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For the first time, we show that rind thicknesses developed on surfaces of a clast with different values of curva-

ture canbe used to estimate the duration of clastweathering. To obtain an analytical expression for the velocity of

the curvilinear weathering front on a clast of arbitrary shape, we approximate our previous multi-mineral

reactive-diffusion model and explore a simplified 2-D model numerically and analytically.

Our analysis documents that with increasing curvature of the weathering front, the mathematical description of

weathering advance is equivalent to that derived for advection as the dominant solute transport mechanism,

even for the case where transport is occurring by diffusion only. Specifically, for a curvilinear weathering front

with constant curvatureK b 0, diffusivity (D), andporosity (ϕ), the normal component of theweathering advance

rate can be calculated using an advection-like termwhere the advection velocity v can be expressed as v=Dϕ|K|.

Therefore, at points along the rind–core interfacewith K b 0, rind thickness is directly proportional to the absolute

value of the curvature of the core–rind interface. The reaction front thickness also increases with K. These

inferences are in agreement with field observations. This quantitative analysis allows an assessment of the

duration of weathering if certain parameters are known. For example, using the difference in curvature observed

at two positions for a clast thatweathered inGuadeloupe (0.12 mm−1 and 0.018 mm−1) and the corresponding

rind thickness difference (35.8 mm and 20.6 mm), we estimated the duration of weathering to be about 118 ky,

which is consistent with the weathering ages previously determined by U-series isotope disequilibrium.

Published by Elsevier B.V.

1. Introduction

Weathering rinds have been described on clasts since at least the

1960s (Cernohouz and Solc, 1966), and the rates of formation of these

rinds have been used to assess the duration of weathering (Colman

and Pierce, 1981; Colman, 1982; Kirkbride, 2005; Kirkbride and Bell,

2010). For example, Sak et al. (2004) measured weathering rind

thicknesses on basaltic clasts from terraces of constrained geologic age

to evaluate the rate of weathering rind advance, i.e. the velocity

(distance/time) of advance of the interface between core and rind

inward into the unaltered core of the clast. In that work, the rind was

defined as the layer of clast material that enveloped the unaltered

core protolith. They calculated the mean of observed rind thickness

on clasts weathered for different exposure times and fitted these

data to rate laws ofweathering that are parabolic (i.e., the rind thickness

L ¼ const �
ffiffi

t
p

where t is the time and const stands for a constant) or

linear (rind thickness L= const ⋅ t). For the low-porosity (basaltic) clasts

that were under study, reactive transport is dominated by solute

diffusion (Neretnieks, 1980; Steefel and Lichtner, 1994), and such

diffusion is not generally thought to be well explained with a linear

transport law. Instead, diffusion is better described by a parabolic rate

law (Lichtner, 1988). They nonetheless concluded on the basis of obser-

vations of weathered clasts that a linear law was adequate to describe

the rind evolution. The growth-rate curve could also have been fit by a

more complex law that is neither parabolic nor linear.

In general, most 1-D models used for modeling weathering clasts

(Navarre-Sitchler et al., 2011) are based on the assumption of an infinite

weathering domainwhereas the size of an actual clast is finite. Moreover,

observations of rind–core interfaces on basaltic–andesitic clasts (Sak et al.,

2010; Ma et al., 2012) reveal that they are generally curved (or, in math-

ematical parlance, “curvilinear”). Importantly, curvature affects the rate of

material alteration, i.e., the weathering advance rate (Ortoleva et al.,

1987; Sak et al., 2010; Ma et al., 2012; Lebedeva and Brantley, 2013;

Reeves and Rothman, 2014). Many researchers have investigated the

rate of advance of weathering (Lichtner, 1988; Steefel and Lichtner,

1994; Wang et al., 1995; Soler and Lasaga, 1998; White, 2002; Zaraisky

et al., 2002; Oguchi, 2004; Lebedeva et al., 2007; Sidborn and

Neretnieks, 2007) but these authors have analyzed weathering advance

rates for planar reaction interfaces, i.e., where the regolith–bedrock or

rind–core boundary is characterized by a curvature equal to zero. For
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The governing equations for the time (t) evolution and spatial (x,y)

distribution of the concentration of NaSi2 in pore fluid, C(x,y,t)

(mol/m3), and the extent of reaction, η(x, y, t), are as follows:

∂ ϕCð Þ
∂t

¼ ∂

∂x
Dϕ

∂C

∂x

� �

þ ∂

∂y
Dϕ

∂C

∂y

� �

þ j C; ηð Þ ð3Þ

∂η

∂t
¼ j C;ηð Þ

Q0
: ð4Þ

Eqs. (3) and (4) are defined in the spatial domain (x, y)∈Ω (i.e. any

point with coordinates (x,y) belongs to this domain) which is bounded

by the surface Γ of the clast. For the 2-D model, this “surface” is a closed

curve, Γ(x, y) = 0, that lies on the plane (x,y). We consider a simplified

“cylindrical” clast (base of the cylinder, Ω). This assumption is equiva-

lent to assuming that no variables depend on the third dimension. The

initial and boundary conditions are as follows:

C x; y;0ð Þ ¼ C
e
; x; yð Þ∈Ω

Q x; y;0ð Þ ¼ Q
0
; x; yð Þ∈Ω

C x; y; tð Þ ¼ C
R
; x; yð Þ∈Γ:

ð5Þ

Here, D (m2/s) is the diffusion coefficient in the aqueous pore fluid

reduced by tortuosity and ϕ is porosity:

ϕ ¼ 1−ϕab−ϕin ð6Þ

where ϕab = QVab
0 and ϕin are albite and the inert (quartz) volume

fractions, respectively, and Vab
0 (m3/mol) is the albite specific volume.

Note that one aspect of clast weathering that has been treated in the

literature is evolution of porosity. Previous researchers emphasized

changes in porosity during rind development (Oguchi, 2004;

Navarre-Sitchler et al., 2011). Our treatment does not follow the

approach described in either of those papers but it does allow porosity

to change during weathering according to Eq. (6) when albite dissolves

and the volume fraction ϕab changes. We assume that initially porosity

within the clast is sufficiently low that solute transport occurs only by

diffusion (the first two terms in the right-hand side of Eq. (3)); i.e. we

do not take into account advection. In this regard the model presented

here differs from our previous models (Lebedeva et al., 2010;

Lebedeva and Brantley, 2013).

The reaction rate, j (mol/m3 s), for albite transforming to kaolinite, is

approximated using the rate equation derived in our previous work

(Lebedeva et al., 2007):

j ¼ k 1−ηð Þ C
e
−C

� �

ð7Þ

k ¼ 2kabsabΨ: ð8Þ

In Eq. (7), k (s−1) is the effective rate constant, and C e is the concen-

tration of NaSi2 in pore fluid in equilibrium with albite + quartz +

kaolinite. In Eq. (8), kab is the dissolution rate constant for albite in

mol m−2 s−1 as derived from published laboratory experiments

(Chou and Wollast, 1985; Hellmann, 1994), sab is the specific surface

area of albite (inm2 m−3) in the parentmaterial calculated using a geo-

metric model (see Appendix A). A correction factor, Ψ (m3 mol−1)

relates the rate constant for albite dissolution to the effective rate con-

stant that pertainswhen otherminerals are present (see original kinetic

functions in Appendix A). For example, the effective rate constant may

take into account the pH buffering that couples albite dissolution to

other mineral reactions that occur in natural systems (Lebedeva et al.,

2007). It is important to note that the model implicitly includes the

grain size of albite: the value of sab is determined by grain size. When

grain size increases, sab decreases.

Finally, CR is the solute concentration that describes the fluid that

enters the clast at its outer boundary. Generally, this concentration is a

function of x, y, and t. This function could be found by solving a reactive

transport model of the entire weathering column that contains the clast

(i.e. including the soil within which the clast is embedded). Below we

will discuss this more complex problem but first we assume a single

clast bathed in a fluid with a concentration that is constant in time

and space. In addition, we assume that the concentration CR is much

less than the equilibrium concentration, CR ≪ C e.

3. Numerical results

Figs. 1 and 2 shownumerical solutions of the Eqs. (3)–(8) for the rect-

angular and irregular domains (clasts), respectively. The solutions of the

2-D problem were obtained using COMSOL Multiphysics software

(COMSOL, 2008). During the simulation, the rind–core boundary rounds

and eventually approaches an ellipse-shaped form. A similar result was

obtained analytically in quite a different research field, namely an investi-

gation of contracting bubbles (Entov and Etingof, 1991). This work

considered curvilinear fronts described by equations different from

Eqs. (3)–(4). Nonetheless, it can be shown that in the diffusion-

controlled regime — i.e., where kinetics is fast and k → ∞ — the model

described in Eqs. (3)–(4) can be transformed to the model for bubbles

(Entov and Etingof, 1991), yielding a similar result: the clast tends to

form an ellipse (ellipsoid in 3-D) regardless of the initial weathering do-

main geometry. This result is true for boundary conditions which are ho-

mogeneous and constant in time. For different boundary conditions, clasts

could become quite different in shape than ellipsoidal. But this ellipsoidal

approximation is useful for preliminary estimations. Corestones of ellip-

soidal shape have been observed previously (Hewawasam et al., 2013).

To illustrate the effect of curvaturewe idealize a weathering domain

(clast) as an ellipse (Fig. 3), i.e., the elliptical outer boundary Γ is

described by (x/a)2 + (y/b)2 = 1, where a and b are semimajor and

semiminor axes respectively. For example, this idealization could be de-

scribingweathering of an angular clast starting from themomentwhen

the rind–core boundary becomes elliptical. Only albite and quartz are

present in this domain initially and the value of CR at the clast boundary

is zero. The absolute value of curvature, |K|, is expressed by the equation

Kj j ¼

d
2
y

dx2

�

�

�

�

�

�

�

�

�

�

1þ dy
dx

� 	

2
� �3=2

¼ a
4
b

a4 þ x2 b2−a2
� �� �3=2

: ð9Þ

Fig. 1.Simulationof a curvilinearweathering frontwithin aweatheringblock. Themodelwas

completed for CR =0 everywhere at the outer weathering boundary. Dimensionless time is

equal to 0.3. The extent of reaction is plotted as contours for η=0.9 (the outer curve where

90% reaction has occurred) and 0.2 (the inner curves where 20% reaction has occurred). The

solute concentration is shown by color, where 0 is no solute present and 1 represents chem-

ical equilibration. The simulation documents rounding of corners, as observed in the field for

weathering clasts (Sak et al., 2004; Ma et al., 2012). (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)
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i.e., τCa =− η. Fig. 6 shows calculated values of this for different cross-

sections of the observed clast. The value of η describes the fraction of an

element in the core of the clast that has been lost across the rind due to

weathering. As shown in thefigure, profiles across the frontwhere it has

lower curvature are steeper than the profiles across the highly curved

front. Thus, the rind and the reaction front are both thicker at points

of high curvature, as long as all the other parameters are the same. For

example, the front thickness depends also on porosity and the effective

kinetic constant (Eq. (17)). In naturalmulti-mineral clasts these param-

eters could differ along with differences in curvature. Such variations

may affect the front thickness so that the fronts with greater curvature

could be thinner than the fronts with lower curvature in actual clasts.

Eq. (14) can also be applied to real systems. For, example the rind

thickness, L, for the elliptical clast should approximately equal

L tð Þ ¼ L0 tð Þ þ Kj jβt; β ¼
Dϕ Ce−CR
� 	

Q0
ð18Þ

where L0(t) is the rind thickness for the planar front and |K| is the

absolute value of curvature. If L0 is the same on a natural clast regardless

of direction of weathering advance in a given weathering soil, we can

derive

βt ¼ Lmax−Lmin

Kmaxj j− Kminj j : ð19Þ

Using Eq. (19) we can estimate either the parameter β — which is

important for description of the diffusion front (see Eq. (13)) — or the

time t. Differences in Lmax and Lmin can therefore be used to estimate

the conditions ofweathering. For example, for the natural clast analyzed

previously (Sak et al., 2010), Lmax ≈ 35.8 mm, Lmin ≈ 20.6 mm while

|Kmax| ≈ 0.12 mm−1, |Kmin| ≈ 0.018 mm−1. We obtain from Eq. (19)

that βt ≈ 1.49 ⋅ 10−4 m2. We can then estimate the parameter β
using an average value for D ∼ 10−10 m2/s, ϕ ∼ 0.01, and the ratio

(C e − C R/Q0 ∼ 4 ⋅ 10−5 as 4 ⋅ 10−17m2/s (Eq. (18)). Here, we have

used data reported previously (Lebedeva et al., 2007) to calculate C e

and assumed CR = 0. Then the duration of weathering is about 118 ky

which is in accordance with the result obtained by Ma et al. (2012)

using U-series isotope disequilibrium dating.

5. Formation of the curvilinear front and the effect of

boundary conditions

A typical weathering and eroding profile on bedrock will consist of

fresh unweathered rock overlain by regolith. Infiltration of water into

the bedrock is facilitated by joints and other fractures.When considered

over long geologic times from the perspective of a constant land surface

position, the regolith-to-bedrock profile is characterized by joints

and fractures that define the size of rock fragments or corestones

that leave the bedrock and move up and out of the system. (In other

words, from the perspective of a land surface experiencing erosive loss

of material, the regolith stays constant in thickness if weathering

advance rate = erosion rate and in that case, rock fragments can be

imagined as moving upward through the regolith equivalent to the

rate of weathering advance.) With increasing duration of time, these

joint-bounded bedrock blocks gradually diminish in size as they remain

in theweathering zone,moving upward toward the topsoil (Ruxton and

Berry, 1957; Fletcher and Brantley, 2010).

Weathering of each block occurs under a different set of boundary

conditions that define the solution chemistry at the block surface. In

many cases this leads to formation of curvilinear weathering fronts

that differ from the plane fronts modeled using Eqs. (10)–(11). For ex-

ample, weathering described by a 2-D model of a single rectangular

block under boundary conditions (Eq. (5)) has already been shown in

Fig. 1. For this simulation, the boundary concentration CR— the concen-

tration of NaSi2 in pore fluid at the dissolution boundary — was set to

be constant in time and space. The weathering rind within the block

eventually approaches the shape of an ellipse.

The boundary conditions at the surface of the clast or block affect the

shape and the rate of advance of the weathering front. For example, the

block in Fig. 7 was modeled as if it was embedded in an inert porous

material: this simulation therefore is meant to help understand

how corestones or rock fragments evolve when embedded within a

weathering profile. For this simulation, solute concentration at the top

of the block was maintained less than the equilibrium concentration

(CR≪ C e)while the solute concentration at the bottomwasmaintained

close to equilibrium. At the lateral boundaries, solute concentration

depends linearly on depth, increasing from the top to the bottom of

Fig. 6. Elemental mass transfer coefficient τCa calculated from analyses of a basaltic clast

weathered in Guadeloupe (Sak et al., 2010) plotted as a function of distance from the

core–rind boundary. Different symbols refer to different positions along the clast core–

rind interface that have different curvature values, K1, K2, and K3 (|K1| N |K2| N |K3|). The

solid curves are curvefits of these data labeled by the curvature of the core–rind boundary.

The boundaries of Ca reaction fronts are shown as dashed lines for the three points along

the core–rind boundary. Filled circles, open circles, and crosses depict the points with cur-

vature K1 = 0.2 mm−1, K2 = 0.05 mm−1, and K3 =0.03 mm−1, respectively. Noisiness

in the measurements generally relate to the presence of mineral grains in the protolith

that vary in Ca content. The distances hi, i = 1, 2, 3, are the approximate thicknesses of

the reaction fronts, i.e. the distances between the intact core where τCa = 0 and the

completely altered rock where τCa = −1.

Fig. 7.Model simulation for aweathering block calculated under inhomogeneous boundary

conditions: C R = 0.05C e at y = 1 and C R = 0.75C e at y = 0 (0 ≤ x ≤ 2); C R =

(−0.7y+0.75)C e at x=0 and x=2 (see text). Parameters x and y are dimensionless. Di-

mensionless time equals 0.3. Solute concentration is shown by the color contours. Contour

curves (black lines) are shown for the extents of reaction η=0.9 (the outer curve), η=0.5

(the intermediate curve), η=0.1 (the inner curve). This simulation can be considered as a

representation of weathering of a corestone or clast embedded in a profile where the solute

concentration increases with depth. For such a case, the rock fragment does not weather to

a spheroidal corestone; rather, the corestone is trapezoidal as shown. (For interpretation of

the references to color in this figure legend, the reader is referred to the web version of this

article.)
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the block. Given that the chemical affinity of the weathering solution

approaches 0 at the bottom, this block weathers slower than an identi-

cal block weathering under homogeneous boundary conditions CR = 0

(Fig. 1). In this case, the shape of the weathering front describing the

block is not elliptical early in the simulation (for example, at a value of

dimensionless time t = 0.3). The clast becomes elliptical only after a

longer duration. We infer from this that in general, the rind–core

boundaries of naturally weathered clasts often do not have elliptical

shapes because they have experienced complex and changing boundary

conditions duringweathering. These boundaries are expected nonethe-

less to approach elliptical forms asymptotically with time. The decrease

in rind thickness with depth was observed in previous studies of clast

weathering (Chinn, 1981; Certini et al., 2003; Hewawasam et al., 2013).

6. Approximation of themodel by the Stefan problem and analytical

solutions for spherical and cylindrical clasts

As long as we consider weathering in the diffusion-controlled

regime (i.e. where k → ∞ and the reaction front is thin), it is possible

to consider the front as a surface of discontinuity in the solution of

the model described by Eqs. (3)–(4) (Lichtner, 1988; Ortoleva,

1994; Lebedeva et al., 2007). In that case, the problem described in

Eqs. (3)–(4) can be approximated as a Stefan problem (Hill, 1987).

This approximation presents the reaction front as a moving bound-

ary. With a moving boundary, the model equations considered for

j = 0, i.e. without reaction, can be solved separately in two domains.

One domain includes only the unaltered rock (η = 0) and the outer

domain includes only weathered material (η = 1). The mineral

alteration reaction only occurs on the surface of discontinuity. Thus,

in each domain we need to solve the diffusion equation (we assume

that porosity is constant within each domain):

∂Ci

∂t
¼ Dϕ

∂2Ci

∂x2
þ ∂2Ci

∂y2

 !

; i ¼ 1;2 ð20Þ

where i = 1 in the weathered zone and i = 2 in the rock. The

time evolution of the moving boundary is determined by the jump

condition

Q
0 ∂X

∂t
¼ 1þ ∂X

∂y

� �2
 !

Dϕ
∂C1

∂x
−Dϕ

∂C2

∂x

� �

ð21Þ

Q
0 ∂Y

∂t
¼ 1þ ∂Y

∂x

� �2
 !

Dϕ
∂C1

∂y
−Dϕ

∂C2

∂y

� �

ð22Þ

where X and Y are coordinates of the moving boundary f(X, Y, t) = 0

on the plane (x,y).

Eqs. (20)–(22) could be used with an effective diffusion coefficient

to treat weathering of low porous material such as obsidian (Anovitz

et al., 2004, 2006).

The most important simple analytical estimates of the time

evolution of the moving boundary have been previously obtained for

the cases of a half-space, a circular cylinder, and a sphere (Hill,

1987):Half-space

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Dϕαt
p

: ð23Þ

Circular cylinder

t ¼ R2
0

4Dϕα
2

R

R0

� �

2

ln
R

R0

� �

þ 1−
R

R0

� �

2
� �

: ð24Þ

Sphere

t ¼ R2
0

6Dϕα
1−3

R

R0

� �

2

þ 2
R

R0

� �

3
� �

: ð25Þ

Here, R0 is the radius of the cylinder or sphere and R(t) and L(t) are

the positions of the reaction front at time t. Eqs. (23)–(25) are solutions

to the problem under the condition that

α ¼ C e−CR

Q0
≪1 ð26Þ

which is typically satisfied for weathering systems. This parameter α is

always small because themass of NaSi2dissolved in a givenmass of pore

fluid is alwaysmuch less than themass of that component in a unitmass

of rock.

Fig. 8 shows the time evolution of the thickness of the weathering

rind, δ(t)= R0− R(t) for cylindrical clasts with circular bases of various

sizes. The curvature of a circle of radius R is equal to the reciprocal of the

radius:

Kj j ¼ 1

R
: ð27Þ

So it follows fromEq. (24) that theweathering advance rate depends

non-linearly on the curvature. Thus, clasts with smaller radii (and

greater curvature) weather faster (Fig. 8). Eqs. (24) and (25) allow

estimation of the time needed for complete weathering of a cylindrical

(tcyl) or spherical (tsph) clast, i.e. the time when R = 0:

tcyl ¼
R2
0

4Dϕα
ð28Þ

tsph ¼ R2
0

6Dϕα
: ð29Þ

Formulas (28)–(29) demonstrate that the duration of weathering

shows a similar dependence on R0, D, ϕ, and α regardless of shape.

These equations are approximate in that they were derived while

neglecting the finite reaction rate. Simulations for the model (3)–(8)

that do not include the assumption of infinitely fast reaction kinetics

show that the duration of complete weathering depends on the rate

Fig. 8. Calculated time evolution plots for weathering rinds of circular cylinders of various

radii,R0. The parameters are as follows (Eqs. (24) and (26)):D=0.8 ⋅ 10−9 m2/s,ϕ=0.1,

α=5 ⋅ 10−7. The curves terminate at thepointwhere the clast (represented as a cylinder)

has completely weathered. The figure documents that over some interval during

weathering of each clast, thickness increases approximately as a linear function of time,

as has been observed for some natural systems (Sak et al., 2004). In addition, the rate of

thickening (derivative of the thickness with respect to time) is faster for smaller clasts

than larger clasts. In effect, smaller clasts weather away faster for both because they are

smaller and because of the curvature effect. Finally, the effect of curvature and clast size

is negligible during initial weathering but becomes more important with increasing

weathering duration.
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constant, i.e., the duration is less for a faster weathering reaction, as

expected. Therefore, estimates (28)–(29) for the transport-limited

case yield only the minimal weathering time.

Another important question we can address is the error that is in-

curredwhen a clast of any arbitrary shape is approximated as a cylindri-

cal or spherical clast. For example, an attempt to use a modified form of

Hill's Eq. (25) for a spherical clast was undertaken in a recent paper

(Reeves and Rothman, 2014). The authors argued that this approxima-

tion is applicable to any irregular clast. However, calculations presented

in the appendix document that depending on the shape of the clast,

the approximation leads to deviations from the actual duration of

weathering that can be as large as 30%. For complicated geometries,

solutions must be found numerically. For solidification of material

approximated as rectangles or rectangular parallelepipeds, asymptotic

solutions have been previously described (McCue et al., 2003, 2005).

We modified this approach and applied it to weathering problems

(see Appendix C). These approximations (Eq. (C.1)) lead to more

satisfactory estimates than Eqs. (28)–(29).

7. Discussion and results

The model can also be used to explore the effect of porosity on clast

weathering. The porosity calculated across the core–rind boundary for

the Guadeloupe clast (Sak et al., 2010) is presented in Fig. 9a. Porosity

of the rind ismuchgreater thanporosity of the core. On a transect across

the rind–core interface, the porosity first slightly decreases, then

increases at the mineral alteration front and diminishes within the

intact core. The simulations of porosity (Fig. 9b) for the elliptical clast

presented in Fig. 3 (solid curve) and for the 1-D slab (dashed curve)

look similar to the natural curve although the functions change mono-

tonically without the “bump” in porosity documented in the clast itself

(Fig. 9a). Although calculated porosities for the elliptical clast and for

the slab both change monotonically, the dependence of the front veloc-

ities on time differs: the front velocity for the elliptical clast is almost

constant in some time interval in Fig. 4(a) (even though the simulation

does not include advection) while the front velocity for the slab dimin-

ishes with time as t−0.5 (not shown) according to Eq. (13). Therefore, it

is not necessary to invoke changes in porosity to account for deviations

from the parabolic law, as was previously argued (Navarre-Sitchler

et al., 2011). According to our treatment, a change in porosity affects

the effective diffusion coefficient, Deff = Df(ϕ) (Deff = Dϕ in Eq. (13))

but does not explain why the non-linear time dependency, i.e., L ¼

2c
ffiffi

t
p

; ω ¼ c=
ffiffi

t
p

(where c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:5Deff Ce−CR
� 	

=Q0

r

), becomes linear,

i.e. L = ωt, ω = const. In fact, the threshold model (Navarre-Sitchler

et al., 2011) only changes the coefficient c.

The simple,monotonic variation inmodeled porosity as a function of

distance across the reaction front in both the elliptical clast and the slab

is likely related to themodel being limited to alteration of only onemin-

eral. Even a slightly more complex model that simulated 4 minerals

(Brantley et al., 2014) produced amore complex distribution of porosity

within theweathering system, including zoneswhere porosity “bumps”

are observed (Fig. 9c). Regardless, however, the two planar fronts sim-

ulated by Brantley et al. (2014) bothmovewith a parabolic dependence

on time following Eq. (13). Thus, curvature exerts a first order control in

the advance of weathering fronts for clasts with low initial porosity.

We have presented the first numerical and analytical investigation

of curvilinear weathering fronts using a simple 2-D approximation

of a multi-mineral multicomponent reaction-diffusion model for

weathering clasts. The model describes the following observations

about rind formation: i) the core–rind boundary rounds with time; ii)

the transition from unweathered core to weathered rind occurs over a

narrow zone (which we call a weathering reaction front); iii) the front

is characterized by an increase in porosity; and iv) the rate of

weathering advance (distance/time) is faster where the curvature is

higher. Our results are in agreement with measurements (Sak et al.,

2010;Ma et al., 2012). In particular, it has been observed in those papers

that the rind and front thicknesses vary with the absolute value of

curvature of the weathering fronts. Our approach shows that the

weathering rind and front thicknesses that develop on a weathering

clast are directly proportional to the absolute value of the curvature of

the weathering front.

Similar mathematical problems arise for other natural phenomena.

Although their physical origins are diverse, the mathematical similarity

allows analysis based on methods in the literature. Here we have

applied them to weathering. Applying the previous analysis presented

in the literature (Entov and Etingof, 1991; McCue et al., 2003) to

weathering of clasts of any shape, we conclude that the core–rind

boundary of the clast will ultimately approach an ellipse just before

complete weathering. Our numerical simulations document this result.

This result has an important implication allowing a quick estimation of

weathering duration. The non-elliptical shape corresponds with the

beginning stage of weathering while the form close to the ellipse means

that weathering is close to completion. In this case, the weathering dura-

tion could be estimated using the approximate Eqs. (28), (29), and (C.1).

Themodel presented here is a mesoscale model that implicitly aver-

ages over microscale features such as grain size or porosity. Examples

of investigations of pore-scale reaction rates, i.e. mineral alteration

fronts on micro-scales, have been presented previously (Putnis, 2009;

Levenson and Emmanuel, 2013). For example, themicro-images obtain-

ed previously (Putnis, 2009) document curvilinear fronts of mineral

Fig. 9. a. Porosity map (labeled C) across the core-rind boundary for the Guadeloupe clast

(Sak et al., 2010). Images of the thin section are shown in A under back-scattered electron

microscopy (brighter grains are denser). Pore space is shown in green in B as measured

under secondary electron microscopy using an FEI Quanta 400 environmental SEM. b. Po-

rosity calculated along the vertical axis (denoted x here) of the elliptical clast shown in

Fig. 3 (solid curve) and along the x-axis of the 1-D slab (dashed curve) for a model with

diffusion only. Note that the reaction front is thicker for the curved front as compared to

the planar front. Similarly, as discussed in the text, reaction fronts are thicker for

diffusion+ advectionmodels than for diffusion-onlymodels for similar model conditions

(Lebedeva et al., 2010). c. Porosity calculated for a 4-mineral model (Brantley et al., 2014)

showing that the inclusion ofmultipleminerals reacting can produce “bumps” in porosity

versus position curves. The model for the simulation shown here included non-reacting

quartz, albite reacting to kaolinite and FeO reacting to goethite. Loss of porosity along

the transect is attributed to goethite precipitation. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article.)
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replacement on single crystals. Other researchers have suggested that

differences in reaction rates that have been observed could be due to

the effect of curvature at the micro-scale where the rate of dissolution

could increase or decrease depending on the geometry of the surface

(Levenson and Emmanuel, 2013), i.e., similar to our simulations in Fig. 5.

Variations in grain size and porosity can also contribute to

weathering advance and may explain some differences in weathering

advance rates in materials that differ significantly in grain size and

porosity such as obsidian (Anovitz et al., 2004), sandstone (Chinn,

1981; Certini et al., 2003), and basaltic substrates (Sak et al. (2010),

Ma et al. (2012)). We can make some inferences from our model

about weathering of other rock types if we assume that albite in the

model represents any abundant mineral that is weathering and that

quartz represents the non-reactive part of the rock. For example,

weathering of very pure sandstone (very quartz-rich and lithic

fragment-poor) is mostly due to dissolution of cement. To apply our

model to such a sandstone, the cement in the rock could be considered

equivalent to themodel feldspar. Themajor differencewould be themol

% of cement (i.e. feldspar) would be very low in the clast starting mate-

rial. This would enhance the effect of curvature according to Eq. (15).

For example, if only 2% of feldspar is present, then the effect of curvature

increases 2.5 times in comparison to the example in Fig. 3 where 5%

of albite is initially present. Local rind thickening at the sharp corners

of angular clasts of sandstones has been observed (Chinn, 1981) in

accordance with Fig. 2.

Although grain size is not included explicitly in our model, smaller

grain size results in higher specific surface area and effective rate con-

stant (Eq. (A.9)). Clasts with smaller grain size are thus expected to

weather faster. For example, clasts formed from intrusive igneous

rocks of a given composition should demonstrate lower rates of rind

formation than equivalent extrusive rocks weathering under similar

environmental conditions. Furthermore, clasts with variations in grain

size could show variations in rind and front thickness related to grain

size in addition to the effects of curvature. Specifically, the grain size

can affect porosity and transport conditions. For example, if grain size

enhances the effective diffusivity, then rind growth may be affected

(Chinn, 1981).

We modeled clasts with homogeneous weathering rinds. Nonethe-

less in the natural systems there are observedmore complexweathering

patterns. For example, alteration on a basalt boulder has been described

that has different colored concentric diffusion rings following the shape

of the boulder (Singer and Navrot, 1970). For future work, such a system

might be modeled using two separate reactions (A.13)–(A.14) and

by applying the conditions for ring formation obtained previously

(Lebedeva et al., 2004).

8. Conclusions and implications

From themodel equations, a linear relationship between the normal

velocity of the curvilinearweathering front,ωn, and the curvature of the

weathering front, K, was derived:

ωn ¼ ω0−βK: ð30Þ

Hereω0 is the velocity of a planar reaction front (i.e., K=0) and β is

a parameter characterizing chemical, physical, and transport parame-

ters for the modeled system: β= (Dϕ(C e − CR)/Q0). Thus, the velocity

of weathering front (weathering advance rate measured in distance/

time) is determined not only by mineralogical content (Q0), solute

concentration (C e − C R), solute transport characteristics (D, v), and

porosity (ϕ), but also by the curvature of the weathering front K.

The weathering front velocity depends on the sign of curvature and

can therefore be greater or lower than the velocity of a front that is pla-

nar. Particularly, for diffusion-only transport the velocity of weathering

front depends on time as t−0.5 (Eq. (13)). We obtained that the velocity

of the curvilinear front is almost constant in time. For the 1-D planar

front the velocity is constant when the reactive transport occurs by

both diffusion and advection (Eq. (12)). Therefore, in diffusion-

reactive processes, the effect of curvature results in a mathematical

description that is similar to that derived based on the assumption

that the dominant solute transport mechanism is advection. In other

words, the curvilinear core–rind boundary advances at a rate that is in-

dependent of time rather than parabolic. This could be the explanation

for the complex time dependence of rind thickness for clasts that has

been previously discussed (Sak et al., 2004;Ma et al., 2012). Importantly,

this improved reconstruction of the time dependencies of rind thick-

nesses allows better estimations of the time durations of exposure to

weathering.

The boundary conditions at the surface of the clast (solute concen-

tration, fluxes of components in the pore fluid) affect the curvature

and velocity of advance of the weathering front. Therefore, if solute

concentrations and fluxes vary with depth, it could be important to

take into account the locations of weathering clasts within regolith

profiles when analyzing field observations. We show in Section 4 how

the difference in curvature in different locations of the core–rind bound-

ary can be used to estimate duration of clast weathering.

Our simulations document that using cylindrical and spherical

approximations of an arbitrary clast could lead to errors as large as

30% even if the parameters of the kinetic function are known. Simple

local-equilibrium approximations for the time evolution of the core–

rind boundary — i.e., solutions of the Stefan problem for slabs, circular

cylinders, and spheres — could also be inaccurate. In these cases the

model must be solved numerically. But for rectangular corestones or

clasts, we present modified versions of the more complex analytical

expressions that have previously been obtained for a different physical

phenomenon (McCue et al., 2003, 2005). These modified expressions

could be applied to weathering problems to reduce the inaccuracies of

the cylindrical and spherical approximations.

Given thatweathering generally causes rocks to break up into smaller

objects — blocks, corestones, clasts, grains— a complete understanding

of the time dependence of weathering will only be possible if the effects

of curvature are explored and incorporated in future model treatments.

We define weathering as transformation of a rock to soil. To our knowl-

edge, there are no geochemical models that incorporate the consider-

ation that during weathering, the rock typically decreases in grain size

(or equivalently, increases in specific surface area). Our model is a step

toward understanding how to quantitatively deal with changes in

texture during weathering. One of the remaining first-order puzzles in

geology is the question “How thick is soil in any location and what

controls this thickness?” Our modeling efforts reported here can be

considered as one way to explore this question, i.e. by simplifying the

modeled soil system to that of a weathering rind on a clast. We study

clasts in this paper as a first-step toward understanding what controls

the thickness of soil. Soil formation is classically thought to rely on factors

including climate, parent material, biota, relief, and time. We argue that

front curvature should be considered as an aspect that contributes to

controlling rates of formation.
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Appendix A. Origin of the approximate model

The model of weathering granite bedrock is described through the

reactions:

NaAlSi3O8 ab;sð Þ þH
þ
aqð Þ þH2O⇄Na

þ
aqð Þ þ Al OHð Þ3 aqð Þ þ 3SiO2 aqð Þ ðA:1Þ
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FeO sð Þ þ 2H
þ
aqð Þ⇄Fe

2þ
aqð Þ þH2O ðA:2Þ

Al2Si2O5 OHð Þ4 kao;sð Þ þH2O⇄2Al OHð Þ3 aqð Þ þ 2SiO2 aqð Þ ðA:3Þ

FeO OHð Þ gth;sð Þ þ 2H
þ
aqð Þ⇄

1

4
O2 aqð Þ þ Fe

2þ
aqð Þ þ

3

2
H2O: ðA:4Þ

Weassume that precipitation of goethite (gth), FeO(OH) and kaolin-

ite (kao), Al2Si2O5(OH)4, after dissolution of albite (ab), forms the

weathering rind. Additionally, we consider the following homogeneous

reactions for aqueous species:

H
þ
aqð Þ þ OH

−
aqð Þ⇄H2O ðA:5Þ

Fe
3þ
aqð Þ þ

1

2
H2O⇄H

þ
aqð Þ þ

1

4
O2 aqð Þ þ Fe

2þ
aqð Þ: ðA:6Þ

The reaction rate, jj, is described by a generalized kinetic equation for

mineral dissolution or precipitation and is expressed as the product of

three functions:

j j ¼ f j s j

� 	

k j aaq; EA j

� 	

Ψ j A j

� 	

ðA:7Þ

where jj is positive for mineral dissolution.

The function fj(sj) determines the reaction rate dependence on the

specific surface area sj of given mineral j. For Eqs. (A.1) through (A.4),

j = ab, FeO, kao, and gth. We assume that fj(sj) = sj. The value of

sj (m
−1) is calculated as the geometric surface area:

s j ¼ 6n
1=3
j ϕ

2=3
j ðA:8Þ

where nj (m
−3) is the number of mineral grains per unit volume of a

porous medium. We define this as

n j ¼
ϕ�

j

d�g j

� 	

3
: ðA:9Þ

Here, dg j⁎ (m) is the average size of mineral grains at a characteristic

volume fraction, ϕj
⁎. Based upon observations and models for

weathering of a Puerto Rico quartz diorite (Buss, 2006), we set dg j⁎ to a

nominal value of 10−4 m at ϕj
⁎ = 0.2 for albite, kaolinite, and FeO

while dg j⁎ = 5 ⋅ 10−6 m at ϕj
⁎ = 0.1 for goethite.

A transfer of components between solid and fluid phases is de-

scribed by the kinetic function kj(aaq; ĒAj)where aaq is the activity vector

of aqueous species and ĒA j= EAj/RT, where EA j is the activation energy, R

is the universal gas constant, and T is absolute temperature. According

to the work of many researchers to describe silicate dissolution

(Brantley, 2004), the kinetic function kj is expressed as follows:

k j aaq; EA j

� 	

¼ k
0
j exp −EA j

� 	

a
h1 j

Hþ þ κ ja
h2 j

OH− þ h3 j

� 	

ðA:10Þ

where kj
0, kj

0κj and kj
0h3j are the rate constants for proton-promoted,

hydroxyl-promoted, and H2O-promoted dissolution respectively, mea-

sured at pH 0 and 298 K for the reaction of interest. The parameters

h1j and h2j are constants that represent the partial reaction order with

respect to H+ and OH− respectively.

To describe reaction rate as a function of chemical affinity Āj we use

the standard function Ψj:

Ψ j A j

� 	

¼ 1− exp −A j

� 	

ðA:11Þ

where

A j ¼ A j=RT; A j ¼ lnð∏
i

a
ν ji

i =K jÞ; ðA:12Þ

νji= νji
+− νji

−, νji
− and νji

+ are the stoichiometric coefficients for the left-

and right-hand side of the chemical reaction respectively, and Kj are the

equilibrium constants of the reactions.

Analysis of the numerical solutions of the model (A.1)–(A.6)

(Lebedeva et al., 2007) shows that instead of the reaction system

(A.1)–(A.6) we can write two main reaction equations:

FeO sð Þ þ
1

4
O2 aqð Þ→

1
2H2O

gth ðA:13Þ

2ab→
3H2O

kaoþ 2 Na
þ
aqð Þ þ OH

−
aqð Þ þ 2SiO2 aqð Þ

� 	

: ðA:14Þ

In other words, the more complex multi-component scheme

(A.1)–(A.4) can be split into the two independent one-component

reactions (A.13) and (A.14). Comparison of the numerical solutions

(Lebedeva et al., 2007) of the full and approximate models allows

derivation of the approximate kinetic function and calculation of the

effective kinetic constant.

In a previous publication (Lebedeva et al., 2007), the 1-D model for

reaction (A.13) only was analyzed. The 1-D model for reaction (A.14)

was also considered previously (Lebedeva et al., 2010). Here we also

focus on reaction (A.14).

Appendix B. Analysis of the curvilinear reaction front

We can show the effect of curvature mathematically using model

Eqs. (3)–(4) and a technique described in the literature (Zykov, 1980;

Keener, 1986; Grindrod, 1991). We introduce local orthogonal curvilin-

ear coordinates (ξ, λ) that allow us to reduce the problem from 2-D to 1-

D:λ describes contour lines for the variables (C, η), i.e. amoving interface

for mineral alteration. (A contour curve is the curve where the extent of

reaction is constant.) The ξ coordinate is the characteristic line describing
weathering advance (Aris and Knapp, 1972) (Fig. B.1). In this coordinate

system, we can replace the 2-D Eqs. (3)–(4) by the 1-D equations (see

Zykov, 1980; Keener, 1986; Grindrod, 1991 for details):

∂ ϕCð Þ
∂t

¼ ∂

∂ξ
Dϕ

∂C

∂ξ

� �

þ KDϕ
∂C

∂ξ
þ j C; ηð Þ ðB:1Þ

∂η

∂t
¼ j C; ηð Þ

Q0
: ðB:2Þ

Here K is curvature of the contour curve defining the weathering

front (for example, the contour curve at η = 0.5). By comparing

Eq. (B.1) to Eq. (10), we see that the term including curvature K is

Fig. B.1. The local curvilinear system of coordinates (ξ, λ). The curve η = const is the

contour curve. T is the tangent line and N is the normal line to the curve at a given

point. Curvature of the contour curve as shown is negative. Here, the rock clast is on the

left and the environment is on the right.
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similar to the term in the earlier equation for advection. So for a

curvilinear weathering front with constant curvature K b 0, the normal

component of the weathering advance rate is calculated by Eq. (12)

with v = Dϕ|K|.

Appendix C. Geometrical approximation and approximation of the

model by the Stefan problem

Here, we use numerical simulations to estimate the error that is

incurred when a clast of an arbitrary shape is approximated as a cylin-

drical or spherical clast. To assess this, we considered two examples:

weathering blocks with either rectangular or square bases which

have identical heights equal to unity. Each clast was approximated as

a circular cylinder of the same volume as the corresponding block.

First we estimate the error in the case when the kinetic function is

known and it is possible to calculate the exact complete weathering

time for each clast. We solve the original reaction-diffusion problem

(3)–(4) and calculate the timeof completeweathering.Weuse identical

reaction kinetics (Eqs. (7)–(8)). For this case, we obtained Tblock =

0.74Tcyl and Tblock = 0.96Tcyl for the rectangular and square block,

respectively. Tblock and Tcyl are the dimensional weathering times for

the block and cylinder, respectively. Thus, depending on the shape of

the clast, the approximation leads to different results such that the devi-

ation from the actual duration of weathering (|Tblock − Tcyl|/Tblock) could

be as large as 30%. So for numerical modeling and accuracy better than

tens of percent, it is important to consider geometry of weathering

clasts as close to real as possible.

Next we compare the results of a numerical solution and the

approximation by the Stefan problem for a rectangular block of size

0 ≤ x ≤ a, 0 ≤ y ≤ b (base). Simulation (i.e., solution of Eqs. (3)–(8))

for kb2/D = 400 yields te
calc = 3.4 ⋅ 105y. In comparison, from Eq. (28)

we obtain te
cyl = 4.2 ⋅ 105y for a cylinder with radius R0 ¼

ffiffiffiffiffiffiffiffiffiffiffi

ab=π
p

.

The estimation can be improved using approximate analytical

solutions for rectangles and rectangular parallelepipeds. These solutions

have been previously described (McCue et al., 2003, 2005) for a solidifi-

cation problem.

Following their method we estimate the complete weathering time

for a rectangular block of size 0 ≤ x ≤ a, 0 ≤ y ≤ b as

te≈
b2Q0

4Dϕ Ce−CR
� �

1

2
−
X

∞

m¼0

16 −1ð Þm

π3 2mþ 1ð Þ3 cosh 0:5 2mþ 1ð Þπa=bð Þ

 !

≈
b
2
Q

0

4Dϕ Ce−CR
� �

1

2
−

16

π3 cosh 0:5πa=bð Þ

� �

:

ðC:1Þ

Applying this equation to the weathering block in Fig. 1 we obtain

te = 3 ⋅ 105y (for a = 2 m, b = 1 m, D = 0.8 ⋅ 10−9 m2/s, ϕ = 0.3,

Q0 = 4 ⋅ 103 mol/m3, C e = 0.2 mol/m3, CR = 0).

Thus Eq. (C.1) presents a satisfactory estimate. This estimate could

be improved by including more terms in Eq. (C.1) and using additional

terms obtained by (McCue et al., 2003).
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