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Abstract

Autumn canopy phenological transitions are increasing in length as a consequence of climate change. Here, we assess
how well hyperspectral indices in the visible and near-infrared (NIR) wavelengths predict nitrogen (N) concentrations in
lower-canopy leaves in the autumn phenological transition as they are generally understudied in leaf trait research. Using a
Bayesian framework, we tested how well published indices are able to predict N concentrations in Fagus grandifolia Ehrh.,
Liriodendron tulipifera L., and Betula lenta L. from mid-summer through senescence, and how related the indices are to
autumn phenological change. No indices were able to determine a trend in differences in N in mid-summer leaves. Indices
that included wavelengths in the green and NIR ranges were the first indices able to detect a trend and had among the high-
est correlations with N concentration in both the last green collection and the senescing collection. Models were unique
when indices were fit to data from different phenophases. Indices that focused on only the red edge (i.e., the sharp increase
in reflectance between the red and NIR wavelengths) had the strongest explanatory power across the autumn phenological
transition, but had less explanatory power for individual collections. These indices, as well as those that have been correlated
with chlorophyll (CCI) and carotenoids (PRI), were the strongest descriptors of autumn progression. This study provides
insights on challenges and capabilities to monitor a leaf’s N concentration throughout and across canopy senescence.
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Introduction

One of the most visible impacts of global environmental
change is the effect of rising air temperatures on the length-
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2015). Autumn is physiologically important because it is
when trees prepare for winter dormancy, with preparation
starting well before visual changes are apparent in leaf color
(Estiarte and Pefiuelas 2015). These less evident responses
include a decrease in tree photosynthesis and respiration
(McKown et al. 2013) later in summer months before leaf
abscission. Studies of leaf traits and remote sensing of traits
predominantly focus on peak-green leaves (Yang et al.
2016), however many traits and trait relationships have large
phenological variation even within the green canopy (McK-
own et al. 2013). With the changes to autumn phenological
transitions, understanding how traits and trait relationships
change throughout autumn is becoming more important in
understanding net annual changes. Specifically, understand-
ing and measuring those leaf traits that are known to change
in the autumn, such as leaf nitrogen (N) concentrations, is
increasingly important.

N can be a growth-limiting nutrient as it is in short sup-
ply in many deciduous forest ecosystems and is essential to
photosynthesis (LeBauer and Treseder 2008). N is found
in a variety of proteins in the cell with 50-60% of the N
in many leaves contained in the chloroplasts (Mostowska
2005), half of which is in the enzyme Rubisco and small
amounts in chlorophyll. Between 10 and 15% of the N is
typically in nucleic acids (Chapin and Kedrowski 1983)
and around 9% is in proteins attached to cell walls (Onoda
et al. 2004). Especially if N is limited, a tree often does
not invest the same amount of N in each of its leaves and
instead focuses on investing N in leaves with greater photo-
synthetic potential, such as sunlit, upper-crown leaves (Hiko-
saka 2016). This often results in a greater percentage of N
in upper-crown leaves being allocated to the photosynthetic
apparatus than that allocated in shaded, lower-crown leaves.
In autumn, deciduous trees will break down organelles in
their leaves and reabsorb the N for storage in the woody
tissues to use in spring growth, which initially is almost
exclusively due to stored N (Neilsen et al. 1997). N that is
not resorbed before leaf abscission enters the rest of the eco-
system and may not be available to the tree for initial spring
growth. Along with lignin concentrations, the N concentra-
tions of leaf litter affect the decomposition rate (Berg and
McClaugherty 2003), accumulation of soil organic matter
(Berg and Meentemeyer 2002), and N mineralization rate
(Inagaki et al. 2004). Extending senescence is associated
with increasing N resorption (Inagaki et al. 2010), but this
increases the risk that the leaves will be detached prema-
turely before N resorption has completed.

Leaves do not only fall in the autumn after senescence
and resorption have completed. Changes in the levels and
gradients of the hormones auxin and ethylene in leaves
(Morgan 1984; Taiz and Zeiger 2006) make it easier for not
only the tree to shed leaves that are not worth the investment,
but also for autumn storms to prematurely detach leaves.
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Hurricanes and other storms can also result in greenfall,
even before physiological changes in the leaves have started
to occur (Vargas 2012). Additionally, as many of the pheno-
logical changes are being delayed with climate change, the
risk of early frosts causing premature leaf abscission also
increases, which has been observed in the spring (Richard-
son et al. 2018). Thus, increasing the risk of premature leaf
abscission makes it more important to be able to measure N
concentrations in leaves throughout the autumn phenologi-
cal transition.

Hyperspectral remote sensing of N in leaves and cano-
pies is an ideal way to monitor N concentrations in a non-
destructive manner because macromolecules in leaves reflect
and absorb light at specific wavelengths. Leaf reflectance
spectra give information about pigment concentrations in
the visible region (400—700 nm), leaf structure in the near-
infrared region (700—1300 nm, NIR), and water and proteins
in the shortwave infrared region (1300—2500 nm, SWIR)
(Homolova et al. 2013). Because N is a primary component
in some compounds (e.g., chlorophyll, proteins), indices and
other hyperspectral evaluation methods that include wave-
lengths in all three ranges typically are better at predicting N
concentrations than indices that only include one or two of
the wavelength ranges (Serbin et al. 2014; Yang et al. 2016).
Due to the expense of SWIR instruments, many studies have
focused on the ability of hyperspectral indices in the visible
and NIR wavelengths at predicting N concentrations with
the justification that chlorophyll concentrations have been
found to often be correlated with N concentrations in sunlit
green leaves (Sage et al. 1987; Homolov4 et al. 2013; Noda
et al. 2015). Many of these indices rely on ratios between
wavelengths in the red and NIR region, which is commonly
referred to as the “red edge”. Most studies have focused on
sunlit leaves, as canopy reflectance of top-of-canopy leaves
can be measured by airborne and satellite platforms.

The majority of leaves, however, exist under shaded
conditions (Keenan and Niinemets 2016) and, thus, N
may not be as closely tied to chlorophyll in these green
leaves. Ratios between chlorophyll and N concentrations
have been found to vary greatly throughout the year (Croft
et al. 2017). Yang et al. (2016) investigated how leaf spec-
tra—trait relationships vary between seasons and found that
the relationships between spectra and N concentrations
vary greatly between spring, summer, and autumn. They,
however, primarily focused on sunlit leaves and included
spectra through the SWIR. They defined autumn as starting
when leaf chlorophyll starts to decrease and did not look at
variation within this autumn period. With climate change
altering the duration of this autumn phenological transition,
it is becoming more important to understand variation with
leaf spectra—trait relationships within autumn. Thus, there
is a pressing need to identify hyperspectral indices in the
visible and NIR that are able to explain variation in leaf N
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concentrations. This effort will allow the determination of
the relationships between different hyperspectral indices and
changes in N concentrations of lower-crown leaves through-
out the course of the autumn phenological change.

For this study, we selected a variety of published hyper-
spectral indices in the visible and NIR ranges that were
found to be correlated with pigment concentrations or that
have a strong phenological signal. We collected lower-crown
leaves from Fagus grandifolia Ehrh. (American beech), Liri-
odendron tulipifera L. (yellow poplar), and Betula lenta L.
(sweet birch) five times from mid-summer through senes-
cence and fit regression models to investigate which indi-
ces are the strongest at predicting leaf N across autumn and
how explanatory power of the indices and their relationships
with N concentrations changes between collections. We also
tracked how the indices changed throughout the autumn
transition in situ on trees to determine which indices have
the strongest phenological signals and investigate if the indi-
ces with the highest N predictive power are the same as the
ones with the most consistent phenological change (i.e., have
the strongest trend of change in autumn). Our two primary
hypotheses were (1) the indices will not be correlated with N
concentrations in the mid-summer green leaves due to likely
weak correlations between pigments and N in lower-crown
leaves, but will overall increase in explanatory power as the
autumn transition progresses with N resorption resulting in
stronger correlations between N concentrations and chloro-
phyll in the lower-crown leaves, and (2) the indices that have
been shown to be strong descriptors of autumnal change
will not be the strongest predictors of leaf N across autumn
if they involve changes in pigments other than chlorophyll.
We aimed to identify indices that are able to improve our
knowledge of a leaf’s N concentration at different points
during the autumn and test the sensitivity of the relationships
across phenophases.

Methods
Site description

We measured trees in the Fair Hill Natural Resources Man-
agement Area in Elkton, Maryland. Fair Hill is in the Chesa-
peake Bay Watershed and is situated just northwest of the
Fall Line between the Piedmont and the Atlantic Coastal
Plain. The local climate is characterized by relatively con-
stant precipitation throughout the year. From 1981-2010, the
mean annual precipitation was 1205 mm, the 30-year mean
maximum air temperature was 19.1 °C, and the 30-year
mean minimum temperature was 6.8 °C (NCDC 2014).
The forest type is mixed deciduous with dominant tree spe-
cies of F. grandifolia, L. tulipifera, and B. lenta. Soils are
predominantly silt loams and have igneous, metamorphic,

phyllite and schist parent material (USDA NRCS USDA
NRCS 2003). Soils were previously found to have total N,
ammonium-bound N, and nitrate-bound N concentrations of
0.129%, 5.13 mg/kg, and 1.21 mg/kg, respectively (Wheeler
et al. 2017).

Field data collection
Tree and leaf selection

Between August and mid-November of 2016, we collected
in situ temporal hyperspectral data from five F. grandifo-
lia, five B. lenta, and five L. tulipifera trees. Random tree
selection was performed (i.e., assigning numbers to all trees
within the study area and randomly selecting numbers rep-
resenting individual trees), but we also considered safety for
tree and leaf access in our sampling design. Fagus grandifo-
lia trees and B. lenta trees are shade tolerant and, thus, ran-
domly selecting trees with ground-access leaves was possi-
ble even in the interior of the forest. Liriodendron tulipifera
trees, however, are shade intolerant, forcing the L. tulipifera
tree selection to be confined to near the forest edge where
leaves were accessible from the ground. Trees with varying
diameters (approximate range of 10-60 cm) were selected.

In situ temporal hyperspectral data collection

Hyperspectral measurements of leaves on the selected trees
were acquired using a PSP-1100 Field-Portable Spectro-
photometer (Spectral Evolution Inc., Lawrence, Massachu-
setts). This instrument measures the intensities of radiation
at wavelengths from 320-1100 nm with a 1-nm resolution
as a digital number and converts the intensities to percent
reflectance using sensor-specific radiometric calibration.
Nominal reference scans were taken before each measure-
ment period using a calibrated white polytetrafluoroethylene
plate (provided with the PSP-1100 by Spectral Evolution
Inc). Reference scans were made using the same natural light
conditions as the measurements and the instrument provided
light source (i.e., 2 W tungsten halogen bulb). A 1-m-long
bifurcated optical fiber connected the leaf clip to the PSP-
1100. The integration time on the PSP-1100 is 7.5-2000 ms.

Measurements were taken from the beginning of August
until abscission. The first set of hyperspectral measurements
was taken on 05-Aug-2016 and the second on 01-Sept-
2016. Between those days, one of the F. grandifolia trees
was downed by a storm and had to be replaced by a differ-
ent tree. After the second measurement day, measurements
were taken every couple of days (usually between 2- and
4-day intervals with a couple slightly longer intervals due
to weather conditions preventing measurements) until all
leaves within reach on the tree had abscised. Measurements
were taken on days with varying cloudiness levels on the
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adaxial side of the leaves using a leaf clip that encloses the
measured leaf section and uses its own light source (i.e.,
2 W tungsten halogen bulb). Each time, five leaves per tree
were measured. Measurements were taken in late afternoon
within 2 h of sunset to try to minimize diurnal variation on
the reflectance signatures. The number of days measured for
each tree ranged from 20 to 27. In total, 1732 in situ hyper-
spectral reflectance measurements were taken.

Laboratory measurements

On the dates 05-Aug-2016, 03-Sept-2016, 18-Sept-2016,
and 11-Oct-2016, we collected visibly green leaves from
each of the selected trees for laboratory analyses. For each
green leaf collection time, 15 F. grandifolia, 15 B. lenta, and
10 L. tulipifera leaves were collected. Based on when the
lower-crown leaves in each tree were senescing, senescing
leaves were collected from each tree on varying days. Eight
to ten senescing leaves from each of the L. tulipifera trees
were collected on 25-Oct-2016. Fifteen senescing leaves
from each of the B. lenta trees were collected on 31-Oct-
2016. Fifteen senescing leaves from each of the F. gran-
difolia trees were collected on 30-Oct-2016, 06-Nov-2016,
08-Nov-2016, or 11-Nov-2016, depending on the timing of
senescence for a particular tree. Leaves were collected in
paper bags and stored in the paper bags inside of plastic bags
inside a cooler, transported to the laboratory within 2 h, and
stored at 4 °C until the start of analyses.

Hyperspectral reflectance measurements were taken
indoors within 2 h of collection on the adaxial side of each
collected leaf using the same leaf clip and spectrophotometer
as field measurements. Leaves were then briefly rinsed with
Nanopure® deionized water and oven-dried at 70 °C for 72 h.
Leaves were then ground up and stored in amber glass vials
at 4 °C until N concentration measurements using a Vario
EL cube (Elementar, Langenselbold, Germany). For each
tree and collection date, ground samples were evenly mixed
and 9.8—10.2 mg of the ground leaf matter was analyzed for
N concentration.

Index selection and calculation

Based on a literature search, hyperspectral indices were
selected that have been found to be correlated with different
leaf traits that change during the autumn. Published indices are
usually either highly specific and could be subject to overfit-
ting or they fall into categories that use reflectances at similar
wavelengths or the same mathematical form. By including sev-
eral similar indices instead of just the most commonly used
ones, we aimed to investigate how the explanatory power of
different categories of indices compared to each other. Indices
and their respective algorithms are provided in Table 1 where
they are grouped by mathematical form. We highlight that
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other studies (e.g., Serbin et al. 2014 and Barnes et al. 2017)
have applied partial least squares regression to decompose the
complete reflectance spectra and relate to plant traits, but we
decided to limit the focus and scope of this study to previously
published general indices for broader comparison and applica-
tion of our results.

Data analysis
Linear regressions

Correlations between the selected hyperspectral indices and N
concentrations in the collected leaves were investigated through
fitting linear regressions of N concentration versus index value
in a Bayesian framework. A Bayesian framework was selected
because it allows for errors-in-variables (i.e., uncertainty in the
index values) as well as observation uncertainty (i.e., in the N
concentration measurements). Priors on the regression coeffi-
cients were given uninformative prior distributions of uniform
(—100,100). We incorporated a normal data model with preci-
sion having a gamma (0.001, 0.0001) prior. To account for the
errors in the independent variable (i.e., index measurements),
means and precisions were calculated from the multiple leaves
that were measured for each tree and collection time. We then
incorporated these observation means and precisions in a nor-
mally distributed errors-in-variables model. Using the Markov
Chain Monte Carlo in JAGS (Plummer 2003; version 4.3.0)
called from R (R Core Team 2017; version 3.4.1) using the
rjags (Plummer 2018; version 4.7) package, parameter poste-
riors were determined. All parameters converged and burn-in
(Gelman—Brooks—Rubin values < 1.05) were removed. The
five chains were run until the effective sample sizes for each
parameter were > 5000. Models were compared using their
deviance information criterion (DIC) values. To provide an
analog model comparison to frequentist methods, adjusted cor-
relation of determination (R*) were calculated comparing the
mean of the expected values for each posterior sample with the
mean of the index values for each tree and collection number.
The percentage of the posterior samples that were positive was
also calculated for each model fit.

Phenology model fitting

Similar to the linear regressions performed on collected leaf
data, autumn phenological curves were fit for each tree based
on the different indices using a Bayesian framework. Models
were fit using two approaches: linear regression (Eq. 1) and
exponential (Eq. 2):

Hi = PBo + By X1, (1)

H; = —axexp(bxt)+c+a, 2
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Tahle 1 Mathematical forms of Index 400s  500s 600s 700s 800s References
indices
Normalized difference: (higher —lower)/(higher + lower):
PRI 531,570 Gamon et al. (1992)
NDVI_H 680 800 Blackburn (1998)
NDVI_M 619-671* 840-877* Barnes et al. (2017)
Car 530 800 Féret et al. (2011)
Chl 712,780 Féret et al. (2011)
NDRE 720,790 Fitzgerald et al. (2006)
GNDVI 550 750 Gitelson and Merzlyak (1997)
CCI*#* 526-536*  620-670* Gamon et al. (2016)
Modified normalized difference: (R750 —R705)/(R750 —R705 + 2 X R445):
mND 445 705,750 Sims and Gamon (2002)
Spectra slope ratio: higher/lower:
RVI2 560 810 Xue et al. (2004)
GM1 550 750 Gitelson and Merzlyak (1997)
RVI1 660 810 Zhu et al. (2008)
GM2 700,750 Gitelson and Merzlyak (1997)
VGM 720,740 Vogelmann et al. (1993)
LIC** 440 690 Lichtenthaler et al. (1996)
RGI** 500-599*  600-699* Multiple authors
Modified spectra slope ratio: (R750 — R445)/(R705 — R445):
mSR 445 705,750 Sims and Gamon (2002)
(R749 —R720)/(R701 —R672):
DD 672 701,720,749 le Maire et al. (2004)
(R800 —R445)/(R800 —R680):
SIPI 445 680 800 Penuelas et al. (1995)
(R678 —R500)/R750:
PSRI 500 678 750 Merzlyak et al. (1999)

Numbers indicate reflectance wavelengths (nm). Higher and lower indicate which wavelengths

*Averaged. **Lower and higher switched in equation

where p indicates the process-based modeled mean for the
index value at different days of the year (¢,). The priors on
parameters f, and b were set as uniform (— 100,100). The
parameters controlling the direction of change, #, and a were
modeled with most having a uniform (—100,0) parameter
model. The indices PSRI, RGI, and SIPI, which are known
to increase in the autumn instead of decrease like the other
indices, were modeled with priors of uniform (0,100) on
their B, and b parameters. The parameter c represents the
index values at the start of the exponential growth/decay
and, thus, represents expected index values for green leaves.
Because of this, priors for the ¢ parameter in each model
fitting were more informed and taken from their respec-
tive references. If the references did not provide adequate
examples of index values, priors were devised based on
expected spectra relationships in green spectra (Sims and
Gamon 2002). The parameter models for ¢ were normally
distributed and selected mean and standard deviations are
provided in Table S1. All models had a normally distributed
data model with the same precision prior as the models fit to

N concentrations in collected leaves. Five chains were run,
burn-in removed, and all parameters converged with effec-
tive sample sizes > 5000. Models were compared using their
DIC values. Additionally, to give context on how the leaf
collection dates correspond to landscape top-of-canopy phe-
nological change, a double logistic curve was fit to MODIS
NDVI product MODIS13Q1; Didan 2015) values for 1 year
(1 July 2016 to 30 June 2017) using the logistic equation
from Zhang et al. (2003).

Results

In the comprehensive models, which include all meas-
ured leaves, all indices were able to determine slopes
significantly different from zero (> 95% of their poste-
rior; Table 2). Additionally, we found that the reflectance
values at the wavelengths 445 nm and 440 nm (blue/vio-
let) increased significantly (>95% of the posterior slope
samples were positive) in 11 of the 15 trees throughout
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Table 2 ]?iz}gnostic . Index All Green 1 Green 2 Green 3 Green 4 Senescing R? DIC

characteristics for the different

indices Chl .00 0.70 0.82 0.83 1.00 1.00 086  —31.12
NDVI_H 1.00 0.78 0.97 0.88 0.99 0.99 0.85 —24.12
NDVI_M 1.00 0.75 0.96 0.84 1.00 1.00 0.85 -21.23
NDRE 1.00 0.46 0.86 0.85 1.00 1.00 0.84 —18.53
GM2 1.00 0.90 0.77 0.93 1.00 0.97 0.83 —15.33
mND 1.00 0.52 0.47 0.40 0.88 0.99 0.82 -8.27
PSRI 0.00 0.58 0.07 0.85 0.77 0.22 0.77 741
RGI 0.00 0.38 0.39 0.49 0.03 0.96 0.76 10.62
GNDVI 1.00 0.83 0.99 0.96 1.00 1.00 0.77 17.34
CCI 0.00 0.40 0.51 0.39 0.01 0.97 0.75 12.23
DD 1.00 0.84 0.31 0.60 0.94 0.38 0.72 22.51
mSR 1.00 0.48 0.12 0.40 0.85 0.96 0.72 22.59
PRI 1.00 0.44 0.22 0.20 0.99 0.09 0.72 23.54
RVI2 1.00 0.81 0.99 0.97 1.00 1.00 0.71 24.44
GM1 1.00 0.83 0.98 0.98 1.00 1.00 0.70 27.49
RVII 1.00 0.70 0.84 091 1.00 0.99 0.66 38.30
SIPI 0.00 0.25 0.01 0.74 0.35 0.03 0.65 39.26
VGM 1.00 0.51 0.39 0.65 0.98 0.75 0.80 48.37
Car 1.00 0.84 1.00 0.96 1.00 1.00 0.65 53.38
LIC 1.00 0.41 0.20 0.18 0.11 0.01 0.33 87.42

The columns all through senescing indicate the fraction of posterior samples that have a positive slope.
Italicized numbers in those columns indicate models that have a significant trend (i.e., > 95% or < 5% of
the posterior samples had a positive slope). Adjusted R? and DIC (deviance information criterion) values
for each index with N concentration across all collected leaves are given in the last two columns

autumn. Chl, the two NDVI indices, and NDRE were the
strongest predictors of leaf N concentration for the com-
prehensive models (i.e., models fit to data from all col-
lected leaves; Table 2).

Based on the MODIS fit, the third green collection
(18-Sept) occurred around the senescence-onset date of

the top-of-canopy leaves and the fourth green collection
occurred when the top-of-canopy leaves had already started
senescing (Fig. 1). Indices that included similar wavelengths
(Fig. 2) were usually able to detect significant trends in the
same collections. None of the indices were able to determine
a statistically significant slope for the first green collection

o _ o
/9? o ~ ° [} o LJ
Q | (]
5~
— o
>
A -
5} o | — Green *
o © | -—- L tulipifera ° :
e} -| --- B.lenta *
= | F. grandifolia
™
ST ! I

Jul Sep

Time (month)

Fig. 1 Autumn phenological curve fit of MODIS data. The MODIS
NDVI values are given in the black dots with the 95% credible inter-
val for the curve indicated by the shading. The solid vertical lines
indicate the four dates when lower-crown green leaves were collected
from Fagus grandifolia Ehrh., Liriodendron tulipifera L., and Bet-
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ula lenta L. trees. The dotted vertical lines indicate the dates when
senescing leaves were collected from the respective tree species. The
fourth green collection occurred when the upper-canopy leaves had
just started senescing
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(Table 2). The indices associated with the red edge and the
green wavelengths along with SIPI, NDVI_H, and NDVI_M
were able to determine significant trend with leaf N concen-
trations (Table 2). The poor DIC scores and low adjusted R?
values (all below 0.2) for the first three green collections
(Aug and both in Sept) indicated that all indices lacked any
explanatory and predictive power for N concentrations and,
thus, they are not provided here. The indices associated with
only the red edge were able to determine significant trends in
the fourth green collection (14-Oct) and the senescing col-
lection. PRI and VGM were able to determine a trend in the
fourth green collection and mSR, mND, and LIC were able

to in the senescing collection. The fourth green collection
had the most indices that were able to determine significant
slopes. Both the fourth green and senescing collections had
indices that were able to explain over half of the variance
in leaf N concentration (Table 3). For most of the indices,
the credible interval (CI) and predictive interval (PI) for the
fourth green collection did not include the mean observa-
tions in the senescing collection and vice versa, indicating
that the models fit to the green and senescing collections
have no predictive power for leaves in the other collection.
The NDVI, PRI, and NDRE fits for the fourth green collec-
tion included the means in the senescing collection (Fig. 3).
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Table 3 Adjusted R? and DIC (deviance information criterion) values
for the fourth green and the senescing collections (N% vs. index)

Index Fourth Green Senescing

GM2 0.61 —14.15 0.31 —22.05
GM1 0.53 -11.29 0.63 -31.18
GNDVI 0.51 —-11.25 0.69 —33.55
RVI2 0.52 —10.85 0.60 —29.96
Chl 0.48 -9.90 0.42 —24.48
NDVI_M 0.45 —-9.80 0.44 —25.01
RVI1 0.44 —8.64 0.32 —22.02
Car 0.41 —-8.61 0.71 —34.84
NDVI_H 0.38 -7.93 0.29 -21.41
NDRE 0.40 —17.69 0.4 —23.92
VGM 0.49 -17.03 0.37 —17.98
PRI 0.30 -5.38 0.06 -17.23
RGI 0.17 -2.78 0.18 -19.75
CCI 0.27 —8.134 0.18 —22.73
DD 0.12 -1.83 -0.07 —-15.23
LIC 0.05 —0.66 0.27 -21.03
mND 0.03 -0.51 0.27 —-21.00
mSR 0.01 —-0.09 0.25 —20.96
SIPI —0.08 0.40 0.17 —19.08
PSRI -0.03 0.58 -0.03 —15.85

Italicized numbers indicate R? values greater than 0.50

The RVI1, and mSR senescing fits included the means in the
fourth green collection. Chl and GM2 fourth green models
including the senescing means and vice versa (Fig. 3). GM2
had a better DIC value than Chl in the fourth green collec-
tion, but they had similar DIC values in the senescing col-
lection. The CI for the senescing Chl fit was much tighter
than that of the senescing GM2 fit (Fig. 3). The variance in
the N concentrations for each collection, in order, was 0.028,
0.086, 0.041, 0.043, and 0.014.

Overall, linear fits for most indices had lower DIC values
than exponential fits for the in situ autumn phenology curves
(Table 4). Based on DIC values of the models between the
indices and the in situ reflectance measurements, there was
some variation between trees on the strongest indicator of
phenology, but NDRE and PRI were the top two strong-
est indicators in all but one tree. The top four indices (e.g.,
NDRE, PRI, CCI, and Chl) were consistent among all trees
(Table 4). The indices NDVI_M and NDVI_H had similar
middle ranking for all trees (Table S2). NDRE and Chl were
among the best at tracking autumn phenological progression
and predicting N. The NDVI (i.e., NDVI_M and NDVI_H)
values were stronger predictors for N concentrations, but did
not represent the autumn phenological changes as distinctly
as many of the other indices (e.g., NDRE, PRI, and Chl).
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The indices PRI and CCI had a very strong phenological
signal, but was a poor predictor of N overall.

Discussion

Increasing correlations between indices and N
throughout autumn

The N concentration in leaves is fundamental to many tree
and ecosystem processes, both while the leaves are still
attached and after they have abscised. Thus, it is important
to be able to monitor leaf N, especially in relatively inex-
pensive, non-destructive ways, such as using hyperspectral
indices within the visible and NIR ranges. As expected, none
of the indices had any explanatory power (weak R and DIC
values) for the first three green collections (Aug and both
Sept dates), but some indices that had been previously found
to be correlated with chlorophyll concentrations had some
explanatory power (four indices had R? values greater than
0.50) in the fourth green collection (14-Oct) and the senesc-
ing collection. The increase in the correlation between the
chlorophyll-based indices and N in the fourth green and the
senescing collections is as expected due to N resorption.
While Croft et al. (2017) found that ratios between N and
chlorophyll dropped at the end of the season, this should
only occur if enough of the chlorophyll had been resorbed
to increase the weight of the cell structure associated N. Our
senescing leaves likely had not reached this stage yet because
explanatory power remained, but one should be mindful of
this in measuring senescing leaves that have undergone high
levels of N resorption already. While the leaves in the fourth
green collection were still green, they were collected after
phenological change in the top-of-canopy was evident from
MODIS. Thus, even though this study did not focus on how
to scale its results to larger monitoring efforts, top-of-canopy
remote sensing can be an adequate way to identify when
these indices could have explanatory power in lower-crown
leaves; however, lower-canopy studies are still uncommon
and the linkage between low- and high-canopy leaves still
needs to be addressed.

The degree of explanatory power of the indices for the
different collections was more similar amongst indices that
included similar wavelengths (Fig. 2) and not by mathemati-
cal form (Table 1). Because this study was focused on the
power to explain N concentrations, we did not measure pig-
ment concentrations. While the lack of pigment data for the
actual leaves measured is a limitation of this study, there
have been extensive previous studies that have found correla-
tions between the indices and pigment concentrations (i.e.,
chlorophyll and carotenoid concentrations and ratios). The
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2.0

Data from modeled

*Significant
collection with uncertainties

Trend

Fig.3 Selected collected model fits for individual collections. First
column is NDVI_H for green 1-4 and senescing collections (pan-
els a—e, respectively). Second column is NDRE for green 1-4 and
senescing collections (f-j, respectively). Third column is RVI1 for
green 1-4 and senescing collections (k—o, respectively). Fourth col-
umn is Chl for green 1-4 and senescing collections (p—t, respec-
tively). Fifth column is GM2 for green 1-4 and senescing collections
(u-y, respectively). The darker shading indicates the 95% predic-
tive interval (PI) and the lighter shading indicates the 95% credible
interval (CI). The black points indicate the measurements for that
specific collection, which is indicated for each row on the left. The
black horizontal lines give the 95% confidence interval for the index

o Data from other

5T

GM2

"ols
RVI1 chl

Model CI . Model PI

collections

values. The brown/lighter gray points without horizonal lines indicate
the measurements for other collections. The PI and CI for models
fit to some collection numbers do not always include measurements
from other collections and no indices were able to determine a sig-
nificant trend in the first green (indices with significant trends in the
third green not shown). While diagnostic statistics for model perfor-
mance were relatively strong in the green four and senescing collec-
tions, the green 4 models often included the senescing data within
their PI, but the senescing models rarely included the other collec-
tions within their PI. The green 4 and senescing models for Chl and
GM2 included data from the other collections within their PI (color
figure online)
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Table 4 The DIC values of the

S Model DIC Model Model DIC Model DIC Model DIC

top six in situ phenology fits for

each tree (five trees per species) F. grandifolia
NDRE" -497.1 NDRE" -505.1 NDRE' —-4004 NDRE' -4324 NDRE' -4413
NDREE —-4109 NDREE -4145 NDREE -3052 NDREE -3752 PRI- —358.9
PRI- —3999 PRI" -376.2 CCI- —293.1 PRIE -3752 CcCI —344.5
PRIE -397.8 CCI- —371.1 Chlt —-290  PSRIE  —-3468 NDREE -3418
ccrt —376.5 Chl" —368.1 Car" —286.9 ChlE —344.1 Chlt -3414
Chlt —373.5 Car" —367 GNDVI“ -276.1 PRI —342.5 Cart —328.8
B. lenta
NDREX —473 PRI- —4247 PRIE —399 PRI" —355.1 NDREL —424.7
PRI- —419 NDRE" -418.7 PRI* —396 NDRE" -351.5 PRI* -390
PRIE —4033 NDREF -3364 NDRE' -3819 PRIF —297.9 PRIF —352.1
NDREF -398  cCCI* —330.3 NDREP —3386 NDREF -—2882 NDREF —3455
ChI® —367.9 Chl" —327.3 PSRIF -3104 ccI —-265.4 CCI —331.7
ccr- -365  ChE —-3084 Chi® —309.4 Chi" —262.4 Chl" —328.6
L. tulipifera
PRI* —374.7 PRI —3359 PRI —395.6 PRI —346.9 NDRE" -3514
NDRE" -330 NDRE“ -317 NDRE“ -3353 NDRE“ -312.6 PRI —350.1
NDREF -276.3 PRIF —2653 PRIF —304.2 PRIF —-280.8 CCI —280.7
ccr- —2448 NDREF -260.8 NDREF -2792 NDREF -266.6 Chl" —271.7
Chl* —-241.8 ccCI- -232.7 cCCI —2472 ccI —228.5 NDREF -276.1
PSRI*  —229.1 Chl* —229.7 Chl" —244.1 Chl" —2254 PRIF -273.6

LIndicates the linear regression fit and Eindicates the exponential fit

behaviors of the explanatory power of N concentrations for
the indices follow the understanding that previous studies
have gained on the correlations of indices with pigment and
autumnal pigment change.

The indices that included one wavelength above 750 nm
(NIR) and one around 550 nm (green; GM1, GNDVI, RVI2;
Fig. 2a) had R? values over 0.50 for both the fourth green and
the senescing collections models, with higher values in the
senescing collection. Chlorophyll reflects green light in the
550 nm region and by including both a wavelength in this
region and another either within the red-edge or above it,
these indices appear to be able to have the strongest ability
to monitor N resorption and N concentrations. Their predic-
tive ability was strongest in the senescing collection likely
because even though the senescing collection had the lowest
variance in N concentrations, the variance in the senescing
collection was likely due to differences in the degree of N
resorption instead of inherent differences in how the different
trees allocate N. Additionally, by including wavelengths in
both the green region and around the red edge, these indices
appear to perhaps enhance the differences between the leaves
even though the N variation was low. In contrast, GM2 had
the strongest explanatory and predictive power (based on
its DIC and adjusted R values) for the fourth green collec-
tion, but had much lower explanatory power in the senescing
collection. GM2 only included wavelengths along the red
edge and perhaps the N variance in the senescing collection
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was not great enough to produce a higher correlation. The
550-560 nm (green) range was important at allowing for
the stronger explanatory power because the index Car
behaved differently. Car also has a wavelength within the
same upper region, but has a lower wavelength of 530 nm,
which is below the green peak in the spectra (Fig. 2a). The
Car index has been found to be highly sensitive to carot-
enoid concentrations (Féret et al. 2011). Because N is not
resorbed from the breakdown of carotenoids, this high cor-
relation between Car and N concentrations in the senescing
collection is likely due to measuring the phenological state
of the progressions of carotenoid breakdown and N resorp-
tion. Indices that included a wavelength above 750 nm (NIR)
and one around 550-560 nm (green) had high explanatory
power within the fourth green and senescing collections,
but by replacing the lower wavelength with 530 nm more
explanatory power was achieved in the senescing collection
and substantially less in the fourth green collection.

Changes in relationships throughout autumn

Even though GM1, GNDVI, and RVI2 had among the
highest explanatory powers for both the fourth green
(14-Oct) and senescing collections, the models they fit
between the two green collections were vastly differ-
ent and did not include the means of the other collec-
tion within their predictive intervals. With the exception
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of Chl and GM2, none of the indices fit models for the
fourth green and senescing collections that included the
means of the other collection within their PI. Even though
it did not produce the strongest DIC and R? values, Chl
created the most consistent models between the fourth
green and senescing collections. Thus, the index Chl was
the least sensitive to phenophase in the time right before
and into senescence. Regression models fit using any of
the other indices are likely to be highly specific to the
phenophase of collection and are not as able to predict
N concentrations in the other phenophase (i.e., the time
right before senescence or senescence). The importance
of phenophase in determining leaf trait relationships has
been shown before for green leaves (McKown et al. 2013),
but is still not considered enough in trait spectra rela-
tionship studies. This needs to be considered for more
leaf-trait/leaf-trait and leaf-trait/spectra relationships,
especially if they are related to leaf traits that have a phe-
nological change.

to senescence-associated genes

remain for photoprotection

xanthophylls increase in proportion

mitochondria resorbed

Fig.4 Seasonal shift in the abilities of the indices to detect significant
trends and likely respective physiological changes. The gray vertical
arrows indicate when the respective indices were able to detect a sig-

1. Switch from senescence down-regulated genes

2. Chloroplasts start to break down: chlorophyll
and carotenoids decrease in similar amounts
-N from rubisco and chlorophyll resorbed

3. Chlorophyll breakdown increases, but carotenoids

-carotenoid composition changes: de-epoxidised

Earlier detections in trends

While all of the indices had virtually no explanatory and
predictive power for the first three green collections, the
indices that included one wavelength in the 500s (green)
and one above 750 nm (NIR; RVI2, GM1, GNDVI, and Car;
Fig. 2a) were able to determine significant trends for the sec-
ond and third green collections and likely possess the most
potential for measuring the start of the autumn phenological
transition period (Fig. 4). Later in the summer, deciduous
trees switch from expressing senescence down-regulated
genes to senescence-associated genes (Taiz and Zeiger
2006). Chloroplasts are the first organelle to start to break
down (Keech et al. 2007), with chlorophyll and carotenoids
decreasing with similar rates (Garcia-Plazaola et al. 2003).
Since we did not collect any pigment data, we can only pos-
tulate that our second and third green collections occurred
at this time (Fig. 4) where the chlorophyll and carotenoids
are decreasing in similar amounts. The indices that were able

. 8 v
S o wo -
5> - mg gd
2 g > o S 2
O = 02« - E
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1 <0 o
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Green 1
Green 2 “
Green 3
Green 4 ‘
Senescing ‘

4. N from the breakdown of nuclei and then

5. N in structural components (especially cell walls) not
resorbed and lost in abscissed leaves

nificant trend with respect to potential physiological changes (color
figure online)
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to determine the direction of the relationship during both of
these collections only included the indices that had wave-
lengths both near and above the red edge and near the green
portion of the visible spectra. These wavelengths are known
to give information about chlorophyll and carotenoid con-
centrations because of their inherent reflectance and absorp-
tion properties. By including both, it appears like they might
have been able to amplify the effect that the breakdown of
both chlorophyll and the carotenoids have on N concentra-
tion, even though carotenoids do not contain N. In the green
region, chlorophyll reflects light and the carotenoids absorb
it. Decreasing chlorophyll concentrations will not affect the
amount that is reflected due to chlorophyll, but decreasing
carotenoid concentrations will affect the amount of green
light that is being absorbed by the leaf. Chlorophyll is likely
not decreasing enough at this point to allow the indices that
focus only on that pigment to detect differences in N con-
centration, but it appears that likely by detecting the additive
changes in both types of pigments these indices are able to
detect the sign of the slope of correlation with N concentra-
tions. These indices were also some of the best at explaining
variation in N concentrations in the fourth green (14-Oct)
and senescing collections, likely for similar reasons. While
further work should be done with pigment data to investigate
our postulation of the physiological cause, we found that the
wavelengths with one wavelength in the 500s (green) and
one above 750 nm (NIR) were the first to be able to detect a
significant trend with N concentrations.

Patterns in indices modified for differences in high
leaf surface reflectances

Indices with a wavelength in the 400 nm (blue/violet)
range (mSR, mND, and LIC) have been previously found
to have strong correlations with N concentrations in green,
sunlit leaves (e.g., Sims and Gamon 2002), but were found
here to have weak correlations with lower-crown leaves
in all green collection models. These indices only had a
significant trend with N concentrations in the senescing
collection. Sims and Gamon (2002) created the indices
mND and mSR by adding a third reflectance at wave-
length 445 nm to a normalized difference and a simple
slope ratio, respectively, to compensate for high leaf sur-
face reflectance where the entire spectrum is raised. They
note, though, that R445 only remains constant until the
total chlorophyll drops to a low level. However, we found
that these wavelengths increased in the majority of the
measured trees in the autumn indicating that they have
a different impact than just correcting for high leaf sur-
face reflectances. Modifying the indices with the reflec-
tance at 445 nm likely partially masked the changes in the
other regions with gradual chlorophyll breakdown in the
green collections. But, these indices were able to detect
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trends in the senescing collection (with adjusted R? values
between 0.25 and 0.27) likely because the reflectance at
these wavelengths also changed with much lower chloro-
phyll concentrations, reinforcing the relationship between
chlorophyll and N concentrations and widening the chloro-
phyll measurement ability. Modifying indices by including
a reflectance in the 400s weakens the ability of the index
to rely on the phenological change of resorption to identify
trends in N concentrations.

Strong correlations overall and relations
with phenological change

We have shown that across the autumn phenological tran-
sition, some hyperspectral indices in the visible and NIR
wavelengths are able to predict N concentrations in lower-
crown leaves, with the indices Chl, NDVI_H, NDVI_M,
and NDRE having the strongest explanatory power. These
abilities seem to be physiologically based because they are
not necessarily the same as the ones that had the most con-
sistent phenological change. Contrary to expectations, the
NDVI indices (i.e., NDVI_H and NDVI_M) were not the
strongest indicators of phenological change compared to
many of the other indices. NDVI is one of the major metrics
for canopy-level phenological change, but perhaps at least
on the leaf level other metrics could be more informative.
Even though PRI and CCI were strong indicators of autumn
phenological change, they were poor predictors of N con-
centrations overall. Dillen et al. (2012) also found that PRI
was a good indicator of leaf physiological change and found
it to be less correlated with photosynthesis-related traits than
indices that focus on the red edge. PRI has been shown to
be sensitive to changes in the xanthophyll cycle diurnally
(Gamon et al. 1992; Van Gaalen et al. 2007), carotenoid
to chlorophyll concentrations seasonally (Sims and Gamon
2002; Stylinksi et al. 2002; Hilker et al. 2011), and levels
of water stress (Peguero-Pina et al. 2008). The index CCI
has been found to be a strong tracker of photosynthetic phe-
nology in evergreen conifers (Gamon et al. 2016). We also
found it to be a strong, consistent tracker of phenological
change in deciduous leaves even though it had a weaker cor-
relation than many others with N concentrations across and
within collections. Since NDRE and PRI measure changes
in different pigments, deciding which one to utilize would
depend on the application. For example, monitoring the
breakdown of chlorophyll and N resorption, NDRE or Chl
(or an ensemble) would be more applicable, but PRI would
be more suitable to monitoring changes to the carotenoids.
Because the indices performed similarly across all trees,
our results should not be sensitive to tree selection. These
indices are appropriate to use to synchronize other leaf trait
relationships by phenological progression.
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Conclusions

Leaf N is fundamental in numerous physiological and eco-
system processes. Hyperspectral indices have been shown to
be able to predict N concentrations by measuring the reflec-
tance at wavelengths in the visible through SWIR wave-
lengths; however, instruments that allow for the measuring
of SWIR are substantially more expensive than instruments
that are limited to the visible and NIR range. We have shown
that while published indices in the visible and NIR are not
able to reliably detect trends in N in midsummer lower-
crown leaves, autumn phenological changes allow for an
increase in the explanatory power of many indices. Indices
that include wavelengths in the upper-green (550-560 nm)
and NIR were able to detect significant trends with leaf N
earliest (in Sept) and could serve as indicators of the first
stages of this transition. We also found that most of these
indices (GM1, GNDVI, and RVI2) were able to explain
over half of the variation in leaf N in lower-crown green
leaves collected after the crowns had started senescing and
in lower-crown senescing leaves. The indices GM2 and
Car explained the most variation in N in the last green and
senescing collections, respectively. Almost all of the models
differed between the last green and senescing collections,
with the exceptions of Chl and GM2. Thus, while correla-
tions may be higher for some indices (GM1, GNDVI, and
RVI2), their models are more reliant on ensuring the leaves
are in the same phenophase.

The index Chl was found to explain the most variation
in N concentrations across the autumn phenological change
and, along with PRI, NDRE, and CCI, was one of the strong-
est indicators of this progression. NDRE was also strongly
correlated with N overall, but PRI and CCI were less cor-
related and had poor predictive power. We also show that
not only is it necessary to consider phenology, but that it
can allow for the development of trait relationships that are
useful in the near-remote sensing of N concentrations. In a
way, the parallel autumn breakdown of chloroplasts and N
resorption, which is known to happen in most deciduous
trees, potentially provides a way for leaf economic principles
to be applied to lower-crown, shaded leaves and should be
investigated for additional traits.
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