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For the first time, we show that rind thicknesses developed on surfaces of a clast with different values of curva-
ture can be used to estimate the duration of clast weathering. To obtain an analytical expression for the velocity of
the curvilinear weathering front on a clast of arbitrary shape, we approximate our previous multi-mineral
reactive-diffusion model and explore a simplified 2-D model numerically and analytically.

Our analysis documents that with increasing curvature of the weathering front, the mathematical description of
weathering advance is equivalent to that derived for advection as the dominant solute transport mechanism,
even for the case where transport is occurring by diffusion only. Specifically, for a curvilinear weathering front
with constant curvature K <0, diffusivity (D), and porosity (¢), the normal component of the weathering advance
rate can be calculated using an advection-like term where the advection velocity v can be expressed as v = D¢|K].
Therefore, at points along the rind-core interface with K< 0, rind thickness is directly proportional to the absolute
value of the curvature of the core-rind interface. The reaction front thickness also increases with K. These
inferences are in agreement with field observations. This quantitative analysis allows an assessment of the
duration of weathering if certain parameters are known. For example, using the difference in curvature observed
at two positions for a clast that weathered in Guadeloupe (0.12 mm™'and 0.018 mm™!) and the corresponding
rind thickness difference (35.8 mm and 20.6 mm), we estimated the duration of weathering to be about 118 ky,

Editor: Michael E. Bottcher

Keywords:

Weathering rind

Reactive transport modeling
Curvature and weathering
Stefan problem

which is consistent with the weathering ages previously determined by U-series isotope disequilibrium.

Published by Elsevier B.V.

1. Introduction

Weathering rinds have been described on clasts since at least the
1960s (Cernohouz and Solc, 1966), and the rates of formation of these
rinds have been used to assess the duration of weathering (Colman
and Pierce, 1981; Colman, 1982; Kirkbride, 2005; Kirkbride and Bell,
2010). For example, Sak et al. (2004) measured weathering rind
thicknesses on basaltic clasts from terraces of constrained geologic age
to evaluate the rate of weathering rind advance, i.e. the velocity
(distance/time) of advance of the interface between core and rind
inward into the unaltered core of the clast. In that work, the rind was
defined as the layer of clast material that enveloped the unaltered
core protolith. They calculated the mean of observed rind thickness
on clasts weathered for different exposure times and fitted these
data to rate laws of weathering that are parabolic (i.e., the rind thickness
L = const - \/t where t is the time and const stands for a constant) or
linear (rind thickness L = const * t). For the low-porosity (basaltic) clasts
that were under study, reactive transport is dominated by solute
diffusion (Neretnieks, 1980; Steefel and Lichtner, 1994), and such
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diffusion is not generally thought to be well explained with a linear
transport law. Instead, diffusion is better described by a parabolic rate
law (Lichtner, 1988). They nonetheless concluded on the basis of obser-
vations of weathered clasts that a linear law was adequate to describe
the rind evolution. The growth-rate curve could also have been fit by a
more complex law that is neither parabolic nor linear.

In general, most 1-D models used for modeling weathering clasts
(Navarre-Sitchler et al., 2011) are based on the assumption of an infinite
weathering domain whereas the size of an actual clast is finite. Moreover,
observations of rind—core interfaces on basaltic-andesitic clasts (Sak et al.,
2010; Ma et al., 2012) reveal that they are generally curved (or, in math-
ematical parlance, “curvilinear”). Importantly, curvature affects the rate of
material alteration, i.e., the weathering advance rate (Ortoleva et al.,
1987; Sak et al., 2010; Ma et al.,, 2012; Lebedeva and Brantley, 2013;
Reeves and Rothman, 2014). Many researchers have investigated the
rate of advance of weathering (Lichtner, 1988; Steefel and Lichtner,
1994; Wang et al., 1995; Soler and Lasaga, 1998; White, 2002; Zaraisky
et al, 2002; Oguchi, 2004; Lebedeva et al., 2007; Sidborn and
Neretnieks, 2007) but these authors have analyzed weathering advance
rates for planar reaction interfaces, i.e., where the regolith-bedrock or
rind-core boundary is characterized by a curvature equal to zero. For
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example, Oguchi (2004) analyzed a planar weathering interface for clasts
and obtained a parabolic law for the time dependence of rind thicknesses.

We present here a quantitative investigation of the complex behavior
of a curvilinear weathering front and how it affects the rate of
weathering advance of the rind-core boundary over time. We seek to
understand the thickness of the rind material (rind thickness), the rate
of growth of the rind (weathering advance rate), and the thickness of
the core-rind interfacial layer where the concentration of dissolving
mineral changes (the weathering or reaction front). Our approach differs
from a recent treatment (Reeves and Rothman, 2014) which was set up
following our model (Lebedeva et al., 2010). For example, Egs. (3)-(4)
(presented later) were rewritten from our work (Lebedeva et al., 2010)
by Reeves and Rothman (2014) in the spherical system of coordinates,
i.e., transforming them to 1-D equations. To investigate the problem,
Reeves and Rothman (2014) treated a version of the well-known spher-
ical Stephan problem (Hill, 1987) assuming that the latter approximates
the diffusion-reaction equations in the original model (Lebedeva et al.,
2010). The Stephan problem formulated for spherical symmetry is a
1-D problem which has been treated in several publications from
various fields (e.g. Entchev et al., 2001). Reeves and Rothman (2014)
used an approximate solution of the symmetrical spherical problem
(Hill, 1987) to calculate the time evolution of the thickness of the
weathering rind on a spherical clast. Reeves and Rothman (2014) do
not explore controls on weathering front thickness nor rind thickness
as a function of curvature. In fact, their approach cannot treat an
arbitrary, non-spherical, rind-core boundary — in other words, a real
clast. Here, we present a full chemical treatment of a 2-D model of
arbitrary clast based on our previous multi-mineral multicomponent
reactive transport model in 1-D (Lebedeva et al., 2007).

This multi-mineral model was used to treat a model rock composi-
tion: it included reactions that initiated bedrock alteration (oxidative
dissolution of FeO) and formed weathered material (transformation of
albite to kaolinite) (see Appendix A). The model bedrock also contained
quartz, treated as inert to weathering. In the model, components in the
pore fluid included O,, Na™, SiO,, Al(OH )5, H", OH™, Fe? ™, Fe> " and CI .
Here, this model is simplified further and applied to a non-regular 2-D
domain. We are unaware of other publications where a full model has
been treated in 2-D domains.

The present paper builds on our previous work. We previously
explored a simplified model which is based on an approximation of a
numerical simulation of the complex model (Lebedeva et al., 2007).
The simplified model was shown to satisfactorily reproduce the thick-
nesses of zones of mineral alteration, changes in porosity, and velocities
of the reaction fronts. Therefore, we applied this model to preliminary
2-D modeling of weathered clasts (Sak et al., 2010) where mineral alter-
ation occurred according to the hypothetical reaction M; + A = M be-
tween minerals My, M5, and a reactant aqueous species A. Specifically,
the model was based on the assumption that the rind increased in
thickness as a result of reaction between M; and A. We compared our
simulations with measurements of rind and reaction front thicknesses.
Our simulations documented that both the thicknesses of the
weathering rinds and weathering fronts (i.e. thickness of the transition
zone where minerals dissolve between core and rind) increased when
curvature of the weathering front increased. The first result about
weathering rinds was consistent with observations while the latter
(about reaction fronts) was not. Although we proposed a partial expla-
nation, this question remained open. Simulations also revealed that the
core-rind boundary of an idealized angular and irregularly shaped clast
eventually approached the geometry of an ellipse. This was similar
to modeled results from investigations of a different phenomenon —
bubble contraction (Entov and Etingof, 1991) — and this similarity
gave us the idea to analyze the similarity of the mathematical models
describing these different systems.

We also used the simplified weathering model to investigate
weathering across eroding convex-upward hillslopes (Lebedeva and
Brantley, 2013). In the latter work we found that regolith became

thickest on the hillslopes where the curvature approached a maximum.
We compared this result with our preliminary simulations of weathering
clasts and hypothesized that curvature-driven solute transport caused
development of the thickest rind (on a clast) or thickest regolith (on a
hillslope) precisely at the point where weathering fronts show the
highest curvature. Here, we continue numerical investigations of
weathering of clasts. Unlike the paper by Sak et al. (2010) we investigate
the reaction of albite alteration. Although we considered this reaction
previously (Lebedeva and Brantley, 2013), in the 2013 paper we focused
on the effect of curvature for landforms, including the effect of advection
and erosion. That system was not amenable to analytical investigation.
Here we quantify the dependencies of the rind and front thicknesses
on curvature. We pursue a simplified approach here that allows us not
only to simulate weathering clasts of arbitrary geometry but also to
obtain the analytical expressions for the velocity and thickness of the
curvilinear weathering front. Thus we resolve the uncertainties
described in the earlier paper with respect to how the front thickness
depends on front curvature (Sak et al., 2010). Other than the treatments
by Ortolevaetal. (1987), Sak et al. (2010), Ma et al. (2012), Lebedeva and
Brantley (2013), and Reeves and Rothman (2014), analysis of the
effect of curvature on weathering rate has not to our knowledge been
previously presented in the geochemical literature.

Outside of geochemical studies, the effect of curvature has been an-
alyzed for various reaction-diffusion systems. For more than a half of a
century, scientists have investigated this effect, and for some systems
it has been documented both experimentally and mathematically
(Markstein, 1951; Knapp and Aris, 1972; Zykov, 1980; Zeldovich,
1981; Keener, 1986; Foester et al., 1988; Grindrod, 1991; Brazhnik and
Tyson, 1999; Entchev et al., 2001). While these papers are devoted to
different natural phenomena, the papers summarized differential equa-
tions that are similar to those in our model. Therefore, the properties of
these solutions are similar. Here we apply some of the methods from
these contributions to our simple 2-D model of the weathering clast
and present numerical solutions to illustrate our results.

2. Model formulation

We developed the simplified model here from the observation that
many of the important geochemical attributes of rock weathering are
reproduced by simulating a model rock containing only one reactive
and one inert mineral (Lebedeva et al., 2010). Previously (Lebedeva
et al,, 2010; Lebedeva and Brantley, 2013), we analyzed and simulated
a parent rock containing reactive albite + inert quartz as it weathered
to quartz + albite + kaolinite. We argued that the albite could be con-
ceptualized as any abundant rock-forming mineral that reacts quickly
with pore fluids. In fact, we have observed albite-rich feldspar is often
the most abundant and reactive mineral during weathering of many
igneous rocks (Brantley and White, 2009).

Thus, the model is based on the assumption that weathering can be
described by albite (ab) transforming to kaolinite (kao) (Lebedeva et al.,
2010):

3H,0 _ .
2ab ——= 2Nay, + 20H 4 + 45i0y4q) + kao. (1)

In the approximate model, we combine all aqueous species in the al-
bite reaction (1) into one thermodynamic component, ¥2Na,0 4H,0
2Si0,, denoting it as NaSi, (Lebedeva et al., 2007). We define the extent
of reaction for albite dissolution as

n=1-Q/Q°, (2)

where Q (mol/m?®) and Q° are the concentration of albite in the
weathering material and in the protolith, respectively. We also assume
isovolumetric weathering. Notably, under this condition it can be
shown that 1) equals — 7 where 7 is the mass transfer coefficient
(Brimhall and Dietrich, 1987; Anderson et al., 2002).



90 M. Lebedeva et al. / Chemical Geology 404 (2015) 88-99

The governing equations for the time (t) evolution and spatial (x,y)
distribution of the concentration of NaSi, in pore fluid, C(x,y,t)
(mol/m?), and the extent of reaction, 1)(x, y, t), are as follows:

(¢pC) 0 oC 0 oC .

T—a(Dd’a) +@<D¢’@> +J(Cm) 3)
o _jCn)

Bl )

Egs. (3) and (4) are defined in the spatial domain (x,y) € Q (i.e. any
point with coordinates (x,y) belongs to this domain) which is bounded
by the surface I' of the clast. For the 2-D model, this “surface” is a closed
curve, ['(x, y) = 0, that lies on the plane (x,y). We consider a simplified
“cylindrical” clast (base of the cylinder, Q). This assumption is equiva-
lent to assuming that no variables depend on the third dimension. The
initial and boundary conditions are as follows:

C(x,y,0) = C%, (x,y)EQ
Q(x.y,0)=Q°, (x,y)€Q (5)
Cx,y,t) = C*, (x,y)eT.

Here, D (m?/s) is the diffusion coefficient in the aqueous pore fluid
reduced by tortuosity and ¢ is porosity:

¢ =1—dg,— iy (6)

where ¢q, = QVY, and ¢, are albite and the inert (quartz) volume
fractions, respectively, and V3, (m?/mol) is the albite specific volume.

Note that one aspect of clast weathering that has been treated in the
literature is evolution of porosity. Previous researchers emphasized
changes in porosity during rind development (Oguchi, 2004;
Navarre-Sitchler et al., 2011). Our treatment does not follow the
approach described in either of those papers but it does allow porosity
to change during weathering according to Eq. (6) when albite dissolves
and the volume fraction ¢, changes. We assume that initially porosity
within the clast is sufficiently low that solute transport occurs only by
diffusion (the first two terms in the right-hand side of Eq. (3)); i.e. we
do not take into account advection. In this regard the model presented
here differs from our previous models (Lebedeva et al., 2010;
Lebedeva and Brantley, 2013).

The reaction rate, j (mol/m> s), for albite transforming to kaolinite, is
approximated using the rate equation derived in our previous work
(Lebedeva et al., 2007):

j=k(1-)(C°—0) 7
k= 2kab5ubq,' (8)

InEq. (7), k (s~ ') is the effective rate constant, and C¢ is the concen-
tration of NaSi, in pore fluid in equilibrium with albite + quartz +
kaolinite. In Eq. (8), kqp is the dissolution rate constant for albite in
mol m™2 s~ ! as derived from published laboratory experiments
(Chou and Wollast, 1985; Hellmann, 1994), s, is the specific surface
area of albite (inm? m™3) in the parent material calculated using a geo-
metric model (see Appendix A). A correction factor, ¥ (m> mol~!)
relates the rate constant for albite dissolution to the effective rate con-
stant that pertains when other minerals are present (see original kinetic
functions in Appendix A). For example, the effective rate constant may
take into account the pH buffering that couples albite dissolution to
other mineral reactions that occur in natural systems (Lebedeva et al.,
2007). It is important to note that the model implicitly includes the
grain size of albite: the value of s, is determined by grain size. When
grain size increases, Sy, decreases.

Finally, C® is the solute concentration that describes the fluid that
enters the clast at its outer boundary. Generally, this concentration is a

function of x, y, and t. This function could be found by solving a reactive
transport model of the entire weathering column that contains the clast
(i.e. including the soil within which the clast is embedded). Below we
will discuss this more complex problem but first we assume a single
clast bathed in a fluid with a concentration that is constant in time
and space. In addition, we assume that the concentration C? is much
less than the equilibrium concentration, (R < C®.

3. Numerical results

Figs. 1 and 2 show numerical solutions of the Egs. (3)-(8) for the rect-
angular and irregular domains (clasts), respectively. The solutions of the
2-D problem were obtained using COMSOL Multiphysics software
(COMSOL, 2008). During the simulation, the rind-core boundary rounds
and eventually approaches an ellipse-shaped form. A similar result was
obtained analytically in quite a different research field, namely an investi-
gation of contracting bubbles (Entov and Etingof, 1991). This work
considered curvilinear fronts described by equations different from
Eqs. (3)-(4). Nonetheless, it can be shown that in the diffusion-
controlled regime — i.e., where kinetics is fast and k — e — the model
described in Eqs. (3)-(4) can be transformed to the model for bubbles
(Entov and Etingof, 1991), yielding a similar result: the clast tends to
form an ellipse (ellipsoid in 3-D) regardless of the initial weathering do-
main geometry. This result is true for boundary conditions which are ho-
mogeneous and constant in time. For different boundary conditions, clasts
could become quite different in shape than ellipsoidal. But this ellipsoidal
approximation is useful for preliminary estimations. Corestones of ellip-
soidal shape have been observed previously (Hewawasam et al., 2013).

To illustrate the effect of curvature we idealize a weathering domain
(clast) as an ellipse (Fig. 3), i.e., the elliptical outer boundary I is
described by (x/a)®> + (y/b)?> = 1, where a and b are semimajor and
semiminor axes respectively. For example, this idealization could be de-
scribing weathering of an angular clast starting from the moment when
the rind-core boundary becomes elliptical. Only albite and quartz are
present in this domain initially and the value of C® at the clast boundary
is zero. The absolute value of curvature, |K], is expressed by the equation

&y
K o a’b (©)
- 327 (4 y2(p2_2\\3/2
dy\ 2 a® +x*(b*—a
(1 +(%) ) (a* + 2 (b —a?))
Extent of reaction and solute concentration  Max: 0.999
1.4 10.9
1.2
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0.8 10.7
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Fig. 1. Simulation of a curvilinear weathering front within a weathering block. The model was
completed for Cf = 0 everywhere at the outer weathering boundary. Dimensionless time is
equal to 0.3. The extent of reaction is plotted as contours for 1) = 0.9 (the outer curve where
90% reaction has occurred) and 0.2 (the inner curves where 20% reaction has occurred). The
solute concentration is shown by color, where 0 is no solute present and 1 represents chem-
ical equilibration. The simulation documents rounding of corners, as observed in the field for
weathering clasts (Sak et al., 2004; Ma et al., 2012). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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Solute concentration and extent of reaction
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Fig. 2. Simulation of an angular clast. Dimensionless time is equal to 6. Solute concentra-
tion in pore fluid is shown with color. Extent of reaction in the rind is presented also as
a contour plot with only two contour lines delineated, i.e. ) = 0.9 (outer curve) and
1 = 0.2 (inner curve). The weathering front approaches an elliptical shape with time.
These illustrative simulations were performed for arbitrary parameters. Thus, for the
chosen length and time scales L. = 0.034 mand t, = L2 'D~! = 7.3 ky, respectively,
the dimensional time is equal to 44 ky, maximal horizontal and vertical sizes are equal to
17 cm and 31 cm, respectively. Parameter &« = 5 - 10~ is defined in Eq. (26). Other pa-
rameters are as follows: ¢g = 0.1, pgpy = 04,D=10"""m?> s k=17-10"° s,
(R = 0. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

At the point (x = 0,y = b), |K| = b/a® while at the point (x=a,y = 0),
|K] = a/b?. For a < b, the curvature at these points differs appreciably. For
this case, therefore, the effect of curvature could be pronounced.

Fig. 3 shows the numerical solution of this problem for a = 0.025 m
and b = 0.075 m after 38 ky. The extent of reaction is plotted as con-
tours for 1) = 0.9 (i.e., the boundary where 90% reaction has occurred
is shown as the outer curve), 0.5, and 0.1 (the inner curves where 50
and 10% reaction have occurred respectively). The solute concentration

0.08 Solute concentration and extent of reaction Max: 0.999
0.06 r10.9
0.04 108
r 10.7

0.02
10.6
>
0 - 10.5
-0.02 0.4
-0.04 0.3
-0.06 0.2
0.08 0.1
"7-0.08 -0.04 0 0.04 0.08 1,

X Min: 0

Fig. 3. Contour plots showing the simulated values of the extent of alteration, 7, of a
weathering rind (three contour curves shown) and solute concentration in pore fluid
(color) depicted for one time interval (38 ky). The simulation was conducted for a hypothet-
ical elliptical clast under the condition of solute transport by diffusion only. Contour curves
are plotted at 1) = 0.9, 0.5, and 0.1 (i.e. 90, 50, and 10% reacted). The rind is thicker along
the vertical axis of the ellipse where the curvature of the boundary is the largest. The param-
eters are as follows: a = 0.025 m, b = 0.075 m, ¢y = 0.005, s, = 0.05,D =10~ m? s~ ',
k=38-10"7 s~!,(*=0,a0=5 - 10>, (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

is shown by color. The absolute value of curvature reaches a minimum,
|K] = 0.0044 mm™', at points (£ 0.025, 0), and reaches a maximum,
|K| = 0.12 mm™', at points (0, & 0.075). The rind is thicker along the
vertical axis of the ellipse where the curvature is at a maximum. Based
on the same simulation, Fig. 4(a) documents that the velocity of the
weathering front in the direction along the normal to the contour
curve is larger where the front curvature is larger. A similar pattern
can be observed in the naturally weathered clast described previously
(Ma et al., 2012) as shown in Fig. 4(b).

4. Analysis

These simulations demonstrate that curvature of the weathering
front affects the weathering front advance velocity. To explain this
phenomenon we first summarize how weathering occurs for a planar
(K = 0) reaction front. These results follow from the analysis of 1-D
models that have been published multiple times (Lichtner, 1988;
Ortoleva, 1994; Lebedeva et al., 2007):

d$C) 9 (., 9C\ .

T’&(Dd’ﬁ) i rag L) 1o
an_j(Cmn)

Q0 .

These equations describe a planar front, i.e., weathering of a slab
where the variables C and 1) do not depend on the coordinate y.

We have added the advective term to Eq. (10) to compare the evo-
lution of the reaction fronts under diffusion and diffusion-advection.
Here v is the Darcy velocity of pore fluid. The theory predicts that the ve-
locity of the weathering front is larger in the presence of advection than
when solute transport is by diffusion only (at least for the case when the
directions of advection and the advance of weathering coincide). With
solute transport by both advection and diffusion, the front moves with
approximately constant velocity o, in direct proportion to v:

ce—ck

In contrast, when transport is by diffusion only, the transport slows
with time according to the so-called parabolic rate law (Ortoleva et al.,
1987; Lichtner, 1988):

Dd)(Ce—CR)

o) = 200t

(13)

For concurrent diffusion and advection, the thickness of a front
developed in the presence of advection will generally be larger than
that where solute transport is strictly by diffusion.

Fig. 4 documents an important point: curvature of the weathering
front results in weathering advance that behaves as if advection were
contributing to solute transport, even for the case where transport is oc-
curring by diffusion only. In other words, curvature transforms the time
dependence of weathering advance from parabolic to approximately
linear.

We can show this effect mathematically using model Egs. (3)-(4)
and a technique described in the literature (Zykov, 1980; Keener,
1986; Grindrod, 1991) (see Appendix B). For a curvilinear weathering
front with a constant curvature K, the total normal component of the
weathering advance rate, w,, is expressed by the following equation:

W, = 0 + Og = 0g—PK (14)

B =Dg(c*~C)/Q" (15)
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Fig. 4. The time evolution of the thickness of a weathering rind for the elliptical clast (a) calculated along the x-axis (circles) where the absolute value of the initial curvature of the boundary,
|K], equals 0.0044 mm ', and along the y-axis (triangles) where |[K| = 0.12 mm™ . This simulation can be compared to a natural example (b) (Ma et al., 2012) where the time evolution of
the weathering rind was obtained along directions normal to the clast boundary at low (circles, |[K| = 0.018 mm ') and high (triangles, |[K| = 0.12 mm™!) curvature. We suppose that the
elliptical clast was formed during weathering of an angular clast and that at 49 ky the rind thicknesses were equal to 11 mm for both x- and y-axes.

Here g is the velocity of the plane (rectilinear) front. The
additional term, oy, is calculated by Eq. (12) with v = — D¢K:
o = — DPK(C — CRY/Q°

Thus, the weathering advance rate depends not only on mineralogi-
cal composition (Q°), solute concentration (C¢ — C¥), solute transport
characteristics (D, v), and porosity (¢), but also on the curvature of
the weathering front K.

Note that the sign of the curvature K depends on the choice of the local
system of coordinates (see Appendix B). At a given curvature, its effect, i.e.
acceleration or deceleration of the reaction front, depends on the direc-
tion of front propagation. Therefore, for accurate treatment of any specific
case, it is necessary to analyze the effect of curvature taking into account
the shape of the reaction front and propagation direction.

It follows from Eq. (14) that for the 2-D curvilinear front, the sign of
curvature (the sign of the second derivative in Eq. (9)) is important. The
velocity of a front that is convex (K> 0) in the direction of the normal
to the contour (the curve y(x) where 1(x, y) = const) is less, and the
velocity of the concave front (K < 0) is greater than the velocity of the
plane front (Fig. 5). These results have also been proven experimentally
(Foester et al., 1988) but for a different phenomenon, namely, for
chemical waves.

Note that Eq. (14) is an approximation, as the curvature of the reac-
tion front generally changes with time. But we can use this equation for
time intervals that are short in comparison to the rate that curvature
changes. For example, curvature of the weathering front along axis y
in Fig. 3 is almost constant in time because initially, |[K| = b/a?, but
with reaction progress, b varies directly with t due to the “advective
effect” of the curvature, and a ~ /t because the advective effect is
small. In the literature, analyses of chemical waves have documented
more complex nonlinear dependencies for the velocity on curvature
(Brazhnik and Tyson, 1999).

Using Eqs. (B.1)-(B.2) from the Appendix B we can derive the
dependence of the thickness of the weathering front on curvature in
the direction normal to the curvilinear front for the weathering clast
case (K < 0). We define the front thickness as the length of the interval
where the extent of the reaction, 1), changes from zero to unity. We con-
sider the case of K < 0, so the second term in Eq. (B.1) is viewed as the
term describing “advective” transport. It has been known (Lichtner,
1988) that for the simplified model Egs. (10)-(11), the front thickness,
h, is approximated by the equation

B v |, 4Ddk
hfl/q,quDd) 1+ 2 1

(16)

Using the expression v = |K|D¢, we obtain for the model (B.1)-(B.2)

2 _D¢|K|

k
NG +;—(’;—|K|

at DoK? > 4k. It follows from Eq. (17) that the front thickness normal to a
tangent to the curve at any location is greater in the direction with greater
curvature. The same trend was simulated previously (Sak et al., 2010). But
the measurements reported for a naturally weathered clast published in
that paper did not resolve any systematic variation in the front thickness
with curvature. This discrepancy was attributed to the structure of the
rind-core boundary.

Nonetheless, we show here that a re-analysis of the results obtained
by Sak et al. (2010) documents the trend predicted by Eq. (17). Sak et al.
calculated the mass transfer coefficient (Brimhall and Dietrich, 1987)
for each element i, 7;, and inferred from this value the relative fraction
of elemental depletion relative to an immobile element in the
weathering rind. The mass transfer coefficient of an element such as
Ca is related to the extent of reaction of a Ca-containing mineral:

h= (17)
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Fig. 5. Model simulations showing the effect of the sign of curvature. Weathering is
advancing downward and the reaction front is becoming smoother with time. The curves
depict contour lines for the extent of reaction, 7). The curvature of the front at the left side is
defined here by convention to be negative, K < 0, the curvature in the middle is equal to
zero (K = 0), and the curvature at the right is positive, K > 0. The maximal rind thickness
is attained at the point of negative curvature on the left.
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i.e, Tco = — 7). Fig. 6 shows calculated values of this for different cross-
sections of the observed clast. The value of ) describes the fraction of an
element in the core of the clast that has been lost across the rind due to
weathering. As shown in the figure, profiles across the front where it has
lower curvature are steeper than the profiles across the highly curved
front. Thus, the rind and the reaction front are both thicker at points
of high curvature, as long as all the other parameters are the same. For
example, the front thickness depends also on porosity and the effective
kinetic constant (Eq. (17)). In natural multi-mineral clasts these param-
eters could differ along with differences in curvature. Such variations
may affect the front thickness so that the fronts with greater curvature
could be thinner than the fronts with lower curvature in actual clasts.
Eq. (14) can also be applied to real systems. For, example the rind
thickness, L, for the elliptical clast should approximately equal

qu(Ce—CR)

L(t) = Lo(t) + KB, B:T (18)
where Lo(t) is the rind thickness for the planar front and |K] is the
absolute value of curvature. If Ly is the same on a natural clast regardless
of direction of weathering advance in a given weathering soil, we can
derive

Lmax _Lmin (19)

Bt = _max—_min_
|Kmax | - u<min |

Using Eq. (19) we can estimate either the parameter (3 — which is
important for description of the diffusion front (see Eq. (13)) — or the
time t. Differences in L,,x and L.y, can therefore be used to estimate
the conditions of weathering. For example, for the natural clast analyzed
previously (Sak et al., 2010), Liyax =~ 35.8 mm, Ly, = 20.6 mm while
|Kmax] =~ 0.12 mm™ !, |Kmin| =~ 0.018 mm ™ !. We obtain from Eq. (19)
that Bt =~ 1.49 - 10~% m? We can then estimate the parameter 3
using an average value for D ~ 107! m?/s, ¢ ~ 0.01, and the ratio
(C®— Cc®Q°~4-10"%as 4 - 10~ ""m?/s (Eq. (18)). Here, we have
used data reported previously (Lebedeva et al., 2007) to calculate C¢
and assumed CR = 0. Then the duration of weathering is about 118 ky
which is in accordance with the result obtained by Ma et al. (2012)
using U-series isotope disequilibrium dating.
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Fig. 6. Elemental mass transfer coefficient 7¢, calculated from analyses of a basaltic clast
weathered in Guadeloupe (Sak et al., 2010) plotted as a function of distance from the
core-rind boundary. Different symbols refer to different positions along the clast core-
rind interface that have different curvature values, K, K>, and K3 (|K;| > |K3| > |K5]). The
solid curves are curve fits of these data labeled by the curvature of the core-rind boundary.
The boundaries of Ca reaction fronts are shown as dashed lines for the three points along
the core-rind boundary. Filled circles, open circles, and crosses depict the points with cur-
vature K; = 0.2 mm~ ', K; = 0.05 mm~ !, and K5 = 0.03 mm ™!, respectively. Noisiness
in the measurements generally relate to the presence of mineral grains in the protolith
that vary in Ca content. The distances h; i = 1, 2, 3, are the approximate thicknesses of
the reaction fronts, i.e. the distances between the intact core where 7¢, = 0 and the
completely altered rock where 7¢, = —1.

5. Formation of the curvilinear front and the effect of
boundary conditions

A typical weathering and eroding profile on bedrock will consist of
fresh unweathered rock overlain by regolith. Infiltration of water into
the bedrock is facilitated by joints and other fractures. When considered
over long geologic times from the perspective of a constant land surface
position, the regolith-to-bedrock profile is characterized by joints
and fractures that define the size of rock fragments or corestones
that leave the bedrock and move up and out of the system. (In other
words, from the perspective of a land surface experiencing erosive loss
of material, the regolith stays constant in thickness if weathering
advance rate = erosion rate and in that case, rock fragments can be
imagined as moving upward through the regolith equivalent to the
rate of weathering advance.) With increasing duration of time, these
joint-bounded bedrock blocks gradually diminish in size as they remain
in the weathering zone, moving upward toward the topsoil (Ruxton and
Berry, 1957; Fletcher and Brantley, 2010).

Weathering of each block occurs under a different set of boundary
conditions that define the solution chemistry at the block surface. In
many cases this leads to formation of curvilinear weathering fronts
that differ from the plane fronts modeled using Eqs. (10)-(11). For ex-
ample, weathering described by a 2-D model of a single rectangular
block under boundary conditions (Eq. (5)) has already been shown in
Fig. 1. For this simulation, the boundary concentration C* — the concen-
tration of NaSi, in pore fluid at the dissolution boundary — was set to
be constant in time and space. The weathering rind within the block
eventually approaches the shape of an ellipse.

The boundary conditions at the surface of the clast or block affect the
shape and the rate of advance of the weathering front. For example, the
block in Fig. 7 was modeled as if it was embedded in an inert porous
material: this simulation therefore is meant to help understand
how corestones or rock fragments evolve when embedded within a
weathering profile. For this simulation, solute concentration at the top
of the block was maintained less than the equilibrium concentration
(CR < €®) while the solute concentration at the bottom was maintained
close to equilibrium. At the lateral boundaries, solute concentration
depends linearly on depth, increasing from the top to the bottom of
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Fig. 7. Model simulation for a weathering block calculated under inhomogeneous boundary
conditions: CR = 0.05C¢aty = 1 and CR = 0.75C¢aty = 0 (0 < x < 2); CR =
(—0.7y 4+ 0.75)C¢ at x = 0 and x = 2 (see text). Parameters x and y are dimensionless. Di-
mensionless time equals 0.3. Solute concentration is shown by the color contours. Contour
curves (black lines) are shown for the extents of reaction 1) = 0.9 (the outer curve),n) = 0.5
(the intermediate curve), n = 0.1 (the inner curve). This simulation can be considered as a
representation of weathering of a corestone or clast embedded in a profile where the solute
concentration increases with depth. For such a case, the rock fragment does not weather to
a spheroidal corestone; rather, the corestone is trapezoidal as shown. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this
article.)
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the block. Given that the chemical affinity of the weathering solution
approaches 0 at the bottom, this block weathers slower than an identi-
cal block weathering under homogeneous boundary conditions C¥ = 0
(Fig. 1). In this case, the shape of the weathering front describing the
block is not elliptical early in the simulation (for example, at a value of
dimensionless time t = 0.3). The clast becomes elliptical only after a
longer duration. We infer from this that in general, the rind-core
boundaries of naturally weathered clasts often do not have elliptical
shapes because they have experienced complex and changing boundary
conditions during weathering. These boundaries are expected nonethe-
less to approach elliptical forms asymptotically with time. The decrease
in rind thickness with depth was observed in previous studies of clast
weathering (Chinn, 1981; Certini et al., 2003; Hewawasam et al., 2013).

6. Approximation of the model by the Stefan problem and analytical
solutions for spherical and cylindrical clasts

As long as we consider weathering in the diffusion-controlled
regime (i.e. where k — « and the reaction front is thin), it is possible
to consider the front as a surface of discontinuity in the solution of
the model described by Eqgs. (3)-(4) (Lichtner, 1988; Ortoleva,
1994; Lebedeva et al., 2007). In that case, the problem described in
Egs. (3)-(4) can be approximated as a Stefan problem (Hill, 1987).
This approximation presents the reaction front as a moving bound-
ary. With a moving boundary, the model equations considered for
j = 0, i.e. without reaction, can be solved separately in two domains.
One domain includes only the unaltered rock (n = 0) and the outer
domain includes only weathered material (n = 1). The mineral
alteration reaction only occurs on the surface of discontinuity. Thus,
in each domain we need to solve the diffusion equation (we assume
that porosity is constant within each domain):

ac; 0°c;  0°G;\ .
W‘D¢<W+W>’1_l’2 (20)

where i = 1 in the weathered zone and i = 2 in the rock. The
time evolution of the moving boundary is determined by the jump
condition

X (1 " (g’y‘>2> (po %51 -0 %52) 1)

2
o ()5

where X and Y are coordinates of the moving boundary f(X, Y, t) = 0
on the plane (x,y).

Egs. (20)-(22) could be used with an effective diffusion coefficient
to treat weathering of low porous material such as obsidian (Anovitz
et al., 2004, 2006).

The most important simple analytical estimates of the time
evolution of the moving boundary have been previously obtained for
the cases of a half-space, a circular cylinder, and a sphere (Hill,
1987):Half-space

L = /2Dda. (23)

Circular cylinder

Bl o))

Sphere

(o))

Here, Ry is the radius of the cylinder or sphere and R(t) and L(t) are
the positions of the reaction front at time t. Egs. (23)-(25) are solutions
to the problem under the condition that

e R
a= % <1 (26)
which is typically satisfied for weathering systems. This parameter « is
always small because the mass of NaSi, dissolved in a given mass of pore
fluid is always much less than the mass of that component in a unit mass
of rock.

Fig. 8 shows the time evolution of the thickness of the weathering
rind, 6(t) = Ro — R(t) for cylindrical clasts with circular bases of various
sizes. The curvature of a circle of radius R is equal to the reciprocal of the
radius:

1
K| = R (27)

So it follows from Eq. (24) that the weathering advance rate depends
non-linearly on the curvature. Thus, clasts with smaller radii (and
greater curvature) weather faster (Fig. 8). Egs. (24) and (25) allow
estimation of the time needed for complete weathering of a cylindrical
(teyr) or spherical (tgpp) clast, i.e. the time when R = 0:

Ro

9~ ADdax (28)
R2

tsph 6D((;)a (29)

Formulas (28)-(29) demonstrate that the duration of weathering
shows a similar dependence on Ry, D, ¢, and « regardless of shape.

These equations are approximate in that they were derived while
neglecting the finite reaction rate. Simulations for the model (3)-(8)
that do not include the assumption of infinitely fast reaction kinetics
show that the duration of complete weathering depends on the rate
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Fig. 8. Calculated time evolution plots for weathering rinds of circular cylinders of various
radii, Ry. The parameters are as follows (Egs. (24) and (26)): D= 0.8 - 10~° m?/s,¢ = 0.1,
a=5-10"".The curves terminate at the point where the clast (represented as a cylinder)
has completely weathered. The figure documents that over some interval during
weathering of each clast, thickness increases approximately as a linear function of time,
as has been observed for some natural systems (Sak et al., 2004). In addition, the rate of
thickening (derivative of the thickness with respect to time) is faster for smaller clasts
than larger clasts. In effect, smaller clasts weather away faster for both because they are
smaller and because of the curvature effect. Finally, the effect of curvature and clast size
is negligible during initial weathering but becomes more important with increasing
weathering duration.
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constant, i.e., the duration is less for a faster weathering reaction, as
expected. Therefore, estimates (28)-(29) for the transport-limited
case yield only the minimal weathering time.

Another important question we can address is the error that is in-
curred when a clast of any arbitrary shape is approximated as a cylindri-
cal or spherical clast. For example, an attempt to use a modified form of
Hill's Eq. (25) for a spherical clast was undertaken in a recent paper
(Reeves and Rothman, 2014). The authors argued that this approxima-
tion is applicable to any irregular clast. However, calculations presented
in the appendix document that depending on the shape of the clast,
the approximation leads to deviations from the actual duration of
weathering that can be as large as 30%. For complicated geometries,
solutions must be found numerically. For solidification of material
approximated as rectangles or rectangular parallelepipeds, asymptotic
solutions have been previously described (McCue et al., 2003, 2005).
We modified this approach and applied it to weathering problems
(see Appendix C). These approximations (Eq. (C.1)) lead to more
satisfactory estimates than Egs. (28)-(29).

7. Discussion and results

The model can also be used to explore the effect of porosity on clast
weathering. The porosity calculated across the core-rind boundary for
the Guadeloupe clast (Sak et al., 2010) is presented in Fig. 9a. Porosity
of the rind is much greater than porosity of the core. On a transect across
the rind-core interface, the porosity first slightly decreases, then
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Fig. 9. a. Porosity map (labeled C) across the core-rind boundary for the Guadeloupe clast
(Sak et al., 2010). Images of the thin section are shown in A under back-scattered electron
microscopy (brighter grains are denser). Pore space is shown in green in B as measured
under secondary electron microscopy using an FEI Quanta 400 environmental SEM. b. Po-
rosity calculated along the vertical axis (denoted x here) of the elliptical clast shown in
Fig. 3 (solid curve) and along the x-axis of the 1-D slab (dashed curve) for a model with
diffusion only. Note that the reaction front is thicker for the curved front as compared to
the planar front. Similarly, as discussed in the text, reaction fronts are thicker for
diffusion + advection models than for diffusion-only models for similar model conditions
(Lebedeva et al., 2010). c. Porosity calculated for a 4-mineral model (Brantley et al., 2014)
showing that the inclusion of multiple minerals reacting can produce “bumps” in porosity
versus position curves. The model for the simulation shown here included non-reacting
quartz, albite reacting to kaolinite and FeO reacting to goethite. Loss of porosity along
the transect is attributed to goethite precipitation. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

increases at the mineral alteration front and diminishes within the
intact core. The simulations of porosity (Fig. 9b) for the elliptical clast
presented in Fig. 3 (solid curve) and for the 1-D slab (dashed curve)
look similar to the natural curve although the functions change mono-
tonically without the “bump” in porosity documented in the clast itself
(Fig. 9a). Although calculated porosities for the elliptical clast and for
the slab both change monotonically, the dependence of the front veloc-
ities on time differs: the front velocity for the elliptical clast is almost
constant in some time interval in Fig. 4(a) (even though the simulation
does not include advection) while the front velocity for the slab dimin-
ishes with time as t~° (not shown) according to Eq. (13). Therefore, it
is not necessary to invoke changes in porosity to account for deviations
from the parabolic law, as was previously argued (Navarre-Sitchler
etal,, 2011). According to our treatment, a change in porosity affects
the effective diffusion coefficient, Deyy = Df(¢) (Der = D¢ in Eq. (13))

but does not explain why the non-linear time dependency, i.e., L =

2¢Vt, o = ¢/+/t (where ¢ = \/O.SDeff (CE—CR)/QO), becomes linear,

i.e. L = ot, ® = const. In fact, the threshold model (Navarre-Sitchler

etal, 2011) only changes the coefficient c.

The simple, monotonic variation in modeled porosity as a function of
distance across the reaction front in both the elliptical clast and the slab
is likely related to the model being limited to alteration of only one min-
eral. Even a slightly more complex model that simulated 4 minerals
(Brantley et al., 2014) produced a more complex distribution of porosity
within the weathering system, including zones where porosity “bumps”
are observed (Fig. 9¢c). Regardless, however, the two planar fronts sim-
ulated by Brantley et al. (2014) both move with a parabolic dependence
on time following Eq. (13). Thus, curvature exerts a first order control in
the advance of weathering fronts for clasts with low initial porosity.

We have presented the first numerical and analytical investigation
of curvilinear weathering fronts using a simple 2-D approximation
of a multi-mineral multicomponent reaction-diffusion model for
weathering clasts. The model describes the following observations
about rind formation: i) the core-rind boundary rounds with time; ii)
the transition from unweathered core to weathered rind occurs over a
narrow zone (which we call a weathering reaction front); iii) the front
is characterized by an increase in porosity; and iv) the rate of
weathering advance (distance/time) is faster where the curvature is
higher. Our results are in agreement with measurements (Sak et al.,
2010; Ma et al., 2012). In particular, it has been observed in those papers
that the rind and front thicknesses vary with the absolute value of
curvature of the weathering fronts. Our approach shows that the
weathering rind and front thicknesses that develop on a weathering
clast are directly proportional to the absolute value of the curvature of
the weathering front.

Similar mathematical problems arise for other natural phenomena.
Although their physical origins are diverse, the mathematical similarity
allows analysis based on methods in the literature. Here we have
applied them to weathering. Applying the previous analysis presented
in the literature (Entov and Etingof, 1991; McCue et al., 2003) to
weathering of clasts of any shape, we conclude that the core-rind
boundary of the clast will ultimately approach an ellipse just before
complete weathering. Our numerical simulations document this result.
This result has an important implication allowing a quick estimation of
weathering duration. The non-elliptical shape corresponds with the
beginning stage of weathering while the form close to the ellipse means
that weathering is close to completion. In this case, the weathering dura-
tion could be estimated using the approximate Egs. (28), (29), and (C.1).

The model presented here is a mesoscale model that implicitly aver-
ages over microscale features such as grain size or porosity. Examples
of investigations of pore-scale reaction rates, i.e. mineral alteration
fronts on micro-scales, have been presented previously (Putnis, 2009;
Levenson and Emmanuel, 2013). For example, the micro-images obtain-
ed previously (Putnis, 2009) document curvilinear fronts of mineral
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replacement on single crystals. Other researchers have suggested that
differences in reaction rates that have been observed could be due to
the effect of curvature at the micro-scale where the rate of dissolution
could increase or decrease depending on the geometry of the surface

(Levenson and Emmanuel, 2013), i.e., similar to our simulations in Fig. 5.

Variations in grain size and porosity can also contribute to
weathering advance and may explain some differences in weathering
advance rates in materials that differ significantly in grain size and
porosity such as obsidian (Anovitz et al., 2004), sandstone (Chinn,
1981; Certini et al., 2003), and basaltic substrates (Sak et al. (2010),
Ma et al. (2012)). We can make some inferences from our model
about weathering of other rock types if we assume that albite in the
model represents any abundant mineral that is weathering and that
quartz represents the non-reactive part of the rock. For example,
weathering of very pure sandstone (very quartz-rich and lithic
fragment-poor) is mostly due to dissolution of cement. To apply our
model to such a sandstone, the cement in the rock could be considered
equivalent to the model feldspar. The major difference would be the mol
% of cement (i.e. feldspar) would be very low in the clast starting mate-
rial. This would enhance the effect of curvature according to Eq. (15).
For example, if only 2% of feldspar is present, then the effect of curvature
increases 2.5 times in comparison to the example in Fig. 3 where 5%
of albite is initially present. Local rind thickening at the sharp corners
of angular clasts of sandstones has been observed (Chinn, 1981) in
accordance with Fig. 2.

Although grain size is not included explicitly in our model, smaller
grain size results in higher specific surface area and effective rate con-
stant (Eq. (A.9)). Clasts with smaller grain size are thus expected to
weather faster. For example, clasts formed from intrusive igneous
rocks of a given composition should demonstrate lower rates of rind
formation than equivalent extrusive rocks weathering under similar
environmental conditions. Furthermore, clasts with variations in grain
size could show variations in rind and front thickness related to grain
size in addition to the effects of curvature. Specifically, the grain size
can affect porosity and transport conditions. For example, if grain size
enhances the effective diffusivity, then rind growth may be affected
(Chinn, 1981).

We modeled clasts with homogeneous weathering rinds. Nonethe-
less in the natural systems there are observed more complex weathering
patterns. For example, alteration on a basalt boulder has been described
that has different colored concentric diffusion rings following the shape
of the boulder (Singer and Navrot, 1970). For future work, such a system
might be modeled using two separate reactions (A.13)-(A.14) and
by applying the conditions for ring formation obtained previously
(Lebedeva et al., 2004).

8. Conclusions and implications

From the model equations, a linear relationship between the normal
velocity of the curvilinear weathering front, ®,, and the curvature of the
weathering front, K, was derived:

0, = 0y—BK. (30)

Here «y is the velocity of a planar reaction front (i.e., K = 0) and B is
a parameter characterizing chemical, physical, and transport parame-
ters for the modeled system: 3 = (D(C® — C®)/QP). Thus, the velocity
of weathering front (weathering advance rate measured in distance/
time) is determined not only by mineralogical content (Q°), solute
concentration (C¢ — CR), solute transport characteristics (D, v), and
porosity (¢), but also by the curvature of the weathering front K.

The weathering front velocity depends on the sign of curvature and
can therefore be greater or lower than the velocity of a front that is pla-
nar. Particularly, for diffusion-only transport the velocity of weathering
front depends on time as t~ % (Eq. (13)). We obtained that the velocity
of the curvilinear front is almost constant in time. For the 1-D planar

front the velocity is constant when the reactive transport occurs by
both diffusion and advection (Eq. (12)). Therefore, in diffusion-
reactive processes, the effect of curvature results in a mathematical
description that is similar to that derived based on the assumption
that the dominant solute transport mechanism is advection. In other
words, the curvilinear core-rind boundary advances at a rate that is in-
dependent of time rather than parabolic. This could be the explanation
for the complex time dependence of rind thickness for clasts that has
been previously discussed (Sak et al., 2004; Ma et al., 2012). Importantly,
this improved reconstruction of the time dependencies of rind thick-
nesses allows better estimations of the time durations of exposure to
weathering.

The boundary conditions at the surface of the clast (solute concen-
tration, fluxes of components in the pore fluid) affect the curvature
and velocity of advance of the weathering front. Therefore, if solute
concentrations and fluxes vary with depth, it could be important to
take into account the locations of weathering clasts within regolith
profiles when analyzing field observations. We show in Section 4 how
the difference in curvature in different locations of the core-rind bound-
ary can be used to estimate duration of clast weathering.

Our simulations document that using cylindrical and spherical
approximations of an arbitrary clast could lead to errors as large as
30% even if the parameters of the kinetic function are known. Simple
local-equilibrium approximations for the time evolution of the core-
rind boundary — i.e., solutions of the Stefan problem for slabs, circular
cylinders, and spheres — could also be inaccurate. In these cases the
model must be solved numerically. But for rectangular corestones or
clasts, we present modified versions of the more complex analytical
expressions that have previously been obtained for a different physical
phenomenon (McCue et al., 2003, 2005). These modified expressions
could be applied to weathering problems to reduce the inaccuracies of
the cylindrical and spherical approximations.

Given that weathering generally causes rocks to break up into smaller
objects — blocks, corestones, clasts, grains — a complete understanding
of the time dependence of weathering will only be possible if the effects
of curvature are explored and incorporated in future model treatments.
We define weathering as transformation of a rock to soil. To our knowl-
edge, there are no geochemical models that incorporate the consider-
ation that during weathering, the rock typically decreases in grain size
(or equivalently, increases in specific surface area). Our model is a step
toward understanding how to quantitatively deal with changes in
texture during weathering. One of the remaining first-order puzzles in
geology is the question “How thick is soil in any location and what
controls this thickness?” Our modeling efforts reported here can be
considered as one way to explore this question, i.e. by simplifying the
modeled soil system to that of a weathering rind on a clast. We study
clasts in this paper as a first-step toward understanding what controls
the thickness of soil. Soil formation is classically thought to rely on factors
including climate, parent material, biota, relief, and time. We argue that
front curvature should be considered as an aspect that contributes to
controlling rates of formation.
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Appendix A. Origin of the approximate model

The model of weathering granite bedrock is described through the
reactions:

NaAlSi;Oggp5) + Hiaq) + Ho0=Na(gq) + Al(OH)3 4, + 351054 (A1)
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FeOy, + 2Hy, =Fely, + H,0 (A2)

ALSi,05(0H) 4 1a05) + HyO=2A1(OH)3 4y + 251054y, (A3)
+ 1 2+ 3

FeO(OH) g5, + 2H(ag) = 7 Oz(aq) + Fefag + 5 HaO. (A4)

We assume that precipitation of goethite (gth), FeO(OH) and kaolin-
ite (kao), Al;Si;O5(0H),, after dissolution of albite (ab), forms the
weathering rind. Additionally, we consider the following homogeneous
reactions for aqueous species:

H(qg) + OH g, =H,0 (A5)
3¢, 1 IRTT | 24
Felaq) +5H20=H(z) + 7 Oz(aq) + Felag)- (A6)

The reaction rate, j;, is described by a generalized kinetic equation for
mineral dissolution or precipitation and is expressed as the product of
three functions:

jj= fj(sj)kj<aaq;FAj>1Pj(Zj)

where j; is positive for mineral dissolution.

The function fi(s;) determines the reaction rate dependence on the
specific surface area s; of given mineral j. For Egs. (A.1) through (A.4),
j = ab, FeO, kao, and gth. We assume that fi(s;) = s;. The value of
sj (m™ 1) is calculated as the geometric surface area:

(A7)

~1/3,2/3
sj_6nj oy

: (A8)

where n; (m~3) is the number of mineral grains per unit volume of a
porous medium. We define this as

M
(d&)

Here, dg;'f (m) is the average size of mineral grains at a characteristic
volume fraction, ¢;. Based upon observations and models for
weathering of a Puerto Rico quartz diorite (Buss, 2006), we set dgj‘ toa
nominal value of 10”4 m at ¢ = 0.2 for albite, kaolinite, and FeO
while dgf =5 107° mat ¢ = 0.1 for goethite.

A transfer of components between solid and fluid phases is de-
scribed by the kinetic function k;(dqq; Ej) where aqq is the activity vector
of aqueous species and Eaj = Ei/RT, where 4 is the activation energy, R
is the universal gas constant, and T is absolute temperature. According
to the work of many researchers to describe silicate dissolution
(Brantley, 2004), the kinetic function k; is expressed as follows:

(A9)

k; (aaq;EAj) = k? exp(—EAj) (a’;ll’ + Kjagﬁf + h3j> (A.10)
where k?, k?k; and k?hs; are the rate constants for proton-promoted,
hydroxyl-promoted, and H,O-promoted dissolution respectively, mea-
sured at pH 0 and 298 K for the reaction of interest. The parameters
hyj and hy; are constants that represent the partial reaction order with
respect to H" and OH ™ respectively.

To describe reaction rate as a function of chemical affinity A; we use
the standard function ¥;:

¥;(4;) = 1—exp(—4)) (A11)
where
A;j=A;/RT, A; = 1n(]i1a,.”f"/1<j), (A12)

Vi =V;i — Vi, Vi and vjf are the stoichiometric coefficients for the left-
and right-hand side of the chemical reaction respectively, and K; are the
equilibrium constants of the reactions.

Analysis of the numerical solutions of the model (A.1)-(A.6)
(Lebedeva et al., 2007) shows that instead of the reaction system
(A.1)-(A.6) we can write two main reaction equations:

1 1H,0
FeOy) +702a — > s&th (A13)
3H,0 . _ )
2ab ———= kao +2(Najyy) + OHigg) + 25104y ). (A.14)

In other words, the more complex multi-component scheme
(A.1)-(A.4) can be split into the two independent one-component
reactions (A.13) and (A.14). Comparison of the numerical solutions
(Lebedeva et al., 2007) of the full and approximate models allows
derivation of the approximate kinetic function and calculation of the
effective kinetic constant.

In a previous publication (Lebedeva et al., 2007), the 1-D model for
reaction (A.13) only was analyzed. The 1-D model for reaction (A.14)
was also considered previously (Lebedeva et al., 2010). Here we also
focus on reaction (A.14).

Appendix B. Analysis of the curvilinear reaction front

We can show the effect of curvature mathematically using model
Egs. (3)-(4) and a technique described in the literature (Zykov, 1980;
Keener, 1986; Grindrod, 1991). We introduce local orthogonal curvilin-
ear coordinates (&, A) that allow us to reduce the problem from 2-D to 1-
D: A describes contour lines for the variables (C, 1), i.e. a moving interface
for mineral alteration. (A contour curve is the curve where the extent of
reaction is constant.) The § coordinate is the characteristic line describing
weathering advance (Aris and Knapp, 1972) (Fig. B.1). In this coordinate
system, we can replace the 2-D Egs. (3)-(4) by the 1-D equations (see
Zykov, 1980; Keener, 1986; Grindrod, 1991 for details):

8(¢C) _ 3 (1, C o,

w02 (wa—g) +KD e +i(C1) (B.1)
an _j(Cn)

= o (B.2)

Here K is curvature of the contour curve defining the weathering
front (for example, the contour curve at 1 = 0.5). By comparing
Eq. (B.1) to Eq. (10), we see that the term including curvature K is

Y

>

0 X

Fig. B.1. The local curvilinear system of coordinates (&, A). The curve 1) = const is the
contour curve. T is the tangent line and N is the normal line to the curve at a given
point. Curvature of the contour curve as shown is negative. Here, the rock clast is on the
left and the environment is on the right.
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similar to the term in the earlier equation for advection. So for a
curvilinear weathering front with constant curvature K < 0, the normal
component of the weathering advance rate is calculated by Eq. (12)
with v = D¢|K].

Appendix C. Geometrical approximation and approximation of the
model by the Stefan problem

Here, we use numerical simulations to estimate the error that is
incurred when a clast of an arbitrary shape is approximated as a cylin-
drical or spherical clast. To assess this, we considered two examples:
weathering blocks with either rectangular or square bases which
have identical heights equal to unity. Each clast was approximated as
a circular cylinder of the same volume as the corresponding block.
First we estimate the error in the case when the kinetic function is
known and it is possible to calculate the exact complete weathering
time for each clast. We solve the original reaction-diffusion problem
(3)-(4) and calculate the time of complete weathering. We use identical
reaction kinetics (Eqs. (7)-(8)). For this case, we obtained Tyjocx =
0.74T¢y; and Tpjock = 0.96Ty; for the rectangular and square block,
respectively. Tpjocr and T, are the dimensional weathering times for
the block and cylinder, respectively. Thus, depending on the shape of
the clast, the approximation leads to different results such that the devi-
ation from the actual duration of weathering (|Tpiock — Teyil /Thiock) could
be as large as 30%. So for numerical modeling and accuracy better than
tens of percent, it is important to consider geometry of weathering
clasts as close to real as possible.

Next we compare the results of a numerical solution and the
approximation by the Stefan problem for a rectangular block of size
0<x<a,0<y<b (base). Simulation (i.e., solution of Egs. (3)-(8))
for kb?/D = 400 yields t&° = 3.4 - 10°y. In comparison, from Eq. (28)
we obtain t&' = 4.2 - 10% for a cylinder with radius Ry = \/ab/m.

The estimation can be improved using approximate analytical
solutions for rectangles and rectangular parallelepipeds. These solutions
have been previously described (McCue et al., 2003, 2005) for a solidifi-
cation problem.

Following their method we estimate the complete weathering time
for a rectangular block of size 0 <x <a,0<y<bas

[~ b*Q° 1_% 16(—1)
™ 4D¢p(Ce—CF) \ 2 m(2m + 1)3 cosh(0.5(2m + 1)ma/b)

m=0

(C.1)

b’ <1 N 16 )
" 4Dp(Cc—CR)\2 3 cosh(0.5ma/b))

Applying this equation to the weathering block in Fig. 1 we obtain
te=3-10% (fora=2 mb=1mD=0.8"10"° m?/s, ¢ = 0.3,
Q° =4"-10% mol/m?, C¢ = 0.2 mol/m>, C* = 0).

Thus Eq. (C.1) presents a satisfactory estimate. This estimate could
be improved by including more terms in Eq. (C.1) and using additional
terms obtained by (McCue et al., 2003).
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