Fei, "Visual relationship detection with language priors," in Proc. Eur. Conf. Comput. Vis., 2016, pp. 852-869.

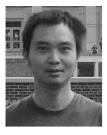
- [35] M. McCloskey and N. J. Cohen, "Catastrophic interference in connectionist networks: The sequential learning problem," Psychol. Learn. Motivation, vol. 24, pp. 109-165, 1989. 1335
- Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic 1336 Course, 1st ed. Berlin, Germany: Springer, 2014. 1337
- Y. E. Nesterov, "A method for solving the convex programming 1338 problem with convergence rate o (1/k2)," Dokl. Akad. Nauk SSSR, 1339 vol. 269, pp. 543-547, 1983 1340
- N. Ouerhani, R. Von Wartburg, H. Hugli, and R. Müri, "Empirical 1341 validation of the saliency-based model of visual attention," Elec-1342 tron. Lett. Comput. Vis. Image Anal., vol. 3, no. 1, pp. 13-24, 2004. 1343
- [39] R. Ratcliff, "Connectionist models of recognition memory: Con-1344 straints imposed by learning and forgetting functions," Psychol. 1345 Rev., vol. 97, no. 2, 1990, Art. no. 285. 1346
- S. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, "iCaRL: 1347 Incremental classifier and representation learning," in Proc. IEEE 1348 Conf. Comput. Vis. Pattern Recognit., 2017, pp. 5533-5542
- [41] S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards 1350 real-time object detection with region proposal networks," in 1351 Proc. Int. Conf. Neural Inf. Process. Syst., 2015, pp. 91–99. 1352
- [42] H. Robbins and S. Monro, "A stochastic approximation method," 1353 Ann. Math. Statist., vol. 22, no. 3, pp. 400–407, Sep. 1951. 1354
- A. L. Rothenstein and J. K. Tsotsos, "Attention links sensing to 1355 recognition," Image Vis. Comput., vol. 26, no. 1, pp. 114-126, 2008. 1356
- T. Salimans and D. P. Kingma, "Weight normalization: A simple reparameterization to accelerate training of deep neural networks, 1358 in Proc. Int. Conf. Neural Inf. Process. Syst., 2016, pp. 901–909 1359
- [45] H. J. Seo and P. Milanfar, "Static and space-time visual saliency 1360 detection by self-resemblance," J. Vis., vol. 9, no. 12, pp. 15-15, 1362
- K. Simonyan and A. Zisserman, "Very deep convolutional net-1363 works for large-scale image recognition," in Proc. Int. Conf. Learn. 1364 Representations, 2015.

1365

1383

- M. Tan and Q. Le, "EfficientNet: Rethinking model scaling for 1366 convolutional neural networks," in Proc. 36th Int. Conf. Mach. 1367 Learn., 2019, pp. 6105-6114. 1368
- D. Tao, X. Li, X. Wu, and S. J. Maybank, "Geometric mean for sub-1369 space selection," IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, 1370 no. 2, pp. 260-274, Feb. 2009. 1371
- R. Tibshirani, "Lecture notes: Optimization," Sep. 2013. [Online]. 1372 Available: http://www.stat.cmu.edu/ryantibs/convexopt-F13/ 1373 scribes/lec6.pdf 1374
- [50] A. M. Treisman and G. Gelade, "A feature-integration theory of 1375 attention," Cogn. Psychol., vol. 12, no. 1, pp. 97-136, 1980. 1376
- G. Underwood and T. Foulsham, "Visual saliency and semantic 1377 incongruency influence eye movements when inspecting pic-1378 tures," Quart. J. Exp. Psychol., vol. 59, no. 11, pp. 1931–1949, 2006. 1379
- [52] G. Underwood, L. Humphreys, and E. Cross, "Congruency, saliency and gist in the inspection of objects in natural scenes," in Eye Movements. Amsterdam, The Netherlands: Elsevier, 2007, pp. 563-579.
- [53] V. N. Vapnik, "An overview of statistical learning theory," IEEE 1384 Trans. Neural Netw., vol. 10, no. 5, pp. 988–999, Sep. 1999. 1385
- H. Wang and C. Schmid, "Action recognition with improved trajectories," in Proc. IEEE Int. Conf. Comput. Vis., 2013, pp. 3551-3558.
- J. M. Wolfe and T. S. Horowitz, "Five factors that guide attention in visual search," Nature Hum. Behav., vol. 1, no. 3, 2017, 1389 Art. no. 0058.
- [56] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, "Aggregated residual transformations for deep neural networks," in Proc. IEEE Conf. 1391 Comput. Vis. Pattern Recognit., 2017, pp. 5987-5995.
- B. Xu, Y. Wong, J. Li, Q. Zhao, and M. S. Kankanhalli, "Learning to detect human-object interactions with knowledge," in Proc. IEEE 1395 Conf. Comput. Vis. Pattern Recognit., 2019, pp. 2019–2028
- [58] J. Xu, M. Jiang, S. Wang, M. S. Kankanhalli, and Q. Zhao, 1397 "Predicting human gaze beyond pixels," J. Vis., vol. 14, no. 1, 1398 pp. 28–28, 2014. 1399
- S. Yang, G. Lin, Q. Jiang, and W. Lin, "A dilated inception network for visual saliency prediction," IEEE Trans. Multimedia, to be 1401 oublished, doi: 10.1109/TMM.2019.2947352
- Y. Yang, Z. Ma, A. G. Hauptmann, and N. Sebe, "Feature selection 1403 for multimedia analysis by sharing information among multiple tasks," IEEE Trans. Multimedia, vol. 15, no. 3, pp. 661-669, 1405
- [61] Q. You, H. Jin, and J. Luo, "Visual sentiment analysis by attending 1407 on local image regions," in Proc. 31st AAAI Conf. Artif. Intell., 2017, 1408 pp. 231-237.

1423 1424



Yan Luo received the BSc degree in computer science from the Xi'an University of Science and Technology, Xi'an, China. He is currently working toward the PhD degree in the Department of Computer Science and Engineering, University of Minnesota at Twin Cities, Minneapolis, Minnesota. In 2013, he joined the Sensorenhanced Social Media (SeSaMe) Centre, Interactive and Digital Media Institute, National University of Singapore, as a research assistant. In 2015, he joined the Visual Information Proc-

essing Laboratory, National University of Singapore as a PhD student. He worked in the industry for several years on distributed system. His research interests include computer vision, computational visual cognition, and deep learning.

Yongkang Wong received the BEng degree from the University of Adelaide, Adelaide, Australia, and the PhD degree from the University of Queensland, Saint Lucia, Australia, He is currently a senior research fellow with the School of Computing, National University of Singapore. He is also the assistant director of the NUS Centre for Research in Privacy Technologies (N-CRiPT). He has worked as a graduate researcher with NICTA's Queensland Laboratory, Brisbane, OLD, Australia, from 2008 to 2012. His current research

interests include the areas of image/video processing, machine learning, action recognition, and human centric analysis. He is a member of the IEEE since 2009.

Mohan Kankanhalli received the BTech degree 1439 from IIT Kharagpur, Kharagpur, India, and the 1440 MS and PhD degrees from the Rensselaer Poly- 1441 technic Institute, Troy, New York. He is currently 1442 the Provost's chair professor with the Department 1443 of Computer Science, National University of 1444 Singapore. He is the director with the N-CRiPT 1445 and also the dean, School of Computing, NUS. 1446 His current research interests include multimedia 1447 computing, multimedia security and privacy, 1448 image/video processing, and social media analysis. He is on the editorial boards of several jour- 1450 nals. He is a fellow of the IEEE.

Qi Zhao received the PhD degree in computer 1452 engineering from the University of California, 1453 Santa Cruz, California, in 2009. She is currently an 1454 assistant professor with the Department of Com- 1455 puter Science and Engineering, University of 1456 Minnesota, Twin Cities, Her main research inter- 1457 ests include computer vision, machine learning, 1458 cognitive neuroscience, and mental disorders. 1459 She was a postdoctoral researcher with the 1460 Computation & Neural Systems, and Division of 1461 Biology, California Institute of Technology from 1462

2009 to 2011. Prior to joining the University of Minnesota, she was an 1463 assistant professor with the Department of Electrical and Computer Engi- 1464 neering and the Department of Ophthalmology, National University of 1465 Singapore. She has published more than 50 journal and conference 1466 papers in top computer vision, machine learning, and cognitive neurosci- 1467 ence venues, and edited a book with Springer, titled Computational and 1468 Cognitive Neuroscience of Vision, which provides a systematic and comprehensive overview of vision from various perspectives, ranging from 1470 neuroscience to cognition, and from computational principles to engineering developments. She is a member of the IEEE since 2004.

For more information on this or any other computing topic, 1473 please visit our Digital Library at www.computer.org/csdl.