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Abstract—Neuromorphic photonics use light to imitate the 
neural models and systems of nature for solving complex human 
problems that are challenging for conventional electronic 
approaches. Neural algorithms are natural designs that govern the 
survival of the organism, therefore, are highly effective for the 
designated tasks. In this paper, we review two small-scale neural 
algorithms – spike timing dependent plasticity process for learning 
and jamming avoidance response in Eigenmannia, discuss the 
marriage of those neural algorithm and photonics, as well as 
explore their real-life applications in human society. 
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I. INTRODUCTION 
Animals and plants have unique neural algorithms that are 

critical for their survival. Those neural algorithms undergone 
billions of years of evolution and have been extremely efficient 
in performing their designed tasks. By closely examining the 
nature, we could find lots of neural algorithms that could be the 
natural solutions towards the critical challenges that we are 
facing in modern technologies. Discovering those hidden 
treasures, understanding them, and using photonics to mimic the 
useful neural algorithms is a new and exciting field.  

 In the last ten years, intensive research efforts have been 
made in neuromorphic photonics. Spike processing devices [1]- 
[17]  using semiconductor optical devices, silicon photonics, and 
excitable lasers have been proposed and experimentally 
demonstrated. The photonic based spiking devices mimic the 
spiking process in a biological neuron, including summing and 
weighting, integration, thresholding, and spiking, but can also 
be operated at a tens of picosecond time scale. Photonic synapse 
[18]-[20] has also been demonstrated for potentially mimicking 
the brain’s approach to simultaneous processing and storage of 
information. Artificial neuron networks [21]-[24] have been 
demonstrated using semiconductors and silicon photonics. 
Furthermore, photonic implementation of small neural circuits 
has also been explored. For example, crayfish tail-flip escape 
response [25] has been demonstrated using two semiconductor 
optical amplifier (SOA) based neurons and has been used for 
pattern recognition. Spike timing dependent plasticity (STDP) - 
a biological process that adjusts the interconnection strength 
between neurons has been mimicked using a SOA [26] and SOA 
with an electro-absorption modulators [28]. STDP is an 
important process for learning, and a photonic implementation 
of supervised learning based on STDP has been demonstrated 
experimentally [28]-[29]. Furthermore, research on machine 

learning based on neuromorphic photonics [30]-[34] has draw a 
lot of research interest in recent years.  

In this paper, we focus on reviewing our recent progress on 
the applications and photonic implementation of small scale 
neural algorithms. First, we will introduce the STDP neural 
learning algorithm and discuss the use of STDP function for 
angle-of-arrival detection and localization [26]-[27]. Next, we 
will explain the jamming avoidance response found in a genus 
of electric fish – Eigenmannia [35]-[38], and discuss the 
photonic implementation of the jamming avoidance response 
[38] and how it can be used in a phase locked loop [39].  

 

II. SPIKE TIMING DEPENDENT PLASTICITY (STDP) 
One of the most interesting and powerful capabilities of 

neuron are its abilities to both learn and adapt. The fundamental 
element of adaptability, learning, and memory in neural systems 
is synaptic weight plasticity, which enables neural systems to 
adjust the strength of synaptic connection between neuron to 
adjust how information is being processed based on the spiking 
activities. Among various synaptic weight plasticity model, 
spike timing dependent plasticity (STDP) is the most popular 
one in which strengths of connections between neurons are 
based on the temporal relationship between pre-synaptic and 
post-synaptic activity. STDP often being referred as “Neuron 
that fire together wire together”. Over the last few years, several 
photonic approaches [28]-[29] have demonstrated the STDP 
behavior with a time scale of hundreds of picosecond. 
Supervised learning [28]-[29] can be implemented based on 
photonic based STDP. 

A. Biological model 
In STDP algorithm, the strength of the synaptic connection 

between two neurons are adjusted based on the relative timing 
between the neuron input and output, i.e. pre-synaptic spikes and 
post-synaptic spikes. Increase in synaptic connection strength 
occurs when the post-synaptic spike is caused by the pre-
synaptic spike. On the other hand, the connection strength 
decreases when the post-synaptic spike fires before the arrival 
of the pre-synaptic spike. The amount of synaptic connection 
strength increment/decrement depending on the precise timing 
difference between the pre-synaptic and post-synaptic spikes of 
the neuron, i.e. the smaller the time difference the larger the 
change in synaptic connection strength, described by Fig. 1. 
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Fig. 1. Theoretical spike timing dependent plasticity curve. Pre-post firing: post 
synaptic spike fires shortly after the pre-synaptic spike; Post-pre firing: post 
synaptic spike fires before the pre-synaptic spike. tpost-tpre: time difference 
between the firing of the post- and pre-synaptic spikes. 

B. STDP Algorithm for Angle-of-Arrival Detection and 
Localization  
Besides using STDP algorithm for its designated neural 

functions, STDP process can be utilized for advancing different 
aspects in engineering. Here, we will describe the application of 
STDP in angle-of-arrival (AOA) detection and localization. Fig. 
2 shows the STDP-inspired AOA system [27], consists  
primarily of two laser source at !pre and !post, two impulse 
generators, two Mach-Zehnder  intensity modulators  (MZMs),  
two  microwave  antennae, and a STDP system [26]-[27]. The 
target object emits a microwave signal at a frequency fRF, and is 
received by two antennas at the AOA system. Due to the path 
difference between the target and the two antennas, a time delay 
"t between the two received signals is resulted. The unique 
STDP curve is able to convert both the positive and negative 
values of "t into a positive or negative amplitude. The ability to 
distinguish negative and positive values of "t eliminates the 
ambiguity arising  from  the  measurement  of  signals  arriving  
from  opposite  directions  but  at  the  same  angle  relative  to  
the  antenna  array. The normalized STDP output has a direct 
correspondent to a particular delay, therefore, the angle-of-
arrival can be determined through the relationship c#"t = d#cos$, 
where c is the speed of light, "t is the time delay between the 
two received signals, d is the separation of the two antennas, and 
$ is the resultant angle-of-arrival value. 

  
Fig. 2. Experimental setup of STDP based AOA measurement. MZI: electro-
optic intensity modulator; STDP: spike-timing dependent plasticity circuit. 

 Fig. 3 shows the angle-of-arrival system simulation results. 
The red curve corresponds to an arrival angle between 0º to 90º, 
while the blue curve corresponds to an arrival angle between 90º 
to 180º. The target object is at an arbitrary location, and the 
observed STDP outputs for different nodes are shown by the 

blue outlined circles, while the red filled circles corresponds to 
the expected STDP output without errors. Since this angle of 
arrival system is mainly for indoor use, unit displacement with 
1-mm error and laser power error of 0.003 dBm are considered.  

Fig. 3. Angle-of-arrival measurement based on STDP curve. Comparison of 
expected (red) and observed (blue) STDP outputs for various arrival angles. 

With the use of three or more STDP based angle-of-arrival 
systems, a 3D localization scheme can be implemented, as 
depicted in Fig. 4. In our simulation, the localization system 
consists of three STDP-based AOA nodes, each  positioned  on  
a  Cartesian  axis  at  (xa,0,0),  (0,yb,0),  and  (0,0,zc) at points a, 
b, and c, respectively. Each node has a transmitter that provides 
one third of the location information to the user at p. Based on 
the angle-of-arrival value of each node, conical surfaces for each 
axis are resulted. The common intersection of the three conical 
surfaces gives the exact location of the user. 

   
Fig. 4. Basic 3D AOA localization schematic with three nodes uncovering three 
directions, $a, $b, $c.

Root mean square error (RMSE) of the STDP based 
localization system has been investigated for various sceneries. 
Two sceneries are shown in Fig. 5, by considering a maximum 
location error of 1 mm and laser instability of 0.003 dBm for 
each node. With the transmitter location at xa = yb = zc = 1 m, a 
maximum RMSE is just over 1 m, which can be significantly 
reduced by relocating two of the nodes to yb = zc = 5 m, to result 
in a maximum RMSE of 0.4 m. The maximum RMSE is further 
decreased to 0.3 m if the nodes are relocated to xa = yb = zc = 
15 m. The demonstrated STDP based localization approach 
provides a simple but accurate solution to indoor positioning 
systems, where existing systems usually require large networks 
of measuring units [15-17]. The possibility of outdoor 
positioning has been explored by setting the nodes at xa = yb= zc 
= 5 m and user location could be over 100 m away. A RMSE of 
about 9.7 m is resulted for outdoor positioning. 
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Fig. 5. Error plot for detecting a transmitter at (10,10,10) (a) with nodes at xa = 
yb = zc = 1 m; (b) with nodes at xa = 1 m, yb = zc = 5 m. 

 

III. JAMMING AVOIDANCE RESPONSE IN EIGENMANNIA

Another neural algorithm that will be discussed is the 
jamming avoidance response (JAR) in Eigenmannia [40]-[44], a 
genus of electric fish that lives under the deep ocean. 
Eigenmannia generate and use electric fields for specialized 
active sensing that enable navigation, communication, and prey 
capture in the dark. When two nearby Eigenmannia are emitting 
electric fields that are very similar in frequency, interference 
could occur and endanger the Eigenmannia. Eigenmannia has a 
very efficient neural algorithm, JAR, that always regulate the 
frequency of the Eigenmannia away from the other electric fish 
if a similar frequency is detected, and they will never cross their 
frequency.   

A. Biological model 
Neuroscientists have dissected the JAR and they found out 

that the ability for the Eigenmannia to avoid jamming from 
another electric fish is based on the phasor phenomenon [40]-
[44], which can be explained in Fig. 6.  

 

 
Fig. 6. Principle of the jamming avoidance response (JAR) in Eigenmannia. (a) 
When fR > fJ, phase of beat signal is lagging the phase of the reference signal at 
the falling edge of the envelope, while it is leading at the rising edge. (b) When 
fR < fJ, the phase of beat signal is leading the phase of the reference signal during 
the falling portion of the envelope, while it is lagging during the rising portion.

 In JAR, the first Eigenmannia receives the jamming signal fJ 
alongside its own signal (reference signal) JR (blue dash curve), 
generating a beat signal at fB (magenta solid curve). The 
envelope of the beat signal is represented by the green solid 
curve in Fig. 6. It is observed that when the jamming signal fJ is 
at a lower frequency than the Eigenmannia’s own signal fR, i.e. 
Fig. 6(a), the phase of the beat signal is lagging that of the 
reference signal at the falling edge of the beat signal envelope; 
while it is leading the phase of the reference signal at the rising 
edge of the envelope. On the other hand, when the jamming 
signal fJ is at a higher frequency than the Eigenmannia’s own 
signal fR, i.e. Fig. 6(b), the phase of the beat signal is leading that 
of the reference signal at the falling edge of the beat signal 
envelope; while it is lagging the phase of the reference signal at 
the rising edge of the envelope. Therefore, by examining the 
relationship between the instantaneous amplitude and phase of 
the Eigenmannia’s own signal and the beat signal, the JAR 
algorithm in the Eigenmannia can tell whether it should tune its 
emitting frequency to a higher or lower frequency to avoid 
jamming. 

B.! Optical implementation of JAR 
The jamming from neighboring Eigenmannia is similar to 

inadvertent jamming in our wireless system. Inadvertent 
jamming is aimless and unforeseen, but it is as harmful as 
intentional jamming [45]-[46]. Therefore, there is a critical need 
to identify an effective solution to tackle inadvertent jamming, 
which convention solution for intentional jamming will not 
work. Turning to nature for a solution, JAR in Eigenmannia is 
exactly what we need. The JAR in Eigenmannia mainly consists 
of four functional blocks, as shown in Fig. 7 [35]-[38]: (1) Zero-
crossing point detection unit (ZeroX unit), the (2) Phase 
detection unit (Phase Unit), the (3) Amplitude unit, and the (4) 
Logic unit. The ZeroX unit locates the positive zero crossing 
points in the reference signal. Then the Phase unit takes the 
identified positive zero crossing points from the ZeroX unit and 
compares it with the beat signal, to determine if the phase of the 
beat signal is leading or lagging that of the reference signal. 
Then, the Amplitude unit takes the envelope of the beat signal, 
and identifies the rising and falling slopes. Finally, the Logic 
unit takes the phase and amplitude information from the Phase 
unit and Amplitude unit and determines if the emitting 
frequency should be remained, increased, or decreased.  

 
Fig. 7. Illustration of the JAR design and the four functional units – ZeroX unit, 
Phase unit, Amplitude unit, and Logic unit in JAR. 
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 The photonic implementation of the JAR circuit is mainly 
based on the use of semiconductor optical amplifiers (SOA) – 
the same component that has been used as a photonic based 
neuron. Various optical phenomena are used in the SOA. The 
photonic JAR works well for frequency from hundreds of MHz 
to tens of GHz. First, ZeroX unit uses self-phase modulation in 
SOA and offset filtering for positive zero crossing points 
extraction (Fig. 8(a)). Then, cross-gain modulation in SOA is 
used in the Phase unit for generating a “1” or “0” output to 
represents phase leading or phase lagging (Fig. 8(c)-(d)). Lastly, 
the Amplitude unit uses signal inversion capability in SOA for 
generating a signal for “subtraction” and an optical delay line for 
temporal delay, such that a “1” is generated for rising envelope 
and “0” is generated for falling envelope (Fig. 8(b)).  

 
Fig. 8. Experimental results of the photonics based JAR. Top curve: input; 
bottom curve: output. (a) ZeroX unit – positive zero crossing points of the 
reference signal are identified and represented by the bottom red pulses. (c)-(d) 
Phase unit – the output amplitudes are high for phase lag and a low for phase 
lead. (b) Amplitude unit – rising and falling in beat signal envelope amplitude 
are distinguished, a high output represents rising in amplitude and a low output 
represents falling in amplitude. 

 By taking both the amplitude and phase information, an 
Arduino Due is used to implement the Logic unit that perform a 
XOR logic for determining if the emitting frequency should be 
increased or decreased. Arduino Due is used instead of photonic 
based XOR because of the low frequency nature of the Phase 
unit and Amplitude unit outputs – they are usually in the range 
below 200 MHz, determined by the frequency difference 
between fR and fJ. Once the frequency adjustment is in process, 
the Logic unit also responsible to determine when to stop, i.e. 
once the jamming signal is out of the jamming frequency range 
of the Eigenmannia. Fig. 9 shows the spectral waterfall 
measurement of the photonic JAR in action. The jamming signal 
is approaching the Eigenmannia from either lower or higher 
frequency and the JAR helps the Eigenmannia to keep its 
emitting frequency to be out of the jamming frequency range.  

 It is worth noticing that the ZeroX unit and the Phase unit 
can be used for phase difference detection in a phase locked 
loop. An experiment has been performed [39] with the photonic 
based ZeroX unit and Phase unit, and the experimental results 
show that this bio-inspired optical microwave phase lock loop 
has significantly suppressed the phase noise of a voltage 
controlled oscillator (VCO) by 25 dB. 

 
Fig. 9. Spectral waterfall measurement of the photonic JAR in action with 
sinusoidal reference signal fR and jamming signals fJ = 150 MHz. (a) fJ is 
approaching fR from the low frequency side and triggers the JAR, (b) fJ is 
approaching fR from the low frequency side and triggers the JAR, and then is 
moved away, (c) fJ is approaching fR from the high frequency side and triggers 
the JAR, (d) fJ is approaching fR from the high frequency side and triggers the 
JAR and then is moved away. 

IV.!SUMMARY AND DISCUSSION 
This paper briefly summarize the recent progress on 

neuromorphic photonics. In just a short ten years, spiking 
neuron, synapse, neural network, and various small scale neural 
algorithms have been dissected and mimicked by photonics, 
moving the processing time scale from millisecond in biological 
neuron to picosecond in photonic implementation. Neural 
algorithms have find its value in various RF signal processing 
applications due to its efficient, accurate, and task-specific 
capabilities, including angle-of-arrival measurement, indoor 
localization, phase-lock-loop, and jamming avoidance in 
wireless systems. The implementation of those neural algorithm 
using photonics enables the system to operate from hundreds of 
MHz to tens of GHz range. There are still lots of hidden treasure 
in the nature that could be an effective solution to the challenges 
we are facing in the modern society. 
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