
Received September 27, 2019, accepted October 21, 2019, date of publication November 4, 2019,
date of current version November 14, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2951284

GPU Implementation of Pairwise Gaussian
Mixture Models for Multi-Modal Gene
Co-Expression Networks
BENJAMIN T. SHEALY 1,∗ , (Student Member, IEEE), JOSH J. R. BURNS2,∗ ,
MELISSA C. SMITH 1, (Senior Member, IEEE), F. ALEX FELTUS3,
AND STEPHEN P. FICKLIN2
1Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA
2Department of Horticulture, Washington State University, Pullman, WA 99163, USA
3Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA

Corresponding author: Stephen P. Ficklin (stephen.ficklin@wsu.edu)

∗Benjamin T. Shealy and Josh J. R. Burns are co-first authors and have contributed equally to this work.

This work was supported in part by the National Science Foundation Award #1659300 ‘‘CC*Data: National Cyberinfrastructure for
Scientific Data Analysis at Scale (SciDAS).’’

ABSTRACT Gene co-expression networks (GCNs) are widely used in bioinformatics research to perform
system-level analyses of organisms based on the pairwise correlation between all expressed genes. For
large datasets which contain samples from multiple sources, gene pairs can exhibit multiple modes of co-
expression which confound typical correlation approaches. A clustering method such as Gaussian Mixture
Models (GMMs) may be used to separate the modes of each gene pair in an unsupervised manner, prior to
computing the correlation of each mode. However, pairwise clustering significantly increases the computa-
tional cost of constructing a GCN, as several clustering models must be evaluated for each gene pair, and
the number of gene pairs grows rapidly with the number of genes. In this paper, we present a heterogeneous,
high-throughput multi-CPU/GPU software package for multi-modal GCN construction, implemented in
version 3 of the Knowledge Independent Network Construction (KINC) software. We determine the optimal
values for several execution parameters of the GPU implementation, and we benchmark our CPU and GPU
implementations for up to 8 CPUs/GPUs. Our GPU implementation achieves a 167x speedup over the
corresponding CPU implementation, as well as a 500x speedup over KINCv1.

INDEX TERMS Bioinformatics, Gaussian mixture model, gene co-expression network, gene expression
matrix, GPU computing, high-performance computing, high-throughput computing.

I. INTRODUCTION
High-throughput gene expression profiling technologies such
as microarrays, and more recently RNA-Seq, have enabled
researchers to examine molecular systems at unprecedented
resolution. With these technologies, it is possible to mea-
sure individual molecules in order to quantify gene output
and detect subtle DNA sequence changes in billion of let-
ters of genetic code. Gene output across the tree of life is
directly connected to traits of importance that directly affect
human health, food security, response to the climate, and
other grand challenges. Thus, understanding the relationship
between gene output data and traits of importance has broad

The associate editor coordinating the review of this manuscript and

approving it for publication was Shadi Alawneh .

impact for biological research. With high-throughput gene
measurements, it is easier for the biologist to ask questions
at the systems-level and apply the scientific method while
accounting for the inherent complexity of biological phe-
nomena. These high-throughput measurement techniques,
especially RNA-Seq, have also led to a geometric increase
in the amount of new data. In the last decade, the NCBI
Sequence Read Archive (SRA) repository alone has received
more than 30 petabytes of sequence data [1] with much
of that data derived from experiments designed to measure
gene expression under a variety of biological conditions.
This increase in data now affords the opportunity, through
combined datasets, to gain new insights beyond the scope
of the original experiments. Moreover, decreased costs of
DNA sequencing enables discrete experiments to include

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 160845

https://orcid.org/0000-0002-2230-7404
https://orcid.org/0000-0003-0798-8536
https://orcid.org/0000-0002-3360-9440

B. T. Shealy et al.: GPU Implementation of Pairwise GMMs for Multi-Modal Gene Co-Expression Networks

measurements for multiple experimental conditions. In both
cases, the result is increasingly multidimensional datasets
where intrinsic and extrinsic variation are confounding.
Accelerated computational approaches are needed to address
challenges of analyzing these high dimensional data, and
to tease out relationships between genes and the biological
function under which they are expressed.

In this workwe describe a heterogeneous, high-throughput,
multi-CPU/GPU implementation that addresses the chal-
lenges of analyzing high-dimensional gene expression data,
and models that data in a graph structure known as a gene
co-expression network (GCN). We developed this software
and tested it on a cluster equipped with NVIDIA P100 and
V100 GPUs. Here, we provide descriptions of the data con-
sumed and produced by this application, as well as the algo-
rithms used by it. We examine and optimize several execution
parameters of our implementation, and wemeasure its overall
speedup over previous work for several hardware resource
sets. We also discuss two key performance issues with the
(naive) GMM kernel – memory coalescing and workload
balance – and we measure the effect of the optimizations that
we applied to mitigate these bottlenecks.

II. BACKGROUND
A. GENE EXPRESSION MATRIX
A gene expression matrix (GEM) is a n × m dataset with n
rows of genes andm columns of samples. Each element in the
GEM is a numeric value that represents the expression level of
a particular gene in a particular sample. Higher relative gene
expression often correlates with an increase in the functional
activity of that gene. The two most common technologies for
measuring gene expression are microarray (an older chip-
based DNA hybridization assay) and RNA-Seq (a newer
DNA-sequencing approach that often yields gigabytes of data
for a single sample). The expression-level value is a positive
real value which can be represented as a florescence inten-
sity measure (from microarrays), a raw integer count, or a
normalized count either as Fragments Per Kilobase of tran-
script per Million mapped reads (FPKM), or Transcripts Per
Kilobase Million (TPM) (from RNA-Seq). Additionally, it is
common practice to transform the GEM using an element-
wise log2 transformation. As a result, genes which were
not expressed or insufficiently measured (count = 0) are
transformed to −∞, and thus represented in the transformed
matrix as a missing value (NAN).

B. GENE CO-EXPRESSION NETWORKS
A gene co-expression network (GCN) is a graph in which
each node is a gene and an edge exists between two nodes if
there is significant correlation of expression (co-expression)
between those two genes. A GCN can be constructed from
a GEM by computing the similarity between each gene
pair using a similarity measure such as Pearson, Spearman,
Kendall Tau, Mutual Information, or the biweight midcorre-
lation [2]. The resulting similarity matrix is converted into
an adjacency matrix by applying a significance threshold

(calculated or ad-hoc, user-specified). This two-step process
of similarity detection and thresholding is the most common
approach to GCN construction and is implemented by a
variety of software packages.

Many genes are multifunctional, meaning they partic-
ipate in more than one biological process. Therefore,
as gene expression datasets become larger and more diverse,
they become increasingly multidimensional. Multifunctional
genes expressed under different experimental conditions can
exhibit multi-modal expression patterns, which violate the
assumptions of most correlation tests. Using conventional
pairwise correlation analysis, in this case, results inmore false
correlations being included and more true correlations being
excluded. Instead, each mode within the gene pair should
be evaluated separately, producing a multi-modal gene co-
expression network in which two nodes (genes) can have
multiple edges between them. In many cases, theses modes
can be correlated to specific biological conditions (as shown
in Figure 2). This approach is implemented in KINC version
1 (v1) [3], which uses Gaussian Mixture Models (GMMs) for
pairwise clustering. KINCv1 has been used to find condition-
specific gene relationships (i.e. graph edges) in large and
diverse cancer datasets [4], [5] and post-harvest scald in
apples [6].

Using the GMM approach, KINCv1 is able to cap-
ture multi-modal relationships between genes, but it is
also much more computationally expensive than traditional
co-expression network construction approaches for two rea-
sons. First, every gene pair must be evaluated using the GMM
clustering algorithm, because it is unknown which gene pairs
will have multiple modes. Second, the GMM approach must
be given the number of clusters or ‘‘components’’ before-
hand, and it is unknown how many clusters each gene pair
contains. Several clustering models must be computed and
compared for each gene pair. As a result, the runtime of
KINCv1 increases rapidly with the number of genes (O(n2)).
For a large dataset (on the order of 50,000 genes), construct-
ing a multi-modal GCNwith KINCv1 can take weeks or even
months, even on a computing system with thousands of
CPU cores.

C. GAUSSIAN MIXTURE MODELS
A Gaussian mixture model (GMM) is a probabilistic model
which is commonly used for cluster analysis [8], [9].
It assumes that data is distributed as a Gaussian mixture with
K components

p(y|x) =
K∑
k=1

πkN (y;µk , 6k),

where N (µ,6) is the multivariate normal distribution

N (µ,6) = (2π)−
k
2 det(6)−

1
2 e−

1
2 (x−µ)

′6−1(x−µ).

A GMM is fit to a dataset X = {x1, . . . , xN } using
the Expectation-Maximization (EM) algorithm, which is an
iterative algorithm with two steps in each iteration.

160846 VOLUME 7, 2019

B. T. Shealy et al.: GPU Implementation of Pairwise GMMs for Multi-Modal Gene Co-Expression Networks

FIGURE 1. Gene co-expression network for Saccharomyces cerevisiae (yeast).

FIGURE 2. Pairwise correlation between two genes in Oryza sativa (rice). Gene expression
measurements from 475 samples were taken under experimental conditions where rice plants were
exposed to heat, heat recovery, drought and drought recovery [7]. Points represent samples and are
colored according to the experimental treatment to which they were exposed.

In the expectation step (E-step), the conditional probabil-
ities of each data point for each GMM component are
computed as

γik = p(xi|πk , µk , 6k) =
πkN (xi|µk , 6k)∑K
j=1 πjN (xi|µj, 6j)

.

In the maximization step (M-step), the parameters of the
mixture model are re-computed as the maximum likelihood
estimate of the data

nk =
N∑
i=1

γik ,

VOLUME 7, 2019 160847

B. T. Shealy et al.: GPU Implementation of Pairwise GMMs for Multi-Modal Gene Co-Expression Networks

πk = nk/N ,

µk =
1
nk

N∑
i=1

γikxi,

6k =
1
nk

N∑
i=1

γik (xi − µk)(xi − µk)T .

The update equation for the covariance 6k is for the full
covariancemodel, in which the covariance is not constrained
in any way. Alternatively, the covariance can be constrained
to be spherical, diagonal, or constant across all components.
In our case the full covariance is the most appropriate option
as it can model clusters with arbitrary shape and orientation.

The E-step and M-step are repeated for a fixed number of
iterations or until the log-likelihood of the model converges:

|Lt − Lt−1| < ε,

L(x|θ) =
N∑
i=1

K∑
j=1

πjN (xi|µj, 6j).

Furthermore, the model parameters can be initialized in a
number of different ways. We use the following strategy:

1) Initialize each mixture weight to 1/K
2) Initialize the mixture means using K -means clustering

on X
3) Initialize each mixture covariance to the identity matrix
The final output labels are determined by the conditional

probabilities computed in the expectation step

yi = argmax(γik , k).

Like most clustering algorithms, GMMs must be provided
with the number of clusters that are known to exist in the input
data. If the number of clusters is not known, several models
must be fit to the input data, one model for each possible
value of K , and the best model must be selected. There is no
objective way to determine the ‘‘best’’ model for unlabeled
data, but there are several model selection metrics which are
commonly used, including AIC, BIC, and ICL [10],

AIC = 2 p− 2ln(L),
BIC = ln(N)p− 2ln(L),
ICL = ln(N)p− 2ln(L)+ 2 E,

where N is the number of samples, p is the number of model
parameters, L is the likelihood of the model, and E is an
entropy term. In general, these metrics aim to maximize
goodness-of-fit (measured by the log-likelihood) while also
minimizing model complexity (measured by the number of
parameters). For each of these metrics, a lower score is better.

D. SIMILARITY MATRIX CONSTRUCTION
Given a gene expression matrix Rn×m (that is, containing n
genes andm samples), we compute themulti-modal similarity
matrix Rn×n×K , where Si,j is the similarity between genes
i and j. Si,j may contain up to K ‘‘modes’’ or clusters, and

so Si,j,k is the similarity of the k-th cluster identified in the
pairwise data of genes i and j.

Since S is symmetric, and since the diagonal elements
of S correspond to comparing genes to themselves which
is not useful, only the lower (or upper) triangle of S needs
to be computed. Therefore, the construction of S essentially
consists of iterating through the lower triangle of S and deter-
mining for each element (1) the number of clusters, (2) the
cluster labels, and (3) the correlation of each cluster. The total
number of pairwise comparisons that must be performed for
n genes is n(n−1)

2 ; for example, a gene expression matrix with
1, 000 genes yields 499, 500 pairwise comparisons. A high-
level description of similarity matrix construction is given
in Algorithm 1.

Algorithm 1Multi-Modal Similarity Matrix Construction
procedure Similarity(E, n,m,Kmax)

S ← Rn×n×Kmax

for i ∈ 1..n do
for j ∈ 1..i do

X ← FetchPair(E, i, j)
X ← RemoveOutliers(X)
K ← GMM(X ,Kmax)
for k ∈ 1..K do

Xk ← RemoveOutliers(Xk)
Si,j,k ← Correlation(Xk)

end for
end for

end for
return S

end procedure

III. RELATED WORK
There exist other packages for constructing gene
co-expression networks, including WGCNA [11], petal [12],
FastGCN [13], and KINCv1 [4], [14]. KINC is the only GCN
software that performs pairwise clustering in order to detect
multi-modal gene pair relationships. KINCv1 can be run on a
single CPU or on a CPU cluster in a high-throughput manner.
We refer to our multi-CPU/GPU implementation in this work
as KINCv3 in order to distinguish it from KINCv1.

Gaussian mixture models are used for a wide variety of
tasks, including background subtraction [15] and speaker
verification [16], [17]. Additionally, several GMM imple-
mentations for these domains have been published for GPUs
[18], [19] and FPGAs [20], [21], as well as general-purpose
GMM implementations for GPUs [22] and FPGAs [23].
Arguably the most similar work to ours is [19], in which the
authors accelerated a GMM-based background subtraction
algorithm by processing each pixel-wise GMM in a sepa-
rate thread, in the same way that the KINCv3 GMM kernel
devotes a thread to each gene pair. Many of the techniques
used by [19], including pinned host memory, memory coa-
lescing, and multiple CUDA streams, are also used here.

160848 VOLUME 7, 2019

B. T. Shealy et al.: GPU Implementation of Pairwise GMMs for Multi-Modal Gene Co-Expression Networks

To the best of our knowledge, KINCv3 is the first GPU
implementation of pairwise GMMs for gene expression data.

Additionally, many of the FPGA implementations show
promising results, such as the 517x speedup achieved by [21].
Considering that FPGAs can outperform their GPU coun-
terparts in some cases, such as data-intensive applications,
by devoting hardware resources in a more fine-tuned manner,
it may be worthwhile in the future to explore an FPGA
implementation for the GMM kernel in KINC.

IV. IMPLEMENTATION
A. PAIRWISE SAMPLE EXTRACTION
The first step in processing a gene pair (i, j) is to extract the
pairwise samples for genes i and j from the expression matrix.
Due to the occurrence of missing values in the expression
matrix, any pairwise sample with a missing value in either
gene must be excluded for that gene pair. Additionally, a pair-
wise sample can be excluded for other reasons, such as if
either gene expression falls below a user-specified thresh-
old, or if either expression is identified as an outlier prior to
clustering or correlation analysis. As a result, the number of
pairwise samples can vary greatly for each gene pair.

B. PAIRWISE GMM
General-purpose GMM implementations such as mix-
mod [24] and the sklearn.mixture module in scikit-
learn [25] are designed to work with an arbitrary number
of input dimensions. Since KINC only considers pairwise
GMMs, for which the input data is two-dimensional, we use
this assumption to simplify several aspects of the GMM
algorithm. In particular, all matrix and vector operations are
simplified by loop unrolling, and the matrix inverse required
in the E-step is computed directly in the two-dimensional case
in lieu of using the Cholesky decomposition.We incorporated
these optimizations into the CPU implementation ofKINCv3,
which contributed to a significant performance improvement
over KINCv1 as discussed in the Results section.

C. MODEL INITIALIZATION
The parameters of each GMM are initialized using K -means
clustering, which can be considered a special case of GMM
that assumes a uniform mixture proportion and identity
covariance for each component. The K means are themselves
initialized randomly from the input data, and the algorithm is
run partially (up to 20 iterations) rather than until full conver-
gence. Additionally, only one initialization is used for each
value of K ∈ {1, 2, 3, 4, 5}, even though it is best practice to
compute multiple GMMs with different initializations, due to
the large number of GMMs that must be computed at scale.

These initialization choices are a trade-off between
improving results and minimizing runtime, as the initializa-
tion of model parameters can significantly impact the clus-
tering results, but any additional work per gene pair increases
total runtime significantly because the total runtime complex-
ity is O(n2) with respect to the number of genes.

D. MODEL SELECTION
Since the number of clusters in each gene pair is unknown,
several GMMs are computed for each gene pair and the best
GMM is selected using a model selection criterion. We use
K ∈ {1, 2, 3, 4, 5}, a reasonable range for the possible num-
ber of modes in a gene pair based on experience, and we use
the Integrated Computed Likelihood (ICL) to select the best
model. Thus five GMMs must be computed for each gene
pair, and the model with the lowest ICL score is selected for
the given gene pair.

E. GPU IMPLEMENTATION
Since KINC must compute many small GMMs, we imple-
mented a CUDA kernel1 in which each thread performs the
entire clustering andmodel selection process for a single gene
pair. That is, each thread computes fiveGMMs and selects the
GMM with the lowest ICL score. We implemented separate
kernels for pairwise sample extraction, outlier removal, and
correlation analysis, such that each kernel is executed sequen-
tially as shown in Algorithm 1. These kernels operate in the
same way as the GMM kernel in that each thread processes
a gene pair, however they are not examined in detail here as
they represent only 1-2% of total GPU activities reported by
nvprof.

All kernel executions and memory transfers are performed
asynchronously with respect to the host, and all memory
transfers use pinned host memory tomaximizememory band-
width between host and device memory. Memory transfers,
which are required for the expression matrix at the beginning
and the input and output data for each work block, represent
approximately 0.1% of total GPU activities, so they are also
not examined further here.

F. MULTI-GPU EXECUTION WITH ACE
The Accelerated Compute Engine (ACE) is a C++ library
for writing high-throughput scientific applications [26].
KINCv3 uses ACE as a back-end for parallel execution,
which allows KINC to take advantage of distributed hetero-
geneous computing environments such as a GPU cluster.

ACE provides a parallelization framework (based on MPI)
which designates the first process as the master process,
which distributes and collects work blocks, and all other
processes as worker processes, which process work blocks.
A work block is a collection of work items, and a work item
in KINC is a single pairwise comparison. Given the total
number of work items N and a work block size B, the master
divides the work intoN/Bwork blocks of Bwork items (gene
pairs) each, and distributes work blocks dynamically to the
worker processes. Each worker receives a few work blocks
at the beginning, and when a worker finishes processing a
work block, it returns a result block with the results for
each work item to the master, at which point it receives
another work block from the master.

1The reader is referred to the literature for background information on the
CUDA programming model.

VOLUME 7, 2019 160849

B. T. Shealy et al.: GPU Implementation of Pairwise GMMs for Multi-Modal Gene Co-Expression Networks

This dynamic work assignment is designed to address two
important sources of variation. First, work blocks generally
do not require the same amount of time to process as some
gene pairs may not have enough pairwise samples to perform
cluster analysis. Second, in a heterogeneous environment
each worker may be equipped with different GPU hard-
ware, or may not have a GPU at all, which means that some
workers will process work blocks more quickly than others.
Since each worker receives work blocks only as quickly as
it can process them, KINC can provide workload balance
despite these variations.

A work block consists of the index of the first gene pair
and the number of gene pairs to process. However, the worker
must be able to determine the pairwise index (i, j) of a gene
pair given its work item index, so that it can retrieve the
corresponding rows for each gene in the gene expression
matrix. This procedure is described in Algorithm 2.

Algorithm 2 Pairwise Index Method
procedure PairwiseIndex(i)

p← 0
x ← 0
while p+ x ≤ i do

p← p+ x
x ← x + 1

end while
return (x, i − p)

end procedure

The multi-GPU implementation introduces an additional
level of parallelism within each work block. Whereas the
CPU-enabled worker simply processes work items sequen-
tially, the GPU-enabled worker offloads the processing of
work items to the GPU through a series of kernel executions.
That is, given a work block of Bwork items and a global work
size G (also the CUDA grid size), the GPU-enabled worker
executes B/G kernels sequentially to process the entire work
block. The threads in a kernel execution are also organized
into thread blocks of size L, which we call the local work size
(also the CUDA block size).

V. PERFORMANCE OPTIMIZATIONS
In our GMM kernel, each thread individually computes
several GMMs, whichmeans that this kernel is both compute-
intensive and memory-intensive. The performance limita-
tions of the GMM kernel can be summarized by two issues:
global memory congestion and workload imbalance. We dis-
cuss each of these issues and our solutions to them in the
following sections.

A. MEMORY COALESCING
Each thread in the GMM kernel uses several workspace
arrays in global memory for intermediate data. Although it
is unlikely that the global memory usage of this kernel can
be reduced further, it is possible to improve the memory

access patterns by manipulating the layout of the workspace
arrays in global memory. Each workspace array contains
the workspace for every thread in the grid, such that each
thread uses a contiguous block of memory within the array.
In cases where workspace elements need not be contiguous
in memory, these arrays could be refactored such that each
thread uses strided indexing. That way, when all threads in a
warp access their respective elements in the same workspace
array, the elements will be contiguous in memory and will be
fetched with fewer global memory accesses than in the naive
implementation. This technique is referred to as memory
coalescing and it is a common approach tomaximizing global
memory throughput on GPUs. It was also easy to implement,
since only the loop indices needed to be modified rather than
the array accesses themselves.

We should note that strided indexing can guarantee con-
tiguous memory accesses only in the case of two-dimensional
arrays (each thread with it’s own one-dimensional array).
For higher-order arrays, the degree of memory coalescing
depends on how the array is accessed by the threads. The
GMM kernel contains one such higher-order array: 0 ∈
RN×K (gamma), the array of conditional probabilities. Since
gamma is always accessed at the same index by all threads,
relative to each thread’s offset, the memory accesses for
gamma will be contiguous. In other words, gamma is effec-
tively used like a one-dimensional array, so it will be coa-
lesced as such.

A related but separate consideration is the arrangement of
θ = {(π,µ,6)k} (theta), the array of GMM components.
We observed a significant performance benefit by arranging
theta as a structure-of-arrays instead of an array-of-structures.
This step increases memory coalescing by itself but it is
also crucial in enabling memory coalescing via strided index-
ing. Since the structure-of-arrays pattern was already imple-
mented in both the CPU and naive GPU implementations,
we do not measure it’s individual benefit here.

B. WORKLOAD BALANCING
The GMM kernel is very large and contains many loops
and branches. Although there are many if statements, there
are no else statements that would trigger additional passes,
so branching does not contribute to control divergence. The
loops can be divided into three primary categories: loops over
the number of EM iterations T , the number of clusters K ,
and the number of samples N . The number of clusters is
constant across all threads, so it does not contribute to con-
trol divergence. The number of iterations will vary as some
threads converge before others (early stopping). The number
of samples can vary drastically for each thread, as shown
in Figure 3, due to the occurrence of missing values in the
input data, which are excluded from the clustering analysis.
As a result, threads with fewer samples must wait on threads
with more samples during any loop over N . Therefore the
primary source of control divergence is workload imbalance
due to variation in (1) the number of EM iterations and (2) the
number of extracted pairwise samples for each gene pair.

160850 VOLUME 7, 2019

B. T. Shealy et al.: GPU Implementation of Pairwise GMMs for Multi-Modal Gene Co-Expression Networks

FIGURE 3. Sample sizes for the first 4096 gene pairs in the yeast dataset, sorted by pairwise index.

FIGURE 4. Sample sizes for the first 4096 gene pairs in the yeast dataset, sorted by sample size.

Workload imbalance due to the number of iterations could
be eliminated by simply removing the early stopping condi-
tion such that all threads perform the maximum number of
iterations. However, this change also increases global mem-
ory congestion as threads perform useless work, leading to
an overall performance loss. Therefore we found that this
imbalance is unavoidable.

However, we realized that the second source of imbalance
could be reduced by mapping gene pairs to threads according
to sample size, such that contiguous threads within a warp
have similar sample sizes. The sample size for each gene pair
is not known until after the pairwise sample extraction step,
so we only sortG pairs at a time, as shown in Figures 3 and 4.
We perform an indirect sort (argsort) on the sample size array
and use the resulting indices to map threads to gene pairs
according to sample size. This approach is vastly superior to
a direct sort because only one sort is required on the argsort
array, whereas a direct sort would require every input and
output array to be sorted in order to ensure that the output
arrays are ordered by pairwise index.

There is an interesting relationship between these two
optimizations, strided indexing and pairwise sorting. When
threads are mapped to different inputs in order to maximize
workload balance, their memory accesses are also rearranged
and may become more spread out depending on the argsort,
which in turn may detract from the performance benefit pro-
vided by strided indexing. Indeed, we found that it is better
not to apply the sortingmechanism to the work arrays, since it
doesn’t matter how the work arrays are mapped to threads and
re-ordering them would only decrease memory coalescing.
Therefore, we apply the sorting mechanism only to the arrays

for which it is required, which are the input and output arrays,
in order to minimize its impact on memory coalescing.

VI. EXPERIMENTAL SETUP
For all of our experiments we used a Saccharomyces cere-
visiae (yeast) RNA expression dataset, obtained from the
NCBI GEO database [27], which contains 188 samples
and 7,050 genes. We ran our experiments using NVIDIA
P100 and V100 GPUs on the Palmetto cluster at Clem-
son University. The P100 nodes are equipped with Intel
Xeon E5-2680v4 CPUs, and the V100 nodes are equipped
with Intel Xeon 6148G CPUs. We used the CPU perfor-
mance results from the P100 nodes as the baseline for all
GPU performance comparisons, as we found that the CPU
performance was nearly identical between the P100 and
V100 nodes.

TABLE 1. KINCv3 multi-GPU execution parameters.

There are a number of parameters that control the execution
of the multi-GPU implementation. We evaluated the effect
of each parameter on performance in order to determine its
optimal value. We used the default values shown in Table 1
for each parameter when it was not being varied.

To demonstrate the effect of the two GMM kernel opti-
mizations, as well as their combined effect, we benchmarked

VOLUME 7, 2019 160851

B. T. Shealy et al.: GPU Implementation of Pairwise GMMs for Multi-Modal Gene Co-Expression Networks

FIGURE 5. Effect of host threads on single-GPU performance. Each result is the average of five independent trials, with vertical lines denoting
standard error.

four different implementations – naive, memory-coalescing,
workload-balancing, and coalescing-balancing – using the
average runtime of the GMM kernel as the performance
metric. Due to the experimental nature of these optimizations,
we used the naive implementation for all other benchmarks
in this paper.

Lastly, we measured the speedup of KINCv3 GPU over
KINCv3 CPU, as well as the speedup of KINCv3 CPU over
KINCv1, for {1, 2, 4, 8} workers. Note that the number of
workers is one less than the number of processes, as the first
process is solely responsible for distributingwork and collect-
ing results, with the exception of the single-CPU/GPU case,
in which the process acts as both master and worker. Thus
there is little difference between using one process versus
using two processes, and in fact the difference in runtime
between these two cases is negligible. For these experiments
we used the default values given in Table 1 except for the
number of host threads, for which we used the optimal value
determined in the first set of experiments (2 threads for P100,
4 threads for V100).

VII. RESULTS AND DISCUSSION
A. MULTI-GPU EXECUTION PARAMETERS
Figure 6 shows runtimes for various work block sizes. Since
a worker thread processes one work block at a time, the work
block size is effectively the maximum number of gene pairs
that a worker thread can process in parallel. The work block
size has no effect on performance so long as it is greater
than or equal to the global work size. Otherwise the global
work size is effectively capped by the work block size, which
can cause the GPU to be underutilized.

Figure 5 shows the effect of subscribing the GPU with
multiple host threads. Since the default global work size may
not scale to the capacity of newer GPU models, it can be
supplemented by running multiple host threads on the same
GPU to increase utilization. These results demonstrate that
this approach does work in practice, as the optimal number
of threads for the V100 is higher than for the P100, but there
is a penalty in using too many threads, most likely from the
overhead of managing more threads. It should also be noted
that using multiple threads allows for kernel executions in
one thread to be overlapped with memory transfers in another
thread and vice versa, however this benefit is negligible since
memory transfers make up a very small portion of GPU
activity.

An alternative strategy to using more host threads is to
increase the global work size to match the capacity of the
GPU. We expected that this approach would perform as
well or better than using multiple host threads, but the default
global work size of 4096 resulted in the best performance out
of all other values tried (Figure 7). Furthermore, we found
from the GPU profiling results that the decrease in per-
formance was caused by a disproportionate increase in the
runtime of the GMM kernel, which we suspect was caused
by increased global memory latency.

Figure 8 shows runtimes for various local work sizes.
Increasing the local work size led to an increase in runtime
in every case and for both P100 and V100. We attribute
this trend to two primary factors: global memory bandwidth
and work imbalance. Because the GMM kernel uses global
memory very heavily, increasing the local work size also
increases the amount of global memory traffic which hurts

160852 VOLUME 7, 2019

B. T. Shealy et al.: GPU Implementation of Pairwise GMMs for Multi-Modal Gene Co-Expression Networks

FIGURE 6. Effect of work block size on single-GPU performance. Each result is the average of five independent trials, with vertical lines denoting
standard error.

FIGURE 7. Effect of global work size on single-GPU performance. Each result is the average of five independent trials, with vertical lines denoting
standard error.

overall performance. Additionally, due to the variation of
sample sizes across gene pairs, increasing the local work
size also increases the degree of work imbalance within a
thread block. Within a CUDA warp, work imbalance causes
control divergence as threads with fewer samples must wait
for threads with more samples during loops. Across warps in

a thread block, work imbalance simply causes higher latency
as the total execution time of the thread block is determined
by the warp which takes the longest. Therefore, it is better
to use only a small percentage of compute bandwidth (low
occupancy) so that global memory is not overwhelmed and
the degree of work imbalance is minimized.

VOLUME 7, 2019 160853

B. T. Shealy et al.: GPU Implementation of Pairwise GMMs for Multi-Modal Gene Co-Expression Networks

FIGURE 8. Effect of local work size on single-GPU performance. Each result is the average of five independent trials, with vertical lines denoting
standard error.

FIGURE 9. Performance benchmark results for KINCv1, KINCv3 CPU, and KINCv3 GPU implementations. Each result is the average of a single trial due to
computational constraints. Note that the y-axis scale is different for each subplot in order to emphasize the scalability of KINCv3.

B. PERFORMANCE OPTIMIZATIONS
We measured the impact of each performance optimization
on GMM kernel runtime, the results of which are shown
in Figure 10. The results varied significantly depending on
which GPU model was used. With older GPU models such
as the Tesla K20 and K40, the memory-coalescing optimiza-
tion reduced kernel runtime by half, but with newer models
such as the Tesla P100 and V100, the same optimization
has nearly the opposite effect. We attribute this difference
to the advancements made between the Kepler and Pascal
architectures. In particular, Pascal is the first GPU archi-
tecture with high-bandwidth memory (HBM2) DRAM [28].
Similarly, the workload-balancing optimization provided a
small but noticeable improvement on the K20 and P100, and
no improvement on the V100. We attribute the difference
to advancements in the Volta architecture, specifically inde-
pendent thread scheduling [29]. The hardware advancements
in the most recent Tesla GPUs aim to increase memory

bandwidth and thread convergence as they are some of the
leading GPU performance bottlenecks, which could make
hand-crafted optimizations such as ours unnecessary and
even detrimental in some cases. Therefore, we conclude that
these optimizations are only beneficial on older NVIDIA
GPUs based on architectures prior to Pascal.

It should be noted that the two performance bottlenecks
which we identified in the naive GMM kernel – high global
memory usage and workload imbalance – are largely due
to characteristics of gene expression matrices. RNA-Seq
datasets, as well as other types of datasets in bioinformatics,
are generally very large and diverse, with many sources of
variation across samples. Therefore, while these datasets can
generally be processed in a parallel manner, any algorithm
which consumes them will be highly data-intensive and will
experience some form of work imbalance due to the diversity
of samples. In other words, we suspect that the performance
bottlenecks identified in our multi-GPU implementation of

160854 VOLUME 7, 2019

B. T. Shealy et al.: GPU Implementation of Pairwise GMMs for Multi-Modal Gene Co-Expression Networks

FIGURE 10. Effect of each performance optimization on kernel runtime. Each result is the average of three independent trials, with vertical lines
denoting standard error. The measurement for each trial is itself the average of all GMM kernel calls required to process the yeast dataset. Note that
the y-axis scale is different for each subplot in order to emphasize the performance differences between each revision.

TABLE 2. Performance benchmark results for KINCv1, KINCv3 CPU, and KINCv3 GPU implementations. Numbers in boldface denote the speedup values
which were used to determine the speedup of KINCv3 over KINCv1.

GCN construction are common to other bioinformatics appli-
cations for RNA-Seq datasets, and that any such optimiza-
tions which can alleviate these bottlenecks will be generally
beneficial to bioinformatics workloads.

C. GPU SPEEDUP
Table 2 shows the speedup of the GPU implementation over
the CPU implementation. KINCv3 GPU achieves a speedup
of 38x on P100 GPUs and 126x on V100 GPUs. We also per-
formed the same benchmark on KINCv1 to demonstrate the
improvements to the CPU implementation from KINCv1 to
KINCv3, which yielded a 3x speedup (results for some
KINCv1 tests could not be obtained because the tests did
not complete within the maximum walltime of 72 hours for
jobs on our cluster). This speedup is attributed to a number
of improvements, including: using a GMM implementation
optimized for pairwise data, saving output data only for corre-
lations with an absolute value of at least 0.5, and the dynamic
work assignment provided by ACE. Thus the overall speedup
of KINCv3 GPU over KINCv1 is 180x for the P100 and 496x
for the V100.

The GPU implementation is also scalable for the range of
processes that we tested, with a parallel efficiency of 94% for
8 V100s. The yeast dataset, although sizeable in its own right,
is a relatively small gene expression dataset, containing fewer
genes than multi-cellular organisms, yet KINCv3 is able to
scale such that it can construct the similarity matrix for yeast
in 3 minutes using 8 V100s.

More importantly, these speedup results demonstrate that
KINCv3 can do an amount of work on a small GPU cluster
that with KINCv1 would require a very large CPU cluster.

Previously, large KINC jobs such as in [4] had to be run
on a large high-throughput system such as the Open Science
Grid (OSG) because they could not be completed on a local
cluster due to resource and walltime constraints. However,
jobs on OSG experience significant runtime overhead due to
queuing times and re-running jobs that are preempted [30].
By accelerating KINC such that the same experiment can be
performed on a much smaller scale, researchers can construct
larger networks with local resources.

D. RUNNING KINC AT SCALE
Our experimental results demonstrated the speedup that
KINCv3 provides for a relatively small dataset (7,050 genes,
188 samples) with a small set of resources (1-4 nodes).
However, the long-term goal is to construct networks for
very large datasets (≥50,000 genes,≥10,000 samples) with a
large set of resources (≥100 GPUs or≥10,000 CPUs). Initial
experiments have shown that while KINC remains compu-
tationally efficient at larger scales, its memory and storage
requirements can expand rapidly in some cases. Therefore,
it will be necessary to also profile and optimize the memory
and disk usage of KINC at larger scales.

Additionally, KINC has two modes of parallel execu-
tion via ACE: a high-performance (capability) mode based
on MPI, and a high-throughput (capacity) mode based on
chunking and merging. These modes are independent of
CPU/GPU execution and can be used interchangeably.
The experiments in this paper used the high-performance
mode, however at larger scales it is unclear whether one
mode will give a lower time-to-solution than the other.
The high-performance mode, on the one hand, is likely to

VOLUME 7, 2019 160855

B. T. Shealy et al.: GPU Implementation of Pairwise GMMs for Multi-Modal Gene Co-Expression Networks

have better load balance due to the dynamic work assignment.
On the other hand, the high-throughput mode is more flexible
in the context of a shared HPC system because it can proceed
gradually as cluster resources become available, whereas the
high-performance mode must wait for all of the required
resources to become available at once. Therefore it will also
be important to compare the time-to-solution of these two
modes by accounting for queue times in a large-scale shared
HPC system.

VIII. CONCLUSION
We have presented a new implementation of KINC for con-
structing large multi-modal gene co-expression networks,
which introduces both optimizations to the CPU code and
GPU acceleration. After optimizing the execution param-
eters for KINCv3, we obtained up to 500x speedup from
KINCv1 to KINCv3. Additionally, we identified key per-
formance bottlenecks in the pairwise GMM kernel as well
as several potential solutions, which we hope will improve
the speedup even further. KINCv3 also shows good ini-
tial scalability, and we intend to conduct much larger
experiments soon using both HPC and cloud environments.
KINCv3 is open source software available at https://github.
com/SystemsGenetics/KINC.

ACKNOWLEDGMENT
Benjamin T. Shealy and Josh J. R. Burns contributed equally
to this work.

REFERENCES
[1] (2019). SRA Overview. [Online]. Available: https://trace.

ncbi.nlm.nih.gov/Traces/sra/
[2] L. Song, P. Langfelder, and S. Horvath, ‘‘Comparison of co-expression

measures: Mutual information, correlation, and model based indices,’’
BMC Bioinf., vol. 13, no. 1, 2012, Art. no. 328.

[3] (2019). Systemsgenetics/Kinc. [Online]. Available: https://github.
com/SystemsGenetics/KINC

[4] S. P. Ficklin, L. J. Dunwoodie, W. L. Poehlman, C. Watson, K. E. Roche,
and F. A. Feltus, ‘‘Discovering condition-specific gene co-expression pat-
terns using Gaussian mixture models: A cancer case study,’’ Sci. Rep.,
vol. 7, no. 1, 2017, Art. no. 8617.

[5] W. L. Poehlman, J. J. Hsieh, and F. A. Feltus, ‘‘Linking binary gene
relationships to drivers of renal cell carcinoma reveals convergent function
in alternate tumor progression paths,’’ Sci. Rep., vol. 9, no. 1, 2019,
Art. no. 2899.

[6] L. A. Honaas, H. L. Hargarten, S. P. Ficklin, J. A. Hadish, E. Wafula,
C. W. de Pamphilis, J. P. Mattheis, and D. R. Rudell, ‘‘Co-expression
networks provide insights into molecular mechanisms of postharvest tem-
perature modulation of apple fruit to reduce superficial scald,’’ Postharvest
Biol. Technol., vol. 149, pp. 27–41, Mar. 2019.

[7] O. Wilkins, C. Hafemeister, A. Plessis, M.-M. Holloway-Phillips,
G. M. Pham, A. B. Nicotra, G. B. Gregorio, S. K. Jagadish,
E. M. Septiningsih, and R. Bonneau, ‘‘EGRINs (environmental gene
regulatory influence networks) in rice that function in the response to
water deficit, high temperature, and agricultural environments,’’ Plant
Cell, vol. 28, no. 10, pp. 2365–2384, 2016.

[8] M. Aitkin and D. B. Rubin, ‘‘Estimation and hypothesis testing in finite
mixture models,’’ J. Roy. Stat. Soc., B Methodol., vol. 47, no. 1, pp. 67–75,
1985.

[9] C. Fraley and A. E. Raftery, ‘‘How many clusters? Which clustering
method? Answers via model-based cluster analysis,’’ Comput. J., vol. 41,
no. 8, pp. 578–588, 1998.

[10] C. Biernacki, G. Celeux, and G. Govaert, ‘‘Assessing a mixture model for
clustering with the integrated completed likelihood,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 22, no. 7, pp. 719–725, Jul. 2000.

[11] P. Langfelder and S. Horvath, ‘‘WGCNA: An R package for weighted cor-
relation network analysis,’’ BMC Bioinf., vol. 9, no. 1, p. 559, Dec. 2008.

[12] J. Petereit, S. Smith, F. C. Harris, Jr., and K. A. Schlauch, ‘‘petal: Co-
expression network modelling in R,’’ BMC Syst. Biol., vol. 10, no. 2, p. 51,
2016.

[13] M. Liang, F. Zhang, G. Jin, and J. Zhu, ‘‘FastGCN: AGPU accelerated tool
for fast gene co-expression networks,’’ PLoS ONE, vol. 10, no. 1, 2015,
Art. no. e0116776.

[14] S. M. Gibson, S. P. Ficklin, S. Isaacson, F. Luo, F. A. Feltus, and
M. C. Smith, ‘‘Massive-scale gene co-expression network construction
and robustness testing using random matrix theory,’’ PLoS ONE, vol. 8,
no. 2, 2013, Art. no. e55871.

[15] Z. Zivkovic, ‘‘Improved adaptive Gaussian mixture model for background
subtraction,’’ in Proc. ICPR, Aug. 2004, pp. 28–31.

[16] D. A. Reynolds and D. C. Rose, ‘‘Robust text-independent speaker iden-
tification using Gaussian mixture speaker models,’’ IEEE Trans. Speech
Audio Process., vol. 3, no. 1, pp. 72–83, Jan. 1995.

[17] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, ‘‘Speaker verification
using adapted Gaussian mixture models,’’ Digit. Signal Process., vol. 10,
nos. 1–3, pp. 19–41, 2000.

[18] Y. Tarabalka, T. V. Haavardsholm, I. Kåsen, and T. Skauli, ‘‘Real-time
anomaly detection in hyperspectral images using multivariate normal mix-
ture models and GPU processing,’’ J. Real-Time Image Process., vol. 4,
no. 3, pp. 287–300, 2009.

[19] V. Pham, P. Vo, L. H. Bac, and V. T. Hung, ‘‘GPU implementation of
extended Gaussian mixture model for background subtraction,’’ in Proc.
IEEE RIVF Int. Conf. Comput. Commun. Technol., Res., Innov., Vis. Future
(RIVF), Nov. 2010, pp. 1–4.

[20] P. EhKan, T. Allen, and S. F. Quigley, ‘‘FPGA implementation for GMM-
based speaker identification,’’ Int. J. Reconfigurable Comput., vol. 2011,
Jan. 2011, Art. no. 3.

[21] M. Genovese and E. Napoli, ‘‘ASIC and FPGA implementation of the
Gaussian mixture model algorithm for real-time segmentation of high def-
inition video,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22,
no. 3, pp. 537–547, Mar. 2014.

[22] W. G. Lewellen. (2019). lewellen/Gaussianmixturemodel. [Online]. Avail-
able: https://github.com/lewellen/gaussianMixtureModel

[23] C. Guo, H. Fu, and W. Luk, ‘‘A fully-pipelined expectation-maximization
engine for Gaussian mixture models,’’ in Proc. Int. Conf. Field-
Programmable Technol., Dec. 2012, pp. 182–189.

[24] C. Biernacki, G. Celeux, G. Govaert, and F. Langrognet, ‘‘Model-based
cluster and discriminant analysis with the mixmod software,’’ Comput.
Statist. Data Anal., vol. 51, no. 2, pp. 587–600, 2006.

[25] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg, ‘‘Scikit-
learn: Machine learning in Python,’’ J. Mach. Learn. Res., vol. 12,
pp. 2825–2830, Oct. 2011.

[26] S. Ficklin and B. Shealy. (Jan. 2019). SystemsGenetics/ACE: Version 3.0.2.
[Online]. Available: https://doi.org/10.5281/zenodo.2539525

[27] T. Barrett, D. B. Troup, S. E. Wilhite, P. Ledoux, C. Evangelista, I. F. Kim,
M. Tomashevsky, K. A. Marshall, K. H. Phillippy, and P. M. Sherman,
‘‘NCBI GEO: Archive for functional genomics data sets—10 years on,’’
Nucleic Acids Res., vol. 39, pp. D1005–D1010, Nov. 2010.

[28] P100,Most AdvancedData center Accelerator Ever Built Featuring Pascal
GP100, Worlds Fastest GPU, Nvidia, Santa Clara, CA, USA, 2016.

[29] V100 GPU Architecture, Nvidia, Santa Clara, CA, USA, 2017.
[30] W. L. Poehlman, M. Rynge, D. Balamurugan, N. Mills, and F. A. Feltus,

‘‘OSG-KINC: High-throughput gene co-expression network construction
using the open science grid,’’ in Proc. IEEE Int. Conf. Bioinf. Biomed.
(BIBM), Nov. 2017, pp. 1827–1831.

BENJAMIN T. SHEALY received the B.S. degree
in computer engineering from Clemson Univer-
sity, in 2017, where he is currently pursuing the
Ph.D. degree in computer engineering. He has
several years of experience developing high-
performance applications for computer vision,
bioinformatics, and computational materials sci-
ence. His current research focuses on creating
big data pipelines that utilize emerging computing
technologies such as GPUs, cluster computing,

and cloud computing. He is also interested in applying machine learning to
big data pipelines, both to improve their execution at scale and to assist in the
analysis of their results. His work is very interdisciplinary in nature and he
collaborates regularly with biologists, computational scientists, and software
engineers in order to facilitate his work.

160856 VOLUME 7, 2019

B. T. Shealy et al.: GPU Implementation of Pairwise GMMs for Multi-Modal Gene Co-Expression Networks

JOSH J. R. BURNS received the B.S. degree
in electrical engineering from the University of
Idaho, in 2013. He is currently working as a Soft-
ware Engineer with Washington State University.
He is a self-taught programmer with almost two
decades of experience. His primary areas of exper-
tise are C++ and the Qt framework. His primary
interest in the field of programming has always
been making code as human-readable as possi-
ble. He has worked with OpenCL in developing

GPU-accelerated computational algorithms at Washington State University.

MELISSA C. SMITH received the B.S. and M.S.
degrees in electrical engineering from Florida
State University, 1993 and 1994, respectively, and
the Ph.D. degree in electrical engineering from the
University of Tennessee, in 2003. She is currently
an Associate Professor of electrical and com-
puter engineering with Clemson University. She
has over 25 years of experience developing and
implementing scientific workloads and machine
learning applications across multiple domains,

including 12 years as a Research Associate with Oak Ridge National
Laboratory. Her current research focuses on the performance analysis and
optimization of emerging heterogeneous computing architectures (GPGPU-
and FPGA-based systems) for various application domains, including
machine learning, high-performance or real-time embedded applications,
and medical and image processing. Her lab collaborates with researchers
in other fields to develop new approaches to the application/architecture
interface providing interdisciplinary solutions that enable new scientific
advancements and/or capabilities.

F. ALEX FELTUS received the B.S. degree in
biochemistry from Auburn University, in 1992.
He has served in the Peace Corps in the
Fiji Islands for two years, and then completed
advanced training in biomedical sciences at Van-
derbilt and Emory. He has performed research
in machine learning, bioinformatics, cyberinfras-
tructure, high-performance computing, network
biology, tumor biology, agrigenomics, genome
assembly, systems genetics, paleogenomics, and

bioenergy feedstock genetics. He is currently a Professor with the Depart-
ment of Genetics and Biochemistry, Clemson University, and the CEO of
Allele Systems LLC. He has published numerous scientific articles in peer-
reviewed journals, released open-source software, and taught undergrad and
Ph.D. students in bioinformatics, biochemistry, and genetics. He is funded
by multiple NSF grants and is engaged in tethering together extremely smart
people from diverse technical backgrounds to propel genomics research from
the Excel-scale into the Exascale.

STEPHEN P. FICKLIN received the B.S. degree
in computer science from Brigham Young Uni-
versity, in 2000, the M.S. degree in computer sci-
ence from Clemson University, in 2003, and the
Ph.D. degree in plant and environmental sciences
from Clemson University, in 2013. He also served
professionally as a UNIX Systems Administra-
tor, a Bioinformaticist, and an Assistant Director
of bioinformatics with the Clemson’s Genomics
Institute for eight years. He was a Researcher and

held a postdoctoral position withWashington State University, for five years.
He is currently an Assistant Professor with a research and teaching appoint-
ment at the Department of Horticulture, Washington State University, with
an emphasis on bioinformatics and computational systems biology. His focus
is the development of computational tools and infrastructure that improve
our understanding of the molecular mechanisms that underlie complex traits
of agricultural crops. Such traits are often important economically, benefit
human health, and improve food security, management, and resource utiliza-
tion. He teaches courses in data science and systems biology to graduate-
students across life sciences.

VOLUME 7, 2019 160857

