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ABSTRACT

MOTIVATION: As the size of high-throughput DNA sequence datasets continues to grow, the cost of transferring and storing the datasets
may prevent their processing in all but the largest data centers or commercial cloud providers. To lower this cost, it should be possible to
process only a subset of the original data while still preserving the biological information of interest.

RESULTS: Using 4 high-throughput DNA sequence datasets of differing sequencing depth from 2 species as use cases, we demonstrate
the effect of processing partial datasets on the number of detected RNA transcripts using an RNA-Seq workflow. We used transcript detec-
tion to decide on a cutoff point. We then physically transferred the minimal partial dataset and compared with the transfer of the full dataset,
which showed a reduction of approximately 25% in the total transfer time. These results suggest that as sequencing datasets get larger, one
way to speed up analysis is to simply transfer the minimal amount of data that still sufficiently detects biological signal.

AVAILABILITY: All results were generated using public datasets from NCBI and publicly available open source software.
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Introduction

The advent of high-throughput DNA sequencing (HTS) in
the last decade provides high resolution quantification of indi-
vidual DNA molecules at the nucleotide level. One can literally
count the occurrence of molecules in a biological specimen and
determine each molecule’s exact sequence. The utility of meas-
uring complex biological systems with HTS drives the expan-
sion of DNA sequence archives. For example, the National
Center for Biotechnology Information’s Sequence Read
Archive (NCBI SRA) now contains more than 27 quadrillion
base pairs (=27 petabytes) from more than 4.4 million experi-
ments.! Given advances in DNA sequencing technology and
falling price points, the exponential trend of data accumulation
is not likely to end any time soon.

One application of HT'S is the quantification of RNA mol-
ecules by deep sequencing after conversion of RNA into
c¢DNA, a technique termed RNA-Seq. Evidence suggests that
sampling 20 to 25 million RNA molecules with RNA-Seq
provides sufficient resolution to capture medium to highly
expressed genes, whereas even deeper sequencing to 100 to 200
million reads is likely to detect rare RNA transcripts.? The
depth of sequencing performed on a sample is often a function
of a researcher’s sequencing budget which is a real constraint to
the quantification of rare molecules. However, as the cost of
HTS technology continues to decline, it should be possible to
sequence deeper for almost any RNA-Seq application. For

example, the Illumina Genome Analyzer released in 2006 was
capable of generating 1 gigabase of sequence data, whereas the
NextSeq platform in 2017 can produce 120 gigabases (400
million reads) in a single run.3 The more bases a sequencer can
read, the deeper a researcher can peer into the molecular land-
scape of a biological system.

Even if HTS becomes cheap enough for routine deep
sequencing of rare transcripts, the larger datasets will still need
to be processed with bioinformatics workflows. Currently, a
typical RNA-Seq workflow ingests data in FASTQ_format,
cleans it by trimming unwanted reads, aligns to a reference
genome, and quantifies the alignments as RNA transcript
counts.* Transcript counts from multiple biological samples
can be combined into a gene expression matrix (GEM),> where
the matrix value GEM, ; is the normalized count (eg, Fragments
Per Kilobase of transcript per Million mapped reads; FPKM)®7
of transcript 7 in sample 7. Among other downstream applica-
tions of the GEM is to identify differentially expressed genes®
and generate gene co-expression networks.” !

The advent of higher molecular resolution into biological
systems via improved HTS technology must be coupled with
computational advances that can process more and more DNA
sequence data. Deep HTS datasets can quickly fill up storage
systems, and transferring datasets between workflow execution
CPUs can saturate network bandwidth within and between
data centers. Furthermore, actual storage space requirements
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are several times greater than the size of a single dataset due to
the large intermediate files created during the workflow. Thus,
it will become increasingly important to consider storage and
transfer costs into an experiment as dataset generation costs
decline.

One way to reduce both storage and network input/output
(I/O) costs is to process a reduced amount of DNA sequence
data instead of moving the full dataset into a workflow. If the
researcher decides that there is sufficient sequencing depth in
the subsample, then there would be no need to pay the cost of
moving and processing the full dataset. In this study, we explore
the effect of transferring and processing partial RNA-Seq
datasets using transcript detection as a simple metric. In a proof
of concept, we show that our method significantly reduces the
total transfer time of a dataset. We predict that partial analysis
of datasets will become an important trade-off as researchers
sequence deeper into biological samples.

Materials and Methods

To intelligently transfer partial datasets, we require a metric to
measure and select a cutoff point and the means to transfer
partial files. We chose to run full RNA-Seq workflows on par-
tial datasets, select a cutoff point based on the number of
detected transcripts per million mapped reads, and transfer
partial datasets over the Internet between cloud computing
sites.

In subsequent sections, this article uses the term DNA
records or records to mean “the smallest unit of DNA sequence
data that can be transferred and processed indivisibly.” In the
context of the FASTQ_files used as experimental input, a
record would mean the 4 adjacent lines in an uncompressed
file containing the sequence identifier, bases, duplicate
sequence identifier, and quality scores.’? The results in this
article were generated from paired-end reads, and for this
reason, a logical record includes the corresponding forward
and reverse reads.

Experimental setup

To clean the FASTQ files, we used Trimmomatic 0.36.13 To
align the reads, we used HISAT?2 2.0.5.14To sort the SAM file,
we used SAMtools 1.3.1.%° To map the alignments, we used
StringTie 1.3.1¢.1® During read alignment, novel splice junc-
tion discovery was disabled and only abundances of known ref-
erence transcripts were quantified. To load the counts and plot
the results, we used R 3.3.2,17 Ballgown 2.6.0,8 ggplot2 2.2.1,
plyr 1.8.4,%0 and reshape2 1.4.2.21

Dataset transfers were performed between clouds in 2 loca-
tions. The node in the CloudLab (http://www.cloudlab.us/)
cluster at Clemson University had 2 Intel E5-2683 v3 14-core
CPUs, 256 GB of ECC RAM, two 1 TB SATA 3G hard disk
drives, and a dual-port 10 Gigabit Ethernet adapter.?> The
node in the Chameleon (http://www.chameleoncloud.org/)

cluster at the University of Chicago had 2 Intel E5-2650 v3
10-core CPUs, 64 GB of ECC RAM, 16 2 TB 12 Gb/s SAS
hard disk drives, and a 10 Gigabit Ethernet adapter.?® The
software used to perform the transfers was FDT 0.25.1 with
the OpenJDK 1.8.0 Java VM running on CentOS 7.4.1708.

Input data

To test the concept of partial dataset processing, we selected 3
human input datasets and 1 pig dataset of varied sequencing
depth (ie, DNA sequence records): the human datasets Aypoxia
(45-55 million records; read length 100), b/adder (85-87 mil-
lion records; read length 76), and nisc2 (189-259 million
records; read length 101), and the pig dataset oncopig (55-85
million records; read length 100). All datasets were generated
using Illumina HiSeq sequencing systems with paired-end
reads.

Our first dataset which we refer to as dladder comes from
the project at NCBI with accession PRJNA358425 and
includes the runs with accessions SRR5124442, SRR5124443,
SRR5124447, SRR5124452, SRR5124453, and
SRR5124455.2% Qur second dataset which we refer to as
hypoxia comes from PRJEB14955 and includes ERR1551404,
ERR1551405, ERR1551408, and ERR1551409.2> Our third
dataset which we refer to as nisc2 comes from PRJNA231202
and includes the 6 runs SRR1047863 to SRR1047865 and
SRR1047869 to SRR1047871.26 Our last dataset which we
refer to as oncopig comes from PRJEB8735 and includes the 7
runs ERR777781 to ERR777787.%7

Auxiliary input data include the FASTA adapter sequences
for the Illumina TruSeq Library Prep Kit. For human runs, we
use the Release 26 GRCh38.p10 genome sequence and com-
prehensive gene annotation for all regions from the Genome
Reference Consortium.?® For pig runs, we use the sequence and
annotations from Ensemble Release 91.%

Scientific workflow

Before the workflow begins, a FASTQ_dataset file is subdi-
vided into a dataset partition factor (DPF) between 1% and
100% of the possible sequence records. Next, Trimmomatic is
used to remove adapter sequences and short reads. Then,
HISAT? is run on the trimmed FASTQ file along with the
index generated previously using Aisar2-build and a file con-
taining known splice sites. The output from HISAT?2 is
sorted with samtools sort and then processed using StringTie
to generate counts in FPKIM. We did not account for strand
specificity.

The output from StringTie is loaded into R using the
Ballgown package.!® For every run at every percent, the num-
ber of transcripts with FPKM greater than zero is calculated.
The percent values are converted to records and the results are
plotted.
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Figure 1. Detected transcripts by number of records for 4 datasets. Each point indicates the number of transcripts with FPKM >0 measured at the given
number of records. All runs were identically analyzed using the workflow of the Scientific workflow section. FASTQ files were sampled at 1% to 100% of
the records of the original dataset. Dashed lines at the top of each plot indicate the theoretical maximum number of detected transcripts (217 857 for

human and 49558 for pig). Species for bladder, hypoxia, and nisc2 is Homo sapiens. Species for oncopig is Sus scrofa. FPKM indicates Fragments Per

Kilobase of transcript per Million mapped reads.

Transfer of partial datasets

At the source side in Clemson, the files are stored in a logical
volume striped across both disk drives. The 12 FASTQ _files
from SRR1047863 to SRR1047865 and SRR1047869 to
SRR1047871 were transferred using FDT' (http://github.com/
fast-data-transfer/fdt) to the destination in Chicago. On the
Chicago, side files were stored on a single drive in the 16-drive
storage array. Both sides use XFS as the file system. The trans-
fer was repeated 5 times.

When the full files were transferred, it was possible to meas-
ure the number of detected transcripts at different numbers of
records with multiple runs of the RNA-Seq workflow. The
slope between successive measurements was calculated for each
dataset and expressed as the number of detected transcripts per
million records. An arbitrary cutoff of 100 detected transcripts
per million records was selected, and the smallest processed
record count greater than or equal to the cutoff was chosen for
each dataset.

Given that cutoff point, fastq-dump was used to only dump
the selected number of records from each SRA file. The result-
ing partial dataset was again transferred using FDT. These
smaller files were transferred in the same manner as before
with 5 repetitions.

Results

To simulate a partial RNA-Seq data transfer and processing,
we reduced the original datasets from NCBI into 18 subsets of
records at these depths: 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%,
10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90%. For each
subset of input data, we ran the RNA-Seq workflow described
in the Scientific workflow section and then post-processed the
StringTie output to generate our detection measurement
defined as the number of transcripts with FPKM >0. For
every dataset in Figure 1, the number of detected transcripts
increased with the record count. Within each dataset, there was
variability between the runs, but the results tended to cluster
together with a similar shape.

Figure 2 shows the timing results of full and partial transfers
of the nisc2 dataset from Clemson to Chicago. First, the full
dataset was transferred and the total transfer time was meas-
ured for 5 trials. Then, a subset of each file in the dataset was
transferred 5 times. Both the full and partial datasets were
transferred over the commodity Internet with the same con-
figuration settings. The total time to transfer all partial datasets
was 75% of the time to transfer the full datasets (1.5 hours vs 2
hours). These aggregate times are shown as the rightmost pair

of bars in Figure 2.
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Discussion

A primary constraint when sequencing a sample is balancing
sequence depth against cost. However, for the experimenter
using data that have already been sequenced and stored in a
central repository, the primary consideration will be the time
and resources required to transfer and process the dataset. In
our concept, the data mining experimenter has the option of
processing only a subset of the original dataset, thereby reduc-
ing computational resources that are becomingly increasingly
expensive as HT'S dataset sizes swell into hundreds of millions
of reads and analysis is increasingly performed in billable cloud
compute environments.

A key issue is determining the smallest number of records
required to produce the same scientific result as the full dataset,
and we point to a simple saturation point as determined by
transcript detection. Once a saturation point has been reached,

3
(=]

M Complete transfer
[l Partial transfer

Transfer duration (minutes)
3

71 Total
combined

Last two digits of dataset name

63 64 65 69 70

Figure 2. Transfer times of full and partial FASTQ files from nisc2.
FASTQ files were transferred between Clemson and Chicago over the
public Internet using FDT. The time to transfer a complete dataset is
shown with the bars labeled “complete transfer.” The time to transfer a
partial dataset satisfying the criteria in the transfer of partial datasets
section is shown with the bars labeled “partial transfer.” Reported times
within a group are the average of 5 trials. Error bars are too small to be
visible. The x-axis gives the last 2 digits of the dataset name, where each
dataset name begins with the string SRR70748. The rightmost pair of
bars plots the sum total of the times for all datasets within both groups.
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one could pause and examine the results. If there is interesting
signal, then there is nothing preventing the user from process-
ing more sequence records. However, if there is no signal, one
could drop the experiment and move on to other datasets.

The primary output for our RNA-Seq workflow is count
data measured in FPKM for each feature (gene or transcript) in
each dataset. We would like to ensure that our partial dataset is
able to detect all the features of interest in the full dataset. In
our pilot use case, we define a feature is desected when the
FPKM measurement for that feature is greater than zero. By
continuously processing increasingly larger subsets, it should be
possible to detect the threshold at which the number of fea-
tures with FPKIM > 0 is constant; that is, when no new features
are detected. However, in the results of Figure 1 across all 4
datasets, we never saw transcript detection saturation as the
number of records increased to the maximum. We note that we
have tested this proof of principle with a single representative
workflow.

Even with the nisc2 dataset having more than 258 million
records, there was no saturation, suggesting that either 258
million records is not enough or that some noise is being intro-
duced that is causing the count of detected transcripts to con-
tinuously increase. At the time of this writing, 258 million
records are in the 99th percentile of public paired-end RNA-
Seq runs available at NCBI. It would be unreasonable to expect
that any of the 99% of datasets in NCBI smaller than the one
we tested would reach a point where the slope was flat. As there
was no saturation seen in the nisc2 dataset, we chose a cutoff of
100 detected transcripts per million mapped reads. Although
our choice of cutoff was arbitrary, the cutoff points of 133 to
181 million records correspond nicely to the predictions of the
literature of 100 to 200 million reads.!! The choice of cutoff
value will need to be one of the parameters decided by the
experimenter.

It appears that the noise that causes the count of detected
transcripts to continuously increase is confined to the low
expression transcripts. As seen in Figure 3(A), the number of
detected transcripts at different percent records transferred for
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Figure 3. Only low-level transcripts accumulate with more sequence records. (A) The number of genes that were detected at 6 FPKM expression
thresholds are shown for the 6 nisc2 datasets at each percent transfer. (B) The amount of gene overlap at each transfer level is shown for a representative

nisc2 dataset SRR1047863.
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Table 1. Estimation of the number of detected transcripts at 30 million
records.

DATASET PREDICTED FPKM >0 PERCENT OF WHOLE
Bladder 97872-105433 83%-84%
Hypoxia 100613-102279 90%-93%
nisc2 101490-110594 71%-76%
Oncopig 26865-30658 87%-92%

Abbreviation: FPKM, Fragments Per Kilobase of transcript per Million mapped
reads.

For each run of Figure 1, a linear model of the number of detected transcripts
was created using the formula detected ~log(records) (R?=0.988-1.0). These
models were then used to predict the number of detected transcripts at 30
million records for each run. As each dataset contains between 4 and 7 runs,
this table lists the range of predicted transcripts for each dataset. The values for
percent of whole were calculated by dividing the predicted number of transcripts
at 30 million records by the number of detected transcripts measured in the full
dataset as plotted in Figure 1.

the largest nisc2 dataset only increases if the detection thresh-
old is FPKM > 0. Ratcheting up the thresholds from >1 to
>4 does not detect more transcripts. Furthermore, the same
genes are being detected at each transfer (Figure 3(B)). These
data suggest that if one is looking at even moderately tran-
scribed genes, these can be effectively captured at low numbers
of sequence records.

In many cases, it may be possible to transfer much fewer
than the 133 to 181 million records transferred in our nisc2
experiment, because even though the slope of the number of
detected transcripts in Figure 1 never flattens completely, for
each dataset around 30 million records the slope of the number
of detected transcripts decreases greatly. In Table 1, we estimate
the number of transcripts that would have been detected at
exactly 30 million records. These predictions for the number of
detected transcripts are then compared with the actual number
of detected transcripts in the full dataset, yielding a range of
percent values which represent the predicted portion of tran-
scripts detected at 30 million records. The minimum value of
71% for SRR1047863 in nisc2 means that even in the worst
case, a much smaller cutoff of 30 million records would detect
up to 71% of the transcripts detected in the full dataset. While
we tested 4 RNA-Seq datasets and saw similar saturation
behavior, it is likely that other datasets of variable quality (eg,
low RNA quality, rRNA contamination, low quality genome
assembly) might exhibit different sensitivities and saturation
points. Thus, a saturation curve might need to be generated if
the workflow and/or data are very different from the repre-
sentative workflow we examined.

At the time of this writing, the mean sequencing depth of
public Illumina paired-end RNA-Seq runs was =16.5 million
records. However, the mean size of all szudies (ie, collections of
related runs) was 374 million records. In performing certain
types of analysis such as the search for differentially expressed
genes, it will be necessary to transfer all of the datasets within
a related study. Thus, even though the size of individual

datasets may currently be small, the aggregate size of the whole
study is large enough to benefit from an optimization of the
data transfer method.

Likewise, while a 25% reduction in transfer time may not
seem significant in the context of a single dataset, a similar
reduction applied to all the datasets from an entire study may
produce noticeable computational savings. As an example, the
tull study containing nisc2 consists of more than 3.8 billion
records. At the previously measured throughput of 116 million
bytes/s, the time to transfer the full study would decrease by
1.25 hours from 5 to 3.75 hours. This reduction in transfer
time frees up more network bandwidth and lessens the work-
flow resource requirements while still capturing transcriptional
signals.

Conclusions

For our use case, partial data transfer reduced total transfer time
by 25%. Processing smaller datasets given the same amount of
time opens the possibility to processing more datasets. For
example, more replicates could be incorporated into the experi-
ment leading to better confidence with lowly expressed genes.3
In the end, it will be up to the individual experimenter to decide
when signal is captured for their experiment.

Acknowledgements

Results were obtained using CloudLab and Chameleon test-
beds supported by the National Science Foundation (award
numbers 1743363, 1743363, and 1743358) and the Clemson

Palmetto cluster.

Author Contributions

FAF conceived the study. NM and EMB designed and per-
formed the computational experiments. WLP and FAF
designed biological experiments. NM, EMB, WLP, WBL, and
FAF wrote the manuscript.

ORCID iD

F Alex Feltus https://orcid.org/0000-0002-2123-6114

REFERENCES

1. National Center for Biotechnology Information. SRA database growth. 2019.
https://www.ncbi.nlm.nih.gov/sra/docs/sragrowth/

2. ENCODE. Standards, guidelines and best practices for RNA-Seq tech. rep. The
ENCODE Consortium. 2011. https://genome.ucsc.edu/encode/protocols/
dataStandards/ENCODE_RNAseq_Standards_V1.0.pdf

3. Illumina. NextSeq series specifications. 2018. https://www.illumina.com/sys-
tems/sequencing-platforms/nextseq/specifications.html

4. Mihaela P, Dachwan K, Pertea Geo M, Leck Jeffrey T, Salzberg Steven L.
Transcript-level expression analysis of RNA-seq experiments with HISAT,
StringTie and Ballgown. Na# Profoc. 2016;11:1650-1667.

5. Poehlman William L, Mats R, Chris B, Balamurugan D, Feltus Frank A. OSG-
GEM: gene expression matrix construction using the open science grid. Bioin-
form Biol Insights. 2016;10:BBIS38193.

6. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quan-
tifying mammalian transcriptomes by RNA-Seq. Naz Methods. 2008;5:621-628.

7. Trapnell C, Roberts A, Goff L, et al. Differential gene and transcript expression
analysis of RNA- seq experiments with TopHat and Cufflinks. Naz Protoc.
2012;7:562-578.



Bioinformatics and Biology Insights

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Simon A, Wolfgang H. Differential expression analysis for sequence count data.
Genome Biol. 2010;11:R106.

Ficklin SP, Dunwoodie L], Poehlman WL, Christopher W, Roche KE, Feltus
FA. Discovering condition-specific gene co-expression patterns using Gaussian
mixture models: a cancer case study. Sci Reporz. 2017;7:8617.

Butte AJ, Tamayo P, Slonim D, Golub TR, Kohane IS. Discovering functional
relationships between RNA expression and chemotherapeutic susceptibility
using relevance networks. Proc Natl Acad Sci U.S.4. 2000;97:12182-12186.
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation net-
work analysis. BMC Bioinform. 2008;9:559.

Cock PJA, Fields CJ, Goto N, Heuer ML, Rice PM. The Sanger FASTQ file
format for sequences with quality scores, and the Solexa/Illumina FASTQ vari-
ants. Nucleic Acids Res. 2010;38:1767-1771.

Bolger Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina
sequence data. Bioinformatics. 2014;30:2114-2120.

Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low mem-
ory requirements. Nazure Meth. 2015;12:357-360.

Heng L, Bob H, Alec W, et al. The sequence alignment/map format and SAM-
tools. Bioinformatics. 2009;25:2078-2079.

Mihaela P, Pertea Geo M, Antonescue Corina M, Tsung-Cheng C, Mendell
Joshua T, Salzberg Steven L. StringTie enables improved reconstruction of a
transcriptome from RNA-seq reads. Nature Biotech. 2015;33:290-295.

R Core Team. R: A4 Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing. R Core Team: Vienna; 2016.

Jack F, Frazee Alyssa C, Leonardo CT, Jaffe Andrew E, Leek Jeffrey T. ball-
gown: Flexible, isoform-level differential expression analysis 2016. R package
2.6.0. https://bioconductor.riken.jp/packages/3.4/bioc/html/ball-
gown.html

Hadley W. Ggplot2: Elegant Graphics for Data Analysis. New York: Springer; 2009.

version

20.
21
22.

23.

24.

25.

26.

27.

28.

29.

30.

Hadley W. The split-apply-combine strategy for data analysis. J Staz Softw.
2011;40:1-29.

Hadley W. Reshaping data with the reshape package. J Staz Softw. 2007;21:1-20.
Robert R, Eric E; The CloudLab Team. Introducing CloudLab: scientific infra-
structure for advancing cloud architectures and applications. USENIX; login
2014;39:132.

Mambretti J, Chen J, Yeh F. Next generation clouds, the chameleon cloud test-
bed, and software defined networking (SDN). 2015 International Conference on
Cloud Computing Research and Innovation (ICCCRI); October 26-27, 2015;
Singapore: 73-79.

Dee LL, Sujoy G, Xiaoran C, et al. Loss of tumor suppressor KDM6A amplifies
PRC2-regulated transcriptional repression in bladder cancer and can be targeted
through inhibition of EZH2. Sci Trans!/ Med. 2017;9:¢aai8312.

Chiang CM, Ilott Nicholas E, Johannes S, etal. Tuning the transcriptional
response to hypoxia by inhibiting hypoxia-inducible factor (HIF) prolyl and
asparaginyl hydroxylases. J Bio/ Chem. 2016;291:2066120673.

Akula N, Barb ], Jiang X, et al. RNA-sequencing of the brain transcriptome
implicates dysregulation of neuroplasticity, circadian rhythms and GTPase
binding in bipolar disorder. Mo/ Psychiatry. 2014;19:1179.

Schook LB, Collares TV, Hu W, et al. A genetic porcine model of cancer. PLoS
ONE. 2015;10:1-18.

International Human Genome Sequencing Consortium. Finishing the euchro-
matic sequence of the human genome. Nazure. 2004;431:931-945.

Zerbino Daniel R, Premanand A, Akanni Wasiu, et al. Ensembl 2018. Nucleic
Acid Res. 2017;46:D754-D761.

Robles José A, Qureshi Sumaira E, Stephen Stuart J, Wilson Susan R, Burden
Conrad J, Taylor Jennifer M. Efficient experimental design and analysis strate-
gies for the detection of differential expression using RNA sequencing. BMC
Genom. 2012;13:484.



