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Abstract

Small angle X-ray scattering (SAXS) measures comprehensive distance information on

a protein's structure, which can constrain and guide computational structure predic-

tion algorithms. Here, we evaluate structure predictions of 11 monomeric and oligo-

meric proteins for which SAXS data were collected and provided to predictors in the

13th round of the Critical Assessment of protein Structure Prediction (CASP13). The

category for SAXS-assisted predictions made gains in certain areas for CASP13 com-

pared to CASP12. Improvements included higher quality data with size exclusion

chromatography-SAXS (SEC-SAXS) and better selection of targets and communica-

tion of results by CASP organizers. In several cases, we can track improvements in

model accuracy with use of SAXS data. For hard multimeric targets where regular

folding algorithms were unsuccessful, SAXS data helped predictors to build models

better resembling the global shape of the target. For most models, however, no signif-

icant improvement in model accuracy at the domain level was registered from use of

SAXS data, when rigorously comparing SAXS-assisted models to the best regular

server predictions. To promote future progress in this category, we identify suc-

cesses, challenges, and opportunities for improved strategies in prediction, assess-

ment, and communication of SAXS data to predictors. An important observation is

that, for many targets, SAXS data were inconsistent with crystal structures,

suggesting that these proteins adopt different conformation(s) in solution. This

CASP13 result, if representative of PDB structures and future CASP targets, may
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have substantive implications for the structure training databases used for machine

learning, CASP, and use of prediction models for biology.
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complexes, disorder, experimental restraints, flexibility, modeling, SAS, SAXS, solution

scattering, structure prediction, unstructured regions

1 | INTRODUCTION

As assessed in Critical Assessment of protein Structure Prediction

(CASP12) and now in CASP13,1 protein structure prediction algo-

rithms have made major leaps toward improving prediction accuracy.

Yet, obstacles remain for novel folds, large proteins, oligomeric com-

plexes, and flexible proteins. To provide additional and realistically

achievable constraints on any soluble protein target, CASP12 and

CASP13 included an assisted target category where sequence was

supplemented with experimental data from cross-linking mass spec-

trometry, nuclear magnetic resonance (NMR), and small angle X-ray

scattering (SAXS). This article focuses on SAXS data. The protein tar-

gets chosen for this category were specifically anticipated to be chal-

lenging to predictors.

A primary rationale for using SAXS data as experimental input for

structure prediction is that collecting SAXS data is high-throughput

(HT) and straightforward.2-6 In SAXS, no labeling or crystallization is

required. Data collection for basic research is provided for free by all

biological SAXS beamlines, with one at every U.S. synchrotron. For

fold prediction, samples are ideally stoichiometrically monodisperse,

but there are no size limitations, from a few kD to megadaltons. At

the SIBYLS beamline and at many other SAXS beamlines, SAXS data

can be collected in HT mode with proteins and buffers loaded in

96-well plates or by SEC in-line with SAXS and multi-angle light scat-

tering (MALS). SEC-SAXS with MALS analysis can assure stoichiomet-

ric monodispersity for improved confidence in extracted structural

information. Importantly, SAXS, as an X-ray scattering technique, pro-

vides information on the distances of all electron pairs within the pro-

tein in solution6-8 including functional conformational variation.9 This

information from SAXS could help constrain and guide computational

structure prediction algorithms. This capability and methods for inte-

gration were therefore tested in CASP12 and now CASP13.

For the SAXS-assisted category in CASP, analyzed SAXS data in

addition to the respective amino acid sequence, were provided to pre-

dictors in a report. The SAXS analysis provided predictors with the

experimentally validated multimerization state, maximum dimension,

radius of gyration, an estimate of flexibility, volume, and radius of

cross section. Furthermore, the primary SAXS curve can be converted

into the histogram of relative proportion P of electron pairs at dis-

tance r, that is, P(r).7 The P(r) is sensitive to changes as small as 5 Å.

The scattering curve, of the atomic model and an approximation of its

hydration layer, can be calculated and compared to the SAXS curve

(I vs q) or, after Fourier transform, to the P(r), for feedback against

experiment. There is enough information within the P(r) function to

calculate 3D shapes of ~15 Å resolution.10 The SAXS curve, P(r) curve,

and shape were provided to predictors.

CASP12 was the first attempt to combine SAXS with CASP.11

Closer analysis of how predictors used SAXS data revealed an under-

lying assumption within CASP that would be misleading when inte-

grated with SAXS. CASP models are judged based on the crystal

structure and even more strictly on domains within the crystal struc-

ture. Perhaps as a reflection of this criteria, many CASP12 predictors

considered the entire sequence of many protein targets as well-folded

and monomeric. However, many CASP12 targets had intrinsically dis-

ordered regions and/or were multimeric, as we have found with most

proteins that we have studied by SAXS.2 Comparing the sequence of

the SAXS sample and what was modeled in the respective crystal

structure, the average CASP12 crystal structure was missing 20% of

the sequence with an extreme of 44%.12 These were generally termi-

nal ends of the protein and were largely predicted from sequence to

be intrinsically disordered. Typically, these regions would not be con-

sidered during the assessment—no harm, no foul. However, in the

context of SAXS-assisted evaluation, modeling disordered regions as

part of the globular fold makes fitting the model to SAXS data mis-

leading. For example, a five amino acid disordered terminus can

extend the maximum dimension by as much as 12.5 Å.13 To improve

awareness of disorder, an intrinsic disorder prediction was attached to

SAXS reports in CASP13. Similar discrepancies resulted from CASP12

predictor's lack of awareness of why modeling the proper multimer to

the SAXS data is essential. Over 50% of targets were multimers12 but

many predictors fit the data against a monomeric structure. On the

data side, there were issues when targets were stoichiometrically het-

erogeneous, as data were collected by HT-SAXS. Although some

information could be extracted by varying protein concentration or

protein constructs, this was not ideal. Therefore, CASP13 included

SEC-SAXS, which can separate out stoichiometrically diverse

populations and allow data collection on monodisperse sample. These

strategies were suggested following the CASP12 assessment to

increase accuracy.12

Below, we describe results and analysis of the SAXS-assisted cate-

gory for CASP13. Data collection included both HT-SAXS and, if there

was enough protein supplied, SEC-SAXS, which increased the reliabil-

ity of the SAXS data. A target's multimerization and predicted intrinsi-

cally disordered regions were communicated to predictors, and based

on model entries, CASP13 predictors generally showed better aware-

ness in treating intrinsically disordered regions and multimerization.

HURA ET AL. 1299



There were a few examples where inclusion of SAXS improved the

backbone accuracy or domain positioning. However, to rigorously test

the potential of SAXS for prediction, many issues still require improve-

ment, and we highlight these issues with exemplary targets to aid

future predictions. An unanticipated finding of our analysis is that

many crystal structure conformations did not adequately match the

respective SAXS data, occurring in 7 out of 11 SAXS-assisted CASP

proteins. We discuss those cases when the crystal structure or the

crystal structure plus an added unstructured tail, do not match the

SAXS data. The discrepancies are not on the scale of small amino acid

scale vibrational differences, but rather of domain interactions. If reg-

ular or unassisted CASP prediction algorithms are based on training

databases with conformations enforced by the crystal lattice or crys-

tallization conditions, they could be biased toward predicting crystal

conformations instead of solution conformations. That might reduce

biological relevance of prediction results. Our detailed analysis and

discussion form a basis to begin considering these and other

implications.

2 | METHODS

2.1 | SAXS sample preparation and data collection

Proteins were generously provided for SAXS by the crystallographers

who had determined the crystal structure. Most of the SAXS data

were collected at the SIBYLS beamline (12.3.1) at the Advanced Light

Source, part of the Lawrence Berkeley National Laboratory.4 The

sample-to-detector distance is 1.5 m, resulting in scattering vectors

ranging from 0.01 to 0.5 Å−1. The wavelength of the beam was 1 Å,

and the flux was 1013 photons per second. Data were collected by

HT-SAXS and/or SEC-SAXS, depending on sample quantity.

Samples generally arrived frozen, which can promote aggregation.

For HT-SAXS, just prior to data collection, samples were prepared in

96-well plates, where 20 μl of the consecutive protein concentrations

were bracketed with two 20 μl protein-free buffer samples. The pro-

tein concentrations used for data collection consisted of the original

protein concentration, a 1:2 dilution, and a 1:4 dilution. By collecting

data on three protein concentrations, we were able to correct for

concentration-dependent behavior. Samples were transferred from a

96-well plate at 10�C to the sample cuvette, where they are exposed

to an X-ray beam for a total of 10 seconds.5 Scattering images are col-

lected by a PILATUS 2M detector every 0.3 seconds, for a total of

33 sample images. For each sample collected, two protein-free buffer

samples were also collected to reduce error in subtraction. Each col-

lected image was circularly integrated and normalized for beam inten-

sity to generate a one-dimensional scattering profile by beamline

specific software. The one-dimensional scattering profile of each pro-

tein sample was buffer-subtracted by each of the two corresponding

buffers, producing two sets of buffer subtracted sample profiles. Pro-

files were examined for radiation damage. Scattering profiles over the

10-second exposure were sequentially averaged together until radia-

tion damage affects were seen to begin changing the scattering curve.

Averaging was performed with web-based software (sibyls.als.lbl.

gov/ran).

For SEC-SAXS, HPLC SEC was in line with SAXS sample cell and

MALS, for simultaneous data collection, to promote the stoichiometri-

cally monodisperse samples with large non-specific aggregation

removed. Two-second X-ray exposures were collected continuously

during an �25-minutes elution. The SAXS frames recorded prior to

the protein elution peak were used to subtract all other frames. The

subtracted frames were investigated by RG and I(0) derived by the

Guinier approximation I(q) = I(0) exp(−q2*RG
2/3) with the limits

q*RG < 1.5. I(0) and RG values were compared for each collected SAXS

curve across the entire elution peak. The elution peak was mapped by

plotting the scattering intensity at I(0) relative to the recorded frame.

Graduate decreasing of RG values across an elution peak was used to

indicate transient sample behavior.

2.2 | SAXS data analysis and predictor data packages

From data collection to analysis, all data were passed to CASP in

under 3 weeks. Predictors were provided SAXS curves in reciprocal

and real space, a SAXS-based shape prediction, and SAXS scalar

values (Table 1). Parameters such as radius of gyration (RG), the Porod

exponent, the radius of the cross-section (RXC), and the volume of cor-

relation (Vc) were calculated using scatter.2,14,15 The P(r), Rg2, and

DMax were calculated using PRIMUS and GNOM.10,16 Molecular enve-

lope calculations were performed using GASBOR.17 All data are avail-

able at the CASP13 web address (predictioncenter.org) for download

in the “Targets” tab under “Assisted structure prediction.” Regions

missing in crystal structures were modeled in using Modeller

implemented in Chimera.18 Atomic structures were compared to

SAXS data using FOXS.19,20 BILBOMD and MultiFOXS were used to

create flexible models, with domains defined as rigid bodies.20,21

Models based on crystal structures were modified by nonlinear NOLB

normal mode analysis (NMA).16,22

2.3 | Correlation between crystal structure and
prediction model molecular envelopes

Density correlation score was calculated using programs gmconvert

and gmfit.23,24 Number of Gaussian functions was set to 50, number

of initial orientations for the global and local searches was set to

50, solutions were sorted by the correlation coefficient, default values

were kept for the rest of the parameters.

3 | RESULTS

3.1 | CASP SAXS data collection

Hard targets were specifically chosen for experimental assistance with

an expectation that added experimental information may improve pre-

dictor success. These targets were identified using sequence analysis

(PSIBLAST, HHsearch). Communication between sample providers

and the beamline was minimized to avoid compromising the CASP
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experiment. Crystallographers generously provided a total of 10 pro-

tein samples. Marianne Ilbert provided protein for S0949; Petr Lei-

man, S0953/6F45.PDB25; Karoline Michalska, S0957/6CP8.PDB and

S0968/6CP9.PDB; Owen Davies, S0980/6GNX.PDB,26 Chi-lin Tsai,

S0975; Mark van Raaij, S0981; Jose Henrique Pereira, S0985; Lindsey

Spiegelman, S0987, and Andrew Lovering, S0992. An eleventh SAXS

data set (S0999) was made available by Marcus Hartmann. All

11 CASP-SAXS targets were based on crystal structures. Seven out of

the 11 samples represented multimeric assemblies and were evalu-

ated as such in their entirety. Additionally, the results were evaluated

separately for individual peptides or chains. Because four out of the

11 targets were hetero-dimeric, the number of individual peptide tar-

gets was 15. Target S0999 was sufficiently large that agreement was

judged as five separate domains. All in all, we assessed 19 unique

single-sequence targets.

The SAXS-assisted CASP category aimed to test the notion that

SAXS may prove useful for experimentally validating structure predic-

tion in general. SAXS would be suitable for this purpose as sample

requirements are minimal and can be collected efficiently in HT. This

efficiency of data collection was supported in CASP13 since SAXS

data were provided for all samples shipped––100% success rate for

data collection and analysis. We collected HT-SAXS and/or SEC-SAXS

data at the SIBYLS beamline 12.3.1 in the Advanced Light Source Syn-

chrotron, depending on sample quantity.2-4 HT-SAXS provides the

highest signal-to-noise data, while SEC-SAXS was used to purify stoi-

chiometrically monodisperse samples. When sample quantity was low,

only HT-SAXS data were collected. When possible, HT-SAXS and

SEC-SAXS data were compared. Where SAXS curves overlaid, the

higher signal-to-noise HT SAXS data were used and provided. For

stoichiometrically polydisperse samples, SEC-SAXS data were

provided.

SAXS analysis was coupled with sequence information in reports

provided to predictors. Reports included information on whether SEC-

SAXS applied, the quality of SAXS data collection, particular challenges

relevant to the target, the processed SAXS curves, global parameters

extracted from SAXS data, the pair distribution or P(r), 3D shapes and

disorder prediction results calculated from DISOPRED. Several factors

were considered in determining which value to give an experiment for

the three-tier quality scale provided to predictors. The high quality “gold”

rating was assigned to experiments where both HT- and SEC-SAXS pro-

vided the same scattering curve with low noise. Silver was assigned to

curves where SEC-SAXS data were noisy or small discrepancies between

anticipated and measured mass were observed. Bronze values were

given when only HT-SAXS could be applied or larger inconsistencies

were noted. Of the 11 targets, four were rated gold (highest quality), six

were silver, and only one was bronze. Target S0968 was ranked bronze,

as the molecular mass in solution (36 kD) suggested an ambiguous 1:2

multimeric complex of two similarly sized subunits or protomers (13.9

and 13.4 kDa). A new challenge section highlighted potential stoichio-

metric heterogeneity, flexibility, and multimerization. When flexibility

was indicated by the SAXS signal, a disorder prediction analysis27 was

included. In the case of S0975, the protein has a 4Fe-4S group, which

was noted in this section.

SAXS curves (reciprocal space I vs q and real space P(r)) and shapes

for the 11 targets show the diversity of targets in CASP13 (Figure 1). In

the case of S0987, the SEC-SAXS and HT-SAXS buffers were different

yielding significantly different curves describing conformational differ-

ences of the monomeric protein. Both curves and analysis were provided

to predictors. The global parameters (scalars; Table 1) reveal information

into structure and assembly. The radius of gyration (RG) characterization

of the first moment of inertia for the samples ranged from 16 to 55 Å.

The RG was estimated two ways. First through use of the Guinier region

in reciprocal space, and second (real space RG) through analysis of the

TABLE 1 SAXS data provided to CASP participants

SAXS target RG–Guinier (Å) PD
Mass
SAXS (kD)

Mass theor.
(kD)

Dmax
(Å) Rxc (Å) Volume (Å3)

Real
space RG (Å)

Sample
quality Challenge

S0949 16.0 4.0 13 16.7 53 13 22 158 16.5 Silver None

s0953 34.8 3.5 32 25.7,7.3 130 13 63 217 36.7 Gold Elongated 3:1

s0957 21.8 4.0 32 18.6,17.7 71 18.4 54 545 21.58 Silver Heteromer

s0968 25.8 3.1 36 13.9, 13.4 83 19.2 108 771 26.8 Bronze Multimer

s0975 27.8 4.0 39 38.5 89-105 17.6 82 000 26.3 Silver Fe-S Cluster

s0980 27.2 3.7 43 13.5, 6.2 102 18.1 83 586 28.0 Silver 2:2

s0981 46.6 3.7 190 76 176 32.7 46 000 47.6 Silver Trimer

s0985 41 4.0 190 98.4 136 32.6 35 000 40.7 Gold Dimer

s0987a 26.8 4.0 43 45.8 100 18 79 363 27.3 Gold Depends on solution

S0987b 24.4 4 41 45.8 86.5 20 73 401 24.3 Gold Depends on solution

S0992 18.3 4.0 12 13.9 65 11.3 21 000 17.5 Silver Disorder

s0999 54.7 3.4 320 170 165-170 41 880 000 54.98 - Flexible, Dimer

Note: RG, Porod exponent (PD), mass calculated from SAXS, theoretical mass, maximum dimension (Dmax), radius of cross section (Rxc), and volume were

calculated using SCÅTTER. RG in real space and Dmax were calculated using PRIMUS and GNOM. Quality of data (gold, silver, bronze) was provided for

SAXS data collected at the SIBYLS beamline (12.3.1) at the ALS. S0999 was collected at the Diamond Light Source.
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P(r) function. All samples had less than 5% difference in these values

from both methods, passing this data quality control.

Only 36% (4 out of 11) of the proteins examined were monomeric:

S0949, S0975, S0987, and S0992. The others formed multimeric

assemblies. Mass was extracted via two methods. The SAXS curve

itself can provide a concentration-independent estimate of mass. The

mass of the folded region can be estimated from SAXS (MassSAXS) by

defining the Porod-Debye range and calculating the volume of corre-

lation (Vc).14 SEC-SAXS was coupled to MALS, which provides an esti-

mate of mass across an elution peak.

F IGURE 1 SAXS data for CASP13 targets. (Left upper panel) Reciprocal space experimental SAXS curves (colored) are overlaid with the
predicted scattering (black) from an ensemble of atomic models, found to best match the experimental data. SAXS curves can be scaled without
losing information content, so the SAXS curves have been offset for visual clarity. The atomic model(s) are full-length models, based on the crystal
structure or when appropriate, multimeric models based on the crystallographic lattice. (Right upper panel) Ab initio shape reconstructions based
on the SAXS data and overlaid with a single representative atomic model. (Bottom panel) Real space SAXS curves for different targets
(abbreviated CASP target IDs are provided on the graphs)
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The Porod-Debye value (PD, PE, or PX) provides objective insights

into flexibility.15,28 PD is determined from the rate of decay as a func-

tion of q in the mid q range (0.05 < q < 0.2 Å−1) and depends on the

volume of the protein. A q−2 dependence indicates largely unfolded

structures while a q−4 indicates a globular one. The PD is represented

as the negative of the exponent. Seven targets had a PD of 4, indicat-

ing a high proportion of folded regions as one would expect for CASP

targets that were selected for their crystallizability. S0953, S0980,

and S0981 had midrange PDs of 3.6 to 3.7. For S0968 and S0999, the

PD scores of 3.1 and 3.4, respectively, indicated significant flexibility.

In retrospect, comparisons of the PD scores to the percentage of

missing regions in the crystal structure (Table 2), were generally corre-

lated but there were exceptions. S0949, S0975, S0987, and S0992

had PD scores of 4 but had 8 to 18% of their sequence missing in the

respective crystal structures. On the other side, S0953 and S0968 had

minimal 2 to 4% missing, but had flexible PD scores of 3.6 and

3, respectively, suggesting their flexibility comes from domain

motions.

The relative ratio of the radius of cross section (Rxc), the second

moment of inertia of the protein to the RG provides information on

the overall shape. When Rxc values are comparable to RG, the protein

is globular. When Rxc is significantly smaller, the protein is elongated.

S0953 had the smallest Rxc to RG (13 Å to 34.8 Å, respectively). Most

of the proteins, including S0968, S0975, S0980, S0981, S0985,

S0987, S0992, S0999, showed a smaller Rxc to RG, indicating a non-

spherical overall organization.

SANS data were also provided to CASP predictors for target

S0953 by the Institut Laue-Langevin facility. As the sample was

completely hydrogenated, there was no advantage to using SANS

data. SAXS has higher signal-to-noise than SANS, and the true advan-

tage of SANS arises when components are differentially hydroge-

nated/deuterated. If SANS is considered for future CASP,

identification of a target complex and a willing collaborator who pre-

pare components under appropriate conditions should be more

actively pursued.

After all predictions, assisted and regular, were submitted and

finalized the atomic resolution structures were made available and

reconciled with SAXS results. For proteins with regions missing in

the crystal structure, we made models that included missing regions

using Modeller.18 An improvement over CASP12, the targets were

missing fewer amino acids: S0949 (8%), S0968 (4%), S0975 (18%),

S0980 (14%), S0981 (10%), S0987 (6%), and S0992 (15%). When

necessary, we created models with domains set as rigid bodies but

with linkers allowed to move and identified ensembles of those

models that matched the experimental data.20,21 Based on the χ2

metric <2, three targets S0949, S0957, and S0968 showed reason-

able fit when modeled with missing regions. As described in

detail below, the solution state of 9 out of 11 targets (including

S0968–discussed below) differed in varying degrees from the crys-

tallographically determined structures. Flexibility could take the

form of disordered tails or that the architecture of the folded

regions is adopting multiple conformations in solution. We found

that the discrepancy for two of the targets could be explained by

addition of unstructured tails, but we believe that the folded

regions for seven of the targets are adopting different conforma-

tions in solution. The fits of modified crystallographic structures

are shown in Figure 1. It is notable that the P(r) for S0968 SAXS

data did not match the crystal structure, despite the χ2 metric <2.

TABLE 2 Crystal structures, atomic models, and SAXS data

Exp
SAXS stoic

AA-SAXS
sample AA-pdb

%
Order
(%)

Predicted model
sequence vs SAXS PD Crystal, χ2 Full-length χ2 Fit to SAXS, χ2

Fit of crystal
within shape

S0949 1 151 139 92 +32/−10 4 1.64 1.41 Yes

s0953 3:1 465 457 98 OK 3.6 12 2.1 Partly

s0957 1:1 327 318 97 OK 4 1.3 Yes

s0968 1:2 or 2:2 466 484 96 OK 3.0 1.5 Partly

s0975 1 343 281 82 OK 4 11 3.3 Yes

s0980 2:2 338 290 86 −6aa 3.7 15 2.4 Partly

s0981 3 674 610 90 −102 aa 3.7 2.84 3.24 Partly

s0985 2 863 842 98 0-42 vary 4 19/1.8a 16 Partly

s0987 conf1 1 496 381 94 −2-24 vary 4 51 52 0.94 Yes

s0987 conf2 4 11 13 1.04

S0992 1 126 107 85 0-16 vary 4 114 14 2.8 Yes

s0999 2 3178 3083 97 OK 3.4 7 3.9 Partly

Note: Stoichiometry (Stoic) and Porod Debye (PD) were calculated from the SAXS data. Flexibility (% Order) was calculated from what the number of

amino acids (AA) modeled in the crystal structure (pdb) and what the number of AA present in the SAXS sample. Agreement to the SAXS data (χ2) was

determined for the crystal structure, from a single model with missing AA added back (CHIMERA), and with the missing AA and potential flexible domains

allowed to move using a version of CHARMM implemented in BILBOMD. The fit of the crystal within the shape was determined by eye.
aAddition of 5% tetramer for S0985 improved χ2 to 1.8.
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3.2 | Assessment of predictions

In CASP12, a criterion used to evaluate prediction improvement was

the GDT_TS score of assisted predictions vs the regular predictions

from the same group. Here, we have taken a more stringent approach

for domains comparing the best assisted prediction against the best

server prediction (Figure 2A,B).

We want to note here that predictors had access to server models

during both regular and assisted prediction. However, during the

assisted prediction, the best server models for 6 of the 11 targets

were implicitly identified by the CASP committee through releasing

these models as starting points in the refinement category. Personal

communication with the predictors revealed that some of them used

the refinement models. This complicates the analysis of how much

SAXS contributed to the assisted models. Removing this uncertainty

in future CASPs can help improve the clarity of the analysis of results.

We want to emphasize here that server models were only available

for individual domains, and no server models (including a selected

refinement model) were available for multimeric targets. Thus, we

compared the SAXS-assisted to regular oligomeric assembly predic-

tions from the same group and to the best regular prediction.

During our assessment, we considered how SAXS can be used to

improve prediction models. SAXS can be added to a model accuracy

assessment score to select starting models, to alter starting models

for improved fit to the solution data, and to rank final models for sub-

mission. In the simplest scenario, the predictor can rank server models

and submit the top five models. In our analysis, we identified that

20% of the domains submitted were unmodified server models. In

8 out of 13 cases where server models were available, the top

GDT_TS-scoring SAXS-assisted model was a re-submitted server

model. This is not unexpected as many predictors are testing their

model accuracy scoring algorithms or their oligomerization or assem-

bly algorithms. These server models could have been the “pre-

selected” refinement model or a SAXS-selected server model. For the

latter, we consider them a viable entry as SAXS was used for the

selection.

Based on this “best server” criterion, SAXS assisted predictors

generally had equivalent best predictions as the best regular servers

(Figure 2A,B). The best regular server models are a high bar as several

server models on these targets also scored best in CASP13 overall.

Only one assisted prediction from the SBROD method run by the

Grudinin group, the first subunit of the S0968 heteromer (S0968S1),

showed modest four point improvement in GDT_TS score. This model

was 10 GDT_TS points better than the best regular model from the

same group. In a comparison of the best SAXS-assisted models on all

targets, five were closely similar to the best regular server models,

suggesting that predictors used these server models without signifi-

cantly altering them (Figure 2B). Three of these (T0957S2, T0992, and

T0999S3) were released as refinement models and could simply be

refinement models resubmitted into the SAXS category. The other

two domain targets were not released as refinement models, and the

high degree of GDT_TS similarity could have been from the SAXS

data-based selection from among the server models.

For difficult targets, a global density correlation method provides

alternative perspective (Figure 3). This score captures global shape

similarity of prediction model to the crystal structure, while placement

F IGURE 2 Comparison of assisted predictions compared to
regular (unassisted) prediction in CASP13, based on chain or on
domain (S0999 only). A, The GDT_TS scores of the best
SAXS-assisted predictions and the best server predictions (regular)
against the target crystal structure show that only for S0968 did
SAXS-assisted models have higher GDT_TS scores than models from
the best servers from the regular prediction. B, GDT_TS-based
comparison of the SAXS-assisted with the best server prediction
suggests the use of server models in the SAXS-assisted category,
particularly when the GDT_TS score is 100. C, The GDT_TS scores of
the best SAXS-assisted predictions, the best regular, unassisted from
the same group, and the best regular (all groups) against the crystal
structure, shows that while SAXS-assisted models sometimes did
better than the regular models from the same group, none did better

than the best regular from all groups
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of the local elements of structure, such as secondary and even tertiary

structure, have little effect.23,24 The mean density correlation

improved for 10 targets, was worse in four and had no change in the

remaining targets (Figure 3). Using this criterion, several predictions

had a better score than any of the regular predictions. The improve-

ment in the global density correlation reflects the ability to predict the

protein envelope from SAXS data, the most recognized attribute of

SAXS, and provides indirect evidence that SAXS data is being applied

by the predictors. Getting the shape correct does not help if the

topology is grossly incorrect, as discussed below for S0953. If the

topology is correct, we suggest that it could help to shift secondary

structure elements or promote conversion from compact helices to

longer helices. Indeed, we identified individual examples (S0957,

S0968, S0985, S0999) where the predictors had a roughly correct

topology in their models and their SAXS-assisted model was better

than the same group's regular or all regular. We discuss them in the

individual sections.

None of the SAXS assisted predictions at the monomeric or

domain level were as good as the best regular predictions from the

entire CASP13 predictor pool using the GDT_TS metric. The best

assisted GDT_TS scores were plotted against the best regular scores

(from the same group or from all groups) in Figure 2C.

To highlight successes and challenges in the SAXS-assisted predic-

tion, we perform case studies below for each of the targets. The

assessment is separated into five categories based on the assembly of

the protein and difficulty as indicated by best server GDT_TS scores:

small monomers, large monomers, 1:1 heteromer, homo-oligomer, and

multimers of heteromers (Figure 4). Each type will require a unique

adjustment to the prediction algorithm. The results below also detail

modest improvements in prediction in the SAXS-assisted multimeric

category of CASP13.

3.3 | Small monomeric proteins (S0949 and S0992)

Only two targets, S0949 and S0992, were small monomers. SAXS

data were consistent with crystallographic results for both targets,

providing accurate guidance.

T0992 server predictions had GDT_TS scores in the 80s. The

SAXS data reflected that of a small protein with a flexible tail, consis-

tent with the 18 residues presumably too disordered to be modeled in

F IGURE 3 Density correlation score. A, Atomic models of the target (left) and a prediction (right) are converted into low-resolution density
maps and fitted with Gaussian mixture models (GMM)–shown in blue and red respectively. Centers (mean values) of the Gaussians are shown as
spheres. B, Two GMMs are superimposed so that overlap of the two distributions is maximized. Density correlation score is the correlation of the
corresponding superposition of the simulated densities from A. C, Box plots for the density correlation scores for all regular (by any group) and
SAXS-assisted targets. D, Target H0953 atomic models of the crystal structure and of an example of regular and the corresponding SAXS-assisted
model from the Grudinin group. The SAXS-assisted model has a similar elongated shape, but secondary structure elements are clearly disrupted.
This example also highlights how the subunits are entwined, and the predicted models appear to have been folded independently and placed
together.(E and F) Corresponding to D, overlay of H0953 experimental data with SAXS curves predicted for crystal structure and for SAXS-
assisted models in reciprocal and real space
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the crystal structure. Small proteins are more sensitive to positioning

of flexible termini in target crystal structure. Therefore, predictions for

S0992 were arguably already highly accurate before SAXS informa-

tion was added, and no improvement could be tracked with GDT_TS.

For S0949, the best SAXS-assisted prediction had a GDT_TS score

of 64, nearly equivalent to the best regular server score of 65. In com-

paring SAXS-assisted vs the regular predictions from the same group,

all predictors did equivalent (less than two GDT_TS improvement in

score) or worse than their best regular prediction. We suspect that

the use of a sequence not consistent with what was in the SAXS sam-

ple is the reason. The sequence provided in the SAXS report con-

flicted with that listed at the prediction center. The discrepancy

originated from the truncation the target provider made to the con-

struct between the time of agreeing to send sample for SAXS analysis

and data collection. All assisted predictors used either a 20% longer or

7% shorter sequence than the actual sequence in the SAXS sample,

which likely had a significant negative impact given the small size

(Table 2). The S0949 SAXS sample had only 151 amino acids in total,

compared to 183 listed at the prediction center.

Despite the sequence disparity, first models for S0949 (ie, top

models as ranked by predictors) improved by average four GDT_TS

points over the same group's top-ranked regular models. Thus, SAXS

data may have helped predictors in ranking models.

To effectively use SAXS data to improve predictions of small pro-

teins where regular predictions are reasonably accurate (eg,

GDT_TS > 50), several factors should be carefully considered includ-

ing the sequence correspondence between the measured and

predicted construct (Table 2 and Figure 5). The top scoring prediction

from MULTICOM was the only prediction using a sequence that was

11 amino acids shorter than the SAXS sample and therefore suffered

the least from having an incorrect sequence. Yet, this prediction did

not match the SAXS data to within error of the experiment and per-

haps higher weighting of the fit to SAXS would have led to a better

model.

The largest deviation from the target for all top scoring predictors

was a 40 amino acid stretch where predictors had a helix in place of a

two-stranded beta sheet structure. The volumes occupied by both

helix and sheet topologies are similar. Using the FOXS SAXS calculator

in default mode, both topologies fit the SAXS data nearly equivalently

and therefore provide no discrimination. To achieve discrimination,

assuming sequences are correct, a consistent treatment of the hydra-

tion layer, turning off the default option, is required. FOXS and most

other calculators will adjust the hydration layer to fit the data.20 How-

ever, at this level of resolution, allowing hydration layer parameters to

drift compromises discrimination. Not allowing the FOXS hydration

parameters to vary would have been sufficient to provide guidance to

the crystal structure (Figure 5).

3.4 | Large monomeric proteins (S0975 and S0987)

The two large monomeric proteins (S0975 and S0987: 343 and

408 amino acids, respectively) had disordered sequence sections,

based on residues not modeled in the crystal structure but present in

the protein used in the crystallization; complicating predictors' task.

The SAXS data for both targets were of high quality as both HT- and

SEC-SAXS were applied. In S0975, 18% of the protein was missing in

the crystallographic structure: 35 residues at the N-terminus, 13 in

the middle and 14 at the C-terminus. For S0987: 12 residues at the

N-terminus, 10 in the middle, and 3 at the C-terminus were missing.

Sequence-based prediction indicated the missing termini were disor-

dered. Predictors generally used folded and rigid models to represent

the missing regions falling into a common trap where fold prediction

algorithms will create folds even when a protein is intrinsically disor-

dered. However, upon deeper investigation, this was not the only type

of flexibility required to match the data. For peptides longer than

200 amino acids that are not allosterically and symmetrically stabi-

lized, flexibility may be a factor for matching crystallographic targets.

For S0975, SAXS-assisted models matched the SAXS data better

than the reference crystal structure. The crystallographically deter-

mined structure of S0975 is elongated (Figure 6) and did not fit the

SAXS data within the statistical error (χ2 > 2). Assisted models were

more elongated conformations with mostly correct secondary struc-

ture elements. A model generated from a nonlinear NOLB NMA of

the crystal structure and consistent with the SAXS data (χ2 = 1) had

this flatter shape. Comparing the NMA model to the crystal yielded a

GDT_TS score of 73 relative to the crystal structure. If predictors are

generating conformations based on the SAXS data, then ~73 is poten-

tially the limit to the GDT_TS score they can achieve when scored

against the crystal structure for this case. Crystal contacts or other

factors likely compressed the structure.

For S0987 and looking at all assisted predictors as a group, the

mean GDT_TS improved with SAXS data for domain 1 of S0987D1

but not for the complete structure. Group 3Dbio, led by Dina

Schneidman, scored best for domain one S0987D1 (GDT_TS = 50),

compared to all the other groups participating in the assisted cate-

gory. This model was slightly better than the best server model

(GDT_TS = 48), and 3Dbio models were significantly different from all

F IGURE 4 Venn diagram highlighting oligomerization state of
CASP13 targets in the SAXS-assisted category
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server models. 3Dbio did not submit a model for the regular category.

Looking at domain two (S0987D2) and the target as a whole, assisted

predictions were same or worse than the respective group's regular. A

negative observation for both domains was that some predictors with

GDT_TS scores over 50 for their regular had SAXS-assisted scores

that dropped by as much as 30 points. Comparing the prediction

models for the entire monomer (two domains), these SAXS-assisted

models were expanded while maintaining globularity, causing the

internal fold to distort.

This expansion, not observed in the crystal lattice, could be explained

by the solution data. SAXS experiments showed interdomain flexibility

(Figure 5). S0987 was collected in two buffer conditions varying pH from

6 to 8. The SAXS profiles were markedly different changing the maxi-

mum dimension from 100 to 87 Å retaining the same molecular weight.

This data indicates flexibly linked domains that shift relative to each

other in differing conditions. Moreover, disorder predictions show a dis-

ordered region mid-way through the structure. The crystal structure

indeed shows two large domains separated by a linker. In the crystal, the

F IGURE 5 Improvements in sequence accuracy, hydration layer and flexibility are required for SAXS-assisted predictions. A, Most predictors
used a sequence that was 33 amino acids longer (gray model) than the sequence of the SAXS sample for S0949. Most predictions placed a helix
(magenta and gray) in place of a sheet structure (cyan) on an otherwise correctly predicted model. These discrepancies are marginally discernable
using SAXS calculators that adjust the hydration layer (bottom curves) but the correct model is a better fit when hydration layer is fixed (top
curves). B, Predictors did not include flexibility in fitting SAXS data. S0987 crystal structure is compact (magenta model). This crystal structure
does not fit the either SAXS data set collected at two different pHs (top and bottom curves). Allowing the model to flex at positions where
disorder is predicted (bottom DISOPRED result) and create an ensemble of models resembling the cyan model fits both data sets well varying in
the relative proportion of compact configurations. The best single conformation generated by BILBOMD (gray) cannot fit either curve. Fitting the
SAXS data with a rigid model can only be done by severely compromising the prediction of the domains

F IGURE 6 Conformations consistent with the SAXS data differ from those found in the target crystal structures. (Top) A flattened
conformation (cyan) of S0975 fits the SAXS better than the crystal structure (magenta) as shown by a plot of the ratio between experiment and
the two models, which is more sensitive than the simple overlay of curves in reciprocal space. An identical fit produces a ratio of 1.0 for all values
of q. The models are GDT_TS = 72 apart. (Bottom) An asymmetric conformation (cyan) of dimeric S0985 fits the experimental SAXS data better

than the symmetric form found in the crystal (magenta). The models are GDT_TS = 53 apart
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domains are in direct contact and the proteins maximum dimension is

~60 Å. Reconciling the crystal structure with the SAXS data suggests an

ensemble of structures rather than a single structure should be used to

measure prediction accuracy (Figure 5). To fit the SAXS data assuming

flexible sections are rigid rather than flexible would require adjustments

in protein parts that are deleterious relative to the regular predictions.

No prediction group used an ensemble to fit SAXS data. Attempting to

fit a single model to the SAXS data might have caused the observed dis-

tortion as the model tries to fit both longer and shorter distances.

For long peptides (>150 amino acids) that are not allosterically sta-

bilized through symmetric contacts, flexibility may be a consistent fea-

ture. Above 150 residues, the proteins often have multiple domains.

Therefore, the best predictors can do with a static structure and fit

SAXS data is to produce the average conformation. However, when

the goal is to match a crystal structure, the most compact member of

an ensemble may be the better choice.

3.5 | One-to-one heteromeric complex S0957

For this only 1:1 heteromeric complex with three domains, the top

scoring SAXS-assisted models were worse or equivalent in GDT_TS to

the top scoring server models. Discussion with some predictors rev-

ealed use of the refinement models released for these domains. Sergei

Grudinin, one of our coauthors, used the same starting server models

for target T0957S2 in the regular and the SAXS-assisted category and

inclusion of SAXS data enabled him to identify a different server

model, (Figure 7A). This is an example of where SAXS-assisted assess-

ment of model accuracy was used to identify a better server model.

For all predictors, target S0957 showed an overall improvement in

density correlation (Figure 3). The elongated shape characteristic of

the complex was captured by the SAXS-assisted predictors whereas

regular were universally more globular. S0957 was also one of two

targets where the crystal structure matched the SAXS data without

additional modifications.

3.6 | Three homomeric complexes (S0999, S0981,
and S0985)

The CASP13 pure homomeric proteins in the assisted category were

all composed of large chains (target/monomer weight:

S0999/170 kDa, S0981/76 kDa, and S0985/98 kDa). The large size

made prediction and assessment challenging.

F IGURE 7 Examples where SAXS-assisted models were better than best regular model from all groups or from the same group. A and B,
SAXS-assisted models for targets S0957 s2 and S0968 s1, respectively, had higher GDT_TS scores than regular models from the same group.
Ribbon diagrams of domain models (colored by Cα-Cα deviation from the crystal) are overlaid onto the respective crystal structure (black). C, The
Pierce-group SAXS assisted assembly model for target S0999 was visually better than the best regular model from the same group. Surface
models are colored by rainbow from the N to C terminus. One subunit of homodimer is partially transparent so that chains can be distinguished.
Arrows highlight the domain 1 dimer interface that is predicted in the SAXS-assisted model. D, The 3Dbio SAXS-assisted homodimer model for
target S0985 had a better GDT_TS score for the entire ensemble than the best regular model from any group and better overlaid on the crystal
structure. Arrows on regular model highlight rotation needed for proper overlay. Cartoon depiction with cylindrical helices of models when the
left subunit (red) is overlaid onto crystal structure. The right subunit is colored by rainbow as in C and is the focus of the zoom views. E, A model
for how inclusion of SAXS data would have opposing effects on the fold energy term, depending on the starting model topology. If the starting
model has the wrong topology, SAXS data would distort the wrong topology into the right shape. If the starting model has the right topology,
SAXS data would lead to an improved fold with no deterioration of the folding elements
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As with other large multidomain proteins, the T0999 crystal struc-

ture did not fit the SAXS data well, with a χ2 of 7. We were only able

to improve the fit to χ2 of 4 by creating conformations derived from

the crystal structure and defining flexible linker regions based on

global B-factors and the Translation-Libration-Screw-rotation (TLS)

from the crystallographic refinement. More advanced molecular

dynamics analysis is required to obtain a better model for the T0999

homodimer. Based on the SAXS envelope prediction, these move-

ments although significant are small and would likely not have nega-

tively impacted the predictions, at their current precision level.

Target T0999 was a 340 kD homodimer with five domains in each

subunit. At the domain level, the top scoring server scores were

already exceptionally high. Domains 1-5 had GDT_TS scores of

97, 66, 75, 93, and 80, respectively. No SAXS-assisted model scored

better than the server models. The high accuracy of the prediction

models enabled a test of whether SAXS could aid in the assembly of

relatively well-predicted domains. However, quantitative comparison

of the scores gave a conflicting message. For the highest scoring

models from the Pierce group, the Jaccard coefficient went from 0.15

for the regular model to 0.62 for the SAXS-assisted model and the QS

globular from 0.20 to 0.70. These were both interface scores. Yet, the

lDDT oligomer barely changed from 0.70 to 0.69, respectively and the

GDT_TS score went from an inconclusive 16 to 23, respectively.

Nonetheless, visual examination of the models revealed a significant

improvement for one set of models (Figure 7C). In the regular cate-

gory, the Pierce group correctly predicted the domain 4 interface but

mispredicted that domain 1 was not interacting. The shape of the

Pierce regular prediction was mistakenly tall. However, in the SAXS-

assisted Pierce model, domains 1 and 4 were correctly placed at the

dimer interface. During the SAXS-assisted prediction window, the

team identified a homodimer template for domain 1 (Brian Pierce,

pers. comm). Domain 2 appears to be flipped although otherwise posi-

tioned correctly. Domains 3 and 5 were incorrectly shifted and were

better in the Pierce regular. Although one can argue that the homo-

dimer template helped at the later timepoint of the SAXS prediction

window, the Pierce group included their regular models with their

new models, used an interdomain hinge program, and ranked the

entire set against multiple information from the SAXS data (RG, χ2, and

SAXS envelope). Pertinent to the potential of SAXS to act in model

accuracy assessment, their top ranked model was indeed the closest

in quaternary orientation to the crystal structure.

SAXS data for S0981 were of high quality. With 10% of the struc-

ture added back in a compact conformation to the crystal structure,

the fit of the data is excellent. The residues missing in the crystal

structure are likely causing the PD of 3.7.

A challenge for the predictors is that the subunits of the S0981 tri-

mer are interwoven with one another. Thus, taking a hierarchical

approach of predicting the subunit structure as independently folded

and assembling the trimer thereafter is problematic. Many prediction

algorithms aim to first predict the fold of each domain within a poly-

peptide chain, followed by assembly of domains together completing

each unique polypeptide chain, followed by assembling the polypep-

tide chains together to form a multimer and finally assembling the

multimers into heteromers. This approach fails when folding of multi-

mers relies on interweaving of the components. The configurations of

the domains within the subunit depend on the trimeric structure.

GDT_TS scores of the subunit and the full trimeric structure were all

below 20 and therefore an atomistic comparison of prediction to

model is not informative. Based on a density correlation approach,

SAXS-assisted predictions were better than regular predictions

(Figure 3). The range of scores were narrower, indicating the SAXS

data provided guidance to predictors, and the mean density correla-

tion showed better matching of the shape. Given the excellent match

of crystal to SAXS results, reviewing the strategies for using SAXS in

predicting this structure should be informative.

In the case of the homomeric assembly of S0985, the 3Dbio group

led by Dina Schneidman had a standout prediction using SAXS, out-

scoring all regular and assisted CASP13 participants (GDT_TS = 47 vs

41 for best regular, both calculated for the entire assembly;

Figure 7D). As found with S0999, a visual confirmation is more acces-

sible as some scoring methods improved with SAXS (GDT_TS and

lDDT-oligomer) while others got worse (interface scores, RMSD-glob).

When one subunit of the homodimer is overlaid (colored red), the best

regular is shifted relative to the crystal structure (see arrows). The

3Dbio model overlays better onto the crystal structure than the best

regular. Unlike S0999, the SAXS-assisted model got significantly

worse when comparing QS globular (0.30 SAXS vs 0.41 regular) and

Jaccard scores (0.29 SAXS vs 0.37 regular). At the subunit level, the

top five predictors scored equivalently assisted vs regular with

GDT_TS scores in the 50s.

A difference between the solution and crystal conformation

played a role, as SAXS data did not match the crystal structure. SEC-

SAXS data quality was excellent and the single elution peak had a

MALS mass measurement in agreement with a dimeric structure. The

subunit to subunit interface is large and SAXS data suggests alternate

rotations of the subunits relative to one another (Figure 6). A compari-

son of a best fitting SAXS conformation (applying normal modes anal-

ysis) to the MX structure yielded a GDT_TS score of 47––comparable

to 3Dbios result.

Despite the monomer to monomer orientational differences in the

crystal structure and the solution state, the interface was consistent.

In a post-CASP analysis, we tested if we could obtain the correct

interface with the SAXS data based on a prediction model. Using the

best monomeric predictions with GDT_TS > 50, exhaustive and blind

docking of monomers using C2 symmetry generated 600 symmetric

dimer models. Ranking models by a χ2 comparison of calculated and

experimental SAXS data alone provided excellent guidance on the cor-

rect interface and is exemplary of how SAXS might benefit predictors

in monomeric structures even with conformational variation.

3.7 | Heteromeric complexes that form larger
multimers (S0953, S0968, and S0980)

SAXS benefited predictors on two of three targets (S0953 and S0968)

that formed multimers of heteromers. SAXS-assisted models showed

a modest 2-4 point improvement in GDT_TS scores on predictions of
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the individual subunits of S0968 (a 2:2 heteromer) compared to best

server model from the regular category. Improvements in S0953

(a 3:1 heteromer) were best measured using a density correlation

approach, as all CASP13 fold predictions were significantly far from

the target (Figure 3). For S0980 (a 2:2 heteromer), there were no obvi-

ous improvements from the SAXS data.

For domain 1 (S0968S1), the top scoring group's best SAXS-

assisted model for SBROD (GDT_TS = 71) is the only SAXS-assisted

model that was better than the best server model (by four points). It

outperformed SBROD's best regular prediction by 10 points

(Figure 7A) and showed 83% similarity to the refinement model. The

outer beta strands were better placed in the SAXS-assisted model.

This SAXS-assisted SBROD model was not better than the best regu-

lar by A7D (GDT_TS = 78). In considering what can go wrong, MULTI-

COM, while scoring well regular, did not score well assisted.

Discussion with the MULTICOM team revealed that the SAXS data

were fit assuming that the heteromer did not further multimerize.

Fitting SAXS data with a 1:1 model for a sample that is 2:2 will con-

found the algorithm as only an over expanded 1:1 can fit the volume

of a compact 2:2 complex. This was particularly apparent in the sec-

ond subunit of S0968S2 where MULTICOM scored well regular

(GDT_TS = 71) but poorly assisted (GDT_TS = 43).

For domain 2 (S0968S2), the top scoring SBROD model in the

SAXS-assisted category (GDT_TS = 73) was nearly equivalent in score

to the top server (GDT_TS = 71). We view the two-point improve-

ment as equivalent.

Despite improving model accuracy for the individual subunits of

S0968, SAXS data did not benefit predictors for the total complex.

This is possibly due to the SAXS data fitting to a different 2:2 assem-

bly in solution. Cross-linking contacts agreed with the crystallographic

orientation of parts of the assembly. In-depth analysis will be required

to ascertain which complex is occurring in solution. Different buffer

conditions could induce transitions in multimeric assembly though fur-

ther experiments are required to rule out possible systematic errors.

Regardless of the assembly, SAXS data informed on a flat compact

object, which constrained predictions to tighter, more compact struc-

tures than were provided in the regular category.

SAXS data had a positive impact on predictions for S0953, though

not from the GDT_TS perspective. S0953 was a difficult free model-

ing target forming a 3:1 heteromeric multimer. SAXS data indicate

that the extended beta sheet region is bent relative to the

heterotetramer interface region, compared to the more linear configu-

ration observed in the crystal lattice (Figure 3).

As found for S0981, folding approaches where domains are indi-

vidually folded before assembly were confounded by the trimeric

intertwined beta structure. The best GDT_TS score for the full com-

plex from all CASP predictors came from the assisted Grudinin algo-

rithm. However, the score was very low (<18) and was only marginally

better than its un-assisted score. Low scores of this kind indicate that

predictions were not accurate. However, when viewed from a density

correlation perspective (Figure 3), predictors benefited from SAXS

data. Examination of the H0953 prediction models reveals that the

regular atomic models were often globular, and all the SAXS-assisted

models were elongated (one example in Figure 3). However, some of

the secondary structures were distorted, as if the atomic model was

being squashed into the envelope. Notably the topology of the regular

model was wrong, and conversion to the correct topology would have

required unfolding and overcoming large energy barriers (Figure 7E).

This example suggests how SAXS can be misleading when the topol-

ogy is incorrect and furthermore, that these false positives may be

detected by examining the effect of SAXS data on model accuracy

parameters (fit to optimal secondary structure parameters, nearest

neighbor, evolutionary covariance, etc.). When we examine the simi-

larity of the experimental data to the predicted data from the model

in reciprocal space, it shows how well the Grudinin group fit the curve

in reciprocal space. However, comparison of the model to the experi-

mental data in real space revealed significant differences in the curve,

suggesting real space as an alternative strategy for fitting the SAXS

data. This is another notable example where the crystal structure did

not closely fit the SAXS experimental data, indicating that the target

had a different conformation in solution. Yet the crystal was closer to

the solution data than the incorrect prediction model, indicating room

for computational improvements.

Target H0980 was a 2:2 heteromer. The top scoring SAXS-

assisted models for S0980 s1 scored below or similar to the top scor-

ing server models. Visual examination of the structure shows that one

chain folds into a globular fold with a central beta sheet that forms

the major dimer interface on itself and that the other chain has mini-

mal secondary structure, packing along the surface of the first chain.

All predictors folded the second chain in isolation from the first chain

and thus could not predict the extended chain properly. Using models

based on the crystal structure with the missing residues replaced, we

were unable to conclusively distinguish between different oligomeri-

zation states. The best fit that we could obtain had a χ2 of 2.4. The

Porod Debye number was 3.7, suggesting some flexibility. Thus, the

protein in solution was adopting multiple conformations masking a

definitive identification of the assembly state or there was an error in

the data collection (eg, buffer subtraction error). Further analysis is

needed to distinguish the possibilities.

4 | DISCUSSION

SAXS-assisted prediction showed some bright spots during CASP13

and identified areas for further improvement. In one case, the predic-

tor used SAXS for model accuracy assessment, thereby experimentally

validating one server model over another. In another case, the edges

of the protein were improved. For the most difficult targets like

S0981 and S0953, where all predictors were challenged at the fold

level, assisted predictors generated models with higher density corre-

lation to the target (Figure 3). Density correlation is not beneficial

when the starting topology is wrong. However, for predictions with

the right gross topology, the ability to fit models within the envelope

could twist folds into the correct structure, correct the secondary

structure at the edges, or reorient domains within an assembly (S0985

and S0999 examples). Thus, SAXS has potential value to prediction
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algorithms in defining interdomain and intersubunit orientations

and/or conformational plasticity, which are critically important,

unsolved areas of protein structure prediction. Improvements in

assisted algorithms, experimental data quality and in how SAXS results

were communicated to predictors by CASP organizers all contributed

to this success. However, for fold accuracy of the domains based on

GDT_TS, no SAXS-assisted model was better than best regular model.

Below we discuss factors that could be addressed for further improve-

ment and the importance of continuing assisted prediction in

CASP14.

4.1 | Solution structure vs crystal structure

Of particular relevance to future CASPs is that SAXS-based models of

CASP targets, many of which are selected by the prerequisite of hav-

ing been crystallized, are not usually monomeric and rigid. This dis-

crepancy between solution and crystal structures has precedent but

has been limited to anecdotal examples in the case of SAXS.29-34 In

light of the game changing accuracy gains CASP predictors have made

in the free modeling regular categories in CASP12 and 13 and their

use of crystallographic databases, a surprising new realization is how

few proteins are in their crystallographic conformation in solution,

based on agreement with SAXS data. In CASP13, over half of the pro-

teins (S0953, S0968, S0975, S0980, S0985, S0987, and S0999) were

found to be in a different architectural conformation than that found

in the crystal, a number consistent with a database study on differ-

ences between NMR and crystal structures.29 These cases are consid-

ered different when a full-length model, based on the crystal structure

and with missing regions replaced, does not match the SAXS data.

Importantly, these were not conformational differences of disordered

regions but rather differences in the relative position of one domain

or sub-domain to another. Although we cannot exclude the possibility

that the disagreement is from inaccuracies in modeling the disordered

region, it is our experience that it is more often the other way

around––that the disordered region modeling can mask domain

movements. Thus, we view our assessments that certain targets are in

a different conformation in solution as fairly reliable but not conclu-

sive. Additional experimental analysis, such as NMR, would be

required for a conclusive assessment. For these proteins, models

based on crystal structures adjusted through domain reorientation or

normal modes analysis better fit the SAXS data. Models that fit the

SAXS data of these proteins therefore cannot match the crystal struc-

ture exactly (GDT_TS of 100). Based on CASP13 target S0985, the

solution conformation may differ from that of its crystal by as much

as GDT_TS of 50, which is on par with prediction accuracy on many

targets. In other words, a prediction may accurately represent the

conformation in solution but would not score well against the crystal

structure. More emphasis on nonrigid evaluation scores, such as lDDT,

CAD, SphereGrinder, or RPF may in part address these structural

discrepancies.35-37

Including SAXS data is thus a double-edged sword. CASP often

uses not-yet-released crystal structures as a source for their targets

and, for those targets, aims for a perfect fit to the precisely

determined crystal structure. Given the conformational differences

between solution and crystallographic conditions, predictors cannot

reach a GDT_TS of 100 by accurately fitting SAXS data. However,

SAXS data provides information on the structure adopted in arguably

more physiologically and functionally relevant conditions. For exam-

ple, recent comparisons of SEC-SAXS data taken across the peak

unveils functional DNA repair complex conformations in solution can

sample the compact crystal structure conformations, but these inter-

convert with more extended conformations that enable the functional

release of contacts.38

In the short term, moving away from crystallography as the gold

standard, which has formed the backbone of CASP, is likely unwise.

Small targets are less likely to have these challenges, and models

fitting SAXS data may hope to achieve GDT_TS > 80. However, for

large targets where conformational flexibility is more likely, reconciling

a solution-guided prediction with a crystallographic target may only

be possible by adjusting the SAXS conformation. Predictors may need

to compact or make commensurate adjustments that consider crystal-

lographic lattice packing. A normal modes analysis of each prediction

may be helpful to produce the most compact configuration.

In the longer term, conformationally flexible structures as indi-

cated by the SAXS data are likely to be an increasingly important con-

sideration. This is particularly true as machine learning becomes a

central tool for prediction. Machine learning is particularly prone to

learning inherent flaws in training data sets and will only reinforce

what is likely to be a view of proteins that is systematically mis-

represented. Perhaps inclusion of SAXS data to training databases

could improve algorithms to model solution conformations.

4.2 | Fitting SAXS data with ensembles for flexible
systems

S0987 was an example where an ensemble was required to fit the

SAXS data rather than one rigid structure (Figure 5). However, the

same issue will occur for protein disordered regions and those under-

going conformational changes. For disordered regions, several predic-

tors continue to fold these regions despite clear indications provided

to the contrary by disorder prediction algorithms. As the accuracy of

predictions becomes better, the inherently flexible nature of proteins

will require more consideration. Some conformational modes are

indistinguishable by SAXS, others like those discussed in the preced-

ing section have observable impacts. Fitting a SAXS curve from a flexi-

ble or disordered system with a single rigid structure will impact other

parts of the model. If the protein is flexible and the experimental

structure is a crystal structure, the CASP community may have to

decide between keeping the crystal structure as the reference struc-

ture for assessment or generating reference model(s) based on the

crystal structure but modified to fit the SAXS data. If the former, then

predictors may need to compact their models before submitting. If the

latter, development of methods to generate realistic SAXS-based

models with proper geometry in silico is needed. These methods

should be capable of identifying regions of the protein that arti-

factually pack in the crystal lattice.33
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4.3 | Algorithms for multimeric structures

When we first introduced high-throughput SAXS analysis, we were

surprised by the number of oligomers.2 At least half of the proteins

we interrogated formed multimers. In this round of CASP, this was

further accentuated as 63% were multimers: homomers or

heteromers. In SAXS, information on the monomeric target is convo-

luted with information on higher order assembly. Predictors must

become more aware of the oligomerization state and assemble models

accordingly.

Predictors were aware of heteromeric structure designation and

appropriate steps were taken to fit the SAXS data as heteromeric.

However, consideration of homomeric structures was less uniform

among predictors. Several predictors fit monomers into SAXS data

from a homomer with detrimental consequences on their model.

Monomeric proteins are likely to become the exception in CASP as

most new folds may come from multimeric assemblies.

One reason we expect many new folds will come from multimeric

structures is that multimerization enables intertwined polypeptides or

domains; opening up new folding possibilities. With the hard targets

for the assisted category in CASP13, many folds were obligate homo-

or hetero-oligomers, meaning that the subunits likely fold coopera-

tively. In contrast, predictor models of these targets were assemblies

of independent folds that were rigidly assembled. In predicting these

structures, the commonly used hierarchical approach of first folding

domains independently, then assembling domains, and finally bringing

subunits together will typically fail. On the other hand, SAXS can pro-

vide insight into whether straightforward independent folding of each

subunit has generated an accurate topology or if a more sophisticated

approach is required.

4.4 | Distinguishing incorrect vs correct starting
model topology with SAXS data

While many arrangements of the same number of atoms can fit a

SAXS profile, most are energetically impossible. Scoring functions pro-

vide constraints on allowable configurations. If protein topology is dis-

torted to an energetically unfavorable configuration to fit SAXS data,

this distortion signals that the starting model may have the wrong

topology. So, new starting models with different topologies should be

considered.

For example, many predictors utilized starting models from regular

prediction approaches. When these starting models did not fit the

SAXS data, movements of secondary structures were made to

improve fit. Few truly topological changes were made between

assisted and regular. These CASP results show that SAXS may drive a

topologically correct model toward a better energy score with better

features of a folded protein, but can also drive a topologically incor-

rect model toward a worse energy score (Figure 6). Topologically

diverse starting models would increase the chances that there is a

topologically correct model that the SAXS data can identify and

improve. Using a similar paradigm could aid in assessing whether

multimeric models generated by hierarchical methods need to be re-

evaluated with an obligate multimer fold topology.

Many assisted algorithms explicitly included a SAXS comparison

term between model and experiment in their scoring function. SAXS

comparison can be done in reciprocal or in real space. The two are

related through a Fourier transform. A challenge for using reciprocal

space is the exponential decay as a function of the scattering angle q,

which is characteristic of the scattering contrast between solvent and

protein and can be affected by hydration layer considerations or buffer

subtraction errors rather than fold. Many reciprocal comparison methods

allow this feature to dominate the outcome. Using a comparison in real

space removes this strong bias (Figure 3), and features related to fold

become more strongly weighted. In addition, the real space function has

a relationship to contact distances used in many prediction approaches

providing interesting options for score function construction.

If reciprocal space is used, accuracy of prediction has reached the

stage where the hydration layer impacts the ability of SAXS to dis-

criminate between close models. Many SAXS calculators allow the

hydration layer to adjust in both how ordered the structure is and

how much scattering contrast relative to bulk water it has. In the case

of S0949 (Figure 5), fixing the hydration layer to default values for all

models provided the necessary discrimination between the target and

another fold of equivalent volume. Prediction of the hydration layer in

SAXS, crystallography, and EM is an active area of research and will

benefit the structure prediction community.

4.5 | Sequences, assessment, and experimental
considerations

Variation in the sequence of predicted models and the SAXS protein

construct was much smaller than in CASP12 (Table 2).12 However, the

margin of improvement that predictors were looking for with SAXS

data in CASP13 also became more constricted, particularly for small

monomeric systems. For 5 of 11 targets, the model entries matched

the SAXS sample in sequence (Table 2). For four targets (S0949,

S0980, S0981, S0987), the model sequence entries all were different

from the SAXS samples and varied from each other. Predictors are

allowed to submit incomplete models, but using an incorrect sequence

does not make sense for fitting to SAXS data. For S0985 and S0992,

some prediction entries had the correct sequence and some did not.

Completely correct sequences are particularly important for small pro-

teins and proteins with disordered regions. For these systems, a disor-

dered and extended five amino acid terminus can increase the

maximum dimension by 12.5 Å, for example.13

Assessment of predictor success remains somewhat complex. Tar-

get size and difficulty require more than one scoring criterion. Herein,

we utilized GDT_TS and density correlation, however, alternate met-

rics may have improved assessment. In addition, models for the

refinement category were released at the same time as SAXS data.

These models potentially provide additional information beyond what

the regular predictors used as input complicating assessment in some

cases. Delaying the release of these models during prediction would

remove this uncertainty in assessment.
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On the experimental side, several improvements can be made in

SAXS data collection to better aid structure prediction. Buffer sub-

traction from sample scattering can lead to systematic errors. In

CASP13 measurements, buffer subtraction differences between HT-

SAXS and SEC-SAXS were observed. Significant and recent improve-

ments have been made at the SIBYLS beamline that have reduced

these errors.

Data will be provided to higher angle. CASP13 measurements

were generally stopped at q < 0.35 Å−1 as few SAXS calculators

showed accuracy beyond this range. However, as the CASP commu-

nity has become more sophisticated with SAXS analysis and the

increased need for resolution of prediction, treatment of wider angles

may provide some additional discrimination.

Based on this CASP13 analysis, we recommend more attention

paid to eight points: (a) the correct sequence corresponding to the

SAXS sample, (b) the solution oligomerization state, (c) intrinsic disor-

der predictions, (d) ensembles of conformations when necessary,

(e) cooperative folding possible for obligate homo or hetero-oligo-

mers, (f) a topologically diverse set of starting models; (g) the effect of

SAXS data on model accuracy, and (h) post-SAXS compaction to

mimic crystallographic conditions or a change in how CASP scores

model accuracy. As providers of SAXS data, we will work in parallel

with predictors to create tools and improve SAXS data quality for

CASP scientists.

5 | CONCLUSION

The experimentally assisted category seeks to supplement sequence

information with realistically attainable experimental data for predic-

tion of any soluble protein target. We identified clear examples where

SAXS aided predictors in model accuracy assessment of their models

at the domain fold level and for assembly. For some easier folds, we

found that CASP13 prediction has reached an accuracy approaching

the differences between solution conformation and crystallographic

conformation. This will limit the impact of SAXS in assisting prediction

algorithms in cases where the reference structure is a crystal structure

and the crystal structure is not consistent with the SAXS data. Predic-

tors may be able to take steps that modify their SAXS-assisted predic-

tion into a more crystallographic one, or what the models are scored

against may be changed in future CASPs. Prediction algorithms need

and will continue to benefit from the precision of crystallography for

accurate residue interactions, but defining the solution conformation

by SAXS and/or NMR is likely important for biological relevance. Biol-

ogy occurs in the active sites and interfaces on the protein surface,

indicating that the ultimate bar for predicted models is not only the

right fold but also the correct surface. These functional surfaces are

impacted by oligomerization orientation and disordered regions––the

features on which solution data can be informative. Structure predic-

tion has the powerful potential to provide biologically relevant models

with atomic accuracy that encodes the inherent conformations of pro-

teins in solution.
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