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Abstract—Quality-diversity (QD) algorithms search for a set
of good solutions which cover a space as defined by behav-
ior metrics. This simultaneous focus on quality and diversity
with explicit metrics sets QD algorithms apart from standard
single- and multi-objective evolutionary algorithms, as well as
from diversity preservation approaches such as niching. These
properties open up new avenues for artificial intelligence in
games, in particular for procedural content generation. Creating
multiple systematically varying solutions allows new approaches
to creative human-Al interaction as well as adaptivity. In the last
few years, a handful of applications of QD to procedural content
generation and game playing have been proposed; we discuss
these and propose challenges for future work.

Index Terms—Procedural Content Generation, Quality Diver-
sity, Evolutionary Computation, Expressivity.

I. INTRODUCTION

Since ROGUE (Toy and Wichman, 1980) and Elite (Acorn-
soft, 1984) in the 1980s, certain genres of digital games have
relied on algorithmic processes to generate content such as
levels, weapons, personalities, quests, etc. Throughout its long
history, procedural content generation (PCG) has aimed to
provide content that is playable, of a high quality, and yet
different from other content that came before or after. On the
one hand, most game content need to satisfy certain minimal
criteria on playability (such as the exit in a dungeon being
reachable by the player) while they also need to be entertaining
and challenging (which are softer and often subjective qual-
ity dimensions). Content which do not satisfy these criteria
of quality can break the gameplay explicitly or implicitly,
resulting in a poor player experience. On the other hand,
games that rely on PCG to produce fresh content promise
that every playthrough, opened chest, or visited settlement
will be different. Players expect novel and unseen content at
every possible moment, and can swiftly turn against a game
where the variation in generated content is low or cosmetic.
The backlash against No Man’s Sky (Hello Games, 2016) was
in no small part due to the lack of perceptible variety in the
generated worlds [1]. While low-quality generated content can
at best affect players’ enjoyment and at worst make a game
unbeatable, generated content with insufficient diversity can
lead to fatigue and dejection. If we look at the large body
of research in computational creativity, we can see that value
and novelty are vital criteria to evaluate an artifact as creative
[2]. While value is commonly targeted in traditional PCG,
novelty—or more broadly, game content diversity—is not.
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In sum, it has been established that many PCG problems
require both quality and diversity of the generated content
[3]. This poses a challenge for many existing PCG methods,
which are often forced to make a trade-off between these two
requirements. In this paper, we argue that recent advancements
in search methods allow us to overcome this problem and
create PCG algorithms that emphasize quality and diversity
simultaneously. This has the potential to significantly increase
the scope of what PCG can do in games.

Quality-Diversity (QD) algorithms are a novel family of
evolution-like algorithms that simultaneously maintain the
quality and diversity of their solutions by rewarding divergence
(as novelty or surprise of the artifacts being generated) while
maintaining control of the solutions’ quality through hard
constraints or local competition among individuals with similar
behavioral traits. We propose, therefore, procedural content
generation through quality-diversity (PCG-QD) as a subset
of search-based procedural content generation [4] which is
perfectly suited for generating content autonomously (as it can
produce a large set of diverse and high-quality artifacts in one
run, even in search spaces which are not well-defined) or with
a human designer (as it can explain and express its artifacts’
desirable properties). This paper presents the components of
quality-diversity algorithms, identifies the strengths of PCG-
QD over popular alternatives, surveys recent work in this vein
and attempts to map out the road ahead.

II. QUALITY DIVERSITY APPROACHES

Inspired by the extreme diversity of high-performing crea-
tures found in nature, the quality diversity (QD) paradigm [5]
has the goal of finding the largest possible set of diverse and
high-quality solutions in one run. The search for multiple solu-
tions to a problem is a long-standing challenge in evolutionary
computation. In multimodal optimization, for instance, the aim
is to find all the local optima of a function by employing
niching methods and genotypic diversity mechanisms [6].
However, only searching for local optima does not guarantee
the diversity of the solutions, as (behaviorally) diverse solu-
tions may show the same performance measure [7]. Quality
diversity, instead, stresses the importance of searching for
diverse solutions first and then maximize their quality. Indeed,
QD draws inspiration from the idea of rewarding divergence
to find the necessary steps towards high performing areas of
the search space. In divergent search, artificial evolution is
not guided by a fitness tied to the ultimate objective of the



problem, but instead rewards directly the diversity of solutions,
based on notions such as novelty [8], surprise [9] or curios-
ity [10]. QD combines the divergent properties of divergent
search with localized convergence, as will be discussed below.

A. Divergence Components

As discussed above, QD is based on purely divergent search
approaches and thus its core drive is to maintain and reward
diversity in a population. There are several ways in which this
can be achieved in QD algorithms available today:

1) Behavior Space Distance: Diversity in all known diver-
gence search approaches is measured based on the distance
of two individuals in a behavioral space. The premise is to
have a distance function that can give us a single value that
determines how different the behavior of the individual is
from the rest of individuals. Unlike other diversity preservation
mechanism such as niching [11], divergence is judged on the
behavioral space rather than on genotypic similarity. The rest
of individuals can be the current population and an archive of
past individuals, as in Novelty Search [8], a predicted snapshot
of the population as in Surprise Search [9], or explored areas
in this individual’s lifetime as in Curiosity Search [10].

2) Behavior Space Partitioning: Diversity can also be en-
forced by partitioning the behavior space using N different
dimensions of behavior, where each dimension is discretized
and stored as a grid or a map of cells. Each cell corresponds to
a different area in the behavior space with different properties;
this cell contains all individuals that have a certain behaviors.
Partitioning could be uniform, as in MAP-Elites [12], or based
on the distribution of the population, as in MAP-Elites with
Sliding Boundaries [13]. A big difference between the use of a
distance function and partitioning the space is that partitioning
allows designers to control the granularity of the space.

B. Quality Components

Current QD algorithms have a number of different strategies
for pushing evolutionary search towards improving the quality
of candidate solutions:

1) Local Competition: A simple way to enhance the quality
of the solution is using local competition between individuals
within the same niche. To apply this method, a distance metric
must be specified to discern which candidates an individual
compares itself with. This distance can be the same as the
behavior space distance, or could be based on the behavior
space partitioning where competing individuals would share
the same cell.

2) Constraints: Another way to ensure quality is through a
set of constraints that each individual tries to satisfy. These
constraints are usually “hard constraints” (e.g. a level can
be completed or not), dividing the population into infeasible
individuals and feasible individuals. In most of the previous
work [14], [15], [16], [17], infeasible individuals are not
considered in terms of their diversity. However, in some cases
the diversity is always maintained regardless of constraint
satisfaction [18], [19].

C. Algorithms

This subsection discusses the different QD algorithms used
in previous work, even if they have not been applied to games.

1) MAP-Elites (ME): MAP-Elites “illuminates” the search
space [12], highlighting which attributes of the solutions
can contribute to their performance. MAP-Elites combines
behavior space partitioning to maintain diversity with local
competition to improve the quality by only maintaining the
best individual in each cell. The algorithm starts by generating
a random set of solutions, which are evaluated in terms of
quality and behavioral properties; the latter are used to place
this individual in a cell in the partitioned behavior space
(feature map). If the chosen cell is empty, the solution is
stored in the map; if the cell is occupied, a local competition
occurs and the best individual between the two is kept. After
this initialization procedure, the stored solutions are uniformly
selected to generate a new individual via crossover and/or
mutation. The new solution is evaluated and may be stored
in the chosen cell if its performance is better than the solution
(elite) currently stored there. These phases—selection, muta-
tion, evaluation and replacement—are repeated for a number
of evaluations or until the grid reaches a desired coverage.

2) MAP-Elites with Novelty Search (ME-NOV): To bias
exploration towards underrepresented solutions in MAP-Elites,
[5] used novelty search to select individuals in the feature map.
The resulting QD algorithm selects elites to generate offspring
proportionally to their novelty score [8]. Offspring are added
to the novelty archive, which is used to compute the novelty
for each elite stored in the grid. Choosing an appropriate
behavioral distance for novelty can bias the areas explored by
the algorithm, and a number of variants have been proposed
such as combining two feature maps for two behavioral
characterizations [5] or searching for novelty in a dimension
orthogonal to the features used for space partitioning [20].

3) MAP-Elites with Sliding Boundaries (MESB): Rather
than use a predetermined cell size, MESB [13] recomputes
the boundaries of the MAP-Elites feature map based on the
current distribution of individuals. For every A individuals
generated, the boundaries are recomputed uniformly based on
the percentage marks of the distribution along each feature
considered. MESB can thus dynamically adapt to unequal
distributions, better representing the underlying distribution of
the high-performing individuals in the feature space.

4) Constrained Novelty Search (CNS): This QD approach
combines the Feasible-Infeasible Two-Population Genetic Al-
gorithm (FI-2Pop) [21] with novelty search, in order to maxi-
mize the behavioral space distance of individuals which satisfy
certain constraints on quality. CNS maintains two populations,
one with only infeasible individuals and one with only feasible.
The feasible population evolves to maximize novelty, via nov-
elty search [8], while the infeasible population evolves towards
minimizing the distance from feasibility (FINS) or again to
maximize novelty (FI2NS) [14]. The generated offspring of
two populations can migrate from one population to the other
(based on feasibility), which increases the chance to discover
stepping stones toward multiple high-quality solutions.



5) Constrained Surprise Search (CSS): Similar to con-
strained novelty search, this QD algorithm uses unexpected-
ness as the diversity measure for evaluating feasible individu-
als in a FI-2pop GA. As in the above variant, CSS is built on
the FI-2Pop genetic algorithm, where the infeasible population
minimizes the distance from feasibility and the feasible pop-
ulation maximizes surprise through surprise search [9], [22].

6) Constrained MAP-Elites (CME): Combining the
constraint-satisfaction capabilities of FI-2Pop with MAP-
Elites, constrained MAP-Elites (CME) [18], [19] maintains
two populations for each cell of the archive, one containing
infeasible individuals and one containing feasible individuals.
As in the original formulation of FI-2Pop [21], the feasible
population maximizes the predefined fitness, while the
infeasible population minimizes the distance from feasibility.
Every chromosome is stored in the corresponding cell and
population, and the algorithm benefits from the unique
features of illumination and constraint satisfaction.

7) Novelty Search with Local Competition (NS-LC): Com-
bining optimization towards a behavior space distance with
quality control via local competition, NS-LC [23] applies a
multi-objective approach to maximize both the novelty score
and a local competition objective which pushes the individual
to outperform others in its niche. Novelty search [8] rewards
solely the solutions’ novelty and ignores the objective of the
problem, selecting solutions based on their behavior space
distance from other solutions in the population as well as past
novel solutions stored in the novelty archive. Local competi-
tion rewards those individuals that perform better compared
to their K nearest neighbours. Local competition ensures a
localized convergence considering only the nearest neighbors
in the current generation and the novelty archive, creating a
local selection pressure across the entire search space.

8) Surprise Search with Local Competition (SS-LC): Simi-
larly to NS-LC, this QD algorithm uses unexpectedness rather
than novelty to select individuals in one objective, and local
competition as another objective in a multi-objective fashion.
Unexpectedness in surprise search [9] is measured as deviation
from predictions made on past generations, which offers a
different measure of divergence than novelty which rewards
unseen solutions [22]. However, surprise search can also be
combined with novelty search and local competition, which
leads to good performance in highly deceptive domains [22].

III. WHY QUALITY DIVERSITY?

This section highlights what makes PCG-QD an important
contribution to the panorama of PCG research. Since all QD
approaches surveyed in Section II are based on artificial evolu-
tion, PCG-QD is a subset of search-based PCG [4]. However,
several key properties of QD algorithms make them better
suited than ‘typical’ SBPCG approaches. Moreover, PCG-QD
is compared with popular approaches for generating games
in academia and in the industry, namely machine learning
(PCGML) [24] and constructive algorithms [25] respectively.

A. Generative Efficiency

The ability of QD approaches to produce a large set of high-
quality solutions which exhibit diverse behaviors in one run
makes it surprisingly efficient when a broad variety of content
is needed. By comparison, constructive algorithms may be
computationally fast but output a single artifact; moreover, re-
running the algorithm does not ensure that the new output
will be particularly different than previous ones. This lack of
originality in generated content has been lamented in several
games such as No Man’s Sky (Hello Games, 2015). PCGML
similarly outputs a single artifact, and the lack of diversity
from one run to the next is even more obvious as the gen-
erated content attempt to explicitly follow the same patterns.
Traditional SBPCG approaches, while evolving a population
of artifacts, are usually interested in the fittest individual at
the end of an evolutionary run. Other generative approaches
which are fast in producing a feasible individual, such as
declarative programming [26], have no way of controlling
the diversity of their output. Therefore, while QD can be
computationally heavy, a single run can output a vast corpus
of high-quality content; this removes the burden of re-running
and post-generation assessment of both quality and diversity.

B. Fitness-Free Search

The underlying assumption of search-based approaches [4]
is that by defining the fitness function, we can generate content
of high quality based on the designer’s definition of a quality
measure. However, defining an effective objective function
is not an easy task, exacerbated by known problems such
as deceptive fitness landscapes [27], [8]. Furthermore, when
the objective of the problem to solve depends on subjective
criteria, as is often the case for games, it is difficult to for-
malize the value to optimize [28]. It is widely recognized that
designing a fitness function that incorporates (a) subjective and
(b) multiple criteria is a challenging, especially considering
that games are multifaceted [29]. Due to their multifaceted
nature, an algorithm designer might need to consider both
non-functional properties, such as the aesthetic properties
and functional properties, e.g., playable levels. While in the
literature several solutions have addressed this [4], [3], we
argue that quality-diversity fits particularly well as an answer
to this problem. Quality-diversity can consider more than one
dimensions of interest and at the same time explores the fitness
landscape based on local rather than global competition in
terms of a fitness function. Combined with the explainability of
QD approaches (see Section III-E), this can highlight potential
biases in the chosen fitness function.

C. Online Expressivity Analysis

A unique feature of quality-diversity as a procedural content
generator is the online expressivity analysis granted as a
byproduct of the search for highly diverse and high-quality
solutions. Expressivity analysis [30] is defined as the analysis
of the output in terms of styles and variety of artifacts
generated by the chosen approach, which can highlight biases
of the generator towards specific types of content. While all
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Fig. 1: Expressivity as a heatmap of six binary features
(combinations of used mechanics) for Mario scenes in [19].

generators can produce (with multiple re-runs) the large set
of artifacts required to perform an expressivity analysis, as
noted in Section III-A the QD approaches produce such sets
in a single run. More importantly in this context, the diversity
components of these QD algorithms perform an expressiv-
ity analysis during evolution (i.e. online). Moreover, QD
algorithms which explicitly optimize for behavioral distance
explicitly attempt to increase the expressivity of the generator
by searching under-explored niches.

Figure 1 shows an example of the covered space from the
work of Khalifa et al. [19] on generating scenes in Super
Mario Bros (Nintendo, 1985), elaborated in Section IV. The
figure shows that no levels are generated for some areas of the
search space because the divergence characterizations chosen
are dependent on each other. For example: a player can not
kill an enemy in Super Mario Bros without at least jumping.
This problem of behavior characterization (BC) dependency
will be discussed in more detail in Section V.

D. Human-Machine Co-Creation

Game development often involves design iterations that can
completely change the objectives and design priorities. When
game developers work alongside an Al-assisted tool [31],
[15], the tool’s ability to illuminate the space with multiple
different and good solutions can help designers identify new
designs or to perfect generated content based on their current
priorities. QD approaches are able to efficiently (see Section
II-A) produce a diverse set of high-quality content, and give
a designer control to adjust both the criteria of quality and the
behavioral characterization of the artifacts. This makes QD ap-
proaches especially effective tools for mixed-initiative content
design, and can foster their users’ creativity with expected or
unexpected but always high-quality suggestions [32].

E. Explainability

Explainable Al for Designers [33] is an important research
area that aims to aid the game designer in understanding
Al algorithms applied to games. Such explainability is use-
ful during co-creative tasks (see Section III-D) but also for
debugging purposes or when the generated artifact is used

Fig. 2: Bullet-hell level created with constrained MAP-Elites.
Figures reproduced with permission from the authors [18].

in another design iteration. Since QD approaches such as
MAP-Elites illuminate the search space and visualize it as a
feature map, this can help developers explore and understand
the generator’s output [34]. Explainability in this vein is
tied to the online and embedded expressivity analysis of
these algorithms (see Section III-C). As with any evolutionary
algorithm in the SBPCG family, QD approaches can explain
the origins of the artifact by showing the lineage of any
individual (e.g., in [35], [36]). Strengthening this latter form
of explanation, the fact that PCG-QD is efficient in producing
a set of good and diverse artifacts in one run (see Section
III-A) strengthens this lineage visualization as the common
ancestors of different sets of high-performing content can be
shown. These different visualizations can help the designer
group individuals and select those with the desired features
among the many individuals generated by the algorithm.

IV. CASES OF QUALITY DIVERSITY IN PCG

This section discusses previous work in PCG-QD, highlight-
ing the differences and commonalities between the different
algorithms used. Table I examines each case in terms of five
components: the QD algorithm, components of Section II, the
quality and diversity characterizations, and the type of artifact
produced.

A. Generation of 2D and 3D Objects

MAP-Elites was used to generate 2D images [37] and 3D
objects [38]. Similar to DeLeNoX [16], this work combines
quality-diversity search and machine learning. A Deep Neural
Network (DNN) is first trained on classifying real-world
images and then combined with MAP-Elites to generate 2D
images or 3D objects. The classification output of the DNN
distinguishes between 1000 different classes of images, which
is used as diversity characterization of the input. Specifically,
MAP-Elites uses the classification output of the DNN as a
partition of the search space and tries to optimize every bin
based on the confidence of the DNN.

B. Generation of Bullet Hell Scripts

A constrained version of MAP-Elites was used to generate
levels for bullet hell games [18]. The generated levels are



Components Characterization
Algorithm ]Délvergerlice LQCuahté Divergence Quality Artifact
MAP-Elites - v v - DNN Output DNN Confidence 2D and 3D objects [37], [38]
MESB - v v - Mana Distribution Health Difference Hearthstone Decks [13]
- v v v Playthrough Properties Validity and Playability Bullet-Hell Scripts [18]
CME - v v Triggered Mechanics Playability and Simplicity Mario Scenes [19]
- v v v Linearity, Simmetry, Playability, Room properties, Dungeons [39]
Similarity, and Patterns and Design patterns
v - -V Visual Diversity Playability Map Sketches [14], [15]
CNS v - - v Visual Diversity Believability Arcade-Style Spaceships [40]
v - - v DNN Latent Space Believability 2D Spaceship Hulls [16]
CSS v - - v Map Locations Balance and Playability FPS Weapons [17]
NS-LC v - v - Block Presence Complexity Minecraft-like Structures [41]

TABLE I: Cases of PCG through Quality Diversity. In the components column, D stands for Behavior Space Distance, P for
Behavior Space Partitioning, LC for Local Competition and C for Constraints.

Fig. 3: Super Mario Bros scenes created with constrained
MAP-Elites. Figures reproduced with permission from the
authors [19].

represented as a sequence of events in the Talakat description
language [18]. The algorithm tries to evolve valid scripts while
making sure that the level is playable using an A* algorithm.
The authors use features of the agent and the level (agent
entropy, agent risk, and bullet distribution) as dimensions of
the feature map. Figure 2 shows three different generated
levels from this experiment from different areas in the map.

C. Generation of Mario Scenes

Constrained MAP-Elites was used to generate small sections
of levels (scenes) for Super Mario Bros [19]. The algorithm
tries to find the simplest playable scenes, using an A* agent to
check for playability. The algorithm uses the triggered game
mechanics during the playthrough as binary dimensions for
the map (the mechanic is either fired during the playthrough
or not) to make sure the generated scenes target different game
mechanics. Eight different mechanics were used, thus creating
a feature map of 256 cells. The algorithm was able to generate
levels in 100 cells on average (see Fig. 1), ranging from levels
where no mechanics were fired to levels where all mechanic
were fired. Figure 3 shows three different scenes with different
degrees of fired mechanics ranging from no fired mechanics
on the left to five mechanics being fired on the right.

D. Generation of Hearthstone Decks

MAP-Elites with Sliding Boundaries [13] was used to
generate decks for the online card game Hearthstone (Blizzard,
2014). The main goal is to generate high-performing decks

Fig. 4: A screenshot taken from the Sentient Sketchbook tool.
Figure reproduced with permission from the authors [15].

that vary in their mana distribution curves (mana is the cost
required to play a card). In order to do so, the fitness is
computed as the difference between the two players’ health
in 200 games; diversity is based on the distribution of the
mana curve, codified as the average and variance of the mana
distribution in the population.

E. Generation of Map Sketches

Sentient Sketchbook [15] is a mixed-initiative game design
tool where the user can design the level of the game and re-
ceive in real-time feedback on playability constraints, balance,
etc. PCG-QD has the role of inspiring the user with level
suggestions through genetic search. In particular, constrained
novelty search [14] is used to produce suggestions using the
designer’s sketch as an initial seed: a combination of FI-
2Pop and novelty search guarantees feasible and highly diverse
suggestions. Feasibility tests whether the level is playable
(e.g. all resources tiles are reachable by every player’s base),
while diversity is computed as the number of tiles which are
different. Figure 4 shows a screenshot of a design session.

F. Generation of Weapons

A constrained approach to generate a number of diverse
and functional weapons for competitive First Person Shooter




Fig. 5: Two example weapons created by constrained sur-
prise search. Figures reproduced with permission from the
authors [17].

games is introduced in [17]. These weapons need to be usable
and balanced but also exhibit surprising behaviors. In order
to accomplish that, a constrained surprise search algorithm is
devised to generate weapons that are feasible (balanced and
usable) and surprising in their behaviors. In particular, two
populations are employed, one where infeasible weapons are
optimized towards feasibility and another population where the
feasible weapons are rewarded based on their unexpectedness.
Surprise is computed based on the death location of the
agents used to simulate gameplay with the evolved weapons.
A heatmap is computed in every generation based on the
coordinates of these death locations and a prediction is made
via linear regression of the heatmaps computed in the last two
generations. Surprise is then computed based on the difference
between the individual’s death locations and the predicted
heatmap. As an example, Figure 5 shows a pair of generated
weapons through this QD approach.

G. Generation of Spaceships

Constrained novelty search has been used extensively for
generation of spaceships’ visuals, driven by constraints on
visual quality (such as all shapes being connected) and by
divergence either based on pre-authored visual properties [40]
or based on emergent visual patterns. For the latter, De-
LeNoX [16] generated increasingly diverse spaceships based
on a latent representation and the exploration capabilities
of novelty search. Specifically, DeLeNoX alternates two key
algorithmic phases, exploration and transformation. During the
exploration phase, constrained novelty search generates many
diverse but feasible two-dimensional spaceships; during the
transformation phase, an autoencoder tries to compress all
generated solutions in a low-dimensional latent space. The
subsequent exploration phase uses the autoencoder’s latent
space as behavior characterization, and thus the diversity
measure is continuously adapted in every cycle of DeLeNoX.

H. Generation of Minecraft-like Structures

Novelty search with local competition [23] was used to
generate a number of diverse block structures for the popular
video-game Minecraft (Mojang, 2011) in [41]. The block
structures are evolved via Artificial Neural Networks, which
are in turn evolved via NS-LC. In particular, structures’ quality
is based on their complexity (net number of placed blocks

times the height of the tallest block), while the behavior
characterization is a binary vector specifying whether there
is a block at each location in the simulation.

1. Generation of Dungeons

An interactive variant of constrained MAP-Elites (CME)
is proposed in [39] to blend quality-diversity with the mixed-
initiative system Evolutionary Dungeon Designer (EDD). EDD
is a design tool capable of generating dungeons for adven-
ture games. In this work, CME is augmented with mixed-
initiative capabilities and tested in EDD with different pairs
of dimension of interest: symmetry and similarity, number of
meso-patterns, number of spatial patterns, and linearity. As in
the original CME implementation, the infeasible population
minimizes the feasibility constraint (playability) while the
feasible population maximizes a weighted sum of inventorial
aspects of the room and the spatial distribution of design
patterns. The user can choose two dimensions of interest and
influence the evolutionary process by selecting the favorite
solution displayed in the MAP-Elites grid.

J. Discussion

Observing the cases of PCG-QD in Table I, most cases ana-
lyzed use constrained optimization to ensure playable content.
This is likely due to games being an ergodic medium [42],
which cannot be used if the generated content is broken. Since
assessing playability often requires extensive tests (e.g. via
simulations), constrained optimization approaches are particu-
larly well suited for this. In PCG-QD, the quality component
satisfies the feasibility constraints, and is enhanced by the
search for diverse content performed within the constrained
search space. Future research should enhance PCG-QD with a
quality component among only feasible individuals, as in [18].

It is also interesting to inspect the motivation for PCG-
QD (see Section III) used in the surveyed work of Table
I. Generative efficiency and Human-machine Co-creation are
featured in [15]: the former is beneficial for generating multi-
ple suggestions simultaneously in quasi-real-time', while the
latter allows the tool to assist the user with both diverse
and good suggestions. Fitness-free search motivates [17] to
generate weapons with unexpected uses, such as the mine-
layer. Regarding online expressivity analysis, we may argue
that it covers (in some cases implicitly) all the described cases
of PCG-QD. For instance, in [13] the diversity characterization
is used to inspect the expressive features of the cards evolved.
More importantly, the underlying distribution of the cards’
mana plays an active role during the evolutionary search by
affecting the boundaries of the space partitioning. Finally,
explainability to the designer was implicitly provided in EDD
[39]; however, to the best of our knowledge, no project has
explicitly targeted explainability in the cases surveyed, which
hints at a possible direction for future work.

I'Sentient Sketchbook [15] also uses standard SBPCG to generate only
one high-quality suggestion per evolutionary run, requiring 6 threads for 6
suggestions while CNS produces 6 suggestions in 1 thread.



V. OPEN PROBLEMS AND OUTLOOK

While several instances of PCG-QD have explored the space
of possibilities in games and beyond (surveyed in Section
IV), there is extensive work to be done in this direction.
We highlight some of the challenges and some of the most
promising avenues for exploring QD approaches in games.

A core challenge of PCG-QD is the definition of an effective
behavior characterization. The first issue relates to the curse
of dimensionality, as a multi-dimensional BC can curtail the
advantages described in Section III. Exploring diverse solu-
tions in high-dimensional spaces can hinder the performance
of the QD algorithm. Specifically, in high-dimensional spaces
it can be hard to find inferesting diversity across all the
possible solutions of the search space [37]. A related challenge
is the chosen BC partitioning, as the selected granularity
may affect the efficiency of the QD approach. A fine-grained
partition can make coverage of the space difficult, while
a coarse-grained partition might hide interesting solutions.
Several ways to address this have been put forward, such
as dimensionality reduction in latent spaces [16] or using
centroidal Voronoi tessellation to maintain a constant partition
of the space regardless of the number of dimensions [43].
However, future work is required to investigate further how to
best handle high-dimensional states. Beyond quality-diversity,
an interesting direction for future work would be to fuse
different PCG approaches, such as PCGML and PCG-QD. As
we highlighted in Section IV, some early examples of a fusion
between quality-diversity and machine learning have been
tested already [16], [37]. However, an interesting future di-
rection would be to exploit the unique capabilities of PCGML
(e.g., autonomous generation, data compression and analysis
of the content [24]) with the advantages of quality-diversity
(see Section III). For instance, machine-learned models of
gameplay [44] could be used to improve the computational
efficiency of simulation-based PCG-QD solutions. Numerous
and long evaluations of content are usually required to test
the quality of the generated content both in SBPCG and
PCG-QD. However, we can imagine leveraging the abstraction
capabilities of the machine-learned model to create surrogate
of the simulations; this approach can reach comparable results
in fewer evaluations [45].

Another direction for future work in games is applying QD
algorithms to debug, diagnose and understand game playing
agents. QD algorithms can generate a diverse set of levels
that capture different important features of the level itself and
an agent’s gameplay [13], [19]. By analyzing the outputs,
we can understand which behavior has the most effect on
the performance of the playing agent. The same idea can
be used to improve the generality of reinforcement learning
algorithms [46] by generating diverse sets of levels that can
be validated to be playable but the agent can’t beat them [47].

Beyond procedural content generation, QD can also be
used to evolve a group of playing agents that are either
different from each other or compatible with each other. This is

especially important for agents playing in collaborative games,
as we might need a group of agents that are different from
each other and at the same time compatible. For instance,
MAP-Elites was used to generate a diverse set of high quality
agents [48] that play the game Hanabi (Antoine Bauza, 2010).
Another use for high-quality diverse agents is for testing
generated content with different play styles [49]. This can help
debug the game to see if the current content is experienced in
a similar manner as intended.

While the cases surveyed in Section IV focused mostly on
the generation of levels and visuals, it is important to explore
how QD algorithms can work with different facets of game
content such as rules [50], music [51], etc. These facets come
with their own challenges in defining quality or diversity. For
example, in rule generation it is easy to define playable games
(games that an automated agent can win in a number of steps)
but a formula for good games is more difficult to devise. QD
approaches can help explore the space of acceptable artifacts
with different characteristics, allowing us to understand the
effect these characteristics have on the generated artifacts.

VI. CONCLUSION

In this paper, we distinguished quality-diversity (QD) as a
search strategy for search-based procedural content generation.
Based on a range of recent applications of QD to games,
QD algorithms can produce a large set of diverse (through
controllable and often designer-friendly dimensions) and high-
quality content (through constraints on playability and/or local
competition). This makes PCG-QD particularly efficient in
producing many diverse artifacts in one run, which is useful as
explainable designer feedback, in a mixed-initiative tool or for
expressivity analysis. Based on the current work in this vein,
we identified under-explored areas in terms of algorithms and
intended uses. Finally, we laid out a vision for the future of
the field and the challenges that it will have to overcome.

ACKNOWLEDGMENT

This project has received funding from the European
Union’s Horizon 2020 programme under grant agreement No
787476. Ahmed Khalifa acknowledges the financial support
from NSF grant (Award number 1717324 - “RI: Small: Gen-
eral Intelligence through Algorithm Invention and Selection.”).

REFERENCES

[1] E. Maiberg, “’No Mans Sky’ is like 18 quintillion bowls of oat-
meal,” https://www.vice.com/en_us/article/nz7d8q/no-mans-sky-review,
2016, accessed 13 May 2019.

[2] G. Ritchie, “Some empirical criteria for attributing creativity to a
computer program,” Minds and Machines, vol. 17, no. 1, pp. 67-99,
2007.

[3] M. Preuss, A. Liapis, and J. Togelius, “Searching for good and diverse
game levels,” in Proceedings of the IEEE Conference on Computational
Intelligence and Games, 2014,

[4] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation: A taxonomy and survey,” [EEE
Trans. on Computational Intelligence and Al in Games, vol. 3, no. 3,
pp. 172-186, 2011.

[5] J. K. Pugh, L. B. Soros, and K. O. Stanley, “Quality diversity: A new
frontier for evolutionary computation,” Frontiers in Robotics and Al,
vol. 3, 2016.


https://www.vice.com/en_us/article/nz7d8q/no-mans-sky-review

[6]

[10]

(11]

(12]

[13]

[14]

[15]

(16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

M. Preuss, Multimodal optimization by means of evolutionary algo-
rithms.  Springer, 2015.

A. Cully and Y. Demiris, “Quality and diversity optimization: A unifying
modular framework,” IEEE Trans. on Evolutionary Computation, 2017.
J. Lehman and K. O. Stanley, “Abandoning objectives: Evolution through
the search for novelty alone,” Evolutionary computation, vol. 19, no. 2,
2011.

D. Gravina, A. Liapis, and G. Yannakakis, “Surprise search: Beyond
objectives and novelty,” in Proceedings of the Genetic and Evolutionary
Computation Conference 2016. ACM, 2016, pp. 677-684.

C. Stanton and J. Clune, “Curiosity search: producing generalists
by encouraging individuals to continually explore and acquire skills
throughout their lifetime,” PloS one, vol. 11, no. 9, 2016.

M. Preuss, “Improved topological niching for real-valued global op-
timization,” in Applications of Evolutionary Computation.  Springer,
2012, pp. 386-395.

J.-B. Mouret and J. Clune, “Illuminating search spaces by mapping
elites,” arXiv preprint arXiv:1504.04909, 2015.

M. C. Fontaine, S. Lee, L. B. Soros, F. D. M. Silva, J. Togelius, and
A. K. Hoover, “Mapping hearthstone deck spaces with MAP-Elites with
sliding boundaries,” in Proceedings of The Genetic and Evolutionary
Computation Conference. ACM, 2019.

A. Liapis, G. N. Yannakakis, and J. Togelius, “Constrained novelty
search: A study on game content generation,” Evolutionary computation,
vol. 23, no. 1, pp. 101-129, 2015.

——, “Sentient sketchbook: Computer-aided game level authoring,” in
Proceedings of the 8th Conference on the Foundations of Digital Games,
2013, pp. 213-220.

A. Liapis, H. P. Martinez, J. Togelius, and G. N. Yannakakis, “Trans-
forming exploratory creativity with delenox,.” in /ICCC, 2013, pp. 56-63.
D. Gravina, A. Liapis, and G. N. Yannakakis, “Constrained surprise
search for content generation,” in Proceedings of the IEEE Conference
on Computational Intelligence and Games. 1EEE, 2016, pp. 1-8.

A. Khalifa, S. Lee, A. Nealen, and J. Togelius, “Talakat: Bullet hell
generation through constrained MAP-Elites,” in Proceedings of The
Genetic and Evolutionary Computation Conference. ACM, 2018, pp.
1047-1054.

A. Khalifa, M. C. Green, G. Barros, and J. Togelius, “Intentional compu-
tational level design,” in Proceedings of The Genetic and Evolutionary
Computation Conference. ACM, 2019.

D. Gravina, A. Liapis, and G. Yannakakis, “Blending notions of diversity
for MAP-Elites,” in Proceedings of the Genetic and Evolutionary
Computation Conference Companion. ACM, 2019.

S. O. Kimbrough, G. J. Koehler, M. Lu, and D. H. Wood, “On a feasible—
infeasible two-population (fi-2pop) genetic algorithm for constrained
optimization: Distance tracing and no free lunch,” European Journal
of Operational Research, vol. 190, no. 2, pp. 310-327, 2008.

D. Gravina, A. Liapis, and G. N. Yannakakis, “Quality diversity through
surprise,” IEEE Trans. on Evolutionary Computation, 2019.

J. Lehman and K. O. Stanley, “Evolving a diversity of virtual creatures
through novelty search and local competition,” in Proceedings of the
13th Annual Conference on Genetic and Evolutionary Computation, ser.
GECCO ’11. ACM, 2011, pp. 211-218.

A. Summerville, S. Snodgrass, M. Guzdial, C. Holmgard, A. K. Hoover,
A. Isaksen, A. Nealen, and J. Togelius, “Procedural content generation
via machine learning (pcgml),” IEEE Trans. on Games, vol. 10, no. 3,
pp. 257-270, 2018.

N. Shaker, A. Liapis, J. Togelius, R. Lopes, and R. Bidarra, “Construc-
tive generation methods for dungeons and levels,” in Procedural Content
Generation in Games: A Textbook and an Overview of Current Research,
N. Shaker, J. Togelius, and M. J. Nelson, Eds. Springer, 2016.

A. M. Smith and M. Mateas, “Answer set programming for procedural
content generation: A design space approach,” IEEE Trans. on Compu-
tational Intelligence and Al in Games, vol. 3, no. 3, 2011.

D. E. Goldberg, “Simple genetic algorithms and the minimal, deceptive
problem,” in Genetic algorithms and simulated annealing, ser. Research
Notes in Artificial Intelligence, L. Davis, Ed. Pitman, 1987, pp. 74-88.
M. Csikszentmihalyi and I. S. Csikszentmihalyi, Optimal experience:
Psychological studies of flow in consciousness. Cambridge university
press, 1992.

A. Liapis, G. N. Yannakakis, and J. Togelius, “Computational game
creativity,” in Proceedings of the Fifth International Conference on
Computational Creativity, 2014.

[32]

(33]

[34]

[35]

(36]

[37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

[48]

[49]

[50]

[51]

G. Smith and J. Whitehead, “Analyzing the expressive range of a level
generator,” in Proceedings of the 2010 Workshop on Procedural Content
Generation in Games. ACM, 2010.

G. Smith, J. Whitehead, and M. Mateas, “Tanagra: Reactive planning
and constraint solving for mixed-initiative level design,” IEEE Trans. on
computational intelligence and Al in games, vol. 3, no. 3, pp. 201-215,
2011.

A. Liapis, G. N. Yannakakis, C. Alexopoulos, and P. Lopes, “Can
computers foster human users’ creativity? theory and praxis of mixed-
initiative co-creativity,” Digital Culture & Education (DCE), vol. 8,
no. 2, pp. 136-152, 2016.

J. Zhu, A. Liapis, S. Risi, R. Bidarra, and G. M. Youngblood, “Explain-
able ai for designers: A human-centered perspective on mixed-initiative
co-creation,” in Proceedings of the IEEE Conference on Computational
Intelligence and Games, 2018.

M. Cook, J. Gow, and S. Colton, “Danesh: Helping bridge the gap
between procedural generators and their output,” in Proceedings of the
FDG workshop on Procedural Content Generation, 2016.

E. J. Hastings, R. K. Guha, and K. O. Stanley, “Automatic content
generation in the galactic arms race video game,” IEEE Trans. on
Computational Intelligence and Al in Games, vol. 1, no. 4, pp. 245—
263, 2009.

J. Secretan, N. Beato, D. B. DAmbrosio, A. Rodriguez, A. Campbell,
J. T. Folsom-Kovarik, and K. O. Stanley, “Picbreeder: A case study
in collaborative evolutionary exploration of design space,” Evolutionary
Computation journal, 2011.

A. M. Nguyen, J. Yosinski, and J. Clune, “Innovation engines: Auto-
mated creativity and improved stochastic optimization via deep learn-
ing,” in Proceedings of the 2015 Annual Conference on Genetic and
Evolutionary Computation. ACM, 2015, pp. 959-966.

J. Lehman, S. Risi, and J. Clune, “Creative generation of 3d objects
with deep learning and innovation engines,” in Proceedings of the 7th
International Conference on Computational Creativity, 2016.

A. Alvarez, S. Dahlskog, J. Font, and J. Togelius, “Empowering quality
diversity in dungeon design with interactive constrained MAP-Elites,”
in Proceedings of the IEEE Conference on Games. IEEE, 2019.

A. Liapis, “Exploring the visual styles of arcade game assets,” in
Proceedings of Evolutionary and Biologically Inspired Music, Sound,
Art and Design (EvoMusArt). Springer, 2016.

L. B. Soros, J. K. Pugh, and K. O. Stanley, “Voxelbuild: a minecraft-
inspired domain for experiments in evolutionary creativity,” in Pro-
ceedings of the Genetic and Evolutionary Computation Conference
Companion. ACM, 2017, pp. 95-96.

E. J. Aarseth, Cybertext: Perspectives on ergodic literature. JHU Press,
1997.

V. Vassiliades, K. Chatzilygeroudis, and J.-B. Mouret, “Using centroidal
voronoi tessellations to scale up the multidimensional archive of phe-
notypic elites algorithm,” IEEE Trans. on Evolutionary Computation,
vol. 22, no. 4, pp. 623-630, 2018.

D. Karavolos, A. Liapis, and G. N. Yannakakis, “Using a surrogate
model of gameplay for automated level design,” in Proceedings of the
IEEE Conference on Computational Intelligence and Games, 2018.

A. Gaier, A. Asteroth, and J.-B. Mouret, “Data-efficient design explo-
ration through surrogate-assisted illumination,” Evolutionary computa-
tion, vol. 26, no. 3, pp. 381410, 2018.

N. Justesen, R. R. Torrado, P. Bontrager, A. Khalifa, J. Togelius, and
S. Risi, “Illuminating generalization in deep reinforcement learning
through procedural level generation,” arXiv preprint arXiv:1806.10729,
2018.

D. Anderson, M. Stephenson, J. Togelius, C. Salge, J. Levine, and
J. Renz, “Deceptive games,” in Applications of Evolutionary Compu-
tation.  Springer, 2018, vol. 10784, LNCS, pp. 376-391.

R. Canaan, J. Togelius, A. Nealen, and S. Menzel, “Diverse agents for
ad-hoc cooperation in hanabi,” in Proceedings of the IEEE Conference
on Games, 2019.

A. Liapis, C. Holmgard, G. N. Yannakakis, and J. Togelius, “Procedural
personas as critics for dungeon generation,” in Applications of Evolu-
tionary Computation. Springer, 2015, vol. 9028, LNCS.

A. Khalifa, M. C. Green, D. Perez-Liebana, and J. Togelius, “General
video game rule generation,” in Proceedings of the IEEE Conference on
Computational Intelligence and Games. 1EEE, 2017.

P. Hutchings and J. McCormack, “Adaptive music composition for
games,” IEEE Trans. on Games, 2019, accepted for publication.



	I Introduction
	II Quality Diversity Approaches
	II-A Divergence Components
	II-A1 Behavior Space Distance
	II-A2 Behavior Space Partitioning

	II-B Quality Components
	II-B1 Local Competition
	II-B2 Constraints

	II-C Algorithms
	II-C1 MAP-Elites (ME)
	II-C2 MAP-Elites with Novelty Search (ME-NOV)
	II-C3 MAP-Elites with Sliding Boundaries (MESB)
	II-C4 Constrained Novelty Search (CNS)
	II-C5 Constrained Surprise Search (CSS)
	II-C6 Constrained MAP-Elites (CME)
	II-C7 Novelty Search with Local Competition (NS-LC)
	II-C8 Surprise Search with Local Competition (SS-LC)


	III Why Quality Diversity?
	III-A Generative Efficiency
	III-B Fitness-Free Search
	III-C Online Expressivity Analysis
	III-D Human-Machine Co-Creation
	III-E Explainability

	IV Cases of Quality Diversity in PCG
	IV-A Generation of 2D and 3D Objects
	IV-B Generation of Bullet Hell Scripts
	IV-C Generation of Mario Scenes
	IV-D Generation of Hearthstone Decks
	IV-E Generation of Map Sketches
	IV-F Generation of Weapons
	IV-G Generation of Spaceships
	IV-H Generation of Minecraft-like Structures
	IV-I Generation of Dungeons
	IV-J Discussion

	V Open problems and Outlook
	VI Conclusion
	References

