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Abstract—While the security issue associated with the
Internet-of-Things (IoT) continues to attract significant
attention from the research and operational communi-
ties, the visibility of IoT security-related data hinders the
prompt inference and remediation of IoT maliciousness.
In an effort to address the IoT security problem at
large, in this work, we extend passive monitoring and
measurements by investigating network telescope data
to infer and analyze malicious activities generated by
compromised IoT devices deployed in various domains.
Explicitly, we develop a data-driven approach to pin-
point exploited IoT devices, investigate and differentiate
their illicit actions, and examine their hosting envi-
ronments. More importantly, we conduct discussions
with various entities to obtain IP allocation information,
which further allows us to attribute IoT exploitations per
business sector (i.e., education, financial, manufacturing,
etc.). Our analysis draws upon 1.2 TB of darknet data
that was collected from a /8 network telescope for a 1
day period. The outcome signifies an alarming number of
compromised IoT devices. Notably, around 940 of them
fell victims of DDoS attacks, while 55,000 IoT nodes
were shown to be compromised, aggressively probing
Internet-wide hosts. Additionally, we inferred alarming
IoT exploitations in various critical sectors such as the
manufacturing, financial and healthcare realms.

I. INTRODUCTION

The Internet-of-Things (IoT) notion has been a buzz
word, but will continue to represent an integral part
of our contemporary life. From object recognition
devices which promise to revolutionize physical ther-
apy [1] to connected vehicles aiming at preventing
the driver from deviating from proper trajectory paths

or bumping into objects. IoT indeed possesses a
significant impact on natural resources’ integrity and
consumption, along with monitoring environmental
pollution and chemical leaks in water supplies [2, 3].
Moreover, health monitoring and connected medical
devices will undoubtedly transform healthcare ser-
vices.

Irrefutable benefits proposed by the IoT paradigm,
however, are coupled with serious security issues. In
fact, some manufacturers continue to sacrifice security
concerns for the sake of reducing costs and increasing
the speed of delivering IoT benefits, while consumers
struggle to update firmware and change default user
credentials. At the same time, attackers are taking
advantage of vulnerable devices, maliciously manip-
ulating Internet-wide deployed IoT nodes, causing a
profound impact on the security and the resiliency of
the entire Internet. We recently have witnessed vari-
ous cyber attacks launched by IoT-specific malware,
which demonstrated the severity of such exploited
and coordinated IoT devices. In case of Mirai [4],
the primary DNS provider in the US, Dyn, became
the target of an orchestrated Denial of Service (DoS)
attack, jeopardizing the profit and reputation of its
clients. Further, poorly designed devices can expose
user data to theft by leaving data streams inadequately
protected [5].

Such and other incidents stimulated the research
and cyber security operational communities to ap-
proach the IoT security issue. Nevertheless, many



challenges remain unsolved, including the visibility
and accessibility of IoT-specific data. Indeed, IoT de-
vices are deployed in many private domains, access to
which is restricted or even impossible. As a result, we
observe a deficiency of techniques aiming to identify
large-scale compromised IoT devices in a near real-
time fashion. A thorough investigation of the gener-
ated traffic by compromised devices, however, would
enable not only the inference of such devices but
also the generation of malicious traits for preventing
further exploitation. Given that the investigation of
network telescope data proved its efficiency in observ-
ing Internet-wide unsolicited activities via executing
passive measurements and analysis [6], we envisioned
that such traffic would also generate valuable insights
regarding large-scale illicit activities of IoT devices.
Indeed, a network telescope, also known as a darknet,
is a set of sensors which represent routable, allocated,
yet unused IP addresses. The absence of Internet
services associated with these IP addresses, render
them an effective approach to amalgamate Internet-
wide unsolicited events.

In this paper, we explore passive network measure-
ments to comprehend the magnitude of IoT exploita-
tions, differentiate their malicious activities, and ana-
lyze their hosting environments. We also conduct dis-
cussions with various entities to obtain IP allocation
information, which further allows us to attribute the
IoT exploitations per business sector (i.e., education,
financial, manufacturing, etc.). Specifically, we frame
the contributions of this work as follows:

• Executing a large-scale empirical characteriza-
tion of unsolicited activities generated by IoT
devices. To this end, we leverage network tele-
scope (passive) measurements in combination
with active measurements to infer compromised
IoT devices and reveal the nature of their illicit
activities. The generated intelligence aims at pro-
viding valuable insights that would aid in proper
remediation.

• Generating amalgamated statistics regarding
compromised devices and their hosting environ-
ments, including sector information, which has
never been reported before.

The paper is organized as follows. Section II re-
views the related work and emphasizes the contri-

butions of this paper. Section III elaborates on the
techniques which enable the inference of large-scale
compromised IoT devices and their characterization.
In Section IV, we shed light on the findings, including
results related to sector-based IoT exploitations. Fi-
nally, Section V summarizes this paper and pinpoints
few topics for future work.

II. RELATED WORK

In this section, we review the literature by elaborat-
ing on three IoT-related topics, namely, data capturing,
empirical measurements for device characterization
and device fingerprinting.

Various recent research works have been devoted to
developing IoT-centric honeypots aiming at gathering
and analyzing IoT-specific security-related data. To
this end, Pa et al. [7] pioneered a honeypot de-
signed primarily for IoT to investigate ongoing attacks
against Telnet services and discovered several mal-
ware families. Auxiliary, Guarnizo et al. [8] proposed
the Scalable high-Interaction Honeypot (SIPHON)
platform for the IoT paradigm and demonstrated how
the combination of a limited number of physical de-
vices and worldwide wormholes permit the emulation
of numerous IoT devices on the Internet. This aimed at
attracting massive IoT malicious traffic. Several other
works, including [9, 10], further proposed honeypots
aiming at detecting malicious activities targeting in-
dustrial control systems.

In the context of empirical measurements for device
characterization, Angrishi [11] analyzed IoT-centric
malware while Costin et al. [12] performed a large-
scale static analysis of embedded firmware to explore
IoT insecurities. Further, Fachkha et al. [13] leveraged
passive measurements and analyzed attackers’ inten-
tions when targeting protocols of Internet-facing CPS.
By monitoring requests to a network telescope and
employing filters to distinguish Mirai traffic, Anton-
akakis et al. [14], in contrast, identified 1.2 million
Mirai infected IP addresses associated with various
deployment environments and types of IoT devices.

In an attempt to infer IoT-specific traits, a number
of researchers pursued IoT device fingerprinting. For
instance, Meidan et al. [15] classified IoT nodes
connected to an organization’s network by solely
observing network traffic. Similarly, Formby et al. [16]



designed two approaches for device fingerprinting by
leveraging observations rooted in cross-layer response
times and unique physical properties of IoT devices.

This work compliments the available contributions
by extending network telescope research to investi-
gate malicious activities generated by Internet-scale
IoT devices. To this end, we develop a data-driven
approach to pinpoint compromised IoT devices, in-
vestigate and differentiate their unsolicited actions,
and examine their hosting environments. Moreover,
by conducting discussions with various realms which
operate IoT devices, we attribute such identified IoT
devices by their hosting sectors (i.e., education, finan-
cial, manufacturing, etc.); an initiative that has never
been attempted (or reported) before.

III. PROPOSED APPROACH

In this work, we take a first step towards addressing
the problem of IoT security at large. We approach
this goal by correlating passive monitoring of Internet-
wide network traffic with various datasets to dis-
cover compromised IoT devices in local realms and
precisely determine their malicious traits. Figure 1
illustrates a holistic architecture of the proposed ap-
proach. We uniquely explore traffic collected by a
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Fig. 1. A data-driven approach for inferring and characterizing
compromised IoT devices

network telescope (i.e., a set of routable, allocated,
yet unused IP addresses). Characteristically, all traffic
targeting this IP space is unsolicited [17]. Investigating
network telescope traffic has recurrently demonstrated

its effectiveness in inferring various types of malicious
activities such as DDoS victims [18–20] and probing
activities [21–24].

The lacking of visibility related to IoT-specific
data coupled with the shortage of IoT fingerprinting
approaches indeed challenge the task of distinguishing
IoT devices from other Internet hosts. To this end,
we leverage the search engine Shodan [25] as a
database of IoT devices. Specifically, we adopt its
API to correlate malicious hosts (targeting the network
telescope) and identify IoT devices.

We further enrich the generated intelligence with
the hosting environment of such IoT exploitations,
including country and ISP information. To this
end, we correlate each IP address associated with
the unsolicited IoT devices with internal and
external databases. We utilized internal knowledge
(gathered by conducting discussions with various
Internet entities) rendered by IP ranges associated
with various business sectors. Complementary,
we employed MaxMind [26] for the remaining
geolocation requirements.

IV. EMPIRICAL EVALUATION OF IOT
MALICIOUSNESS

In this section, we provide a characterization of IoT
maliciousness in terms of illicit activities and hosting
environments. The executed analysis draws upon close
to 1.2 TB of darknet data that was collected from a
/8 network telescope provided by CAIDA [27] for a
recent 24-hour period. We distinguish two classes of
maliciousness presented in this period. These are (i)
victims of DDoS attacks, including victims of TCP,
UDP, and ICMP flooding; and (ii) hosts that conduct
horizontal, vertical, and strobe scans against Internet
hosts. Precisely, we identified close to 5,000 Internet
hosts that have fallen victims of more than 30,000
DDoS attacks. We also identified nearly 1.2 million
infected hosts, which generated 4.5 million scanning
activities.

The correlation algorithm between network tele-
scope traffic and the IoT dataset yielded nearly 56,000
IoT devices, which generated illicit Internet traffic,
representing 5% of total inferred malicious activities.
Auxiliary, nearly 940 IoT devices fell victims of 9,000
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Fig. 2. IoT Devices: Global exploitations and DoS victims

DDoS attacks. It is worthy to pinpoint that IoT devices
presented 19% of the total identified DDoS victims.
In the same manner, 5% of the infected Internet hosts
that attempted to explore other Internet hosts are IoT
devices, which generated 9% of total scans. The latter
is an alarming number of IoT malicious activities
taking into account that we only analyzed one day
of network telescope traffic.

We identified the presence of compromised IoT
devices in 169 countries worldwide, hosted by 39 var-
ious business sectors, in nearly 4,000 ISPs. Figure 2
illustrates the global distribution of such unsolicited
IoT devices and emphasizes the top 5 source countries.
Specifically, we detected devices in China (49%),
followed by Brazil (8%), United States (3%), South
Korea (3%), and Russia (3%). In total, these countries
hosted 66% of the affected devices, which generated
close to 51% of the inferred illicit activities.

The significant number of IoT-generated malicious
activities was found to be associated with various
hosting sectors, such as Internet service providers
(40%) and telecommunication entities (30%), which
hosted 42% and 36% of compromised devices, respec-
tively. Figure 3 illustrates the most affected hosting
sectors and their corresponding number of misde-

meanors. While the aim of the aforementioned IoT-
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Fig. 3. Exploitations/victims by business sectors

specific malicious activities is unclear, the presence
of such devices in educational, governmental and
professional services could be benign (for research
purposes). Additionally, despite the relatively low
number of compromised devices in critical sectors
such as manufacturing and financial, their presence in



TABLE I
TOP ISPS HOSTING THE MOST IOT EXPLOITATIONS

ISP Devices Scans Scans/Device ISP Devices Scans Scans/Device
Vivo 3105 23662 7.62 China Telecom 1,556 7,332 4.71
China Mobile
Guangdong

2,978 7,805 2.62 China Telecom Zhejiang 1,343 4,496 3.35

China Unicom Liaoning 2,818 10,757 3.82 China Telecom Sichuan 1,238 3,169 2.56
China Telecom Guang-
dong

2,017 6,091 3.02 China Telecom fujian 1,237 6,922 5.6

China Telecom jiangsu 1,569 5,628 3.59 China Telecom Hunan 905 3,870 4.28
Other ISPs 17,814 12,1661 6.83

such sectors is significantly alarming and could cause
serious issues, including exfiltration of sensitive data
and environmental damages. Auxiliary, we observed
unsolicited IoT devices hosted in the healthcare indus-
try. The stolen information from such devices could
cause momentous privacy breaches, fraudulent insur-
ance claims, and more severely, such exploitations
could threaten patients’ lives.

A. IoT devices conducting network scans

In this section, we investigate the hosting envi-
ronments of IoT devices which were found to be
aggressively scanning the Internet space. We center
our investigation around the 5 countries that hosted
the highest number of IoT devices. The latter devices
generated 50% of total scanning activities from around
66% of the total volume of affected IoT nodes. Ta-
ble II summarizes the activities of such devices by
country.

TABLE II
NUMBER OF INFECTED IOT DEVICES AND SCANNING

ACTIVITIES BY COUNTRY

Country Devices Scans Scans/Device
China 27,103 98,444 3.63
Brazil 4,322 38,516 8.91
United States 1,760 21,106 11.99
South Korea 1,758 29,436 16.74
Russia 1,637 13,891 8.49

Other countries 18,630 197,347 10.59

The average rate of scanning activities per one
compromised device indicates that devices which are
located in South Korea and the US generate malicious
traffic more aggressively than those which were found

in China, the country with the highest number of
compromised devices. Deliberate examination of this
rate uncovered that the most aggressive scan activities
are generated by few devices hosted by numerous
business sectors, including, ISPs, the US government,
health, education, and the financial sector (in particu-
lar banks). In South Korea, the majority of such illicit
events are hosted by telecommunication companies
and IPSs. The study of ISPs in the countries with the
highest presence of unsolicited IoT devices uncovered
that Vivo, the larger telecommunications company in
Brazil, appears to be number one host of unsolicited
IoT devices, presented by 6% of total compromised
devices. Further, 5% of compromised devices are
hosted by China Mobile Guangdong, China Unicom
Liaoning and China Telecom Guangdong. Table I lists
the top 10 ISPs which host the most IoT compromised
devices.

B. IoT devices as DDoS victims
In this section, we investigate the hosting environ-

ments of IoT devices which have fallen victims of
DDoS attacks. Such devices were identified as repre-
senting 63% of total number of inferred DDoS attacks
in the aforementioned top countries. In fact, these
attacks affected 56% of inferred devices. Table III
specifies the number of IoT DDoS victims and attacks
by country.

Please note that attack/device represents the av-
erage number of attacks per IoT device, and not
the magnitude of such attacks. In this context, we
observed that the devices in China attracted the highest
number of illicit activities. Precisely, their number
is twice higher than in other countries. A closer
investigation of this fact unveiled that the significant



TABLE III
NUMBER OF IOT DDOS VICTIMS AND ATTACKS BY COUNTRY

Country Devices Attacks Attack/Device
China 199 3,033 15.24
United States 189 1,579 8.35
Brazil 103 674 6.54
Russia 24 131 5.46
South Korea 11 54 4.91

Other countries 411 3,179 7.73

number of such devices is associated with 4 ISPs that
have suffered persistent attacks. In fact, these ISPs,
which are listed in Table IV, hosted 60% of IoT DDoS
victims in China, absorbing close to 80% of attacks,
as observed by the monitored network telescope.

TABLE IV
TOP 4 ISPS HOSTING IOT DDOS VICTIMS IN CHINA

ISP Devices Attacks Attack/Device
China Telecom
backbone network

75 1631 21.75

China Telecom
Shanghai

18 332 18.44

China Telecom 16 308 19.25
China Telecom
Shandong

10 162 16.2

Other ISPs 80 600 7.5

The study of ISPs in the aforementioned countries
uncovered that the ISP which hosted a significant
number of DDoS victims is SNH Servicos de Internet
Ltda., which is an Internet provider in Brazil. The
closest follower is China Telecom backbone network.
Table V summarizes the top 5 ISPs that were found to
be hosting the highest number of IoT DDoS victims.

TABLE V
ISPS HOSTING IOT DDOS VICTIMS IN COUNTRIES WITH THE

HIGHEST NUMBER OF IOT EXPLOITATIONS

ISP Devices Attacks
SNH Servicos de Internet Ltda. 90 463
China Telecom backbone network 75 1,631
AT&T U-verse 40 641
Google 34 134
Amazon Technologies 25 119
Other ISPs 238 2,352

V. CONCLUDING REMARKS

In this effort to address the IoT security problem at
large, we extended passive measurements and analysis
by scrutinizing network telescope data to report on
malicious activities generated by compromised IoT
devices. We achieved our goal by thoroughly investi-
gating a significant amount of network telescope data
and by executing correlations auxiliary databases. In
particular, through imperative discussions with numer-
ous operators, we were able to obtain information
about IP ranges belonging to various business sectors,
permitting the capability to identify IoT exploitation
in such sectors. Some of the outcome disclosed more
than 407,000 illicit events, originating from nearly
56,000 unsolicited and malicious IoT devices. As
for future work, we will be investigating the root
cause of such IoT exploitations, including IoT-specific
malware.
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