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Introduction
The advent of high-throughput DNA sequencing (HTS) in 

the last decade provides high resolution quantification of indi-

vidual DNA molecules at the nucleotide level. One can literally 

count the occurrence of molecules in a biological specimen and 

determine each molecule’s exact sequence. The utility of meas-

uring complex biological systems with HTS drives the expan-

sion of DNA sequence archives. For example, the National 

Center for Biotechnology Information’s Sequence Read 

Archive (NCBI SRA) now contains more than 27 quadrillion 

base pairs (≈27 petabytes) from more than 4.4 million experi-

ments.1 Given advances in DNA sequencing technology and 

falling price points, the exponential trend of data accumulation 

is not likely to end any time soon.

One application of HTS is the quantification of RNA mol-

ecules by deep sequencing after conversion of RNA into 

cDNA, a technique termed RNA-Seq. Evidence suggests that 

sampling 20 to 25 million RNA molecules with RNA-Seq 

provides sufficient resolution to capture medium to highly 

expressed genes, whereas even deeper sequencing to 100 to 200 

million reads is likely to detect rare RNA transcripts.2 The 

depth of sequencing performed on a sample is often a function 

of a researcher’s sequencing budget which is a real constraint to 

the quantification of rare molecules. However, as the cost of 

HTS technology continues to decline, it should be possible to 

sequence deeper for almost any RNA-Seq application. For 

example, the Illumina Genome Analyzer released in 2006 was 

capable of generating 1 gigabase of sequence data, whereas the 

NextSeq platform in 2017 can produce 120 gigabases (400 

million reads) in a single run.3 The more bases a sequencer can 

read, the deeper a researcher can peer into the molecular land-

scape of a biological system.

Even if HTS becomes cheap enough for routine deep 

sequencing of rare transcripts, the larger datasets will still need 

to be processed with bioinformatics workflows. Currently, a 

typical RNA-Seq workflow ingests data in FASTQ format, 

cleans it by trimming unwanted reads, aligns to a reference 

genome, and quantifies the alignments as RNA transcript 

counts.4 Transcript counts from multiple biological samples 

can be combined into a gene expression matrix (GEM),5 where 

the matrix value GEMi,j is the normalized count (eg, Fragments 

Per Kilobase of transcript per Million mapped reads; FPKM)6,7 

of transcript i in sample j. Among other downstream applica-

tions of the GEM is to identify differentially expressed genes8 

and generate gene co-expression networks.9-11

The advent of higher molecular resolution into biological 

systems via improved HTS technology must be coupled with 

computational advances that can process more and more DNA 

sequence data. Deep HTS datasets can quickly fill up storage 

systems, and transferring datasets between workflow execution 

CPUs can saturate network bandwidth within and between 

data centers. Furthermore, actual storage space requirements 
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are several times greater than the size of a single dataset due to 

the large intermediate files created during the workflow. Thus, 

it will become increasingly important to consider storage and 

transfer costs into an experiment as dataset generation costs 

decline.

One way to reduce both storage and network input/output 

(I/O) costs is to process a reduced amount of DNA sequence 

data instead of moving the full dataset into a workflow. If the 

researcher decides that there is sufficient sequencing depth in 

the subsample, then there would be no need to pay the cost of 

moving and processing the full dataset. In this study, we explore 

the effect of transferring and processing partial RNA-Seq 

datasets using transcript detection as a simple metric. In a proof 

of concept, we show that our method significantly reduces the 

total transfer time of a dataset. We predict that partial analysis 

of datasets will become an important trade-off as researchers 

sequence deeper into biological samples.

Materials and Methods
To intelligently transfer partial datasets, we require a metric to 

measure and select a cutoff point and the means to transfer 

partial files. We chose to run full RNA-Seq workflows on par-

tial datasets, select a cutoff point based on the number of 

detected transcripts per million mapped reads, and transfer 

partial datasets over the Internet between cloud computing 

sites.

In subsequent sections, this article uses the term DNA 

records or records to mean “the smallest unit of DNA sequence 

data that can be transferred and processed indivisibly.” In the 

context of the FASTQ files used as experimental input, a 

record would mean the 4 adjacent lines in an uncompressed 

file containing the sequence identifier, bases, duplicate 

sequence identifier, and quality scores.12 The results in this 

article were generated from paired-end reads, and for this 

reason, a logical record includes the corresponding forward 

and reverse reads.

Experimental setup

To clean the FASTQ files, we used Trimmomatic 0.36.13 To 

align the reads, we used HISAT2 2.0.5.14 To sort the SAM file, 

we used SAMtools 1.3.1.15 To map the alignments, we used 

StringTie 1.3.1c.16 During read alignment, novel splice junc-

tion discovery was disabled and only abundances of known ref-

erence transcripts were quantified. To load the counts and plot 

the results, we used R 3.3.2,17 Ballgown 2.6.0,18 ggplot2 2.2.1,19 

plyr 1.8.4,20 and reshape2 1.4.2.21

Dataset transfers were performed between clouds in 2 loca-

tions. The node in the CloudLab (http://www.cloudlab.us/) 

cluster at Clemson University had 2 Intel E5-2683 v3 14-core 

CPUs, 256 GB of ECC RAM, two 1 TB SATA 3G hard disk 

drives, and a dual-port 10 Gigabit Ethernet adapter.22 The 

node in the Chameleon (http://www.chameleoncloud.org/) 

cluster at the University of Chicago had 2 Intel E5-2650 v3 

10-core CPUs, 64 GB of ECC RAM, 16 2 TB 12 Gb/s SAS 

hard disk drives, and a 10 Gigabit Ethernet adapter.23 The 

software used to perform the transfers was FDT 0.25.1 with 

the OpenJDK 1.8.0 Java VM running on CentOS 7.4.1708.

Input data

To test the concept of partial dataset processing, we selected 3 

human input datasets and 1 pig dataset of varied sequencing 

depth (ie, DNA sequence records): the human datasets hypoxia 

(45-55 million records; read length 100), bladder (85-87 mil-

lion records; read length 76), and nisc2 (189-259 million 

records; read length 101), and the pig dataset oncopig (55-85 

million records; read length 100). All datasets were generated 

using Illumina HiSeq sequencing systems with paired-end 

reads.

Our first dataset which we refer to as bladder comes from 

the project at NCBI with accession PRJNA358425 and 

includes the runs with accessions SRR5124442, SRR5124443, 

SRR5124447, SRR5124452, SRR5124453, and 

SRR5124455.24 Our second dataset which we refer to as 

hypoxia comes from PRJEB14955 and includes ERR1551404, 

ERR1551405, ERR1551408, and ERR1551409.25 Our third 

dataset which we refer to as nisc2 comes from PRJNA231202 

and includes the 6 runs SRR1047863 to SRR1047865 and 

SRR1047869 to SRR1047871.26 Our last dataset which we 

refer to as oncopig comes from PRJEB8735 and includes the 7 

runs ERR777781 to ERR777787.27

Auxiliary input data include the FASTA adapter sequences 

for the Illumina TruSeq Library Prep Kit. For human runs, we 

use the Release 26 GRCh38.p10 genome sequence and com-

prehensive gene annotation for all regions from the Genome 

Reference Consortium.28 For pig runs, we use the sequence and 

annotations from Ensemble Release 91.29

Scientif ic workflow

Before the workflow begins, a FASTQ dataset file is subdi-

vided into a dataset partition factor (DPF) between 1% and 

100% of the possible sequence records. Next, Trimmomatic is 

used to remove adapter sequences and short reads. Then, 

HISAT2 is run on the trimmed FASTQ file along with the 

index generated previously using hisat2-build and a file con-

taining known splice sites. The output from HISAT2 is 

sorted with samtools sort and then processed using StringTie 

to generate counts in FPKM. We did not account for strand 

specificity.

The output from StringTie is loaded into R using the 

Ballgown package.18 For every run at every percent, the num-

ber of transcripts with FPKM greater than zero is calculated. 

The percent values are converted to records and the results are 

plotted.
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Transfer of partial datasets

At the source side in Clemson, the files are stored in a logical 

volume striped across both disk drives. The 12 FASTQ files 

from SRR1047863 to SRR1047865 and SRR1047869 to 

SRR1047871 were transferred using FDT (http://github.com/

fast-data-transfer/fdt) to the destination in Chicago. On the 

Chicago, side files were stored on a single drive in the 16-drive 

storage array. Both sides use XFS as the file system. The trans-

fer was repeated 5 times.

When the full files were transferred, it was possible to meas-

ure the number of detected transcripts at different numbers of 

records with multiple runs of the RNA-Seq workflow. The 

slope between successive measurements was calculated for each 

dataset and expressed as the number of detected transcripts per 

million records. An arbitrary cutoff of 100 detected transcripts 

per million records was selected, and the smallest processed 

record count greater than or equal to the cutoff was chosen for 

each dataset.

Given that cutoff point, fastq-dump was used to only dump 

the selected number of records from each SRA file. The result-

ing partial dataset was again transferred using FDT. These 

smaller files were transferred in the same manner as before 

with 5 repetitions.

Results
To simulate a partial RNA-Seq data transfer and processing, 

we reduced the original datasets from NCBI into 18 subsets of 

records at these depths: 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 

10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90%. For each 

subset of input data, we ran the RNA-Seq workflow described 

in the Scientif ic workflow section and then post-processed the 

StringTie output to generate our detection measurement 

defined as the number of transcripts with FPKM > 0. For 

every dataset in Figure 1, the number of detected transcripts 

increased with the record count. Within each dataset, there was 

variability between the runs, but the results tended to cluster 

together with a similar shape.

Figure 2 shows the timing results of full and partial transfers 

of the nisc2 dataset from Clemson to Chicago. First, the full 

dataset was transferred and the total transfer time was meas-

ured for 5 trials. Then, a subset of each file in the dataset was 

transferred 5 times. Both the full and partial datasets were 

transferred over the commodity Internet with the same con-

figuration settings. The total time to transfer all partial datasets 

was 75% of the time to transfer the full datasets (1.5 hours vs 2 

hours). These aggregate times are shown as the rightmost pair 

of bars in Figure 2.

Figure 1. Detected transcripts by number of records for 4 datasets. Each point indicates the number of transcripts with FPKM > 0 measured at the given 

number of records. All runs were identically analyzed using the workflow of the Scientific workflow section. FASTQ files were sampled at 1% to 100% of 

the records of the original dataset. Dashed lines at the top of each plot indicate the theoretical maximum number of detected transcripts (217 857 for 

human and 49 558 for pig). Species for bladder, hypoxia, and nisc2 is Homo sapiens. Species for oncopig is Sus scrofa. FPKM indicates Fragments Per 

Kilobase of transcript per Million mapped reads.
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Discussion
A primary constraint when sequencing a sample is balancing 

sequence depth against cost. However, for the experimenter 

using data that have already been sequenced and stored in a 

central repository, the primary consideration will be the time 

and resources required to transfer and process the dataset. In 

our concept, the data mining experimenter has the option of 

processing only a subset of the original dataset, thereby reduc-

ing computational resources that are becomingly increasingly 

expensive as HTS dataset sizes swell into hundreds of millions 

of reads and analysis is increasingly performed in billable cloud 

compute environments.

A key issue is determining the smallest number of records 

required to produce the same scientific result as the full dataset, 

and we point to a simple saturation point as determined by 

transcript detection. Once a saturation point has been reached, 

one could pause and examine the results. If there is interesting 

signal, then there is nothing preventing the user from process-

ing more sequence records. However, if there is no signal, one 

could drop the experiment and move on to other datasets.

The primary output for our RNA-Seq workflow is count 

data measured in FPKM for each feature (gene or transcript) in 

each dataset. We would like to ensure that our partial dataset is 

able to detect all the features of interest in the full dataset. In 

our pilot use case, we define a feature is detected when the 

FPKM measurement for that feature is greater than zero. By 

continuously processing increasingly larger subsets, it should be 

possible to detect the threshold at which the number of fea-

tures with FPKM > 0 is constant; that is, when no new features 

are detected. However, in the results of Figure 1 across all 4 

datasets, we never saw transcript detection saturation as the 

number of records increased to the maximum. We note that we 

have tested this proof of principle with a single representative 

workflow.

Even with the nisc2 dataset having more than 258 million 

records, there was no saturation, suggesting that either 258 

million records is not enough or that some noise is being intro-

duced that is causing the count of detected transcripts to con-

tinuously increase. At the time of this writing, 258 million 

records are in the 99th percentile of public paired-end RNA-

Seq runs available at NCBI. It would be unreasonable to expect 

that any of the 99% of datasets in NCBI smaller than the one 

we tested would reach a point where the slope was flat. As there 

was no saturation seen in the nisc2 dataset, we chose a cutoff of 

100 detected transcripts per million mapped reads. Although 

our choice of cutoff was arbitrary, the cutoff points of 133 to 

181 million records correspond nicely to the predictions of the 

literature of 100 to 200 million reads.11 The choice of cutoff 

value will need to be one of the parameters decided by the 

experimenter.

It appears that the noise that causes the count of detected 

transcripts to continuously increase is confined to the low 

expression transcripts. As seen in Figure 3(A), the number of 

detected transcripts at different percent records transferred for 

Figure 2. Transfer times of full and partial FASTQ files from nisc2. 

FASTQ files were transferred between Clemson and Chicago over the 

public Internet using FDT. The time to transfer a complete dataset is 

shown with the bars labeled “complete transfer.” The time to transfer a 

partial dataset satisfying the criteria in the transfer of partial datasets 

section is shown with the bars labeled “partial transfer.” Reported times 

within a group are the average of 5 trials. Error bars are too small to be 

visible. The x-axis gives the last 2 digits of the dataset name, where each 

dataset name begins with the string SRR10748. The rightmost pair of 

bars plots the sum total of the times for all datasets within both groups.

Figure 3. Only low-level transcripts accumulate with more sequence records. (A) The number of genes that were detected at 6 FPKM expression 

thresholds are shown for the 6 nisc2 datasets at each percent transfer. (B) The amount of gene overlap at each transfer level is shown for a representative 

nisc2 dataset SRR1047863.
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the largest nisc2 dataset only increases if the detection thresh-

old is FPKM > 0. Ratcheting up the thresholds from >1 to 

>4 does not detect more transcripts. Furthermore, the same 

genes are being detected at each transfer (Figure 3(B)). These 

data suggest that if one is looking at even moderately tran-

scribed genes, these can be effectively captured at low numbers 

of sequence records.

In many cases, it may be possible to transfer much fewer 

than the 133 to 181 million records transferred in our nisc2 

experiment, because even though the slope of the number of 

detected transcripts in Figure 1 never flattens completely, for 

each dataset around 30 million records the slope of the number 

of detected transcripts decreases greatly. In Table 1, we estimate 

the number of transcripts that would have been detected at 

exactly 30 million records. These predictions for the number of 

detected transcripts are then compared with the actual number 

of detected transcripts in the full dataset, yielding a range of 

percent values which represent the predicted portion of tran-

scripts detected at 30 million records. The minimum value of 

71% for SRR1047863 in nisc2 means that even in the worst 

case, a much smaller cutoff of 30 million records would detect 

up to 71% of the transcripts detected in the full dataset. While 

we tested 4 RNA-Seq datasets and saw similar saturation 

behavior, it is likely that other datasets of variable quality (eg, 

low RNA quality, rRNA contamination, low quality genome 

assembly) might exhibit different sensitivities and saturation 

points. Thus, a saturation curve might need to be generated if 

the workflow and/or data are very different from the repre-

sentative workflow we examined.

At the time of this writing, the mean sequencing depth of 

public Illumina paired-end RNA-Seq runs was ≈16.5 million 

records. However, the mean size of all studies (ie, collections of 

related runs) was 374 million records. In performing certain 

types of analysis such as the search for differentially expressed 

genes, it will be necessary to transfer all of the datasets within 

a related study. Thus, even though the size of individual 

datasets may currently be small, the aggregate size of the whole 

study is large enough to benefit from an optimization of the 

data transfer method.

Likewise, while a 25% reduction in transfer time may not 

seem significant in the context of a single dataset, a similar 

reduction applied to all the datasets from an entire study may 

produce noticeable computational savings. As an example, the 

full study containing nisc2 consists of more than 3.8 billion 

records. At the previously measured throughput of 116 million 

bytes/s, the time to transfer the full study would decrease by 

1.25 hours from 5 to 3.75 hours. This reduction in transfer 

time frees up more network bandwidth and lessens the work-

flow resource requirements while still capturing transcriptional 

signals.

Conclusions
For our use case, partial data transfer reduced total transfer time 

by 25%. Processing smaller datasets given the same amount of 

time opens the possibility to processing more datasets. For 

example, more replicates could be incorporated into the experi-

ment leading to better confidence with lowly expressed genes.30 

In the end, it will be up to the individual experimenter to decide 

when signal is captured for their experiment.
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