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Abstract
Autumn canopy phenological transitions are increasing in length as a consequence of climate change. Here, we assess 
how well hyperspectral indices in the visible and near-infrared (NIR) wavelengths predict nitrogen (N) concentrations in 
lower-canopy leaves in the autumn phenological transition as they are generally understudied in leaf trait research. Using a 
Bayesian framework, we tested how well published indices are able to predict N concentrations in Fagus grandifolia Ehrh., 
Liriodendron tulipifera L., and Betula lenta L. from mid-summer through senescence, and how related the indices are to 
autumn phenological change. No indices were able to determine a trend in differences in N in mid-summer leaves. Indices 
that included wavelengths in the green and NIR ranges were the first indices able to detect a trend and had among the high-
est correlations with N concentration in both the last green collection and the senescing collection. Models were unique 
when indices were fit to data from different phenophases. Indices that focused on only the red edge (i.e., the sharp increase 
in reflectance between the red and NIR wavelengths) had the strongest explanatory power across the autumn phenological 
transition, but had less explanatory power for individual collections. These indices, as well as those that have been correlated 
with chlorophyll (CCI) and carotenoids (PRI), were the strongest descriptors of autumn progression. This study provides 
insights on challenges and capabilities to monitor a leaf’s N concentration throughout and across canopy senescence.
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Introduction

One of the most visible impacts of global environmental 
change is the effect of rising air temperatures on the length-
ening of the growing season in temperate deciduous forests 
(Parmesan and Yohe 2003). While the timing of phenologi-
cal transitions in both spring and autumn is changing, less 
than 50% as many climate change studies are set in autumn 
than in spring (Gallinat et al. 2015). Phenological spring 
transitions occur at a much shorter time scale than autumn 
ones and, thus, the autumn transition is harder to model 
and predict (Richardson et al. 2012). Part of the confusion 
around predicting and quantifying the length and timing 
of autumn transitions is due to differences in definitions of 
senescence (Gill et al. 2015) and in methods for measur-
ing the timing of this transition, which can result in differ-
ent conclusions of how it is changing (Keenan et al. 2014). 
Regardless, numerous studies have found that the autumn 
phenological transition is often being lengthened or delayed 
in temperate deciduous forests (Linderholm 2006; Gill et al. 
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Autumn has been extended in Northern Hemisphere forests due to 
progressive climate change. Most past studies that aim to quantify 
canopy-scale changes during the autumn, using hyperspectral 
remotely sensed observations, have relied on trait spectra 
relationships for sunlit green leaves. We discovered that certain 
hyperspectral indices are effective at predicting leaf nitrogen 
concentrations and other traits in the lower canopy throughout the 
fall, improving our ability to remotely monitor changes in canopy 
physiology.
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2015). Autumn is physiologically important because it is 
when trees prepare for winter dormancy, with preparation 
starting well before visual changes are apparent in leaf color 
(Estiarte and Peñuelas 2015). These less evident responses 
include a decrease in tree photosynthesis and respiration 
(McKown et al. 2013) later in summer months before leaf 
abscission. Studies of leaf traits and remote sensing of traits 
predominantly focus on peak-green leaves (Yang et  al. 
2016), however many traits and trait relationships have large 
phenological variation even within the green canopy (McK-
own et al. 2013). With the changes to autumn phenological 
transitions, understanding how traits and trait relationships 
change throughout autumn is becoming more important in 
understanding net annual changes. Specifically, understand-
ing and measuring those leaf traits that are known to change 
in the autumn, such as leaf nitrogen (N) concentrations, is 
increasingly important.

N can be a growth-limiting nutrient as it is in short sup-
ply in many deciduous forest ecosystems and is essential to 
photosynthesis (LeBauer and Treseder 2008). N is found 
in a variety of proteins in the cell with 50–60% of the N 
in many leaves contained in the chloroplasts (Mostowska 
2005), half of which is in the enzyme Rubisco and small 
amounts in chlorophyll. Between 10 and 15% of the N is 
typically in nucleic acids (Chapin and Kedrowski 1983) 
and around 9% is in proteins attached to cell walls (Onoda 
et al. 2004). Especially if N is limited, a tree often does 
not invest the same amount of N in each of its leaves and 
instead focuses on investing N in leaves with greater photo-
synthetic potential, such as sunlit, upper-crown leaves (Hiko-
saka 2016). This often results in a greater percentage of N 
in upper-crown leaves being allocated to the photosynthetic 
apparatus than that allocated in shaded, lower-crown leaves. 
In autumn, deciduous trees will break down organelles in 
their leaves and reabsorb the N for storage in the woody 
tissues to use in spring growth, which initially is almost 
exclusively due to stored N (Neilsen et al. 1997). N that is 
not resorbed before leaf abscission enters the rest of the eco-
system and may not be available to the tree for initial spring 
growth. Along with lignin concentrations, the N concentra-
tions of leaf litter affect the decomposition rate (Berg and 
McClaugherty 2003), accumulation of soil organic matter 
(Berg and Meentemeyer 2002), and N mineralization rate 
(Inagaki et al. 2004). Extending senescence is associated 
with increasing N resorption (Inagaki et al. 2010), but this 
increases the risk that the leaves will be detached prema-
turely before N resorption has completed.

Leaves do not only fall in the autumn after senescence 
and resorption have completed. Changes in the levels and 
gradients of the hormones auxin and ethylene in leaves 
(Morgan 1984; Taiz and Zeiger 2006) make it easier for not 
only the tree to shed leaves that are not worth the investment, 
but also for autumn storms to prematurely detach leaves. 

Hurricanes and other storms can also result in greenfall, 
even before physiological changes in the leaves have started 
to occur (Vargas 2012). Additionally, as many of the pheno-
logical changes are being delayed with climate change, the 
risk of early frosts causing premature leaf abscission also 
increases, which has been observed in the spring (Richard-
son et al. 2018). Thus, increasing the risk of premature leaf 
abscission makes it more important to be able to measure N 
concentrations in leaves throughout the autumn phenologi-
cal transition.

Hyperspectral remote sensing of N in leaves and cano-
pies is an ideal way to monitor N concentrations in a non-
destructive manner because macromolecules in leaves reflect 
and absorb light at specific wavelengths. Leaf reflectance 
spectra give information about pigment concentrations in 
the visible region (400−700 nm), leaf structure in the near-
infrared region (700−1300 nm, NIR), and water and proteins 
in the shortwave infrared region (1300−2500 nm, SWIR) 
(Homolová et al. 2013). Because N is a primary component 
in some compounds (e.g., chlorophyll, proteins), indices and 
other hyperspectral evaluation methods that include wave-
lengths in all three ranges typically are better at predicting N 
concentrations than indices that only include one or two of 
the wavelength ranges (Serbin et al. 2014; Yang et al. 2016). 
Due to the expense of SWIR instruments, many studies have 
focused on the ability of hyperspectral indices in the visible 
and NIR wavelengths at predicting N concentrations with 
the justification that chlorophyll concentrations have been 
found to often be correlated with N concentrations in sunlit 
green leaves (Sage et al. 1987; Homolová et al. 2013; Noda 
et al. 2015). Many of these indices rely on ratios between 
wavelengths in the red and NIR region, which is commonly 
referred to as the “red edge”. Most studies have focused on 
sunlit leaves, as canopy reflectance of top-of-canopy leaves 
can be measured by airborne and satellite platforms.

The majority of leaves, however, exist under shaded 
conditions (Keenan and Niinemets 2016) and, thus, N 
may not be as closely tied to chlorophyll in these green 
leaves. Ratios between chlorophyll and N concentrations 
have been found to vary greatly throughout the year (Croft 
et al. 2017). Yang et al. (2016) investigated how leaf spec-
tra–trait relationships vary between seasons and found that 
the relationships between spectra and N concentrations 
vary greatly between spring, summer, and autumn. They, 
however, primarily focused on sunlit leaves and included 
spectra through the SWIR. They defined autumn as starting 
when leaf chlorophyll starts to decrease and did not look at 
variation within this autumn period. With climate change 
altering the duration of this autumn phenological transition, 
it is becoming more important to understand variation with 
leaf spectra–trait relationships within autumn. Thus, there 
is a pressing need to identify hyperspectral indices in the 
visible and NIR that are able to explain variation in leaf N 
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concentrations. This effort will allow the determination of 
the relationships between different hyperspectral indices and 
changes in N concentrations of lower-crown leaves through-
out the course of the autumn phenological change.

For this study, we selected a variety of published hyper-
spectral indices in the visible and NIR ranges that were 
found to be correlated with pigment concentrations or that 
have a strong phenological signal. We collected lower-crown 
leaves from Fagus grandifolia Ehrh. (American beech), Liri-
odendron tulipifera L. (yellow poplar), and Betula lenta L. 
(sweet birch) five times from mid-summer through senes-
cence and fit regression models to investigate which indi-
ces are the strongest at predicting leaf N across autumn and 
how explanatory power of the indices and their relationships 
with N concentrations changes between collections. We also 
tracked how the indices changed throughout the autumn 
transition in situ on trees to determine which indices have 
the strongest phenological signals and investigate if the indi-
ces with the highest N predictive power are the same as the 
ones with the most consistent phenological change (i.e., have 
the strongest trend of change in autumn). Our two primary 
hypotheses were (1) the indices will not be correlated with N 
concentrations in the mid-summer green leaves due to likely 
weak correlations between pigments and N in lower-crown 
leaves, but will overall increase in explanatory power as the 
autumn transition progresses with N resorption resulting in 
stronger correlations between N concentrations and chloro-
phyll in the lower-crown leaves, and (2) the indices that have 
been shown to be strong descriptors of autumnal change 
will not be the strongest predictors of leaf N across autumn 
if they involve changes in pigments other than chlorophyll. 
We aimed to identify indices that are able to improve our 
knowledge of a leaf’s N concentration at different points 
during the autumn and test the sensitivity of the relationships 
across phenophases.

Methods

Site description

We measured trees in the Fair Hill Natural Resources Man-
agement Area in Elkton, Maryland. Fair Hill is in the Chesa-
peake Bay Watershed and is situated just northwest of the 
Fall Line between the Piedmont and the Atlantic Coastal 
Plain. The local climate is characterized by relatively con-
stant precipitation throughout the year. From 1981–2010, the 
mean annual precipitation was 1205 mm, the 30-year mean 
maximum air temperature was 19.1 °C, and the 30-year 
mean minimum temperature was 6.8 °C (NCDC 2014). 
The forest type is mixed deciduous with dominant tree spe-
cies of F. grandifolia, L. tulipifera, and B. lenta. Soils are 
predominantly silt loams and have igneous, metamorphic, 

phyllite and schist parent material (USDA NRCS USDA 
NRCS 2003). Soils were previously found to have total N, 
ammonium-bound N, and nitrate-bound N concentrations of 
0.129%, 5.13 mg/kg, and 1.21 mg/kg, respectively (Wheeler 
et al. 2017).

Field data collection

Tree and leaf selection

Between August and mid-November of 2016, we collected 
in situ temporal hyperspectral data from five F. grandifo-
lia, five B. lenta, and five L. tulipifera trees. Random tree 
selection was performed (i.e., assigning numbers to all trees 
within the study area and randomly selecting numbers rep-
resenting individual trees), but we also considered safety for 
tree and leaf access in our sampling design. Fagus grandifo-
lia trees and B. lenta trees are shade tolerant and, thus, ran-
domly selecting trees with ground-access leaves was possi-
ble even in the interior of the forest. Liriodendron tulipifera 
trees, however, are shade intolerant, forcing the L. tulipifera 
tree selection to be confined to near the forest edge where 
leaves were accessible from the ground. Trees with varying 
diameters (approximate range of 10–60 cm) were selected.

In situ temporal hyperspectral data collection

Hyperspectral measurements of leaves on the selected trees 
were acquired using a PSP-1100 Field-Portable Spectro-
photometer (Spectral Evolution Inc., Lawrence, Massachu-
setts). This instrument measures the intensities of radiation 
at wavelengths from 320–1100 nm with a 1-nm resolution 
as a digital number and converts the intensities to percent 
reflectance using sensor-specific radiometric calibration. 
Nominal reference scans were taken before each measure-
ment period using a calibrated white polytetrafluoroethylene 
plate (provided with the PSP-1100 by Spectral Evolution 
Inc). Reference scans were made using the same natural light 
conditions as the measurements and the instrument provided 
light source (i.e., 2 W tungsten halogen bulb). A 1-m-long 
bifurcated optical fiber connected the leaf clip to the PSP-
1100. The integration time on the PSP-1100 is 7.5–2000 ms.

Measurements were taken from the beginning of August 
until abscission. The first set of hyperspectral measurements 
was taken on 05-Aug-2016 and the second on 01-Sept-
2016. Between those days, one of the F. grandifolia trees 
was downed by a storm and had to be replaced by a differ-
ent tree. After the second measurement day, measurements 
were taken every couple of days (usually between 2- and 
4-day intervals with a couple slightly longer intervals due 
to weather conditions preventing measurements) until all 
leaves within reach on the tree had abscised. Measurements 
were taken on days with varying cloudiness levels on the 
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adaxial side of the leaves using a leaf clip that encloses the 
measured leaf section and uses its own light source (i.e., 
2 W tungsten halogen bulb). Each time, five leaves per tree 
were measured. Measurements were taken in late afternoon 
within 2 h of sunset to try to minimize diurnal variation on 
the reflectance signatures. The number of days measured for 
each tree ranged from 20 to 27. In total, 1732 in situ hyper-
spectral reflectance measurements were taken.

Laboratory measurements

On the dates 05-Aug-2016, 03-Sept-2016, 18-Sept-2016, 
and 11-Oct-2016, we collected visibly green leaves from 
each of the selected trees for laboratory analyses. For each 
green leaf collection time, 15 F. grandifolia, 15 B. lenta, and 
10 L. tulipifera leaves were collected. Based on when the 
lower-crown leaves in each tree were senescing, senescing 
leaves were collected from each tree on varying days. Eight 
to ten senescing leaves from each of the L. tulipifera trees 
were collected on 25-Oct-2016. Fifteen senescing leaves 
from each of the B. lenta trees were collected on 31-Oct-
2016. Fifteen senescing leaves from each of the F. gran-
difolia trees were collected on 30-Oct-2016, 06-Nov-2016, 
08-Nov-2016, or 11-Nov-2016, depending on the timing of 
senescence for a particular tree. Leaves were collected in 
paper bags and stored in the paper bags inside of plastic bags 
inside a cooler, transported to the laboratory within 2 h, and 
stored at 4 °C until the start of analyses.

Hyperspectral reflectance measurements were taken 
indoors within 2 h of collection on the adaxial side of each 
collected leaf using the same leaf clip and spectrophotometer 
as field measurements. Leaves were then briefly rinsed with 
Nanopure® deionized water and oven-dried at 70 °C for 72 h. 
Leaves were then ground up and stored in amber glass vials 
at 4 °C until N concentration measurements using a Vario 
EL cube (Elementar, Langenselbold, Germany). For each 
tree and collection date, ground samples were evenly mixed 
and 9.8−10.2 mg of the ground leaf matter was analyzed for 
N concentration.

Index selection and calculation

Based on a literature search, hyperspectral indices were 
selected that have been found to be correlated with different 
leaf traits that change during the autumn. Published indices are 
usually either highly specific and could be subject to overfit-
ting or they fall into categories that use reflectances at similar 
wavelengths or the same mathematical form. By including sev-
eral similar indices instead of just the most commonly used 
ones, we aimed to investigate how the explanatory power of 
different categories of indices compared to each other. Indices 
and their respective algorithms are provided in Table 1 where 
they are grouped by mathematical form. We highlight that 

other studies (e.g., Serbin et al. 2014 and Barnes et al. 2017) 
have applied partial least squares regression to decompose the 
complete reflectance spectra and relate to plant traits, but we 
decided to limit the focus and scope of this study to previously 
published general indices for broader comparison and applica-
tion of our results.

Data analysis

Linear regressions

Correlations between the selected hyperspectral indices and N 
concentrations in the collected leaves were investigated through 
fitting linear regressions of N concentration versus index value 
in a Bayesian framework. A Bayesian framework was selected 
because it allows for errors-in-variables (i.e., uncertainty in the 
index values) as well as observation uncertainty (i.e., in the N 
concentration measurements). Priors on the regression coeffi-
cients were given uninformative prior distributions of uniform 
(− 100,100). We incorporated a normal data model with preci-
sion having a gamma (0.001, 0.0001) prior. To account for the 
errors in the independent variable (i.e., index measurements), 
means and precisions were calculated from the multiple leaves 
that were measured for each tree and collection time. We then 
incorporated these observation means and precisions in a nor-
mally distributed errors-in-variables model. Using the Markov 
Chain Monte Carlo in JAGS (Plummer 2003; version 4.3.0) 
called from R (R Core Team 2017; version 3.4.1) using the 
rjags (Plummer 2018; version 4.7) package, parameter poste-
riors were determined. All parameters converged and burn-in 
(Gelman–Brooks–Rubin values < 1.05) were removed. The 
five chains were run until the effective sample sizes for each 
parameter were > 5000. Models were compared using their 
deviance information criterion (DIC) values. To provide an 
analog model comparison to frequentist methods, adjusted cor-
relation of determination (R2) were calculated comparing the 
mean of the expected values for each posterior sample with the 
mean of the index values for each tree and collection number. 
The percentage of the posterior samples that were positive was 
also calculated for each model fit.

Phenology model fitting

Similar to the linear regressions performed on collected leaf 
data, autumn phenological curves were fit for each tree based 
on the different indices using a Bayesian framework. Models 
were fit using two approaches: linear regression (Eq. 1) and 
exponential (Eq. 2):

(1)�
i
= �0 + �1 × t

i
,

(2)�
i
= −a × exp(b × t

i
) + c + a,
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where μ indicates the process-based modeled mean for the 
index value at different days of the year (ti). The priors on 
parameters β0 and b were set as uniform (− 100,100). The 
parameters controlling the direction of change, β1 and a were 
modeled with most having a uniform (− 100,0) parameter 
model. The indices PSRI, RGI, and SIPI, which are known 
to increase in the autumn instead of decrease like the other 
indices, were modeled with priors of uniform (0,100) on 
their β0 and b parameters. The parameter c represents the 
index values at the start of the exponential growth/decay 
and, thus, represents expected index values for green leaves. 
Because of this, priors for the c parameter in each model 
fitting were more informed and taken from their respec-
tive references. If the references did not provide adequate 
examples of index values, priors were devised based on 
expected spectra relationships in green spectra (Sims and 
Gamon 2002). The parameter models for c were normally 
distributed and selected mean and standard deviations are 
provided in Table S1. All models had a normally distributed 
data model with the same precision prior as the models fit to 

N concentrations in collected leaves. Five chains were run, 
burn-in removed, and all parameters converged with effec-
tive sample sizes > 5000. Models were compared using their 
DIC values. Additionally, to give context on how the leaf 
collection dates correspond to landscape top-of-canopy phe-
nological change, a double logistic curve was fit to MODIS 
NDVI product (MODIS13Q1; Didan 2015) values for 1 year 
(1 July 2016 to 30 June 2017) using the logistic equation 
from Zhang et al. (2003).

Results

In the comprehensive models, which include all meas-
ured leaves, all indices were able to determine slopes 
significantly different from zero (> 95% of their poste-
rior; Table 2). Additionally, we found that the reflectance 
values at the wavelengths 445 nm and 440 nm (blue/vio-
let) increased significantly (> 95% of the posterior slope 
samples were positive) in 11 of the 15 trees throughout 

Table 1   Mathematical forms of 
indices

Numbers indicate reflectance wavelengths (nm). Higher and lower indicate which wavelengths
*Averaged. **Lower and higher switched in equation

Index 400s 500s 600s 700s 800s References

Normalized difference: (higher − lower)/(higher + lower):
 PRI 531,570 Gamon et al. (1992)

  NDVI_H 680 800 Blackburn (1998)
   NDVI_M 619–671* 840–877* Barnes et al. (2017)
   Car 530 800 Féret et al. (2011)
   Chl 712,780 Féret et al. (2011)
   NDRE 720,790 Fitzgerald et al. (2006)
   GNDVI 550 750 Gitelson and Merzlyak (1997)
   CCI** 526–536* 620–670* Gamon et al. (2016)
Modified normalized difference: (R750 − R705)/(R750 − R705 + 2 × R445):
   mND 445 705,750 Sims and  Gamon (2002)
Spectra slope ratio: higher/lower:
   RVI2 560 810 Xue et al. (2004)
   GM1 550 750 Gitelson and  Merzlyak (1997)
   RVI1 660 810 Zhu et al. (2008)
   GM2 700,750 Gitelson and  Merzlyak (1997)
   VGM 720,740 Vogelmann et al. (1993)
   LIC** 440 690 Lichtenthaler et al. (1996)
   RGI** 500–599* 600–699* Multiple authors
Modified spectra slope ratio: (R750 − R445)/(R705 − R445):
   mSR 445 705,750 Sims and  Gamon (2002)
(R749 − R720)/(R701 − R672):
   DD 672 701,720,749 le Maire et al. (2004)
(R800 − R445)/(R800 − R680):
   SIPI 445 680 800 Penuelas et al. (1995)
(R678 − R500)/R750:
   PSRI 500 678 750 Merzlyak et al. (1999)
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autumn. Chl, the two NDVI indices, and NDRE were the 
strongest predictors of leaf N concentration for the com-
prehensive models (i.e., models fit to data from all col-
lected leaves; Table 2).

Based on the MODIS fit, the third green collection 
(18-Sept) occurred around the senescence-onset date of 

the top-of-canopy leaves and the fourth green collection 
occurred when the top-of-canopy leaves had already started 
senescing (Fig. 1). Indices that included similar wavelengths 
(Fig. 2) were usually able to detect significant trends in the 
same collections. None of the indices were able to determine 
a statistically significant slope for the first green collection 

Table 2   Diagnostic 
characteristics for the different 
indices

The columns all through senescing indicate the fraction of posterior samples that have a positive slope. 
Italicized numbers in those columns indicate models that have a significant trend (i.e., > 95% or < 5% of 
the posterior samples had a positive slope). Adjusted R2 and DIC (deviance information criterion) values 
for each index with N concentration across all collected leaves are given in the last two columns

Index All Green 1 Green 2 Green 3 Green 4 Senescing R2 DIC

Chl 1.00 0.70 0.82 0.83 1.00 1.00 0.86 − 31.12
NDVI_H 1.00 0.78 0.97 0.88 0.99 0.99 0.85 − 24.12
NDVI_M 1.00 0.75 0.96 0.84 1.00 1.00 0.85 − 21.23
NDRE 1.00 0.46 0.86 0.85 1.00 1.00 0.84 − 18.53
GM2 1.00 0.90 0.77 0.93 1.00 0.97 0.83 − 15.33
mND 1.00 0.52 0.47 0.40 0.88 0.99 0.82 − 8.27
PSRI 0.00 0.58 0.07 0.85 0.77 0.22 0.77 7.41
RGI 0.00 0.38 0.39 0.49 0.03 0.96 0.76 10.62
GNDVI 1.00 0.83 0.99 0.96 1.00 1.00 0.77 17.34
CCI 0.00 0.40 0.51 0.39 0.01 0.97 0.75 12.23
DD 1.00 0.84 0.31 0.60 0.94 0.38 0.72 22.51
mSR 1.00 0.48 0.12 0.40 0.85 0.96 0.72 22.59
PRI 1.00 0.44 0.22 0.20 0.99 0.09 0.72 23.54
RVI2 1.00 0.81 0.99 0.97 1.00 1.00 0.71 24.44
GM1 1.00 0.83 0.98 0.98 1.00 1.00 0.70 27.49
RVI1 1.00 0.70 0.84 0.91 1.00 0.99 0.66 38.30
SIPI 0.00 0.25 0.01 0.74 0.35 0.03 0.65 39.26
VGM 1.00 0.51 0.39 0.65 0.98 0.75 0.80 48.37
Car 1.00 0.84 1.00 0.96 1.00 1.00 0.65 53.38
LIC 1.00 0.41 0.20 0.18 0.11 0.01 0.33 87.42

Fig. 1   Autumn phenological curve fit of MODIS data. The MODIS 
NDVI values are given in the black dots with the 95% credible inter-
val for the curve indicated by the shading. The solid vertical lines 
indicate the four dates when lower-crown green leaves were collected 
from Fagus grandifolia Ehrh., Liriodendron tulipifera L., and Bet-

ula lenta L. trees. The dotted vertical lines indicate the dates when 
senescing leaves were collected from the respective tree species. The 
fourth green collection occurred when the upper-canopy leaves had 
just started senescing
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(Table 2). The indices associated with the red edge and the 
green wavelengths along with SIPI, NDVI_H, and NDVI_M 
were able to determine significant trend with leaf N concen-
trations (Table 2). The poor DIC scores and low adjusted R2 
values (all below 0.2) for the first three green collections 
(Aug and both in Sept) indicated that all indices lacked any 
explanatory and predictive power for N concentrations and, 
thus, they are not provided here. The indices associated with 
only the red edge were able to determine significant trends in 
the fourth green collection (14-Oct) and the senescing col-
lection. PRI and VGM were able to determine a trend in the 
fourth green collection and mSR, mND, and LIC were able 

to in the senescing collection. The fourth green collection 
had the most indices that were able to determine significant 
slopes. Both the fourth green and senescing collections had 
indices that were able to explain over half of the variance 
in leaf N concentration (Table 3). For most of the indices, 
the credible interval (CI) and predictive interval (PI) for the 
fourth green collection did not include the mean observa-
tions in the senescing collection and vice versa, indicating 
that the models fit to the green and senescing collections 
have no predictive power for leaves in the other collection. 
The NDVI, PRI, and NDRE fits for the fourth green collec-
tion included the means in the senescing collection (Fig. 3). 

Fig. 2   Selected indices grouped 
by similar included wavelengths 
ranges, which are indicated 
by the gray boxes. For refer-
ence, approximate locations 
of violet/blue (400 nm range), 
green (500 nm range), and red 
(600 nm range) wavelength 
(wvl) ranges are colored on each 
plot. Near-infrared (NIR) is 
shown in black. These are given 
to improve the understanding 
of what each index measures 
(e.g., a and d show indices that 
include one reflectance that is 
appears approximately green). 
a Indices with green and NIR 
wavelengths. b Indices with 
short red and NIR wavelengths. 
c Indices with long red and NIR 
wavelengths. d Indices with 
green and red wavelengths. e 
Index with blue/violet, red, and 
NIR wavelengths. f Index with 
two green wavelengths. g Index 
with two wavelengths along the 
red-edge. h Indices with a blue/
violet wavelength and one along 
the red-edge. Throughout the 
analysis, the performance of the 
indices grouped by the wave-
lengths used and not the form of 
their mathematical forms (color 
figure online)
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The RVI1, and mSR senescing fits included the means in the 
fourth green collection. Chl and GM2 fourth green models 
including the senescing means and vice versa (Fig. 3). GM2 
had a better DIC value than Chl in the fourth green collec-
tion, but they had similar DIC values in the senescing col-
lection. The CI for the senescing Chl fit was much tighter 
than that of the senescing GM2 fit (Fig. 3). The variance in 
the N concentrations for each collection, in order, was 0.028, 
0.086, 0.041, 0.043, and 0.014.   

Overall, linear fits for most indices had lower DIC values 
than exponential fits for the in situ autumn phenology curves 
(Table 4). Based on DIC values of the models between the 
indices and the in situ reflectance measurements, there was 
some variation between trees on the strongest indicator of 
phenology, but NDRE and PRI were the top two strong-
est indicators in all but one tree. The top four indices (e.g., 
NDRE, PRI, CCI, and Chl) were consistent among all trees 
(Table 4). The indices NDVI_M and NDVI_H had similar 
middle ranking for all trees (Table S2). NDRE and Chl were 
among the best at tracking autumn phenological progression 
and predicting N. The NDVI (i.e., NDVI_M and NDVI_H) 
values were stronger predictors for N concentrations, but did 
not represent the autumn phenological changes as distinctly 
as many of the other indices (e.g., NDRE, PRI, and Chl). 

The indices PRI and CCI had a very strong phenological 
signal, but was a poor predictor of N overall.

Discussion

Increasing correlations between indices and N 
throughout autumn

The N concentration in leaves is fundamental to many tree 
and ecosystem processes, both while the leaves are still 
attached and after they have abscised. Thus, it is important 
to be able to monitor leaf N, especially in relatively inex-
pensive, non-destructive ways, such as using hyperspectral 
indices within the visible and NIR ranges. As expected, none 
of the indices had any explanatory power (weak R2 and DIC 
values) for the first three green collections (Aug and both 
Sept dates), but some indices that had been previously found 
to be correlated with chlorophyll concentrations had some 
explanatory power (four indices had R2 values greater than 
0.50) in the fourth green collection (14-Oct) and the senesc-
ing collection. The increase in the correlation between the 
chlorophyll-based indices and N in the fourth green and the 
senescing collections is as expected due to N resorption. 
While Croft et al. (2017) found that ratios between N and 
chlorophyll dropped at the end of the season, this should 
only occur if enough of the chlorophyll had been resorbed 
to increase the weight of the cell structure associated N. Our 
senescing leaves likely had not reached this stage yet because 
explanatory power remained, but one should be mindful of 
this in measuring senescing leaves that have undergone high 
levels of N resorption already. While the leaves in the fourth 
green collection were still green, they were collected after 
phenological change in the top-of-canopy was evident from 
MODIS. Thus, even though this study did not focus on how 
to scale its results to larger monitoring efforts, top-of-canopy 
remote sensing can be an adequate way to identify when 
these indices could have explanatory power in lower-crown 
leaves; however, lower-canopy studies are still uncommon 
and the linkage between low- and high-canopy leaves still 
needs to be addressed.

The degree of explanatory power of the indices for the 
different collections was more similar amongst indices that 
included similar wavelengths (Fig. 2) and not by mathemati-
cal form (Table 1). Because this study was focused on the 
power to explain N concentrations, we did not measure pig-
ment concentrations. While the lack of pigment data for the 
actual leaves measured is a limitation of this study, there 
have been extensive previous studies that have found correla-
tions between the indices and pigment concentrations (i.e., 
chlorophyll and carotenoid concentrations and ratios). The 

Table 3   Adjusted R2 and DIC (deviance information criterion) values 
for the fourth green and the senescing collections (N% vs. index)

Italicized numbers indicate R2 values greater than 0.50

Index Fourth Green Senescing

GM2 0.61 − 14.15 0.31 − 22.05
GM1 0.53 − 11.29 0.63 − 31.18
GNDVI 0.51 − 11.25 0.69 − 33.55
RVI2 0.52 − 10.85 0.60 − 29.96
Chl 0.48 − 9.90 0.42 − 24.48
NDVI_M 0.45 − 9.80 0.44 − 25.01
RVI1 0.44 − 8.64 0.32 − 22.02
Car 0.41 − 8.61 0.71 − 34.84
NDVI_H 0.38 − 7.93 0.29 − 21.41
NDRE 0.40 − 7.69 0.4 − 23.92
VGM 0.49 − 7.03 0.37 − 17.98
PRI 0.30 − 5.38 0.06 − 17.23
RGI 0.17 − 2.78 0.18 − 19.75
CCI 0.27 − 8.134 0.18 − 22.73
DD 0.12 − 1.83 − 0.07 − 15.23
LIC 0.05 − 0.66 0.27 − 21.03
mND 0.03 − 0.51 0.27 − 21.00
mSR 0.01 − 0.09 0.25 − 20.96
SIPI − 0.08 0.40 0.17 − 19.08
PSRI − 0.03 0.58 − 0.03 − 15.85
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Fig. 3   Selected collected model fits for individual collections. First 
column is NDVI_H for green 1–4 and senescing collections (pan-
els a–e, respectively). Second column is NDRE for green 1–4 and 
senescing collections (f–j, respectively). Third column is RVI1 for 
green 1–4 and senescing collections (k–o, respectively). Fourth col-
umn is Chl for green 1–4 and senescing collections (p–t, respec-
tively). Fifth column is GM2 for green 1–4 and senescing collections 
(u–y, respectively). The darker shading indicates the 95% predic-
tive interval (PI) and the lighter shading indicates the 95% credible 
interval (CI). The black points indicate the measurements for that 
specific collection, which is indicated for each row on the left. The 
black horizontal lines give the 95% confidence interval for the index 

values. The brown/lighter gray points without horizonal lines indicate 
the measurements for other collections. The PI and CI for models 
fit to some collection numbers do not always include measurements 
from other collections and no indices were able to determine a sig-
nificant trend in the first green (indices with significant trends in the 
third green not shown). While diagnostic statistics for model perfor-
mance were relatively strong in the green four and senescing collec-
tions, the green 4 models often included the senescing data within 
their PI, but the senescing models rarely included the other collec-
tions within their PI. The green 4 and senescing models for Chl and 
GM2 included data from the other collections within their PI (color 
figure online)
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behaviors of the explanatory power of N concentrations for 
the indices follow the understanding that previous studies 
have gained on the correlations of indices with pigment and 
autumnal pigment change.

The indices that included one wavelength above 750 nm 
(NIR) and one around 550 nm (green; GM1, GNDVI, RVI2; 
Fig. 2a) had R2 values over 0.50 for both the fourth green and 
the senescing collections models, with higher values in the 
senescing collection. Chlorophyll reflects green light in the 
550 nm region and by including both a wavelength in this 
region and another either within the red-edge or above it, 
these indices appear to be able to have the strongest ability 
to monitor N resorption and N concentrations. Their predic-
tive ability was strongest in the senescing collection likely 
because even though the senescing collection had the lowest 
variance in N concentrations, the variance in the senescing 
collection was likely due to differences in the degree of N 
resorption instead of inherent differences in how the different 
trees allocate N. Additionally, by including wavelengths in 
both the green region and around the red edge, these indices 
appear to perhaps enhance the differences between the leaves 
even though the N variation was low. In contrast, GM2 had 
the strongest explanatory and predictive power (based on 
its DIC and adjusted R2 values) for the fourth green collec-
tion, but had much lower explanatory power in the senescing 
collection. GM2 only included wavelengths along the red 
edge and perhaps the N variance in the senescing collection 

was not great enough to produce a higher correlation. The 
550–560 nm (green) range was important at allowing for 
the stronger explanatory power because the index Car 
behaved differently. Car also has a wavelength within the 
same upper region, but has a lower wavelength of 530 nm, 
which is below the green peak in the spectra (Fig. 2a). The 
Car index has been found to be highly sensitive to carot-
enoid concentrations (Féret et al. 2011). Because N is not 
resorbed from the breakdown of carotenoids, this high cor-
relation between Car and N concentrations in the senescing 
collection is likely due to measuring the phenological state 
of the progressions of carotenoid breakdown and N resorp-
tion. Indices that included a wavelength above 750 nm (NIR) 
and one around 550–560 nm (green) had high explanatory 
power within the fourth green and senescing collections, 
but by replacing the lower wavelength with 530 nm more 
explanatory power was achieved in the senescing collection 
and substantially less in the fourth green collection.

Changes in relationships throughout autumn

Even though GM1, GNDVI, and RVI2 had among the 
highest explanatory powers for both the fourth green 
(14-Oct) and senescing collections, the models they fit 
between the two green collections were vastly differ-
ent and did not include the means of the other collec-
tion within their predictive intervals. With the exception 

Table 4   The DIC values of the 
top six in situ phenology fits for 
each tree (five trees per species)

L Indicates the linear regression fit and Eindicates the exponential fit

Model DIC Model DIC Model DIC Model DIC Model DIC

F. grandifolia
NDREL − 497.1 NDREL − 505.1 NDREL − 400.4 NDREL − 432.4 NDREL − 441.3
NDREE − 410.9 NDREE − 414.5 NDREE − 305.2 NDREE − 375.2 PRIL − 358.9
PRIL − 399.9 PRIL − 376.2 CCIL − 293.1 PRIE − 375.2 CCIL − 344.5
PRIE − 397.8 CCIL − 371.1 ChlL − 290 PSRIE − 346.8 NDREE − 341.8
CCIL − 376.5 ChlL − 368.1 CarL − 286.9 ChlE − 344.1 ChlL − 341.4
ChlL − 373.5 CarL − 367 GNDVIL − 276.1 PRIL − 342.5 CarL − 328.8
B. lenta
NDREL − 473 PRIL − 424.7 PRIE − 399 PRIL − 355.1 NDREL − 424.7
PRIL − 419 NDREL − 418.7 PRIL − 396 NDREL − 351.5 PRIL − 390
PRIE − 403.3 NDREE − 336.4 NDREL − 381.9 PRIE − 297.9 PRIE − 352.1
NDREE − 398 CCIL − 330.3 NDREE − 338.6 NDREE − 288.2 NDREE − 345.5
ChlE − 367.9 ChlL − 327.3 PSRIE − 310.4 CCIL − 265.4 CCIL − 331.7
CCIL − 365 ChlE − 308.4 ChlE − 309.4 ChlL − 262.4 ChlL − 328.6
L. tulipifera
PRIL − 374.7 PRIL − 335.9 PRIL − 395.6 PRIL − 346.9 NDREL − 351.4
NDREL − 330 NDREL − 317 NDREL − 335.3 NDREL − 312.6 PRIL − 350.1
NDREE − 276.3 PRIE − 265.3 PRIE − 304.2 PRIE − 280.8 CCIL − 280.7
CCIL − 244.8 NDREE − 260.8 NDREE − 279.2 NDREE − 266.6 ChlL − 277.7
ChlL − 241.8 CCIL − 232.7 CCIL − 247.2 CCIL − 228.5 NDREE − 276.1
PSRIL − 229.1 ChlL − 229.7 ChlL − 244.1 ChlL − 225.4 PRIE − 273.6
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of Chl and GM2, none of the indices fit models for the 
fourth green and senescing collections that included the 
means of the other collection within their PI. Even though 
it did not produce the strongest DIC and R2 values, Chl 
created the most consistent models between the fourth 
green and senescing collections. Thus, the index Chl was 
the least sensitive to phenophase in the time right before 
and into senescence. Regression models fit using any of 
the other indices are likely to be highly specific to the 
phenophase of collection and are not as able to predict 
N concentrations in the other phenophase (i.e., the time 
right before senescence or senescence). The importance 
of phenophase in determining leaf trait relationships has 
been shown before for green leaves (McKown et al. 2013), 
but is still not considered enough in trait spectra rela-
tionship studies. This needs to be considered for more 
leaf-trait/leaf-trait and leaf-trait/spectra relationships, 
especially if they are related to leaf traits that have a phe-
nological change.

Earlier detections in trends

While all of the indices had virtually no explanatory and 
predictive power for the first three green collections, the 
indices that included one wavelength in the 500s (green) 
and one above 750 nm (NIR; RVI2, GM1, GNDVI, and Car; 
Fig. 2a) were able to determine significant trends for the sec-
ond and third green collections and likely possess the most 
potential for measuring the start of the autumn phenological 
transition period (Fig. 4). Later in the summer, deciduous 
trees switch from expressing senescence down-regulated 
genes to senescence-associated genes (Taiz and Zeiger 
2006). Chloroplasts are the first organelle to start to break 
down (Keech et al. 2007), with chlorophyll and carotenoids 
decreasing with similar rates (García-Plazaola et al. 2003). 
Since we did not collect any pigment data, we can only pos-
tulate that our second and third green collections occurred 
at this time (Fig. 4) where the chlorophyll and carotenoids 
are decreasing in similar amounts. The indices that were able 

Fig. 4   Seasonal shift in the abilities of the indices to detect significant 
trends and likely respective physiological changes. The gray vertical 
arrows indicate when the respective indices were able to detect a sig-

nificant trend with respect to potential physiological changes (color 
figure  online)
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to determine the direction of the relationship during both of 
these collections only included the indices that had wave-
lengths both near and above the red edge and near the green 
portion of the visible spectra. These wavelengths are known 
to give information about chlorophyll and carotenoid con-
centrations because of their inherent reflectance and absorp-
tion properties. By including both, it appears like they might 
have been able to amplify the effect that the breakdown of 
both chlorophyll and the carotenoids have on N concentra-
tion, even though carotenoids do not contain N. In the green 
region, chlorophyll reflects light and the carotenoids absorb 
it. Decreasing chlorophyll concentrations will not affect the 
amount that is reflected due to chlorophyll, but decreasing 
carotenoid concentrations will affect the amount of green 
light that is being absorbed by the leaf. Chlorophyll is likely 
not decreasing enough at this point to allow the indices that 
focus only on that pigment to detect differences in N con-
centration, but it appears that likely by detecting the additive 
changes in both types of pigments these indices are able to 
detect the sign of the slope of correlation with N concentra-
tions. These indices were also some of the best at explaining 
variation in N concentrations in the fourth green (14-Oct) 
and senescing collections, likely for similar reasons. While 
further work should be done with pigment data to investigate 
our postulation of the physiological cause, we found that the 
wavelengths with one wavelength in the 500s (green) and 
one above 750 nm (NIR) were the first to be able to detect a 
significant trend with N concentrations.

Patterns in indices modified for differences in high 
leaf surface reflectances

Indices with a wavelength in the 400 nm (blue/violet) 
range (mSR, mND, and LIC) have been previously found 
to have strong correlations with N concentrations in green, 
sunlit leaves (e.g., Sims and Gamon 2002), but were found 
here to have weak correlations with lower-crown leaves 
in all green collection models. These indices only had a 
significant trend with N concentrations in the senescing 
collection. Sims and Gamon (2002) created the indices 
mND and mSR by adding a third reflectance at wave-
length 445 nm to a normalized difference and a simple 
slope ratio, respectively, to compensate for high leaf sur-
face reflectance where the entire spectrum is raised. They 
note, though, that R445 only remains constant until the 
total chlorophyll drops to a low level. However, we found 
that these wavelengths increased in the majority of the 
measured trees in the autumn indicating that they have 
a different impact than just correcting for high leaf sur-
face reflectances. Modifying the indices with the reflec-
tance at 445 nm likely partially masked the changes in the 
other regions with gradual chlorophyll breakdown in the 
green collections. But, these indices were able to detect 

trends in the senescing collection (with adjusted R2 values 
between 0.25 and 0.27) likely because the reflectance at 
these wavelengths also changed with much lower chloro-
phyll concentrations, reinforcing the relationship between 
chlorophyll and N concentrations and widening the chloro-
phyll measurement ability. Modifying indices by including 
a reflectance in the 400s weakens the ability of the index 
to rely on the phenological change of resorption to identify 
trends in N concentrations.

Strong correlations overall and relations 
with phenological change

We have shown that across the autumn phenological tran-
sition, some hyperspectral indices in the visible and NIR 
wavelengths are able to predict N concentrations in lower-
crown leaves, with the indices Chl, NDVI_H, NDVI_M, 
and NDRE having the strongest explanatory power. These 
abilities seem to be physiologically based because they are 
not necessarily the same as the ones that had the most con-
sistent phenological change. Contrary to expectations, the 
NDVI indices (i.e., NDVI_H and NDVI_M) were not the 
strongest indicators of phenological change compared to 
many of the other indices. NDVI is one of the major metrics 
for canopy-level phenological change, but perhaps at least 
on the leaf level other metrics could be more informative. 
Even though PRI and CCI were strong indicators of autumn 
phenological change, they were poor predictors of N con-
centrations overall. Dillen et al. (2012) also found that PRI 
was a good indicator of leaf physiological change and found 
it to be less correlated with photosynthesis-related traits than 
indices that focus on the red edge. PRI has been shown to 
be sensitive to changes in the xanthophyll cycle diurnally 
(Gamon et al. 1992; Van Gaalen et al. 2007), carotenoid 
to chlorophyll concentrations seasonally (Sims and Gamon 
2002; Stylinksi et al. 2002; Hilker et al. 2011), and levels 
of water stress (Peguero-Pina et al. 2008). The index CCI 
has been found to be a strong tracker of photosynthetic phe-
nology in evergreen conifers (Gamon et al. 2016). We also 
found it to be a strong, consistent tracker of phenological 
change in deciduous leaves even though it had a weaker cor-
relation than many others with N concentrations across and 
within collections. Since NDRE and PRI measure changes 
in different pigments, deciding which one to utilize would 
depend on the application. For example, monitoring the 
breakdown of chlorophyll and N resorption, NDRE or Chl 
(or an ensemble) would be more applicable, but PRI would 
be more suitable to monitoring changes to the carotenoids. 
Because the indices performed similarly across all trees, 
our results should not be sensitive to tree selection. These 
indices are appropriate to use to synchronize other leaf trait 
relationships by phenological progression.
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Conclusions

Leaf N is fundamental in numerous physiological and eco-
system processes. Hyperspectral indices have been shown to 
be able to predict N concentrations by measuring the reflec-
tance at wavelengths in the visible through SWIR wave-
lengths; however, instruments that allow for the measuring 
of SWIR are substantially more expensive than instruments 
that are limited to the visible and NIR range. We have shown 
that while published indices in the visible and NIR are not 
able to reliably detect trends in N in midsummer lower-
crown leaves, autumn phenological changes allow for an 
increase in the explanatory power of many indices. Indices 
that include wavelengths in the upper-green (550–560 nm) 
and NIR were able to detect significant trends with leaf N 
earliest (in Sept) and could serve as indicators of the first 
stages of this transition. We also found that most of these 
indices (GM1, GNDVI, and RVI2) were able to explain 
over half of the variation in leaf N in lower-crown green 
leaves collected after the crowns had started senescing and 
in lower-crown senescing leaves. The indices GM2 and 
Car explained the most variation in N in the last green and 
senescing collections, respectively. Almost all of the models 
differed between the last green and senescing collections, 
with the exceptions of Chl and GM2. Thus, while correla-
tions may be higher for some indices (GM1, GNDVI, and 
RVI2), their models are more reliant on ensuring the leaves 
are in the same phenophase.

The index Chl was found to explain the most variation 
in N concentrations across the autumn phenological change 
and, along with PRI, NDRE, and CCI, was one of the strong-
est indicators of this progression. NDRE was also strongly 
correlated with N overall, but PRI and CCI were less cor-
related and had poor predictive power. We also show that 
not only is it necessary to consider phenology, but that it 
can allow for the development of trait relationships that are 
useful in the near-remote sensing of N concentrations. In a 
way, the parallel autumn breakdown of chloroplasts and N 
resorption, which is known to happen in most deciduous 
trees, potentially provides a way for leaf economic principles 
to be applied to lower-crown, shaded leaves and should be 
investigated for additional traits.

Acknowledgements  This work was funded through the University 
of Delaware’s research office. We thank Fair Hill Natural Resource 
Management Area for graciously providing a location for data collec-
tion. We also thank Gerald Poirier, Janice Hudson, Kalmia Kniel, and 
Alexey Shiklomanov for useful advice during the project. KW also 
acknowledges support under the National Science Foundation Graduate 
Research Fellowship (1247312). RV acknowledges support from NASA 
Carbon Monitoring Systems (80NSSC18K0173) and the National Sci-
ence Foundation (1652594). Hyperspectral data and leaf trait measure-
ments are available on EcoSis.org (https​://ecosi​s.org/packa​ge/spect​ra-
from-insit​u-decid​uous-leave​s-and-leave​s-colle​cted-for-nitro​gen-analy​
sis-throu​ghout​-autum​n).

Author contribution statement   KW, DL, and RV conceived and 
designed the experiments. KW performed the experiments and ana-
lyzed the data. KW wrote the manuscript with input and edits from DL 
and RV. KW, DL, and RV worked on manuscript revisions.

References

Barnes ML, Breshears DD, Law DJ, van Leeuwen WJD, Monson RK, 
Fojtik AC, Barron-Gafford GA, Moore DJP (2017) Beyond green-
ness: Detecting temporal changes in photosynthetic capacity with 
hyperspectral reflectance data. PLoS One 12:e0189539. https​://
doi.org/10.1371/journ​al.pone.01895​39

Berg B, McClaugherty C (2003) Plant litter. Decomposition, humus 
formation, carbon sequestration. Springer, Berlin, p 286

Berg B, Meentemeyer V (2002) Litter quality in a north European 
transect versus carbon storage potential. Plant Soil 242:83–92

Blackburn GA (1998) Quantifying chlorophylls and carotenoids at 
leaf and canopy scales: an evaluation of some hyperspectral 
approaches. Remote Sens Environ 66:273–285

Chapin FS, Kedrowski RA (1983) Seasonal changes in nitrogen and 
phosphorus fractions and autumn retranslocation in evergreen 
and deciduous Taiga Trees. Ecology 64:376–391. https​://doi.
org/10.2307/19370​83

Croft H, Chen JM, Luo X, Bartlett P, Chen B, Staebler RM (2017) 
Leaf chlorophyll content as a proxy for leaf photosynthetic capac-
ity. Glob Change Biol 23:3513–3524. https​://doi.org/10.1111/
gcb.13599​

Didan K (2015) MOD13Q1 MODIS/Terra Vegetation Indices 16-Day 
L3 Global 250 m SIN Grid V006 [NDVI and pixel_reliability]. 
NASA EOSDIS LP DAAC. https​://doi.org/10.5067/modis​/mod13​
q1.006

Dillen SY, de Beeck MO, Hufkens K, Buonanduci M, Phillips NG 
(2012) Seasonal patterns of foliar reflectance in relation to pho-
tosynthetic capacity and color index in two co-occurring tree spe-
cies, Quercus rubra and Betula papyrifera. Agric For Meteorol 
160:60–68. https​://doi.org/10.1016/j.agrfo​rmet.2012.03.001

Estiarte M, Peñuelas J (2015) Alteration of the phenology of leaf senes-
cence and fall in winter deciduous species by climate change: 
effects on nutrient proficiency. Glob Change Biol 21:1005–1017. 
https​://doi.org/10.1111/gcb.12804​

Féret J-B, François C, Gitelson A, Asner GP, Barry KM, Panigada C, 
Richardson AD, Jacquemoud S (2011) Optimizing spectral indices 
and chemometric analysis of leaf chemical properties using radi-
ative transfer modeling. Remote Sens Environ 115:2742–2750. 
https​://doi.org/10.1016/j.rse.2011.06.016

Fitzgerald GJ, Rodriguez D, Christensen LK, Belford R, Sadras VO, 
Clarke TR (2006) Spectral and thermal sensing for nitrogen and 
water status in rainfed and irrigated wheat environments. Precis 
Agric 7:233–248. https​://doi.org/10.1007/s1111​9-006-9011-z

Gallinat AS, Primack RB, Wagner DL (2015) Autumn, the neglected 
season in climate change research. Trends Ecol Evol 30:169–176. 
https​://doi.org/10.1016/j.tree.2015.01.004

Gamon JA, Peñuelas J, Field CB (1992) A narrow-waveband spectral 
index that tracks diurnal changes in photosynthetic efficiency. 
Remote Sens Environ 41:35–44. https​://doi.org/10.1016/0034-
4257(92)90059​-S

Gamon JA, Huemmrich KF, Wong CYS, Ensminger I, Garrity S, Hol-
linger DY, Noormets A, Peñuelas J (2016) A remotely sensed 
pigment index reveals photosynthetic phenology in evergreen 
conifers. Proc Natl Acad Sci 113(46):13087–13092. https​://doi.
org/10.1073/pnas.16061​62113​

https://ecosis.org/package/spectra-from-insitu-deciduous-leaves-and-leaves-collected-for-nitrogen-analysis-throughout-autumn
https://ecosis.org/package/spectra-from-insitu-deciduous-leaves-and-leaves-collected-for-nitrogen-analysis-throughout-autumn
https://ecosis.org/package/spectra-from-insitu-deciduous-leaves-and-leaves-collected-for-nitrogen-analysis-throughout-autumn
https://doi.org/10.1371/journal.pone.0189539
https://doi.org/10.1371/journal.pone.0189539
https://doi.org/10.2307/1937083
https://doi.org/10.2307/1937083
https://doi.org/10.1111/gcb.13599
https://doi.org/10.1111/gcb.13599
https://doi.org/10.5067/modis/mod13q1.006
https://doi.org/10.5067/modis/mod13q1.006
https://doi.org/10.1016/j.agrformet.2012.03.001
https://doi.org/10.1111/gcb.12804
https://doi.org/10.1016/j.rse.2011.06.016
https://doi.org/10.1007/s11119-006-9011-z
https://doi.org/10.1016/j.tree.2015.01.004
https://doi.org/10.1016/0034-4257(92)90059-S
https://doi.org/10.1016/0034-4257(92)90059-S
https://doi.org/10.1073/pnas.1606162113
https://doi.org/10.1073/pnas.1606162113


26	 Oecologia (2020) 192:13–27

1 3

García-Plazaola JI, Hernández A, Becerril JM (2003) Antioxidant and 
pigment composition during autumnal leaf senescence in woody 
deciduous species differing in their ecological traits. Plant Biol 
5:557–566. https​://doi.org/10.1055/s-2003-44791​

Gill AL, Gallinat AS, Sanders-DeMott R, Rigden AJ, Gianotti DJS, 
Mantooth JA, Templer PH (2015) Changes in autumn senes-
cence in northern hemisphere deciduous trees: a meta-analysis 
of autumn phenology studies. Ann Bot 116:875–888. https​://doi.
org/10.1093/aob/mcv05​5

Gitelson AA, Merzlyak MN (1997) Remote estimation of chlorophyll 
content in higher plant leaves. Int J Remote Sens 18:2691–2697. 
https​://doi.org/10.1080/01431​16972​17558​

Hikosaka K (2016) Optimality of nitrogen distribution among leaves in 
plant canopies. J Plant Res 129:299–311. https​://doi.org/10.1007/
s1026​5-016-0824-1

Hilker T, Gitelson A, Coops NC, Hall FG, Black TA (2011) Tracking 
plant physiological properties from the multi-angular tower-based 
remote sensing. Oecologia 165:865–876

Homolová L, Malenovský Z, Clevers JGPW, García-Santos G, Schaep-
man ME (2013) Review of optical-based remote sensing for plant 
trait mapping. Ecol Complex 15:1–16. https​://doi.org/10.1016/j.
ecoco​m.2013.06.003

Inagaki Y, Miura S, Kohzu A (2004) Effects of forest type and stand 
age on litterfall quality and soil N dynamics in Shikoku dis-
trict, southern Japan. For Ecol Manag 202:107–117. https​://doi.
org/10.1016/j.forec​o.2004.07.029

Inagaki Y, Okuda S, Sakai A, Nakanishi A, Shibata S, Fukata H (2010) 
Leaf-litter nitrogen concentration in hinoki cypress forests in rela-
tion to the time of leaf fall under different climatic conditions 
in Japan. Ecol Res 25:429–438. https​://doi.org/10.1007/s1128​
4-009-0672-8

Keech O, Pesquet E, Ahad A, Askne A, Nordvall D, Vodnala SM, 
Tuominen H, Hurry V, Dizengremel P, Gardeström P (2007) 
The different fates of mitochondria and chloroplasts during dark-
induced senescence in Arabidopsis leaves. Plant, Cell Environ 
30:1523–1534. https​://doi.org/10.1111/j.1365-3040.2007.01724​.x

Keenan TF, Niinemets Ü (2016) Global leaf trait estimates biased 
due to plasticity in the shade. Nat Plants 3:16201. https​://doi.
org/10.1038/nplan​ts.2016.201

Keenan TF, Gray J, Friedl MA, Toomey M, Bohrer G, Hollinger DY, 
Munger JW, O’Keefe J, Schmid HP, Wing IS, Yang B, Richardson 
AD (2014) Net carbon uptake has increased through warming-
induced changes in temperate forest phenology. Nat Clim Change 
4:598–604. https​://doi.org/10.1038/nclim​ate22​53

le Maire G, François C, Dufrêne E (2004) Towards universal broad 
leaf chlorophyll indices using PROSPECT simulated database and 
hyperspectral reflectance measurements. Remote Sens Environ 
89:1–28. https​://doi.org/10.1016/j.rse.2003.09.004

LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary 
productivity in terrestrial ecosystems is globally distributed. Ecol-
ogy 89:371–379. https​://doi.org/10.1890/06-2057.1

Lichtenthaler HK, Lang M, Sowinska M, Heisel F, Miehé JA (1996) 
Detection of vegetation stress via a new high resolution fluores-
cence imaging system. J Plant Physiol 148:599–612. https​://doi.
org/10.1016/S0176​-1617(96)80081​-2

Linderholm HW (2006) Growing season changes in the last century. 
Agric For Meteorol 137:1–14. https​://doi.org/10.1016/j.agrfo​
rmet.2006.03.006

McKown AD, Guy RD, Azam MS, Drewes EC, Quamme LK (2013) 
Seasonality and phenology alter functional leaf traits. Oecologia 
172:653–665. https​://doi.org/10.1007/s0044​2-012-2531-5

Merzlyak MN, Gitelson AA, Chivkunova OB, Rakitin VY (1999) 
Non-destructive optical detection of pigment changes during leaf 
senescence and fruit ripening. Physiol Plant 106:135–141. https​
://doi.org/10.1034/j.1399-3054.1999.10611​9.x

Morgan PW (1984) Is ethylene the natural regulator of abscission? In: 
Fuchs Y, Chalutz E (eds) Ethylene: biochemical, physiological 
and applies aspects. Martinus Nijhoff, The Hague, pp 231–240

Mostowska A (2005) Leaf senescence and photosynthesis. In: Pessa-
rakli M (ed) Handbook of Photosynthesis. CRC Press, Taylor and 
Francis Group, Boca Raton, Florida, pp 691–716

National Centers for Environmental Information, Data tools: 1981–
2010 normals. http://www.ncdc.noaa.gov/cdo-web/datat​ools/
norma​ls. Accessed 31 Mar 2016

Neilsen D, Millard P, Neilsen GH, Hogue EJ (1997) Sources of N 
for leaf growth in a high-density apple (Malus domestica) 
orchard irrigated with ammonium nitrate solution. Tree Physiol 
17:733–739

Noda HM, Muraoka H, Nasahara KN, Saigusa N, Murayama S, Koi-
zumi H (2015) Phenology of leaf morphological, photosynthetic, 
and nitrogen use characteristics of canopy trees in a cool-temper-
ate deciduous broadleaf forest at Takayama, central Japan. Ecol 
Res 30:247–266. https​://doi.org/10.1007/s1128​4-014-1222-6

Onoda Y, Hikosaka K, Hirose T (2004) Allocation of nitrogen to cell 
walls decreases photosynthetic nitrogen-use efficiency. Funct Ecol 
18:419–425

Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate 
change impacts across natural systems. Nature 421:37–42. https​
://doi.org/10.1038/natur​e0128​6

Peguero-Pina JJ, Morales F, Flexas J, Gil-Pelegrin Moya I (2008) 
Photochemistry, remotely sensed physiological reflectance index 
and de-epoxidation state of the xanthophyll cycle in Quercus coc-
cifera under intense drought. Oecologia 156:1–11. https​://doi.
org/10.1007/s0044​2-007-0957-y

Penuelas J, Frederic B, Filella I (1995) Semi-empirical indices to assess 
carotenoids/chlorophyll-a ratio from leaf spectral reflectance. Pho-
tosynthetica 31:221–230

Plummer M (2003) JAGS: A program for analysis of Bayesian graphi-
cal models using Gibbs sampling. Working Papers 8

Plummer M (2018) rjags: Bayesian Graphical Models using MCMC. R 
package version 4-8. https​://CRAN.R-proje​ct.org/packa​ge=rjags​.  
Accessed 1 July 2018

R Core Team (2017) R: A language and environment for statistical 
computing. R Foundation for Statistical Computing, Vienna, Aus-
tria. https​://www.R-proje​ct.org/. Accessed 1 July 2018

Richardson AD, Anderson RS, Arain MA, Barr AG, Bohrer G, Chen 
G, Chen JM, Ciais P, Davis KJ, Desai AR, Dietze MC, Dragoni 
D, Garrity SR, Gough CM, Grant R, Hollinger DY, Margolis 
HA, McCaughey H, Migliavacca M, Monson RK, Munger JW, 
Poulter B, Raczka BM, Ricciuto DM, Sahoo AK, Schaefer K, 
Tian H, Vargas R, Verbeeck H, Xiao J, Xue Y (2012) Terrestrial 
biosphere models need better representation of vegetation phe-
nology: results from the North American Carbon Program Site 
Synthesis. Glob Change Biol 18:566–584. https​://doi.org/10.111
1/j.1365-2486.2011.02562​.x

Richardson AD, Hufkens K, Milliman T, Aubrecht DM, Furze ME, 
Seyednasrollah B, Krassovski MB, Latimer JM, Nettles WR, Hei-
derman RR, Warren JM, Hanson PJ (2018) Ecosystem warming 
extends vegetation activity but heightens vulnerability to cold 
temperatures. Nature 560:368–371. https​://doi.org/10.1038/s4158​
6-018-0399-1

Sage RF, Pearcy RW, Seemann JR (1987) The nitrogen use efficiency 
of C3 and C4 plants: III. Leaf nitrogen effects on the activity 
of carboxylating enzymes in Chenopodium album (L.) and Ama-
ranthus retroflexus (L). Plant Physiol 85:355–359. https​://doi.
org/10.1104/pp.85.2.355

Serbin SP, Singh A, McNeil BE, Kingdon CC, Townsend PA (2014) 
Spectroscopic determination of leaf morphological and biochemi-
cal traits for northern temperate and boreal tree species. Ecol Appl 
24:1651–1669

https://doi.org/10.1055/s-2003-44791
https://doi.org/10.1093/aob/mcv055
https://doi.org/10.1093/aob/mcv055
https://doi.org/10.1080/014311697217558
https://doi.org/10.1007/s10265-016-0824-1
https://doi.org/10.1007/s10265-016-0824-1
https://doi.org/10.1016/j.ecocom.2013.06.003
https://doi.org/10.1016/j.ecocom.2013.06.003
https://doi.org/10.1016/j.foreco.2004.07.029
https://doi.org/10.1016/j.foreco.2004.07.029
https://doi.org/10.1007/s11284-009-0672-8
https://doi.org/10.1007/s11284-009-0672-8
https://doi.org/10.1111/j.1365-3040.2007.01724.x
https://doi.org/10.1038/nplants.2016.201
https://doi.org/10.1038/nplants.2016.201
https://doi.org/10.1038/nclimate2253
https://doi.org/10.1016/j.rse.2003.09.004
https://doi.org/10.1890/06-2057.1
https://doi.org/10.1016/S0176-1617(96)80081-2
https://doi.org/10.1016/S0176-1617(96)80081-2
https://doi.org/10.1016/j.agrformet.2006.03.006
https://doi.org/10.1016/j.agrformet.2006.03.006
https://doi.org/10.1007/s00442-012-2531-5
https://doi.org/10.1034/j.1399-3054.1999.106119.x
https://doi.org/10.1034/j.1399-3054.1999.106119.x
http://www.ncdc.noaa.gov/cdo-web/datatools/normals
http://www.ncdc.noaa.gov/cdo-web/datatools/normals
https://doi.org/10.1007/s11284-014-1222-6
https://doi.org/10.1038/nature01286
https://doi.org/10.1038/nature01286
https://doi.org/10.1007/s00442-007-0957-y
https://doi.org/10.1007/s00442-007-0957-y
https://CRAN.R-project.org/package%3drjags
https://www.R-project.org/
https://doi.org/10.1111/j.1365-2486.2011.02562.x
https://doi.org/10.1111/j.1365-2486.2011.02562.x
https://doi.org/10.1038/s41586-018-0399-1
https://doi.org/10.1038/s41586-018-0399-1
https://doi.org/10.1104/pp.85.2.355
https://doi.org/10.1104/pp.85.2.355


27Oecologia (2020) 192:13–27	

1 3

Sims DA, Gamon JA (2002) Relationships between leaf pigment 
content and spectral reflectance across a wide range of species, 
leaf structures and developmental stages. Remote Sens Environ 
81:337–354. https​://doi.org/10.1016/S0034​-4257(02)00010​-X

Stylinksi CD, Gamon JA, Oechel WC (2002) Seasonal patterns of 
reflectance indices, carotenoid pigments and photosynthesis of 
evergreen chaparral species. Oecologia 131:366–374. https​://doi.
org/10.1007/s0044​2-002-0905-9

Taiz K, Zeiger E (2006) Plant Physiology, 4th edn. Massachussetts, 
Sinauer Associates Inc, Sunderland, p 411/583

Van Gaalen KE, Flanagan LB, Peddle DR (2007) Photosynthesis, 
chlorophyll fluorescence and spectral reflectance in Sphagnum 
moss at varying water contents. Oecologia 153:19–28. https​://doi.
org/10.1007/s0044​2-007-0718-y

Vargas R (2012) How a hurricane disturbance influences extreme 
CO2 fluxes and variance in a tropical forest. Environ Res Lett 
7:035704. https​://doi.org/10.1088/1748-9326/7/3/03570​4

Vogelmann JE, Rock BN, Moss DM (1993) Red edge spectral measure-
ments from sugar maple leaves. Int J Remote Sens 14:1563–1575. 
https​://doi.org/10.1080/01431​16930​89539​86

USDA NRCS Soil Survey, WebSoilSurvey. http://webso​ilsur​vey.
sc.egov.usda.gov/App/WebSo​ilSur​vey.aspx. Accessed 31 Mar 
2003

Wheeler KI, Levia DF, Hudson JE (2017) Tracking senescence-induced 
patterns in leaf litter leachate using parallel factor analysis (PAR-
AFAC) modeling and self-organizing maps. J Geophys Res Bio-
geo 122:2233–2250. https​://doi.org/10.1002/2016J​G0036​77

Xue L, Cao W, Luo W, Dai T, Zhu Y (2004) Monitoring leaf nitrogen 
status in rice with canopy spectral reflectance. Agron J 96:135–
142. https​://doi.org/10.2134/agron​j2004​.1350

Yang X, Tang J, Mustard JF, Wu J, Zhao K, Serbin S, Lee J-E (2016) 
Seasonal variability of multiple leaf traits captured by leaf spec-
troscopy at two temperate deciduous forests. Remote Sens Environ 
179:1–12. https​://doi.org/10.1016/j.rse.2016.03.026

Zhang X, Friedl MA, Schaaf CB, Strahler AH, Hodges JCF, Gao F, 
Reed BC, Huete A (2003) Monitoring vegetation phenology 
using MODIS. Remote Sens Environ 84:471–475. https​://doi.
org/10.1016/S0034​-4257(02)00135​-9

Zhu Y, Yao X, Tian Y, Liu X, Cao W (2008) Analysis of common 
canopy vegetation indices forindicating leaf nitrogen accumula-
tions in wheat and rice. Int J Appl Earth Obs Geoinf 10:1–10

Affiliations

Kathryn I. Wheeler1,2   · Delphis F. Levia1,3   · Rodrigo Vargas1,3 

1	 Department of Geography and Spatial Sciences, University 
of Delaware, Newark, DE, USA

2	 Department of Earth and Environment, Boston University, 
Boston, MA, USA

3	 Department of Plant and Soil Sciences, University 
of Delaware, Newark, DE, USA

https://doi.org/10.1016/S0034-4257(02)00010-X
https://doi.org/10.1007/s00442-002-0905-9
https://doi.org/10.1007/s00442-002-0905-9
https://doi.org/10.1007/s00442-007-0718-y
https://doi.org/10.1007/s00442-007-0718-y
https://doi.org/10.1088/1748-9326/7/3/035704
https://doi.org/10.1080/01431169308953986
http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx
http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx
https://doi.org/10.1002/2016JG003677
https://doi.org/10.2134/agronj2004.1350
https://doi.org/10.1016/j.rse.2016.03.026
https://doi.org/10.1016/S0034-4257(02)00135-9
https://doi.org/10.1016/S0034-4257(02)00135-9
http://orcid.org/0000-0003-3931-7489
http://orcid.org/0000-0002-7443-6523
http://orcid.org/0000-0001-6829-5333

	Visible and near-infrared hyperspectral indices explain more variation in lower-crown leaf nitrogen concentrations in autumn than in summer
	Abstract
	Introduction
	Methods
	Site description
	Field data collection
	Tree and leaf selection
	In situ temporal hyperspectral data collection

	Laboratory measurements
	Index selection and calculation
	Data analysis
	Linear regressions
	Phenology model fitting


	Results
	Discussion
	Increasing correlations between indices and N throughout autumn
	Changes in relationships throughout autumn
	Earlier detections in trends
	Patterns in indices modified for differences in high leaf surface reflectances
	Strong correlations overall and relations with phenological change

	Conclusions
	Acknowledgements 
	References




