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Abstract—Gene Expression Matrices (GEMs) are a fundamen-
tal data type in the genomics domain. As the size and scope
of genomics experiments increase, researchers are struggling
to process large GEMs through downstream workflows with
currently accepted practices. In this paper, we propose a method-
ology to reduce the size of GEMs using multiple approaches.
Our method partitions data into discrete fields based on data
type and employs state-of-the-art lossless and lossy compression
algorithms to reduce the input data size. This work explores a
variety of lossless and lossy compression methods to determine
which methods work the best for each component of a GEM.
We evaluate the accuracy of the compressed GEMs by running
them through the Knowledge Independent Network Construction
(KINC) workflow and comparing the quality of the resulting
gene co-expression network with a lossless control to verify result
fidelity. Results show that utilizing a combination of lossy and
lossless compression results in compression ratios up to 9.77×
on a Yeast GEM, while still preserving the biological integrity of
the data. Usage of the compression methodology on the Cancer
Cell Line Encyclopedia(CCLE) GEM resulted in compression
ratios up to 9.26×. By using this methodology, researchers in the
Genomics domain may be able to process previously inaccessible
GEMs while realizing significant reduction in computational
costs.

Index Terms—lossy compression, gene expression matrices,
genomics, gene co-expression networks, RNAseq

I. INTRODUCTION

A Gene Expression Matrix (GEM) is a data structure that
contains comprehensive gene expression quantification for m
genes across n biological samples. GEMs are commonly
used in the genomics discipline and have been the source
of significant findings since the commercialization of high-
density microarrays in the 1990s [1]. GEMs are used as
input to various scientific workflows such as differential gene
expression [2], [3] and gene co-expression network (GCN)
analysis [4], [5]. Due to recent technological advancements
in cyberinfrastructure [6]–[9] and DNA sequencing technol-
ogy [10], the accumulation of RNA expression data-sets is
geometric leading to larger GEMs for thousands of species.
It is becoming routine to process biomedical GEMs with 50-
80 thousand genes and 10-20 thousand samples. In the near
future, it is conceivable that GEMs could swell to millions of
samples and 200 thousand gene products. Although GEMs are
able to fit into most modern storage systems, complex matrix
operations in downstream workflows render many GEMs too

large for processing in memory. Even if the processing of a
large GEM is made possible, the required computational and
monetary resources are tangible and need to be controlled.

Compression is a standard practice to reduce data set
size. Lossless compression preserves all of the original data,
ensuring that no information is lost. For floating-point data-
sets, the compression ratio of lossless compression is limited
by its guarantee of exact accuracy [11]. One solution to
improve the compression ratio is lossy compression. Lossy
compression trades the loss of precision within a certain
error bound for compression ratios than can be more than an
order-of-magnitude more than the best lossless compression
methods [12]. With lossy compression, the compressabilty of a
data-set is dependant on the selection of error bound and error
bounding metric, and selection is often application dependant.

Given the increasing difficulty to process GEMs through
downstream workflows, and the potential benefits offered
by data compression, we introduce the concept of lossless
and lossy compression of GEMs. Compression of GEMs is
intended to reduce the size of the data while still maintaining
its integrity. This paper presents a methodology of compres-
sion GEMs and serves as a first step to integrate in-line
lossy compression into genomic workflows. Integrating lossy
compression into genomic workflows enables researchers to
process previously inaccessible GEMs and realize significant
reduction in resource costs. This paper makes the following
contributions:

• the first application of lossy compression on GEMs,
including a representative comparison on the performance
of GEM compression with state-of-the-art compression
methods; and

• a methodology for compressing GEMs that still maintains
the biological integrity of the data.

II. BACKGROUND

A. Data Compression

To mitigate bandwidth and storage bottlenecks, HPC ap-
plications employ a variety of data reduction techniques.
Decimation saves I/O bandwidth and capacity by storing data
from a subset of the simulation’s time-steps. Decreasing the
number of time-steps logged for analysis diminishes the ability
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to conduct meaningful scientific research. Data compression
techniques reduce the per time-step data size, enabling more
time-steps to be saved for analysis. Data compression tech-
niques fall into one of two classifications: lossless and lossy.
Lossless compressors such as FPC [13], fp-zip [14], Gzip [15],
and zstd [16] reduce the data set’s size without impacting
the accuracy of the data. However, for data coming from
HPC applications, most achieve compression ratios between
1–4×. Lossy data compression is able to trade accuracy
in the decompressed data for larger reductions in data set
size. Truncating data from 64-bit precision to 32-bit precision
results in a compression ratio of 2×. Specially designed lossy
compression algorithms such as SZ [12] and ZFP [17] enable
compression ratios of 10× or more while at the same time
bounding the error introduced on a per element or a per
data array basis. Although lossy compression results in large
reductions in data size, setting the compressor’s error bound
is often domain specific [18]–[20]. Understanding the best
error bound and error bounding mode for particular disciplines
remains an open question.

B. Gene Expression Matrix (GEM)

Modern high-throughput DNA sequencing technology has
dramatically increased the resolution of observations into
biological systems at the molecular level. It is now routine
for biological research labs to re-sequence the DNA of whole
chromosomes from an individual organism to identify stable
DNA sequence differences (DNA polymorphisms) between
individuals to determine the interactions leading to alternate
expression of a trait. DNA polymorphisms, stored in VCF-
format [21], can be inserted into genotype matrices that
coded as integers representing the specific sequence differ-
ences at (chromosome, start, stop) coordinates on a reference
genome scaffold for any number of individual genomes. High-
throughput DNA sequencing experiments answer critical ques-
tions in biology and are being deposited in repositories at
a rapid pace opening the door for mixing experiments and
mining the datasets for new insight. The National Center for
Biotechnology Information (NCBI) Sequence Read Archive
(SRA) database [22] contains over 30 petabytes of raw DNA
sequence datasets from thousands of species.

In addition to the measurement of stable DNA polymor-
phisms between organisms, life scientists measure dynamic
gene expression in a cell, tissue, or organ. In a typical
experiment, control samples are compared to similar samples
presented with an alternate condition. For example, normal
kidney tissue can be compared to tumor tissue from the same
patient [23]; plant roots can be compared between normal or
reduced fertilizer conditions [23], [24]. Samples are processed
using wet-lab molecular biology techniques to extract RNA
from all samples, RNA is converted to cDNA, and the cDNA
molecules are sequenced at the scale of tens of millions of
DNA sequence reads and stored in FASTQ-format files [25].
In the dry-lab phase of the experiment, individual cDNA
sequence reads are aligned to a reference genome of the target
species to create a SAM file [26].

The expression level of each of thousands of genes for
each sample are quantified and stored in floating-point Gene
Expression Matrix (GEM). A representative computational
workflow to prepare a GEM can be found at [27]. GEMs
are a fundamental datatype for downstream analysis of gene
expression relationships between biological conditions. For
example, all of the thousands of genes in the GEM can be
analyzed for pairwise correlation within specific conditions —
e.g., Knowledge Independent Network Construction (KINC)
algorithm [5]. Alternatively, genes can be tested for statisti-
cally significant differential expression between conditions —
e.g. DEseq2 algorithm [2]. Our group mines a GEM from the
Genotype-Tissue Expression (GTEx) project [28] comprising
of gene expression measurements for 56,202 human genes
across 11,688 samples representing 53 human tissue types.
We also mine a GEM from The Cancer Genome Atlas
(TCGA) [29] that contains 60,101 gene expression measure-
ments across 11,093 tumor and normal tissue representing 33
types of cancer. As DNA sequencing costs fall and data repos-
itories fill with useful datasets, GEMs consume considerable
amount of storage, posing new computational challenges. In
this paper, we describe computational optimization techniques
focused on real gene expression quantification data stored in
floating point GEMs with ASCII metadata — i.e., gene and
sample identifiers.

C. Knowledge Independent Network Construction (KINC)

Biological noise is introduced from natural, systematic and
statistical variation sources [5], [30]–[32]. Gene expression,
for example, is intrinsically noisy within a cell or tissue and
further systemic noise is introduced during the measurement
process. When the cellular conditions change due to develop-
mental or environmental perturbations of the system, extrinsic
noise is added. Further the choice of test and normalization
statistics and their algorithm implementations introduce noise
during the processing of raw RNAseq or microarray measure-
ments created by selection of data processing tools. We use the
Knowledge Independent Network Construction (KINC) gene
co-expression network (GCN) construction software to reduce
natural extrinsic condition-specific noise by clustering samples
prior to gene correlation analysis [5].

In GEMs, gene expression noise is present in the floating
point values that quantify the expression of a particular gene
in each sample. A fundamental challenge present in any type
of computational science is determining how much of the
precision of generated data is actually significant and not just
random noise. For GEMs, there is currently no standard for
how much precision can be discarded. Lossy compression
methods produce better compression ratios when more of the
original data is able to be discarded, so finding the optimal
degree of compression for GEMs is of interest. The optimal
degree of compression for GEMs is defined as the error bound
of a lossy compressor that results in the best compression ratio
for a GEM while still maintaining the biological integrity of
the data by comparing a KINC GCN built from a compressed
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Fig. 1. Use of the GEMtrim methodology with KINC compared to the legacy practice of GCN creation.

GEM to one that was constructed with KINC without com-
pression.

III. RELATED WORK

Lossy compression algorithms have seen rapid development
recently. Work has been done to improve the performance
of lossy compression algorithms for HPC [33], [34], provide
more error bounding metrics such as PSNR [35] and point-
wise relative error [36]. As compressors develop, researches
have explore how to integrate them into HPC applications and
hte impact or accuracy [18]–[20], [37], [38].

Many methodologies have been proposed to reduce the size
of genomic data in various stages of the sequencing and anal-
ysis pipeline. Several lossless compression methods are used
to compress raw (FASTQ) and aligned and/or pseudoaligned
(SAM/BAM) high-throughput sequenced data [39]–[43]. In
some workflows, lossy compression is used on the entirety
of the sequenced data, while other approaches only use lossy
compression on specific parts of FASTQ files, such as quality
values [40], [42], [44], [45]. These data are then used as input
to another process in the pipeline, for example, Hisat2 [46],
Kallisto [47], or Salmon [48] to create a GEM file for further
analysis. To the authors’ knowledge, our work exploring the
application of lossy compression to GEM files is the first of
its kind.

IV. COMPRESSING GEMS

A. Overview

This section describes a methodology for the compression
of GEMs for downstream processing. This methodology rep-
resents the most viable option that is available to researchers
that intend to compress GEMs. We introduce GEMtrim, a
methodology that converts state-of-the practice GEM files into
a compressed trimmed GEM (tGEM):

1) The separation of textual and floating-point data from
the GEM.

2) Lossless compression of the binary textual data.
3) Lossy compression of the binary floating-point data.
4) Recombination of the floating-point and binary data into

the final tGEM file.

Figure 1 visualizes this process. The standard “Legacy”
process of GCN production shows a raw GEM (shown in
red) is used as input for the KINC workflow to produce a
GCN. With the proposed GEMtrim methodology (highlighted
in green), the GEM is split into textual (hGEM) and floating-
point (cGEM) data. The textual data is compressed using a
lossless method while lossy compression is utilized for the
floating-point data. The compressed headers and floating-point
data are combined into a single binary format, creating a
tGEM(shown in green). The tGEM is used as input by KINC
or any other compatible workflow. Currently KINC does not
accept tGEM inputs; therefore, we convert tGEMs to standard
GEMs for the purposes of this study. Future work will alleviate
this conversion by adding a tGEM reader to KINC.

B. Description

The GEM data structure is composed of a m×n heteroge-
neous matrix of floating-point and textual values, prepended
with a row of sample headers and a column of gene headers.
When a gene is not expressed in a particular sample, the value
is replaced with a “NA” value to denote its lack of expression.
To compress GEMs, the textual data within the GEM has to
be isolated from the floating-point values of gene expression.
The headers are removed from the GEM and compressed
separately in a lossless manner, then stored for reinsertion
downstream. The “NA” values are replaced with floating-point
values of “0.0”, with their locations being stored for reinsertion
downstream. The resulting two dimensional matrix of floating-
point values is then converted from the original ASCII format
to a binary file. This binary data is designated as a cleaned
version of the original GEM, and is then passed as input for the
compression step. Textual data is sent to lossless compression
algorithms. The floating-point data is sent to either a lossless
or lossy compressor. After compression, the binary data is
combined to into a trimmed GEM (tGEM) that is suitable
as KINC input. The tGEM is stored as a compressed binary
version of the raw GEM, and can be used as input for any
compatible workflow.
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V. EXPERIMENTAL RESULTS

A. Experimental Design

To determine how much precision of a GEM is required
to reproduce a GCN, we evaluate how lossy compression of
tGEMs derived from real RNA-seq data impacts the fidelity
of KINC. This section describes the steps taken to produce
the a methodology for the compression of GEMs, while still
maintaining the biological integrity of the data that is needed
for downstream processing.

For evaluation, we use a yeast GEM comparing the RNA
expression of 7,050 genes across 188 yeast samples. This
small GEM is used for initial testing to allow for practical
downstream processing through the KINC (v3.2.2) workflow,
which would need to be done for each compression method
used. In addition, we explore a larger GEM consisting of
56,202 genes across 1,019 human cancer cell lines (Cancer
Cell Line Encyclopedia (CCLE) [49]).

To convert and compress GEMs into tGEMs, we explore
a variety of lossless and lossy compression methods rep-
resentative of the methods currently available in an HPC
environment. In particular, we explore zSTD (v1.4.3) [16],
zLib (v1.2.11), gZip (v1.5.0) [15], bZip2 (v1.0.6) [50], fp-
zip (v1.2.0) [14], and the lossless mode of ZFP (v0.5.5) [17]
for lossless compression. For lossy compression, we use SZ
(v2.0.2.0) [34] and ZFP (v0.5.5) [17] and a variety of error
bounds and error bounding types.

All compression are done on Clemson’s Palmetto Cluster,
using a single node with an Intel Xeon Gold 6148 CPU.

B. Yeast

The yeast GEM was successfully compressed using each
configuration. Although we test 40 different compression
configurations, only data for those that passed KINC validation
are displayed.

Figure 2 shows the compression ratio of the final com-
pressed tGEM file(headers and expression values) for each
compressor and compression configuration. The highest com-
pression ratio of 9.77× was produced using SZ with the Peak
Signal-to-Noise Ratio (PSNR) error bound set to 100, followed
by 9.19× with the Point-Wise Relative (PWREL) error bound
set to 1e−4. The lossless compressors all resulted in ratios
around 4.8×, with the exception of fp-zip at 5.45× and the
lossless mode of ZFP at 4.16×.

Figure 3 shows the compression and decompression band-
width (MB/s) of each configuration. The best lossy compres-
sion bandwidth was achieved by SZ using the PSNR error
bound set to 100. While the lossless compressors had similar
performance in compression ratio, they varied on compres-
sion bandwidth, with zLib outperforming and bZip2 under-
performing the rest. The best decompression bandwidth was
achieved by SZ using the PSNR error bound set to 100. The
lossless compressors differed greatly when decompressing,
with with fp-zip outperforming and zSTD under-performing
the rest.
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Fig. 2. Compression ratio of lossless and lossy compression methods on yeast
data.
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Fig. 3. Compression and Decompression bandwidth of lossless and lossy
compression methods on yeast data.

1) Accuracy: To verify accuracy of the tGEM, the resulting
binary data was then read into a script that reinserted the
sample and gene headers as the first row and column and then
reinserted each “NA” value in its original location. In order
to prevent altering KINC source code, the resulting GEM was
then written back into the original ASCII format needed for
use as input. Future work will add a tGEM reading module
to KINC. Each GEM is sent as input for the KINC workflow.
KINC’s output is then compared to a reference GCN using a
uncompressed GEM.

We define two metrics as significant for comparison of
GCNs: significance threshold and the number of edges in
the network. The significance threshold value is the Spear-
man correlation cut-off determined by Random Matrix The-
ory [5] which builds a biologically realistic scale-free gene
co-expression graph. The number of edges represent the
number of significant gene correlations that are assumed to
be biologically relevant co-functional genetic relationships. If
the significance threshold and number of edges from a lossy
KINC run is identical to the lossless KINC run used as a
control, the network and the lossy compression method used
are designated as valid.

Of the 34 lossy compression configurations tested, only
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Fig. 4. Compression ratios of lossless and lossy compression methods on
CCLE data.

10 passed KINC validation. All 6 lossless methods passed,
as the data is identical to the original GEM. The validation
described above only allows GCNs with identical thresholds
values and edges to pass. The GCN produced using the GEM
compressed by SZ using the PSNR bound set to 90 has
the correct threshold and only one less edge(2964) then the
control(2965), but failed validation. Although the GCNs were
essentially the same, further work must be done to determine
how much error between GCNs is acceptable for validation.

C. Cancer Cell Line Encyclopedia (CCLE)

Compared to the yeast GEM, the CCLE GEM [49] is
substantially larger. This GEM consists of 56,202 genes across
1,019 human cancer cell lines. From the results of Section V-B,
we select the configurations that yield valid results to com-
press and validate the CCLE GEM. The compression ratios
and compression/decompression bandwidths for the selected
configurations are shown in Figures 4 and 5.

Figure 4 shows the compression ratio of the final com-
pressed tGEM file(headers and expression values) for each
compressor and compression configuration. The highest com-
pression ratio of 9.26× was produced using SZ with the
PSNR error bound set to 100, followed by 8.78× with the
Relative (REL) error bound set to 1e−5. The only lossless
compressor tested on the CCLE GEM was fp-zip, as it had
the best performance on the yeast GEM. Compression with
fp-zip resulted in a ratio around 4.75×.

Figure 5 shows the compression and decompression band-
width (MB/s) of each configuration. The best lossy compres-
sion bandwidth was achieved by SZ using the PSNR error
bound set to 100. The best lossy decompression bandwidth
was achieved by SZ using the PSNR error bound set to 100.
The one lossless compressor had the slowest decompression
bandwidth, yet had the highest compression bandwidth tested.

PSNR is the best performing error bound tested in terms
of compression ratio and lossy compression bandwidth. These
results remain constant for the yeast and CCLE GEMs. PSNR
will be a major focus of future work that attempts to estimate
the ideal error bound value based the size of a given GEM.
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VI. CONCLUSION AND FUTURE WORK

As the number and size of GEMs increase, it becomes
difficult to process the in downstream workflows. Researchers
from various backgrounds will benefit from data reduction
techniques that were previously unnecessary. This paper rep-
resents the first application of state-of-the-art compression
methods to a GEM, a fundamental data structure used in
genomics. We devise a methodology known as GEMtrim to
convert state-of-the-practice GEMs to versions with lower
memory requirements. GEMtrim employs both lossy and loss-
less compression. Results show that utilizing GEMtrim lead
to compression ratios up to 9.77× on a yeast GEM, while still
preserving the biological integrity of the data. Usage of this
compression methodology on a larger CCLE GEM resulted in
compression ratios up to 9.26×.

This work represents the first step toward in-line lossy
compression in genomics workflows. Our future work plans to
explore the compression of temporary computations in KINC
to lower its memory footprint. Reducing the memory footprint
of input files and of the application enables researchers to
process previously inaccessible GEMs and realize significant
reduction in resource costs.
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