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Abstract—Neuromorphic photonics use light to imitate the
neural models and systems of nature for solving complex human
problems that are challenging for conventional -electronic
approaches. Neural algorithms are natural designs that govern the
survival of the organism, therefore, are highly effective for the
designated tasks. In this paper, we review two small-scale neural
algorithms —spike timing dependent plasticity process for learning
and jamming avoidance response in Eigenmannia, discuss the
marriage of those neural algorithm and photonics, as well as
explore their real-life applications in human society.
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I. INTRODUCTION

Animals and plants have unique neural algorithms that are
critical for their survival. Those neural algorithms undergone
billions of years of evolution and have been extremely efficient
in performing their designed tasks. By closely examining the
nature, we could find lots of neural algorithms that could be the
natural solutions towards the critical challenges that we are
facing in modern technologies. Discovering those hidden
treasures, understanding them, and using photonics to mimic the
useful neural algorithms is a new and exciting field.

In the last ten years, intensive research efforts have been
made in neuromorphic photonics. Spike processing devices [1]-
[17] using semiconductor optical devices, silicon photonics, and
excitable lasers have been proposed and experimentally
demonstrated. The photonic based spiking devices mimic the
spiking process in a biological neuron, including summing and
weighting, integration, thresholding, and spiking, but can also
be operated at a tens of picosecond time scale. Photonic synapse
[18]-[20] has also been demonstrated for potentially mimicking
the brain’s approach to simultaneous processing and storage of
information. Artificial neuron networks [21]-[24] have been
demonstrated using semiconductors and silicon photonics.
Furthermore, photonic implementation of small neural circuits
has also been explored. For example, crayfish tail-flip escape
response [25] has been demonstrated using two semiconductor
optical amplifier (SOA) based neurons and has been used for
pattern recognition. Spike timing dependent plasticity (STDP) -
a biological process that adjusts the interconnection strength
between neurons has been mimicked using a SOA [26] and SOA
with an electro-absorption modulators [28]. STDP is an
important process for learning, and a photonic implementation
of supervised learning based on STDP has been demonstrated
experimentally [28]-[29]. Furthermore, research on machine

National Science Foundation (ECCS 1653525 and CMMI 1400100)

learning based on neuromorphic photonics [30]-[34] has draw a
lot of research interest in recent years.

In this paper, we focus on reviewing our recent progress on
the applications and photonic implementation of small scale
neural algorithms. First, we will introduce the STDP neural
learning algorithm and discuss the use of STDP function for
angle-of-arrival detection and localization [26]-[27]. Next, we
will explain the jamming avoidance response found in a genus
of electric fish — Eigenmannia [35]-[38], and discuss the
photonic implementation of the jamming avoidance response
[38] and how it can be used in a phase locked loop [39].

II. SPIKE TIMING DEPENDENT PLASTICITY (STDP)

One of the most interesting and powerful capabilities of
neuron are its abilities to both learn and adapt. The fundamental
element of adaptability, learning, and memory in neural systems
is synaptic weight plasticity, which enables neural systems to
adjust the strength of synaptic connection between neuron to
adjust how information is being processed based on the spiking
activities. Among various synaptic weight plasticity model,
spike timing dependent plasticity (STDP) is the most popular
one in which strengths of connections between neurons are
based on the temporal relationship between pre-synaptic and
post-synaptic activity. STDP often being referred as “Neuron
that fire together wire together”. Over the last few years, several
photonic approaches [28]-[29] have demonstrated the STDP
behavior with a time scale of hundreds of picosecond.
Supervised learning [28]-[29] can be implemented based on
photonic based STDP.

A. Biological model

In STDP algorithm, the strength of the synaptic connection
between two neurons are adjusted based on the relative timing
between the neuron input and output, i.e. pre-synaptic spikes and
post-synaptic spikes. Increase in synaptic connection strength
occurs when the post-synaptic spike is caused by the pre-
synaptic spike. On the other hand, the connection strength
decreases when the post-synaptic spike fires before the arrival
of the pre-synaptic spike. The amount of synaptic connection
strength increment/decrement depending on the precise timing
difference between the pre-synaptic and post-synaptic spikes of
the neuron, i.e. the smaller the time difference the larger the
change in synaptic connection strength, described by Fig. 1.
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Fig. 1. Theoretical spike timing dependent plasticity curve. Pre-post firing: post
synaptic spike fires shortly after the pre-synaptic spike; Post-pre firing: post
synaptic spike fires before the pre-synaptic spike. tposi-tore: time difference
between the firing of the post- and pre-synaptic spikes.
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B. STDP Algorithm for Angle-of-Arrival Detection and
Localization

Besides using STDP algorithm for its designated neural
functions, STDP process can be utilized for advancing different
aspects in engineering. Here, we will describe the application of
STDP in angle-of-arrival (AOA) detection and localization. Fig.
2 shows the STDP-inspired AOA system [27], consists
primarily of two laser source at Ape and Apost, two impulse
generators, two Mach-Zehnder intensity modulators (MZMs),
two microwave antennae, and a STDP system [26]-[27]. The
target object emits a microwave signal at a frequency frr, and is
received by two antennas at the AOA system. Due to the path
difference between the target and the two antennas, a time delay
At between the two received signals is resulted. The unique
STDP curve is able to convert both the positive and negative
values of At into a positive or negative amplitude. The ability to
distinguish negative and positive values of At eliminates the
ambiguity arising from the measurement of signals arriving
from opposite directions but at the same angle relative to
the antenna array. The normalized STDP output has a direct
correspondent to a particular delay, therefore, the angle-of-
arrival can be determined through the relationship c- At =d-cos6,
where c is the speed of light, At is the time delay between the
two received signals, d is the separation of the two antennas, and
0 is the resultant angle-of-arrival value.
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Fig. 2. Experimental setup of STDP based AOA measurement. MZI: electro-
optic intensity modulator; STDP: spike-timing dependent plasticity circuit.

Fig. 3 shows the angle-of-arrival system simulation results.
The red curve corresponds to an arrival angle between 0° to 90°,
while the blue curve corresponds to an arrival angle between 90°
to 180°. The target object is at an arbitrary location, and the
observed STDP outputs for different nodes are shown by the

blue outlined circles, while the red filled circles corresponds to
the expected STDP output without errors. Since this angle of
arrival system is mainly for indoor use, unit displacement with
1-mm error and laser power error of 0.003 dBm are considered.
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Fig. 3. Angle-of-arrival measurement based on STDP curve. Comparison of
expected (red) and observed (blue) STDP outputs for various arrival angles.

With the use of three or more STDP based angle-of-arrival
systems, a 3D localization scheme can be implemented, as
depicted in Fig. 4. In our simulation, the localization system
consists of three STDP-based AOA nodes, each positioned on
a Cartesian axis at (Xa,0,0), (0,yb,0), and (0,0,zc) at points a,
b, and ¢, respectively. Each node has a transmitter that provides
one third of the location information to the user at p. Based on
the angle-of-arrival value of each node, conical surfaces for each
axis are resulted. The common intersection of the three conical
surfaces gives the exact location of the user.

Fig. 4. Basic 3D AOA localization schematic with three nodes uncovering three
directions, 0, Ob, Oc.

Root mean square error (RMSE) of the STDP based
localization system has been investigated for various sceneries.
Two sceneries are shown in Fig. 5, by considering a maximum
location error of 1 mm and laser instability of 0.003 dBm for
each node. With the transmitter location at xa =y, =zc=1m, a
maximum RMSE is just over 1 m, which can be significantly
reduced by relocating two of the nodes to y» = zc = 5 m, to result
in a maximum RMSE of 0.4 m. The maximum RMSE is further
decreased to 0.3 m if the nodes are relocated to Xa = yb = zc =
15 m. The demonstrated STDP based localization approach
provides a simple but accurate solution to indoor positioning
systems, where existing systems usually require large networks
of measuring units [15-17]. The possibility of outdoor
positioning has been explored by setting the nodes at xa = yb= zc
= 5 m and user location could be over 100 m away. A RMSE of
about 9.7 m is resulted for outdoor positioning.
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Fig. 5. Error plot for detecting a transmitter at (10,10,10) (a) with nodes at x. =
yb=2c=1 m; (b) with nodes atxa=1m, yb =zc =5 m.

III. JAMMING AVOIDANCE RESPONSE IN EIGENMANNIA

Another neural algorithm that will be discussed is the
jamming avoidance response (JAR) in Eigenmannia [40]-[44], a
genus of electric fish that lives under the deep ocean.
Eigenmannia generate and use electric fields for specialized
active sensing that enable navigation, communication, and prey
capture in the dark. When two nearby Eigenmannia are emitting
electric fields that are very similar in frequency, interference
could occur and endanger the Eigenmannia. Eigenmannia has a
very efficient neural algorithm, JAR, that always regulate the
frequency of the Eigenmannia away from the other electric fish
if a similar frequency is detected, and they will never cross their
frequency.

A. Biological model

Neuroscientists have dissected the JAR and they found out
that the ability for the Eigenmannia to avoid jamming from
another electric fish is based on the phasor phenomenon [40]-
[44], which can be explained in Fig. 6.
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Fig. 6. Principle of the jamming avoidance response (JAR) in Eigenmannia. (a)
When fr > fi, phase of beat signal is lagging the phase of the reference signal at
the falling edge of the envelope, while it is leading at the rising edge. (b) When
fr < fj, the phase of beat signal is leading the phase of the reference signal during
the falling portion of the envelope, while it is lagging during the rising portion.

InJAR, the first Eigenmannia receives the jamming signal fy
alongside its own signal (reference signal) Jr (blue dash curve),
generating a beat signal at fs (magenta solid curve). The
envelope of the beat signal is represented by the green solid
curve in Fig. 6. It is observed that when the jamming signal f1 is
at a lower frequency than the Eigenmannia’s own signal fg, i.e.
Fig. 6(a), the phase of the beat signal is lagging that of the
reference signal at the falling edge of the beat signal envelope;
while it is leading the phase of the reference signal at the rising
edge of the envelope. On the other hand, when the jamming
signal {7 is at a higher frequency than the Eigenmannia’s own
signal f, i.e. Fig. 6(b), the phase of the beat signal is leading that
of the reference signal at the falling edge of the beat signal
envelope; while it is lagging the phase of the reference signal at
the rising edge of the envelope. Therefore, by examining the
relationship between the instantaneous amplitude and phase of
the Eigenmannia’s own signal and the beat signal, the JAR
algorithm in the Eigenmannia can tell whether it should tune its
emitting frequency to a higher or lower frequency to avoid
jamming.

B. Optical implementation of JAR

The jamming from neighboring Eigenmannia is similar to
inadvertent jamming in our wireless system. Inadvertent
jamming is aimless and unforeseen, but it is as harmful as
intentional jamming [45]-[46]. Therefore, there is a critical need
to identify an effective solution to tackle inadvertent jamming,
which convention solution for intentional jamming will not
work. Turning to nature for a solution, JAR in Eigenmannia is
exactly what we need. The JAR in Eigenmannia mainly consists
of four functional blocks, as shown in Fig. 7 [35]-[38]: (1) Zero-
crossing point detection unit (ZeroX unit), the (2) Phase
detection unit (Phase Unit), the (3) Amplitude unit, and the (4)
Logic unit. The ZeroX unit locates the positive zero crossing
points in the reference signal. Then the Phase unit takes the
identified positive zero crossing points from the ZeroX unit and
compares it with the beat signal, to determine if the phase of the
beat signal is leading or lagging that of the reference signal.
Then, the Amplitude unit takes the envelope of the beat signal,
and identifies the rising and falling slopes. Finally, the Logic
unit takes the phase and amplitude information from the Phase
unit and Amplitude unit and determines if the emitting
frequency should be remained, increased, or decreased.
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Fig. 7. llustration of the JAR design and the four functional units — ZeroX unit,
Phase unit, Amplitude unit, and Logic unit in JAR.



The photonic implementation of the JAR circuit is mainly
based on the use of semiconductor optical amplifiers (SOA) —
the same component that has been used as a photonic based
neuron. Various optical phenomena are used in the SOA. The
photonic JAR works well for frequency from hundreds of MHz
to tens of GHz. First, ZeroX unit uses self-phase modulation in
SOA and offset filtering for positive zero crossing points
extraction (Fig. 8(a)). Then, cross-gain modulation in SOA is
used in the Phase unit for generating a “1” or “0” output to
represents phase leading or phase lagging (Fig. 8(c)-(d)). Lastly,
the Amplitude unit uses signal inversion capability in SOA for
generating a signal for “subtraction” and an optical delay line for
temporal delay, such that a “1” is generated for rising envelope
and “0” is generated for falling envelope (Fig. 8(b)).
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Fig. 8. Experimental results of the photonics based JAR. Top curve: input;
bottom curve: output. (a) ZeroX unit — positive zero crossing points of the
reference signal are identified and represented by the bottom red pulses. (c)-(d)
Phase unit — the output amplitudes are high for phase lag and a low for phase
lead. (b) Amplitude unit — rising and falling in beat signal envelope amplitude
are distinguished, a high output represents rising in amplitude and a low output
represents falling in amplitude.

By taking both the amplitude and phase information, an
Arduino Due is used to implement the Logic unit that perform a
XOR logic for determining if the emitting frequency should be
increased or decreased. Arduino Due is used instead of photonic
based XOR because of the low frequency nature of the Phase
unit and Amplitude unit outputs — they are usually in the range
below 200 MHz, determined by the frequency difference
between fr and fj. Once the frequency adjustment is in process,
the Logic unit also responsible to determine when to stop, i.e.
once the jamming signal is out of the jamming frequency range
of the Eigenmannia. Fig. 9 shows the spectral waterfall
measurement of the photonic JAR in action. The jamming signal
is approaching the Eigenmannia from either lower or higher
frequency and the JAR helps the Eigenmannia to keep its
emitting frequency to be out of the jamming frequency range.

It is worth noticing that the ZeroX unit and the Phase unit
can be used for phase difference detection in a phase locked
loop. An experiment has been performed [39] with the photonic
based ZeroX unit and Phase unit, and the experimental results
show that this bio-inspired optical microwave phase lock loop
has significantly suppressed the phase noise of a voltage
controlled oscillator (VCO) by 25 dB.
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Fig. 9. Spectral waterfall measurement of the photonic JAR in action with
sinusoidal reference signal fr and jamming signals fi = 150 MHz. (a) f is
approaching fr from the low frequency side and triggers the JAR, (b) fi is
approaching fr from the low frequency side and triggers the JAR, and then is
moved away, (c) fj is approaching fr from the high frequency side and triggers
the JAR, (d) fi is approaching fr from the high frequency side and triggers the
JAR and then is moved away.

IV. SUMMARY AND DISCUSSION

This paper briefly summarize the recent progress on
neuromorphic photonics. In just a short ten years, spiking
neuron, synapse, neural network, and various small scale neural
algorithms have been dissected and mimicked by photonics,
moving the processing time scale from millisecond in biological
neuron to picosecond in photonic implementation. Neural
algorithms have find its value in various RF signal processing
applications due to its efficient, accurate, and task-specific
capabilities, including angle-of-arrival measurement, indoor
localization, phase-lock-loop, and jamming avoidance in
wireless systems. The implementation of those neural algorithm
using photonics enables the system to operate from hundreds of
MHz to tens of GHz range. There are still lots of hidden treasure
in the nature that could be an effective solution to the challenges
we are facing in the modern society.
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