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Abstract

Small angle X-ray scattering (SAXS) measures comprehensive distance information on
a protein's structure, which can constrain and guide computational structure predic-
tion algorithms. Here, we evaluate structure predictions of 11 monomeric and oligo-
meric proteins for which SAXS data were collected and provided to predictors in the
13th round of the Critical Assessment of protein Structure Prediction (CASP13). The
category for SAXS-assisted predictions made gains in certain areas for CASP13 com-
pared to CASP12. Improvements included higher quality data with size exclusion
chromatography-SAXS (SEC-SAXS) and better selection of targets and communica-
tion of results by CASP organizers. In several cases, we can track improvements in
model accuracy with use of SAXS data. For hard multimeric targets where regular
folding algorithms were unsuccessful, SAXS data helped predictors to build models
better resembling the global shape of the target. For most models, however, no signif-
icant improvement in model accuracy at the domain level was registered from use of
SAXS data, when rigorously comparing SAXS-assisted models to the best regular
server predictions. To promote future progress in this category, we identify suc-
cesses, challenges, and opportunities for improved strategies in prediction, assess-
ment, and communication of SAXS data to predictors. An important observation is
that, for many targets, SAXS data were inconsistent with crystal structures,
suggesting that these proteins adopt different conformation(s) in solution. This

CASP13 result, if representative of PDB structures and future CASP targets, may

1298 © 2019 Wiley Periodicals, Inc.
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1 | INTRODUCTION

As assessed in Critical Assessment of protein Structure Prediction
(CASP12) and now in CASP13,! protein structure prediction algo-
rithms have made major leaps toward improving prediction accuracy.
Yet, obstacles remain for novel folds, large proteins, oligomeric com-
plexes, and flexible proteins. To provide additional and realistically
achievable constraints on any soluble protein target, CASP12 and
CASP13 included an assisted target category where sequence was
supplemented with experimental data from cross-linking mass spec-
trometry, nuclear magnetic resonance (NMR), and small angle X-ray
scattering (SAXS). This article focuses on SAXS data. The protein tar-
gets chosen for this category were specifically anticipated to be chal-
lenging to predictors.

A primary rationale for using SAXS data as experimental input for
structure prediction is that collecting SAXS data is high-throughput
(HT) and straightforward.2¢ In SAXS, no labeling or crystallization is
required. Data collection for basic research is provided for free by all
biological SAXS beamlines, with one at every U.S. synchrotron. For
fold prediction, samples are ideally stoichiometrically monodisperse,
but there are no size limitations, from a few kD to megadaltons. At
the SIBYLS beamline and at many other SAXS beamlines, SAXS data
can be collected in HT mode with proteins and buffers loaded in
96-well plates or by SEC in-line with SAXS and multi-angle light scat-
tering (MALS). SEC-SAXS with MALS analysis can assure stoichiomet-
ric monodispersity for improved confidence in extracted structural
information. Importantly, SAXS, as an X-ray scattering technique, pro-
vides information on the distances of all electron pairs within the pro-
tein in solution®® including functional conformational variation.” This
information from SAXS could help constrain and guide computational
structure prediction algorithms. This capability and methods for inte-
gration were therefore tested in CASP12 and now CASP13.

For the SAXS-assisted category in CASP, analyzed SAXS data in
addition to the respective amino acid sequence, were provided to pre-
dictors in a report. The SAXS analysis provided predictors with the
experimentally validated multimerization state, maximum dimension,
radius of gyration, an estimate of flexibility, volume, and radius of
cross section. Furthermore, the primary SAXS curve can be converted
into the histogram of relative proportion P of electron pairs at dis-
tance r, that is, P(r).” The P(r) is sensitive to changes as small as 5 A.
The scattering curve, of the atomic model and an approximation of its
hydration layer, can be calculated and compared to the SAXS curve

(I vs qg) or, after Fourier transform, to the P(r), for feedback against

have substantive implications for the structure training databases used for machine

learning, CASP, and use of prediction models for biology.

complexes, disorder, experimental restraints, flexibility, modeling, SAS, SAXS, solution
scattering, structure prediction, unstructured regions

experiment. There is enough information within the P(r) function to
calculate 3D shapes of ~15 A resolution.® The SAXS curve, P(r) curve,
and shape were provided to predictors.

CASP12 was the first attempt to combine SAXS with CASP.1?
Closer analysis of how predictors used SAXS data revealed an under-
lying assumption within CASP that would be misleading when inte-
grated with SAXS. CASP models are judged based on the crystal
structure and even more strictly on domains within the crystal struc-
ture. Perhaps as a reflection of this criteria, many CASP12 predictors
considered the entire sequence of many protein targets as well-folded
and monomeric. However, many CASP12 targets had intrinsically dis-
ordered regions and/or were multimeric, as we have found with most
proteins that we have studied by SAXS.? Comparing the sequence of
the SAXS sample and what was modeled in the respective crystal
structure, the average CASP12 crystal structure was missing 20% of
the sequence with an extreme of 44%.12 These were generally termi-
nal ends of the protein and were largely predicted from sequence to
be intrinsically disordered. Typically, these regions would not be con-
sidered during the assessment—no harm, no foul. However, in the
context of SAXS-assisted evaluation, modeling disordered regions as
part of the globular fold makes fitting the model to SAXS data mis-
leading. For example, a five amino acid disordered terminus can
extend the maximum dimension by as much as 12.5 A.*® To improve
awareness of disorder, an intrinsic disorder prediction was attached to
SAXS reports in CASP13. Similar discrepancies resulted from CASP12
predictor's lack of awareness of why modeling the proper multimer to
the SAXS data is essential. Over 50% of targets were multimers*? but
many predictors fit the data against a monomeric structure. On the
data side, there were issues when targets were stoichiometrically het-
erogeneous, as data were collected by HT-SAXS. Although some
information could be extracted by varying protein concentration or
protein constructs, this was not ideal. Therefore, CASP13 included
SEC-SAXS, which can separate out stoichiometrically diverse
populations and allow data collection on monodisperse sample. These
strategies were suggested following the CASP12 assessment to
increase accuracy.'?

Below, we describe results and analysis of the SAXS-assisted cate-
gory for CASP13. Data collection included both HT-SAXS and, if there
was enough protein supplied, SEC-SAXS, which increased the reliabil-
ity of the SAXS data. A target's multimerization and predicted intrinsi-
cally disordered regions were communicated to predictors, and based
on model entries, CASP13 predictors generally showed better aware-

ness in treating intrinsically disordered regions and multimerization.
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There were a few examples where inclusion of SAXS improved the
backbone accuracy or domain positioning. However, to rigorously test
the potential of SAXS for prediction, many issues still require improve-
ment, and we highlight these issues with exemplary targets to aid
future predictions. An unanticipated finding of our analysis is that
many crystal structure conformations did not adequately match the
respective SAXS data, occurring in 7 out of 11 SAXS-assisted CASP
proteins. We discuss those cases when the crystal structure or the
crystal structure plus an added unstructured tail, do not match the
SAXS data. The discrepancies are not on the scale of small amino acid
scale vibrational differences, but rather of domain interactions. If reg-
ular or unassisted CASP prediction algorithms are based on training
databases with conformations enforced by the crystal lattice or crys-
tallization conditions, they could be biased toward predicting crystal
conformations instead of solution conformations. That might reduce
biological relevance of prediction results. Our detailed analysis and
discussion form a basis to begin considering these and other

implications.

2 | METHODS

2.1 | SAXS sample preparation and data collection

Proteins were generously provided for SAXS by the crystallographers
who had determined the crystal structure. Most of the SAXS data
were collected at the SIBYLS beamline (12.3.1) at the Advanced Light
Source, part of the Lawrence Berkeley National Laboratory.* The
sample-to-detector distance is 1.5 m, resulting in scattering vectors
ranging from 0.01 to 0.5 A~. The wavelength of the beam was 1 A,
and the flux was 10'® photons per second. Data were collected by
HT-SAXS and/or SEC-SAXS, depending on sample quantity.

Samples generally arrived frozen, which can promote aggregation.
For HT-SAXS, just prior to data collection, samples were prepared in
96-well plates, where 20 pl of the consecutive protein concentrations
were bracketed with two 20 pl protein-free buffer samples. The pro-
tein concentrations used for data collection consisted of the original
protein concentration, a 1:2 dilution, and a 1:4 dilution. By collecting
data on three protein concentrations, we were able to correct for
concentration-dependent behavior. Samples were transferred from a
96-well plate at 10°C to the sample cuvette, where they are exposed
to an X-ray beam for a total of 10 seconds.® Scattering images are col-
lected by a PILATUS 2M detector every 0.3 seconds, for a total of
33 sample images. For each sample collected, two protein-free buffer
samples were also collected to reduce error in subtraction. Each col-
lected image was circularly integrated and normalized for beam inten-
sity to generate a one-dimensional scattering profile by beamline
specific software. The one-dimensional scattering profile of each pro-
tein sample was buffer-subtracted by each of the two corresponding
buffers, producing two sets of buffer subtracted sample profiles. Pro-
files were examined for radiation damage. Scattering profiles over the
10-second exposure were sequentially averaged together until radia-

tion damage affects were seen to begin changing the scattering curve.

Averaging was performed with web-based software (sibyls.als.lbl.
gov/ran).

For SEC-SAXS, HPLC SEC was in line with SAXS sample cell and
MALS, for simultaneous data collection, to promote the stoichiometri-
cally monodisperse samples with large non-specific aggregation
removed. Two-second X-ray exposures were collected continuously
during an ~25-minutes elution. The SAXS frames recorded prior to
the protein elution peak were used to subtract all other frames. The
subtracted frames were investigated by Rs and I(0) derived by the
Guinier approximation 1(g) = (0) exp(-q®*Rg2/3) with the limits
g*Rg < 1.5. 1(0) and R values were compared for each collected SAXS
curve across the entire elution peak. The elution peak was mapped by
plotting the scattering intensity at 1(0) relative to the recorded frame.
Graduate decreasing of Rg values across an elution peak was used to

indicate transient sample behavior.

2.2 | SAXS data analysis and predictor data packages

From data collection to analysis, all data were passed to CASP in
under 3 weeks. Predictors were provided SAXS curves in reciprocal
and real space, a SAXS-based shape prediction, and SAXS scalar
values (Table 1). Parameters such as radius of gyration (Rg), the Porod
exponent, the radius of the cross-section (Rxc), and the volume of cor-
relation (Vc) were calculated using scatter.2'*'> The P(r), Rg2, and
Dpax Were calculated using PRIMUS and GNOM.%%¢ Molecular enve-
lope calculations were performed using GASBOR.Y” All data are avail-
able at the CASP13 web address (predictioncenter.org) for download
in the “Targets” tab under “Assisted structure prediction.” Regions
missing in crystal structures were modeled in using Modeller
implemented in Chimera.*® Atomic structures were compared to
SAXS data using FOXS.1”?° BILBOMD and MultiFOXS were used to
create flexible models, with domains defined as rigid bodies.?%?!
Models based on crystal structures were modified by nonlinear NOLB

normal mode analysis (NMA).1622

2.3 | Correlation between crystal structure and
prediction model molecular envelopes

Density correlation score was calculated using programs gmconvert
and gmfit.23'24 Number of Gaussian functions was set to 50, number
of initial orientations for the global and local searches was set to
50, solutions were sorted by the correlation coefficient, default values
were kept for the rest of the parameters.

3 | RESULTS

3.1 | CASP SAXS data collection

Hard targets were specifically chosen for experimental assistance with
an expectation that added experimental information may improve pre-
dictor success. These targets were identified using sequence analysis
(PSIBLAST, HHsearch). Communication between sample providers

and the beamline was minimized to avoid compromising the CASP
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TABLE 1 SAXS data provided to CASP participants
Mass Mass theor. Dmax Real Sample

SAXS target Rg-Guinier (A) PD SAXS (kD) (kD) (A) Rxc (A) Volume (A% space Rg(A) quality Challenge

50949 16.0 40 13 16.7 53 13 22 158 16.5 Silver None

s0953 34.8 35 32 25.7,7.3 130 13 63 217 36.7 Gold Elongated 3:1

s0957 21.8 4.0 32 18.6,17.7 71 18.4 54 545 21.58 Silver Heteromer

s0968 258 31 36 13.9,134 83 19.2 108 771 26.8 Bronze  Multimer

s0975 27.8 40 39 385 89-105 17.6 82 000 26.3 Silver Fe-S Cluster

s0980 27.2 37 43 13.5,6.2 102 18.1 83 586 28.0 Silver 2:2

s0981 46.6 37 190 76 176 327 46 000 47.6 Silver  Trimer

s0985 41 40 190 98.4 136 32.6 35 000 40.7 Gold Dimer

s0987a 26.8 4.0 43 45.8 100 18 79 363 27.3 Gold Depends on solution

S0987b 244 4 41 45.8 86.5 20 73 401 24.3 Gold Depends on solution

50992 18.3 40 12 13.9 65 11.3 21 000 17.5 Silver Disorder

s0999 54.7 34 320 170 165-170 41 880 000 54.98 - Flexible, Dimer

Note: Rg, Porod exponent (PD), mass calculated from SAXS, theoretical mass, maximum dimension (Dmax), radius of cross section (Rxc), and volume were
calculated using SCATTER. Rg in real space and Dmax were calculated using PRIMUS and GNOM. Quality of data (gold, silver, bronze) was provided for
SAXS data collected at the SIBYLS beamline (12.3.1) at the ALS. S0999 was collected at the Diamond Light Source.

experiment. Crystallographers generously provided a total of 10 pro-
tein samples. Marianne llbert provided protein for S0949; Petr Lei-
man, S0953/6F45.PDB?>; Karoline Michalska, S0957/6CP8.PDB and
S0968/6CP9.PDB; Owen Davies, S0980/6GNX.PDB,?® Chi-lin Tsai,
S0975; Mark van Raaij, S0981; Jose Henrique Pereira, SO985; Lindsey
Spiegelman, S0987, and Andrew Lovering, S0992. An eleventh SAXS
data set (50999) was made available by Marcus Hartmann. All
11 CASP-SAXS targets were based on crystal structures. Seven out of
the 11 samples represented multimeric assemblies and were evalu-
ated as such in their entirety. Additionally, the results were evaluated
separately for individual peptides or chains. Because four out of the
11 targets were hetero-dimeric, the number of individual peptide tar-
gets was 15. Target S0999 was sufficiently large that agreement was
judged as five separate domains. All in all, we assessed 19 unique
single-sequence targets.

The SAXS-assisted CASP category aimed to test the notion that
SAXS may prove useful for experimentally validating structure predic-
tion in general. SAXS would be suitable for this purpose as sample
requirements are minimal and can be collected efficiently in HT. This
efficiency of data collection was supported in CASP13 since SAXS
data were provided for all samples shipped--100% success rate for
data collection and analysis. We collected HT-SAXS and/or SEC-SAXS
data at the SIBYLS beamline 12.3.1 in the Advanced Light Source Syn-
chrotron, depending on sample quantity.>* HT-SAXS provides the
highest signal-to-noise data, while SEC-SAXS was used to purify stoi-
chiometrically monodisperse samples. When sample quantity was low,
only HT-SAXS data were collected. When possible, HT-SAXS and
SEC-SAXS data were compared. Where SAXS curves overlaid, the
higher signal-to-noise HT SAXS data were used and provided. For
SEC-SAXS data were

stoichiometrically polydisperse samples,

provided.

SAXS analysis was coupled with sequence information in reports
provided to predictors. Reports included information on whether SEC-
SAXS applied, the quality of SAXS data collection, particular challenges
relevant to the target, the processed SAXS curves, global parameters
extracted from SAXS data, the pair distribution or P(r), 3D shapes and
disorder prediction results calculated from DISOPRED. Several factors
were considered in determining which value to give an experiment for
the three-tier quality scale provided to predictors. The high quality “gold”
rating was assigned to experiments where both HT- and SEC-SAXS pro-
vided the same scattering curve with low noise. Silver was assigned to
curves where SEC-SAXS data were noisy or small discrepancies between
anticipated and measured mass were observed. Bronze values were
given when only HT-SAXS could be applied or larger inconsistencies
were noted. Of the 11 targets, four were rated gold (highest quality), six
were silver, and only one was bronze. Target S0968 was ranked bronze,
as the molecular mass in solution (36 kD) suggested an ambiguous 1:2
multimeric complex of two similarly sized subunits or protomers (13.9
and 13.4 kDa). A new challenge section highlighted potential stoichio-
metric heterogeneity, flexibility, and multimerization. When flexibility
was indicated by the SAXS signal, a disorder prediction analysis?” was
included. In the case of S0975, the protein has a 4Fe-4S group, which
was noted in this section.

SAXS curves (reciprocal space | vs g and real space P(r)) and shapes
for the 11 targets show the diversity of targets in CASP13 (Figure 1). In
the case of S0987, the SEC-SAXS and HT-SAXS buffers were different
yielding significantly different curves describing conformational differ-
ences of the monomeric protein. Both curves and analysis were provided
to predictors. The global parameters (scalars; Table 1) reveal information
into structure and assembly. The radius of gyration (Rg) characterization
of the first moment of inertia for the samples ranged from 16 to 55 A.
The R was estimated two ways. First through use of the Guinier region

in reciprocal space, and second (real space Rg) through analysis of the
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FIGURE 1 SAXS data for CASP13 targets. (Left upper panel) Reciprocal space experimental SAXS curves (colored) are overlaid with the
predicted scattering (black) from an ensemble of atomic models, found to best match the experimental data. SAXS curves can be scaled without
losing information content, so the SAXS curves have been offset for visual clarity. The atomic model(s) are full-length models, based on the crystal
structure or when appropriate, multimeric models based on the crystallographic lattice. (Right upper panel) Ab initio shape reconstructions based

on the SAXS data and overlaid with a single representative atomic model. (Bottom panel) Real space SAXS curves for different targets

(abbreviated CASP target IDs are provided on the graphs)

P(r) function. All samples had less than 5% difference in these values

from both methods, passing this data quality control.

Only 36% (4 out of 11) of the proteins examined were monomeric:
S0949, S0975, S0987, and S0992. The others formed multimeric
assemblies. Mass was extracted via two methods. The SAXS curve

itself can provide a concentration-independent estimate of mass. The

mass of the folded region can be estimated from SAXS (MassSAXS) by

defining the Porod-Debye range and calculating the volume of corre-
lation (Vc).2* SEC-SAXS was coupled to MALS, which provides an esti-

mate of mass across an elution peak.
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TABLE 2 Crystal structures, atomic models, and SAXS data

%

Exp AA-SAXS Order Predicted model Fit of crystal
SAXS stoic  sample AA-pdb (%) sequence vs SAXS PD Crystal, x> Full-length %2  Fit to SAXS, x> within shape
S0949 1 151 139 92 +32/-10 4 1.64 1.41 Yes
s0953 3:1 465 457 98 OK 3.6 12 21 Partly
s0957 1:1 327 318 97 OK 4 1.3 Yes
s0968 1:2 or 2:2 466 484 96 OK 30 15 Partly
s0975 1 343 281 82 OK 4 11 3.3 Yes
s0980 2:2 338 290 86 —6aa 3.7 15 24 Partly
s0981 3 674 610 90 —102 aa 3.7 284 3.24 Partly
s0985 2 863 842 98 0-42 vary 4 19/1.8° 16 Partly
s0987 confl 1 496 381 94 —2-24 vary 4 51 52 0.94 Yes
s0987 conf2 4 11 13 1.04
S0992 1 126 107 85 0-16 vary 4 114 14 2.8 Yes
s0999 2 3178 3083 97 OK 34 7 3.9 Partly

Note: Stoichiometry (Stoic) and Porod Debye (PD) were calculated from the SAXS data. Flexibility (% Order) was calculated from what the number of
amino acids (AA) modeled in the crystal structure (pdb) and what the number of AA present in the SAXS sample. Agreement to the SAXS data (x?) was
determined for the crystal structure, from a single model with missing AA added back (CHIMERA), and with the missing AA and potential flexible domains
allowed to move using a version of CHARMM implemented in BILBOMD. The fit of the crystal within the shape was determined by eye.

2Addition of 5% tetramer for S0985 improved 2 to 1.8.

The Porod-Debye value (PD, P, or Px) provides objective insights
into flexibility.*>22 PD is determined from the rate of decay as a func-
tion of q in the mid q range (0.05 < q < 0.2 A™%) and depends on the
volume of the protein. A g~2 dependence indicates largely unfolded
structures while a q~* indicates a globular one. The PD is represented
as the negative of the exponent. Seven targets had a PD of 4, indicat-
ing a high proportion of folded regions as one would expect for CASP
targets that were selected for their crystallizability. S0953, S0980,
and S0981 had midrange PDs of 3.6 to 3.7. For S0968 and S0999, the
PD scores of 3.1 and 3.4, respectively, indicated significant flexibility.
In retrospect, comparisons of the PD scores to the percentage of
missing regions in the crystal structure (Table 2), were generally corre-
lated but there were exceptions. S0949, S0975, S0987, and S0992
had PD scores of 4 but had 8 to 18% of their sequence missing in the
respective crystal structures. On the other side, S0953 and S0968 had
minimal 2 to 4% missing, but had flexible PD scores of 3.6 and
3, respectively, suggesting their flexibility comes from domain
motions.

The relative ratio of the radius of cross section (Rxc), the second
moment of inertia of the protein to the Rg provides information on
the overall shape. When Rxc values are comparable to Rg, the protein
is globular. When Rxc is significantly smaller, the protein is elongated.
S0953 had the smallest Rxc to R (13 A to 34.8 A, respectively). Most
of the proteins, including S0968, S0975, S0980, S0981, S0985,
50987, S0992, S0999, showed a smaller Rxc to Rg, indicating a non-
spherical overall organization.

SANS data were also provided to CASP predictors for target
S0953 by the Institut Laue-Langevin facility. As the sample was

completely hydrogenated, there was no advantage to using SANS

data. SAXS has higher signal-to-noise than SANS, and the true advan-
tage of SANS arises when components are differentially hydroge-
nated/deuterated. If SANS is considered for future CASP,
identification of a target complex and a willing collaborator who pre-
pare components under appropriate conditions should be more
actively pursued.

After all predictions, assisted and regular, were submitted and
finalized the atomic resolution structures were made available and
reconciled with SAXS results. For proteins with regions missing in
the crystal structure, we made models that included missing regions
using Modeller.*® An improvement over CASP12, the targets were
missing fewer amino acids: S0949 (8%), S0968 (4%), S0975 (18%),
S0980 (14%), S0981 (10%), S0987 (6%), and S0992 (15%). When
necessary, we created models with domains set as rigid bodies but
with linkers allowed to move and identified ensembles of those
models that matched the experimental data.?%?! Based on the y2
metric <2, three targets S0949, S0957, and S0968 showed reason-
able fit when modeled with missing regions. As described in
detail below, the solution state of 9 out of 11 targets (including
S0968-discussed below) differed in varying degrees from the crys-
tallographically determined structures. Flexibility could take the
form of disordered tails or that the architecture of the folded
regions is adopting multiple conformations in solution. We found
that the discrepancy for two of the targets could be explained by
addition of unstructured tails, but we believe that the folded
regions for seven of the targets are adopting different conforma-
tions in solution. The fits of modified crystallographic structures
are shown in Figure 1. It is notable that the P(r) for S0968 SAXS

data did not match the crystal structure, despite the y? metric <2.
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3.2 | Assessment of predictions

In CASP12, a criterion used to evaluate prediction improvement was
the GDT_TS score of assisted predictions vs the regular predictions
from the same group. Here, we have taken a more stringent approach
for domains comparing the best assisted prediction against the best
server prediction (Figure 2A,B).

We want to note here that predictors had access to server models
during both regular and assisted prediction. However, during the
assisted prediction, the best server models for 6 of the 11 targets
were implicitly identified by the CASP committee through releasing
these models as starting points in the refinement category. Personal
communication with the predictors revealed that some of them used
the refinement models. This complicates the analysis of how much
SAXS contributed to the assisted models. Removing this uncertainty
in future CASPs can help improve the clarity of the analysis of results.
We want to emphasize here that server models were only available
for individual domains, and no server models (including a selected
refinement model) were available for multimeric targets. Thus, we
compared the SAXS-assisted to regular oligomeric assembly predic-
tions from the same group and to the best regular prediction.

During our assessment, we considered how SAXS can be used to
improve prediction models. SAXS can be added to a model accuracy
assessment score to select starting models, to alter starting models
for improved fit to the solution data, and to rank final models for sub-
mission. In the simplest scenario, the predictor can rank server models
and submit the top five models. In our analysis, we identified that
20% of the domains submitted were unmodified server models. In
8 out of 13 cases where server models were available, the top
GDT_TS-scoring SAXS-assisted model was a re-submitted server
model. This is not unexpected as many predictors are testing their
model accuracy scoring algorithms or their oligomerization or assem-
bly algorithms. These server models could have been the “pre-
selected” refinement model or a SAXS-selected server model. For the
latter, we consider them a viable entry as SAXS was used for the
selection.

Based on this “best server” criterion, SAXS assisted predictors
generally had equivalent best predictions as the best regular servers
(Figure 2A,B). The best regular server models are a high bar as several
server models on these targets also scored best in CASP13 overall.
Only one assisted prediction from the SBROD method run by the
Grudinin group, the first subunit of the S0968 heteromer (S0968S1),
showed modest four point improvement in GDT_TS score. This model
was 10 GDT_TS points better than the best regular model from the
same group. In a comparison of the best SAXS-assisted models on all
targets, five were closely similar to the best regular server models,
suggesting that predictors used these server models without signifi-
cantly altering them (Figure 2B). Three of these (T095752, T0992, and
T0999S3) were released as refinement models and could simply be
refinement models resubmitted into the SAXS category. The other
two domain targets were not released as refinement models, and the
high degree of GDT_TS similarity could have been from the SAXS

data-based selection from among the server models.
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FIGURE 2 Comparison of assisted predictions compared to
regular (unassisted) prediction in CASP13, based on chain or on
domain (50999 only). A, The GDT_TS scores of the best
SAXS-assisted predictions and the best server predictions (regular)
against the target crystal structure show that only for S0968 did
SAXS-assisted models have higher GDT_TS scores than models from
the best servers from the regular prediction. B, GDT_TS-based
comparison of the SAXS-assisted with the best server prediction
suggests the use of server models in the SAXS-assisted category,
particularly when the GDT_TS score is 100. C, The GDT_TS scores of
the best SAXS-assisted predictions, the best regular, unassisted from
the same group, and the best regular (all groups) against the crystal
structure, shows that while SAXS-assisted models sometimes did
better than the regular models from the same group, none did better
than the best regular from all groups

For difficult targets, a global density correlation method provides
alternative perspective (Figure 3). This score captures global shape

similarity of prediction model to the crystal structure, while placement
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of the local elements of structure, such as secondary and even tertiary
structure, have little effect.>®>?* The mean density correlation
improved for 10 targets, was worse in four and had no change in the
remaining targets (Figure 3). Using this criterion, several predictions
had a better score than any of the regular predictions. The improve-
ment in the global density correlation reflects the ability to predict the
protein envelope from SAXS data, the most recognized attribute of
SAXS, and provides indirect evidence that SAXS data is being applied
by the predictors. Getting the shape correct does not help if the
topology is grossly incorrect, as discussed below for S0953. If the
topology is correct, we suggest that it could help to shift secondary
structure elements or promote conversion from compact helices to
longer helices. Indeed, we identified individual examples (S0957,
S0968, S0985, S0999) where the predictors had a roughly correct
topology in their models and their SAXS-assisted model was better
than the same group's regular or all regular. We discuss them in the
individual sections.

None of the SAXS assisted predictions at the monomeric or
domain level were as good as the best regular predictions from the
entire CASP13 predictor pool using the GDT_TS metric. The best

assisted GDT_TS scores were plotted against the best regular scores
(from the same group or from all groups) in Figure 2C.

To highlight successes and challenges in the SAXS-assisted predic-
tion, we perform case studies below for each of the targets. The
assessment is separated into five categories based on the assembly of
the protein and difficulty as indicated by best server GDT_TS scores:
small monomers, large monomers, 1:1 heteromer, homo-oligomer, and
multimers of heteromers (Figure 4). Each type will require a unique
adjustment to the prediction algorithm. The results below also detail
modest improvements in prediction in the SAXS-assisted multimeric
category of CASP13.

3.3 | Small monomeric proteins (S0949 and S0992)

Only two targets, S0949 and S0992, were small monomers. SAXS
data were consistent with crystallographic results for both targets,
providing accurate guidance.

T0992 server predictions had GDT_TS scores in the 80s. The
SAXS data reflected that of a small protein with a flexible tail, consis-

tent with the 18 residues presumably too disordered to be modeled in
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FIGURE 3 Density correlation score. A, Atomic models of the target (left) and a prediction (right) are converted into low-resolution density
maps and fitted with Gaussian mixture models (GMM)-shown in blue and red respectively. Centers (mean values) of the Gaussians are shown as
spheres. B, Two GMMs are superimposed so that overlap of the two distributions is maximized. Density correlation score is the correlation of the
corresponding superposition of the simulated densities from A. C, Box plots for the density correlation scores for all regular (by any group) and
SAXS-assisted targets. D, Target HO953 atomic models of the crystal structure and of an example of regular and the corresponding SAXS-assisted
model from the Grudinin group. The SAXS-assisted model has a similar elongated shape, but secondary structure elements are clearly disrupted.
This example also highlights how the subunits are entwined, and the predicted models appear to have been folded independently and placed
together.(E and F) Corresponding to D, overlay of HO953 experimental data with SAXS curves predicted for crystal structure and for SAXS-

assisted models in reciprocal and real space
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FIGURE 4 Venn diagram highlighting oligomerization state of
CASP13 targets in the SAXS-assisted category

the crystal structure. Small proteins are more sensitive to positioning
of flexible termini in target crystal structure. Therefore, predictions for
S0992 were arguably already highly accurate before SAXS informa-
tion was added, and no improvement could be tracked with GDT_TS.

For S0949, the best SAXS-assisted prediction had a GDT_TS score
of 64, nearly equivalent to the best regular server score of 65. In com-
paring SAXS-assisted vs the regular predictions from the same group,
all predictors did equivalent (less than two GDT_TS improvement in
score) or worse than their best regular prediction. We suspect that
the use of a sequence not consistent with what was in the SAXS sam-
ple is the reason. The sequence provided in the SAXS report con-
flicted with that listed at the prediction center. The discrepancy
originated from the truncation the target provider made to the con-
struct between the time of agreeing to send sample for SAXS analysis
and data collection. All assisted predictors used either a 20% longer or
7% shorter sequence than the actual sequence in the SAXS sample,
which likely had a significant negative impact given the small size
(Table 2). The S0949 SAXS sample had only 151 amino acids in total,
compared to 183 listed at the prediction center.

Despite the sequence disparity, first models for S0949 (ie, top
models as ranked by predictors) improved by average four GDT_TS
points over the same group's top-ranked regular models. Thus, SAXS
data may have helped predictors in ranking models.

To effectively use SAXS data to improve predictions of small pro-
teins where regular predictions are reasonably accurate (eg,
GDT_TS > 50), several factors should be carefully considered includ-
ing the sequence correspondence between the measured and
predicted construct (Table 2 and Figure 5). The top scoring prediction
from MULTICOM was the only prediction using a sequence that was
11 amino acids shorter than the SAXS sample and therefore suffered
the least from having an incorrect sequence. Yet, this prediction did
not match the SAXS data to within error of the experiment and per-
haps higher weighting of the fit to SAXS would have led to a better
model.

The largest deviation from the target for all top scoring predictors
was a 40 amino acid stretch where predictors had a helix in place of a
two-stranded beta sheet structure. The volumes occupied by both
helix and sheet topologies are similar. Using the FOXS SAXS calculator
in default mode, both topologies fit the SAXS data nearly equivalently
and therefore provide no discrimination. To achieve discrimination,
assuming sequences are correct, a consistent treatment of the hydra-
tion layer, turning off the default option, is required. FOXS and most
other calculators will adjust the hydration layer to fit the data.?° How-
ever, at this level of resolution, allowing hydration layer parameters to
drift compromises discrimination. Not allowing the FOXS hydration
parameters to vary would have been sufficient to provide guidance to

the crystal structure (Figure 5).

3.4 | Large monomeric proteins (50975 and S0987)

The two large monomeric proteins (S0975 and S0987: 343 and
408 amino acids, respectively) had disordered sequence sections,
based on residues not modeled in the crystal structure but present in
the protein used in the crystallization; complicating predictors' task.
The SAXS data for both targets were of high quality as both HT- and
SEC-SAXS were applied. In S0975, 18% of the protein was missing in
the crystallographic structure: 35 residues at the N-terminus, 13 in
the middle and 14 at the C-terminus. For SO987: 12 residues at the
N-terminus, 10 in the middle, and 3 at the C-terminus were missing.
Sequence-based prediction indicated the missing termini were disor-
dered. Predictors generally used folded and rigid models to represent
the missing regions falling into a common trap where fold prediction
algorithms will create folds even when a protein is intrinsically disor-
dered. However, upon deeper investigation, this was not the only type
of flexibility required to match the data. For peptides longer than
200 amino acids that are not allosterically and symmetrically stabi-
lized, flexibility may be a factor for matching crystallographic targets.

For S0975, SAXS-assisted models matched the SAXS data better
than the reference crystal structure. The crystallographically deter-
mined structure of S0975 is elongated (Figure 6) and did not fit the
SAXS data within the statistical error (y? > 2). Assisted models were
more elongated conformations with mostly correct secondary struc-
ture elements. A model generated from a nonlinear NOLB NMA of
the crystal structure and consistent with the SAXS data (X2 = 1) had
this flatter shape. Comparing the NMA model to the crystal yielded a
GDT_TS score of 73 relative to the crystal structure. If predictors are
generating conformations based on the SAXS data, then ~73 is poten-
tially the limit to the GDT_TS score they can achieve when scored
against the crystal structure for this case. Crystal contacts or other
factors likely compressed the structure.

For S0987 and looking at all assisted predictors as a group, the
mean GDT_TS improved with SAXS data for domain 1 of S0987D1
but not for the complete structure. Group 3Dbio, led by Dina
Schneidman, scored best for domain one S0987D1 (GDT_TS = 50),
compared to all the other groups participating in the assisted cate-
gory. This model was slightly better than the best server model
(GDT_TS = 48), and 3Dbio models were significantly different from all
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used a sequence that was 33 amino acids longer (gray model) than the sequence of the SAXS sample for S0949. Most predictions placed a helix
(magenta and gray) in place of a sheet structure (cyan) on an otherwise correctly predicted model. These discrepancies are marginally discernable
using SAXS calculators that adjust the hydration layer (bottom curves) but the correct model is a better fit when hydration layer is fixed (top
curves). B, Predictors did not include flexibility in fitting SAXS data. SO987 crystal structure is compact (magenta model). This crystal structure
does not fit the either SAXS data set collected at two different pHs (top and bottom curves). Allowing the model to flex at positions where
disorder is predicted (bottom DISOPRED result) and create an ensemble of models resembling the cyan model fits both data sets well varying in
the relative proportion of compact configurations. The best single conformation generated by BILBOMD (gray) cannot fit either curve. Fitting the
SAXS data with a rigid model can only be done by severely compromising the prediction of the domains
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FIGURE 6 Conformations consistent with the SAXS data differ from those found in the target crystal structures. (Top) A flattened
conformation (cyan) of S0975 fits the SAXS better than the crystal structure (magenta) as shown by a plot of the ratio between experiment and
the two models, which is more sensitive than the simple overlay of curves in reciprocal space. An identical fit produces a ratio of 1.0 for all values
of g. The models are GDT_TS = 72 apart. (Bottom) An asymmetric conformation (cyan) of dimeric SO985 fits the experimental SAXS data better
than the symmetric form found in the crystal (magenta). The models are GDT_TS = 53 apart

server models. 3Dbio did not submit a model for the regular category.
Looking at domain two (5S0987D2) and the target as a whole, assisted
predictions were same or worse than the respective group's regular. A
negative observation for both domains was that some predictors with
GDT_TS scores over 50 for their regular had SAXS-assisted scores
that dropped by as much as 30 points. Comparing the prediction
models for the entire monomer (two domains), these SAXS-assisted
models were expanded while maintaining globularity, causing the

internal fold to distort.

This expansion, not observed in the crystal lattice, could be explained
by the solution data. SAXS experiments showed interdomain flexibility
(Figure 5). S0987 was collected in two buffer conditions varying pH from
6 to 8. The SAXS profiles were markedly different changing the maxi-
mum dimension from 100 to 87 A retaining the same molecular weight.
This data indicates flexibly linked domains that shift relative to each
other in differing conditions. Moreover, disorder predictions show a dis-
ordered region mid-way through the structure. The crystal structure

indeed shows two large domains separated by a linker. In the crystal, the
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domains are in direct contact and the proteins maximum dimension is
~60 A. Reconciling the crystal structure with the SAXS data suggests an
ensemble of structures rather than a single structure should be used to
measure prediction accuracy (Figure 5). To fit the SAXS data assuming
flexible sections are rigid rather than flexible would require adjustments
in protein parts that are deleterious relative to the regular predictions.
No prediction group used an ensemble to fit SAXS data. Attempting to
fit a single model to the SAXS data might have caused the observed dis-
tortion as the model tries to fit both longer and shorter distances.

For long peptides (>150 amino acids) that are not allosterically sta-
bilized through symmetric contacts, flexibility may be a consistent fea-
ture. Above 150 residues, the proteins often have multiple domains.
Therefore, the best predictors can do with a static structure and fit
SAXS data is to produce the average conformation. However, when
the goal is to match a crystal structure, the most compact member of

an ensemble may be the better choice.

3.5 | One-to-one heteromeric complex S0957

For this only 1:1 heteromeric complex with three domains, the top

scoring SAXS-assisted models were worse or equivalent in GDT_TS to
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the top scoring server models. Discussion with some predictors rev-
ealed use of the refinement models released for these domains. Sergei
Grudinin, one of our coauthors, used the same starting server models
for target TO957S2 in the regular and the SAXS-assisted category and
inclusion of SAXS data enabled him to identify a different server
model, (Figure 7A). This is an example of where SAXS-assisted assess-
ment of model accuracy was used to identify a better server model.
For all predictors, target S0957 showed an overall improvement in
density correlation (Figure 3). The elongated shape characteristic of
the complex was captured by the SAXS-assisted predictors whereas
regular were universally more globular. S0957 was also one of two
targets where the crystal structure matched the SAXS data without
additional modifications.

3.6 | Three homomeric complexes (50999, S0981,
and S0985)

The CASP13 pure homomeric proteins in the assisted category were

all  composed of large chains (target/monomer weight:

50999/170 kDa, S0981/76 kDa, and S0985/98 kDa). The large size

made prediction and assessment challenging.
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Examples where SAXS-assisted models were better than best regular model from all groups or from the same group. A and B,

SAXS-assisted models for targets S0957 s2 and S0968 s1, respectively, had higher GDT_TS scores than regular models from the same group.

Ribbon diagrams of domain models (colored by Ca-Ca deviation from the crystal) are overlaid onto the respective crystal structure (black). C, The
Pierce-group SAXS assisted assembly model for target S0999 was visually better than the best regular model from the same group. Surface
models are colored by rainbow from the N to C terminus. One subunit of homodimer is partially transparent so that chains can be distinguished.
Arrows highlight the domain 1 dimer interface that is predicted in the SAXS-assisted model. D, The 3Dbio SAXS-assisted homodimer model for
target S0985 had a better GDT_TS score for the entire ensemble than the best regular model from any group and better overlaid on the crystal
structure. Arrows on regular model highlight rotation needed for proper overlay. Cartoon depiction with cylindrical helices of models when the
left subunit (red) is overlaid onto crystal structure. The right subunit is colored by rainbow as in C and is the focus of the zoom views. E, A model
for how inclusion of SAXS data would have opposing effects on the fold energy term, depending on the starting model topology. If the starting
model has the wrong topology, SAXS data would distort the wrong topology into the right shape. If the starting model has the right topology,
SAXS data would lead to an improved fold with no deterioration of the folding elements
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As with other large multidomain proteins, the TO999 crystal struc-
ture did not fit the SAXS data well, with a X2 of 7. We were only able
to improve the fit to XZ of 4 by creating conformations derived from
the crystal structure and defining flexible linker regions based on
global B-factors and the Translation-Libration-Screw-rotation (TLS)
from the crystallographic refinement. More advanced molecular
dynamics analysis is required to obtain a better model for the T0999
homodimer. Based on the SAXS envelope prediction, these move-
ments although significant are small and would likely not have nega-
tively impacted the predictions, at their current precision level.

Target T0999 was a 340 kD homodimer with five domains in each
subunit. At the domain level, the top scoring server scores were
already exceptionally high. Domains 1-5 had GDT_TS scores of
97, 66, 75, 93, and 80, respectively. No SAXS-assisted model scored
better than the server models. The high accuracy of the prediction
models enabled a test of whether SAXS could aid in the assembly of
relatively well-predicted domains. However, quantitative comparison
of the scores gave a conflicting message. For the highest scoring
models from the Pierce group, the Jaccard coefficient went from 0.15
for the regular model to 0.62 for the SAXS-assisted model and the QS
globular from 0.20 to 0.70. These were both interface scores. Yet, the
IDDT oligomer barely changed from 0.70 to 0.69, respectively and the
GDT_TS score went from an inconclusive 16 to 23, respectively.
Nonetheless, visual examination of the models revealed a significant
improvement for one set of models (Figure 7C). In the regular cate-
gory, the Pierce group correctly predicted the domain 4 interface but
mispredicted that domain 1 was not interacting. The shape of the
Pierce regular prediction was mistakenly tall. However, in the SAXS-
assisted Pierce model, domains 1 and 4 were correctly placed at the
dimer interface. During the SAXS-assisted prediction window, the
team identified a homodimer template for domain 1 (Brian Pierce,
pers. comm). Domain 2 appears to be flipped although otherwise posi-
tioned correctly. Domains 3 and 5 were incorrectly shifted and were
better in the Pierce regular. Although one can argue that the homo-
dimer template helped at the later timepoint of the SAXS prediction
window, the Pierce group included their regular models with their
new models, used an interdomain hinge program, and ranked the
entire set against multiple information from the SAXS data (Rg, XZ, and
SAXS envelope). Pertinent to the potential of SAXS to act in model
accuracy assessment, their top ranked model was indeed the closest
in quaternary orientation to the crystal structure.

SAXS data for S0981 were of high quality. With 10% of the struc-
ture added back in a compact conformation to the crystal structure,
the fit of the data is excellent. The residues missing in the crystal
structure are likely causing the PD of 3.7.

A challenge for the predictors is that the subunits of the S0981 tri-
mer are interwoven with one another. Thus, taking a hierarchical
approach of predicting the subunit structure as independently folded
and assembling the trimer thereafter is problematic. Many prediction
algorithms aim to first predict the fold of each domain within a poly-
peptide chain, followed by assembly of domains together completing
each unique polypeptide chain, followed by assembling the polypep-

tide chains together to form a multimer and finally assembling the

multimers into heteromers. This approach fails when folding of multi-
mers relies on interweaving of the components. The configurations of
the domains within the subunit depend on the trimeric structure.
GDT_TS scores of the subunit and the full trimeric structure were all
below 20 and therefore an atomistic comparison of prediction to
model is not informative. Based on a density correlation approach,
SAXS-assisted predictions were better than regular predictions
(Figure 3). The range of scores were narrower, indicating the SAXS
data provided guidance to predictors, and the mean density correla-
tion showed better matching of the shape. Given the excellent match
of crystal to SAXS results, reviewing the strategies for using SAXS in
predicting this structure should be informative.

In the case of the homomeric assembly of S0985, the 3Dbio group
led by Dina Schneidman had a standout prediction using SAXS, out-
scoring all regular and assisted CASP13 participants (GDT_TS = 47 vs
41 for best regular, both calculated for the entire assembly;
Figure 7D). As found with S0999, a visual confirmation is more acces-
sible as some scoring methods improved with SAXS (GDT_TS and
IDDT-oligomer) while others got worse (interface scores, RMSD-glob).
When one subunit of the homodimer is overlaid (colored red), the best
regular is shifted relative to the crystal structure (see arrows). The
3Dbio model overlays better onto the crystal structure than the best
regular. Unlike S0999, the SAXS-assisted model got significantly
worse when comparing QS globular (0.30 SAXS vs 0.41 regular) and
Jaccard scores (0.29 SAXS vs 0.37 regular). At the subunit level, the
top five predictors scored equivalently assisted vs regular with
GDT_TS scores in the 50s.

A difference between the solution and crystal conformation
played a role, as SAXS data did not match the crystal structure. SEC-
SAXS data quality was excellent and the single elution peak had a
MALS mass measurement in agreement with a dimeric structure. The
subunit to subunit interface is large and SAXS data suggests alternate
rotations of the subunits relative to one another (Figure 6). A compari-
son of a best fitting SAXS conformation (applying normal modes anal-
ysis) to the MX structure yielded a GDT_TS score of 47--comparable
to 3Dbios result.

Despite the monomer to monomer orientational differences in the
crystal structure and the solution state, the interface was consistent.
In a post-CASP analysis, we tested if we could obtain the correct
interface with the SAXS data based on a prediction model. Using the
best monomeric predictions with GDT_TS > 50, exhaustive and blind
docking of monomers using C2 symmetry generated 600 symmetric
dimer models. Ranking models by a X2 comparison of calculated and
experimental SAXS data alone provided excellent guidance on the cor-
rect interface and is exemplary of how SAXS might benefit predictors
in monomeric structures even with conformational variation.

3.7 | Heteromeric complexes that form larger
multimers (S0953, S0968, and S0980)

SAXS benefited predictors on two of three targets (S0953 and S0968)
that formed multimers of heteromers. SAXS-assisted models showed

a modest 2-4 point improvement in GDT_TS scores on predictions of
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the individual subunits of S0968 (a 2:2 heteromer) compared to best
server model from the regular category. Improvements in S0953
(a 3:1 heteromer) were best measured using a density correlation
approach, as all CASP13 fold predictions were significantly far from
the target (Figure 3). For SO980 (a 2:2 heteromer), there were no obvi-
ous improvements from the SAXS data.

For domain 1 (S0968S1), the top scoring group's best SAXS-
assisted model for SBROD (GDT_TS = 71) is the only SAXS-assisted
model that was better than the best server model (by four points). It
outperformed SBROD's best regular prediction by 10 points
(Figure 7A) and showed 83% similarity to the refinement model. The
outer beta strands were better placed in the SAXS-assisted model.
This SAXS-assisted SBROD model was not better than the best regu-
lar by A7D (GDT_TS = 78). In considering what can go wrong, MULTI-
COM, while scoring well regular, did not score well assisted.
Discussion with the MULTICOM team revealed that the SAXS data
were fit assuming that the heteromer did not further multimerize.
Fitting SAXS data with a 1:1 model for a sample that is 2:2 will con-
found the algorithm as only an over expanded 1:1 can fit the volume
of a compact 2:2 complex. This was particularly apparent in the sec-
ond subunit of S0968S2 where MULTICOM scored well regular
(GDT_TS = 71) but poorly assisted (GDT_TS = 43).

For domain 2 (S0968S2), the top scoring SBROD model in the
SAXS-assisted category (GDT_TS = 73) was nearly equivalent in score
to the top server (GDT_TS = 71). We view the two-point improve-
ment as equivalent.

Despite improving model accuracy for the individual subunits of
S0968, SAXS data did not benefit predictors for the total complex.
This is possibly due to the SAXS data fitting to a different 2:2 assem-
bly in solution. Cross-linking contacts agreed with the crystallographic
orientation of parts of the assembly. In-depth analysis will be required
to ascertain which complex is occurring in solution. Different buffer
conditions could induce transitions in multimeric assembly though fur-
ther experiments are required to rule out possible systematic errors.
Regardless of the assembly, SAXS data informed on a flat compact
object, which constrained predictions to tighter, more compact struc-
tures than were provided in the regular category.

SAXS data had a positive impact on predictions for S0953, though
not from the GDT_TS perspective. S0953 was a difficult free model-
ing target forming a 3:1 heteromeric multimer. SAXS data indicate
that the extended beta sheet region is bent relative to the
heterotetramer interface region, compared to the more linear configu-
ration observed in the crystal lattice (Figure 3).

As found for S0981, folding approaches where domains are indi-
vidually folded before assembly were confounded by the trimeric
intertwined beta structure. The best GDT_TS score for the full com-
plex from all CASP predictors came from the assisted Grudinin algo-
rithm. However, the score was very low (<18) and was only marginally
better than its un-assisted score. Low scores of this kind indicate that
predictions were not accurate. However, when viewed from a density
correlation perspective (Figure 3), predictors benefited from SAXS
data. Examination of the HO953 prediction models reveals that the

regular atomic models were often globular, and all the SAXS-assisted

models were elongated (one example in Figure 3). However, some of
the secondary structures were distorted, as if the atomic model was
being squashed into the envelope. Notably the topology of the regular
model was wrong, and conversion to the correct topology would have
required unfolding and overcoming large energy barriers (Figure 7E).
This example suggests how SAXS can be misleading when the topol-
ogy is incorrect and furthermore, that these false positives may be
detected by examining the effect of SAXS data on model accuracy
parameters (fit to optimal secondary structure parameters, nearest
neighbor, evolutionary covariance, etc.). When we examine the simi-
larity of the experimental data to the predicted data from the model
in reciprocal space, it shows how well the Grudinin group fit the curve
in reciprocal space. However, comparison of the model to the experi-
mental data in real space revealed significant differences in the curve,
suggesting real space as an alternative strategy for fitting the SAXS
data. This is another notable example where the crystal structure did
not closely fit the SAXS experimental data, indicating that the target
had a different conformation in solution. Yet the crystal was closer to
the solution data than the incorrect prediction model, indicating room
for computational improvements.

Target HO980 was a 2:2 heteromer. The top scoring SAXS-
assisted models for S0980 s1 scored below or similar to the top scor-
ing server models. Visual examination of the structure shows that one
chain folds into a globular fold with a central beta sheet that forms
the major dimer interface on itself and that the other chain has mini-
mal secondary structure, packing along the surface of the first chain.
All predictors folded the second chain in isolation from the first chain
and thus could not predict the extended chain properly. Using models
based on the crystal structure with the missing residues replaced, we
were unable to conclusively distinguish between different oligomeri-
zation states. The best fit that we could obtain had a 32 of 2.4. The
Porod Debye number was 3.7, suggesting some flexibility. Thus, the
protein in solution was adopting multiple conformations masking a
definitive identification of the assembly state or there was an error in
the data collection (eg, buffer subtraction error). Further analysis is

needed to distinguish the possibilities.

4 | DISCUSSION

SAXS-assisted prediction showed some bright spots during CASP13
and identified areas for further improvement. In one case, the predic-
tor used SAXS for model accuracy assessment, thereby experimentally
validating one server model over another. In another case, the edges
of the protein were improved. For the most difficult targets like
S0981 and S0953, where all predictors were challenged at the fold
level, assisted predictors generated models with higher density corre-
lation to the target (Figure 3). Density correlation is not beneficial
when the starting topology is wrong. However, for predictions with
the right gross topology, the ability to fit models within the envelope
could twist folds into the correct structure, correct the secondary
structure at the edges, or reorient domains within an assembly (S0985
and S0999 examples). Thus, SAXS has potential value to prediction
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algorithms in defining interdomain and intersubunit orientations
and/or conformational plasticity, which are critically important,
unsolved areas of protein structure prediction. Improvements in
assisted algorithms, experimental data quality and in how SAXS results
were communicated to predictors by CASP organizers all contributed
to this success. However, for fold accuracy of the domains based on
GDT_TS, no SAXS-assisted model was better than best regular model.
Below we discuss factors that could be addressed for further improve-
ment and the importance of continuing assisted prediction in
CASP14.

4.1 | Solution structure vs crystal structure

Of particular relevance to future CASPs is that SAXS-based models of
CASP targets, many of which are selected by the prerequisite of hav-
ing been crystallized, are not usually monomeric and rigid. This dis-
crepancy between solution and crystal structures has precedent but
has been limited to anecdotal examples in the case of SAXS.273* In
light of the game changing accuracy gains CASP predictors have made
in the free modeling regular categories in CASP12 and 13 and their
use of crystallographic databases, a surprising new realization is how
few proteins are in their crystallographic conformation in solution,
based on agreement with SAXS data. In CASP13, over half of the pro-
teins (S0953, S0968, S0975, S0980, S0985, S0987, and S0999) were
found to be in a different architectural conformation than that found
in the crystal, a number consistent with a database study on differ-
ences between NMR and crystal structures.2’ These cases are consid-
ered different when a full-length model, based on the crystal structure
and with missing regions replaced, does not match the SAXS data.
Importantly, these were not conformational differences of disordered
regions but rather differences in the relative position of one domain
or sub-domain to another. Although we cannot exclude the possibility
that the disagreement is from inaccuracies in modeling the disordered
region, it is our experience that it is more often the other way
around--that the disordered region modeling can mask domain
movements. Thus, we view our assessments that certain targets are in
a different conformation in solution as fairly reliable but not conclu-
sive. Additional experimental analysis, such as NMR, would be
required for a conclusive assessment. For these proteins, models
based on crystal structures adjusted through domain reorientation or
normal modes analysis better fit the SAXS data. Models that fit the
SAXS data of these proteins therefore cannot match the crystal struc-
ture exactly (GDT_TS of 100). Based on CASP13 target S0985, the
solution conformation may differ from that of its crystal by as much
as GDT_TS of 50, which is on par with prediction accuracy on many
targets. In other words, a prediction may accurately represent the
conformation in solution but would not score well against the crystal
structure. More emphasis on nonrigid evaluation scores, such as IDDT,
CAD, SphereGrinder, or RPF may in part address these structural
discrepancies.®>%7

Including SAXS data is thus a double-edged sword. CASP often
uses not-yet-released crystal structures as a source for their targets

and, for those targets, aims for a perfect fit to the precisely

determined crystal structure. Given the conformational differences
between solution and crystallographic conditions, predictors cannot
reach a GDT_TS of 100 by accurately fitting SAXS data. However,
SAXS data provides information on the structure adopted in arguably
more physiologically and functionally relevant conditions. For exam-
ple, recent comparisons of SEC-SAXS data taken across the peak
unveils functional DNA repair complex conformations in solution can
sample the compact crystal structure conformations, but these inter-
convert with more extended conformations that enable the functional
release of contacts.®®

In the short term, moving away from crystallography as the gold
standard, which has formed the backbone of CASP, is likely unwise.
Small targets are less likely to have these challenges, and models
fitting SAXS data may hope to achieve GDT_TS > 80. However, for
large targets where conformational flexibility is more likely, reconciling
a solution-guided prediction with a crystallographic target may only
be possible by adjusting the SAXS conformation. Predictors may need
to compact or make commensurate adjustments that consider crystal-
lographic lattice packing. A normal modes analysis of each prediction
may be helpful to produce the most compact configuration.

In the longer term, conformationally flexible structures as indi-
cated by the SAXS data are likely to be an increasingly important con-
sideration. This is particularly true as machine learning becomes a
central tool for prediction. Machine learning is particularly prone to
learning inherent flaws in training data sets and will only reinforce
what is likely to be a view of proteins that is systematically mis-
represented. Perhaps inclusion of SAXS data to training databases

could improve algorithms to model solution conformations.

4.2 | Fitting SAXS data with ensembles for flexible
systems

S0987 was an example where an ensemble was required to fit the
SAXS data rather than one rigid structure (Figure 5). However, the
same issue will occur for protein disordered regions and those under-
going conformational changes. For disordered regions, several predic-
tors continue to fold these regions despite clear indications provided
to the contrary by disorder prediction algorithms. As the accuracy of
predictions becomes better, the inherently flexible nature of proteins
will require more consideration. Some conformational modes are
indistinguishable by SAXS, others like those discussed in the preced-
ing section have observable impacts. Fitting a SAXS curve from a flexi-
ble or disordered system with a single rigid structure will impact other
parts of the model. If the protein is flexible and the experimental
structure is a crystal structure, the CASP community may have to
decide between keeping the crystal structure as the reference struc-
ture for assessment or generating reference model(s) based on the
crystal structure but modified to fit the SAXS data. If the former, then
predictors may need to compact their models before submitting. If the
latter, development of methods to generate realistic SAXS-based
models with proper geometry in silico is needed. These methods
should be capable of identifying regions of the protein that arti-

factually pack in the crystal lattice.3®
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4.3 | Algorithms for multimeric structures

When we first introduced high-throughput SAXS analysis, we were
surprised by the number of oligomers.? At least half of the proteins
we interrogated formed multimers. In this round of CASP, this was
further accentuated as 63% were multimers: homomers or
heteromers. In SAXS, information on the monomeric target is convo-
luted with information on higher order assembly. Predictors must
become more aware of the oligomerization state and assemble models
accordingly.

Predictors were aware of heteromeric structure designation and
appropriate steps were taken to fit the SAXS data as heteromeric.
However, consideration of homomeric structures was less uniform
among predictors. Several predictors fit monomers into SAXS data
from a homomer with detrimental consequences on their model.
Monomeric proteins are likely to become the exception in CASP as
most new folds may come from multimeric assemblies.

One reason we expect many new folds will come from multimeric
structures is that multimerization enables intertwined polypeptides or
domains; opening up new folding possibilities. With the hard targets
for the assisted category in CASP13, many folds were obligate homo-
or hetero-oligomers, meaning that the subunits likely fold coopera-
tively. In contrast, predictor models of these targets were assemblies
of independent folds that were rigidly assembled. In predicting these
structures, the commonly used hierarchical approach of first folding
domains independently, then assembling domains, and finally bringing
subunits together will typically fail. On the other hand, SAXS can pro-
vide insight into whether straightforward independent folding of each
subunit has generated an accurate topology or if a more sophisticated

approach is required.

4.4 | Distinguishing incorrect vs correct starting
model topology with SAXS data

While many arrangements of the same number of atoms can fit a
SAXS profile, most are energetically impossible. Scoring functions pro-
vide constraints on allowable configurations. If protein topology is dis-
torted to an energetically unfavorable configuration to fit SAXS data,
this distortion signals that the starting model may have the wrong
topology. So, new starting models with different topologies should be
considered.

For example, many predictors utilized starting models from regular
prediction approaches. When these starting models did not fit the
SAXS data, movements of secondary structures were made to
improve fit. Few truly topological changes were made between
assisted and regular. These CASP results show that SAXS may drive a
topologically correct model toward a better energy score with better
features of a folded protein, but can also drive a topologically incor-
rect model toward a worse energy score (Figure 6). Topologically
diverse starting models would increase the chances that there is a
topologically correct model that the SAXS data can identify and

improve. Using a similar paradigm could aid in assessing whether

multimeric models generated by hierarchical methods need to be re-
evaluated with an obligate multimer fold topology.

Many assisted algorithms explicitly included a SAXS comparison
term between model and experiment in their scoring function. SAXS
comparison can be done in reciprocal or in real space. The two are
related through a Fourier transform. A challenge for using reciprocal
space is the exponential decay as a function of the scattering angle q,
which is characteristic of the scattering contrast between solvent and
protein and can be affected by hydration layer considerations or buffer
subtraction errors rather than fold. Many reciprocal comparison methods
allow this feature to dominate the outcome. Using a comparison in real
space removes this strong bias (Figure 3), and features related to fold
become more strongly weighted. In addition, the real space function has
a relationship to contact distances used in many prediction approaches
providing interesting options for score function construction.

If reciprocal space is used, accuracy of prediction has reached the
stage where the hydration layer impacts the ability of SAXS to dis-
criminate between close models. Many SAXS calculators allow the
hydration layer to adjust in both how ordered the structure is and
how much scattering contrast relative to bulk water it has. In the case
of S0949 (Figure 5), fixing the hydration layer to default values for all
models provided the necessary discrimination between the target and
another fold of equivalent volume. Prediction of the hydration layer in
SAXS, crystallography, and EM is an active area of research and will

benefit the structure prediction community.

4.5 | Sequences, assessment, and experimental
considerations

Variation in the sequence of predicted models and the SAXS protein
construct was much smaller than in CASP12 (Table 2).22 However, the
margin of improvement that predictors were looking for with SAXS
data in CASP13 also became more constricted, particularly for small
monomeric systems. For 5 of 11 targets, the model entries matched
the SAXS sample in sequence (Table 2). For four targets (50949,
50980, S0981, S0987), the model sequence entries all were different
from the SAXS samples and varied from each other. Predictors are
allowed to submit incomplete models, but using an incorrect sequence
does not make sense for fitting to SAXS data. For SO985 and S0992,
some prediction entries had the correct sequence and some did not.
Completely correct sequences are particularly important for small pro-
teins and proteins with disordered regions. For these systems, a disor-
dered and extended five amino acid terminus can increase the
maximum dimension by 12.5 A, for example.'®

Assessment of predictor success remains somewhat complex. Tar-
get size and difficulty require more than one scoring criterion. Herein,
we utilized GDT_TS and density correlation, however, alternate met-
rics may have improved assessment. In addition, models for the
refinement category were released at the same time as SAXS data.
These models potentially provide additional information beyond what
the regular predictors used as input complicating assessment in some
cases. Delaying the release of these models during prediction would

remove this uncertainty in assessment.
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On the experimental side, several improvements can be made in
SAXS data collection to better aid structure prediction. Buffer sub-
traction from sample scattering can lead to systematic errors. In
CASP13 measurements, buffer subtraction differences between HT-
SAXS and SEC-SAXS were observed. Significant and recent improve-
ments have been made at the SIBYLS beamline that have reduced
these errors.

Data will be provided to higher angle. CASP13 measurements
were generally stopped at g < 0.35 A™' as few SAXS calculators
showed accuracy beyond this range. However, as the CASP commu-
nity has become more sophisticated with SAXS analysis and the
increased need for resolution of prediction, treatment of wider angles
may provide some additional discrimination.

Based on this CASP13 analysis, we recommend more attention
paid to eight points: (a) the correct sequence corresponding to the
SAXS sample, (b) the solution oligomerization state, (c) intrinsic disor-
der predictions, (d) ensembles of conformations when necessary,
(e) cooperative folding possible for obligate homo or hetero-oligo-
mers, (f) a topologically diverse set of starting models; (g) the effect of
SAXS data on model accuracy, and (h) post-SAXS compaction to
mimic crystallographic conditions or a change in how CASP scores
model accuracy. As providers of SAXS data, we will work in parallel
with predictors to create tools and improve SAXS data quality for
CASP scientists.

5 | CONCLUSION

The experimentally assisted category seeks to supplement sequence
information with realistically attainable experimental data for predic-
tion of any soluble protein target. We identified clear examples where
SAXS aided predictors in model accuracy assessment of their models
at the domain fold level and for assembly. For some easier folds, we
found that CASP13 prediction has reached an accuracy approaching
the differences between solution conformation and crystallographic
conformation. This will limit the impact of SAXS in assisting prediction
algorithms in cases where the reference structure is a crystal structure
and the crystal structure is not consistent with the SAXS data. Predic-
tors may be able to take steps that modify their SAXS-assisted predic-
tion into a more crystallographic one, or what the models are scored
against may be changed in future CASPs. Prediction algorithms need
and will continue to benefit from the precision of crystallography for
accurate residue interactions, but defining the solution conformation
by SAXS and/or NMR is likely important for biological relevance. Biol-
ogy occurs in the active sites and interfaces on the protein surface,
indicating that the ultimate bar for predicted models is not only the
right fold but also the correct surface. These functional surfaces are
impacted by oligomerization orientation and disordered regions--the
features on which solution data can be informative. Structure predic-
tion has the powerful potential to provide biologically relevant models
with atomic accuracy that encodes the inherent conformations of pro-
teins in solution.
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