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1. Introduction

TMDs have a general formula of MX2, where M is a 
transition metal atom (such as Ti, Zr, Hf, V, Nb, Ta, Re, 
etc) and X is a chalcogen atom (such as S, Se, Te). There 
are over 30 different TMDs with diverse properties, 
ranging from semiconductors (MoS2, WSe2) to 
semimetals (1T′ phase WTe2 and TiSe2), metals (VSe2, 
NbS2), and superconductors (PbTe2, NbSe2) [1–16]. 
Monolayer TMDs have four polymorphs: 1H phase 
(space group P6̄m2), 1T phase (space group P3̄m2), 
1T′ phase (space group P21/m), and 1Td phase (space 
group P1m1) [17–23]. When the TMDs are stacked 
together, they can form three types of structural 
polytypes: 2H (hexagonal symmetry, two layers per 
repeat unit, trigonal prismatic coordination), 3R 
(rhombohedral symmetry, three layers per repeat unit, 
trigonal prismatic coordination) and 1T (tetragonal 
symmetry, one layer per repeat unit, octahedral 
coordination) [24]. Most of the bulk TMDs (such as 
WS2 and MoTe2) are stable in 2H phase and exhibit 
semiconductor behavior, while some of the TMDs 
(such as WTe2) are stable in the 1T phase and exhibit 
metallic behavior at room temperature [25]. These 

diverse crystal structures and material properties 
make TMDs attractive candidates for a large variety 
of electronic and photonic applications. In addition, 
unlike graphene, TMDs can be synthesized on 
insulating substrates in large scale, which is another 
important factor that drives intense research and 
development interest in TMDs. The common synthesis 
methods for TMDs include chemical vapor deposition 
(CVD) [26–36], physical vapour deposition (PVD) 
[37, 38], metal-organic CVD (MOCVD) [39, 40], 
metal transformation [41], chemical vapor transport 
(CVT) [42, 43], chemical or electrochemical 
exfoliation [44–46], pulsed laser deposition (PLD) 
[47], molecular beam epitaxy (MBE), spray pyrolysis 
[48], and atomic layer deposition (ALD) [49, 50]. 
Among these methods, CVD and MOCVD are the 
most widely investigated methods and wafer-scale 
TMDs have been demonstrated using MOCVD [39]. 
The band structure, synthesis, material properties, 
and applications of various 2D materials including 
graphene, transition metal dichalcogenide and black 
phosphorus have been reviewed in several articles [1, 4, 
24, 32, 50–57]. In this paper, we focus on the electronic 
devices based on TMD materials and provide 
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comprehensive overview of the operating principles, 
the state-of-the-art, the potential and the challenges of 
TMD based electronic devices.

2. Electronic devices based on TMDs

2.1. Two-terminal devices
Esaki diodes and RTDs are two-terminal devices with 
prominent negative differential resistance (NDR). An 
Esaki diode is based on interband tunneling, while an 
RTD is based on intraband tunneling.

2.1.1. Esaki diodes
The band diagram and typical IV characteristics of 
the traditional Esaki diode are shown in figures 1(a) 
and (b) [58]. In the forward bias, electrons flow 
from the filled states in the conduction band in the 
n-type semiconductor to empty states in the valence 
band in the p-type semiconductor. As the forward  
bias is increased, the conduction band of the n-type 
semiconductor is eventually raised above the 
valence band of the p-type semiconductor, electrons 
can no longer tunnel into a valence-band state 
while conserving both total energy and transverse 
momentum, and the current is reduced to a minimum. 
Further increasing the bias will increase the current 
due to the thermionic emission over the energy barrier.

Various material stacks have been used in Esaki 
diodes, including Si, Ge, SiGe, III–V, and their hetero-
structures [59–65]. Peak current density up to 2.2 MA 
cm−2 has been demonstrated in Esaki diodes based on 
InAs/GaSb heterojunctions [61]. Excellent average 
peak-to-valley current ratio (PVR) of 14 was achieved 
in Esaki diodes based on n-In0.5Ga0.5As/p-GaAs0.5Sb0.5 
[66]. Recently, 2D crystals have emerged as promis-
ing candidates for Esaki diodes. 2D materials are free 
of surface dangling bonds, and 2D heterostructures 
mediated by van der Waals (vdW) forces are free of dis-
locations even when there is a large mismatch in their 
lattice constants. The ability to stack heterostructures 

without the constraint of lattice matching opens up 
tremendous opportunities in the engineering of vari-
ous band alignments for tunneling devices, down to 
the atomic level. Yan et al demonstrated Esaki diodes 
based on the vdW heterostructure of black phosphorus 
(BP) and tin diselenide (SnSe2), shown in figures 2(a) 
and (b) [67]. These two semiconductors form a type III 
or broken-gap energy band alignment. The presence 
of an vdW gap, which serves as a thin insulating bar-
rier between BP and SnSe2, enables the observation of 
a prominent NDR region in the forward-bias region. 
PVR of 1.8 at 300 K and peak current density ~1.6 kA 
m−2 were observed [67]. Esaki diode based on verti-
cal heterostructure of MoS2 and WSe2 also shows NDR 
at low temperatures (figures 2(c) and (d)) [68]. Shim 
et al demonstrated an Esaki diode based on a phos-
phorene/rhenium disulfide (BP/ReS2) heterojunction. 
The PVR ratio of these devices can reach 4.2 at room 
temperature. Utilizing these diodes, the authors devel-
oped multi-valued logic circuits [69]. Recently, Esaki 
diodes based on 2D/3D heterojunctions also have been 
explored. Xu et al demonstrated Esaki diodes based on 
MoS2 on degenerately-doped silicon, while Krishna-
moorthy et al demonstrated Esaki diodes based on 
MoS2 on GaN [70, 71]. The PVR ratios of these 2D/3D 
Esaki diodes are ~1.2 [69–71]. Further material and 
process optimizations are still needed for the 2D TMD 
based Esaki diodes to be competitive with the III–V 
based Esaki diodes. However, the ability to freely stack 
the 2D layers and manipulate their orientation angle 
allows for greater degree of band alignment control, an 
attractive attribute for tunneling based devices.

2.1.2. Resonant tunneling diodes (RTDs)
The band diagram and typical IV characteristics of a 
traditional RTD are illustrated in figures 3(a) and (b) 
[58]. The RTD consists of a double potential barrier. 
The quasi-Fermi levels in the left contact, EF, and right 
contact, EF—eV, are split by the applied voltage V. The 
horizontal line between the barriers represents the 

Figure 1. Illustration of (a) energy band diagram and (b) IV characteristics of an Esaki diode.
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energy of the resonant state of the semiconductor in the 
quantum well. As bias is applied on the right contact, 
the resonant level is pulled down to the Fermi level of 
the emitter on the left. At this point, when Eres  =  EF, the 

current turns on. As the bias is increased, the resonant 
level is pulled deeper into the Fermi sea of the emitter 
and the current increases with bias. Once the resonant 
energy falls below the conduction band of the emitter, 

Figure 2. Esaki diodes based on 2D TMDs. (a) and (b) Structure and current–voltage characteristics of the BP/SnSe2 vdW Esaki 
diode [67]. (c) and (d) Three-dimensional schematic and IDVD of an Esaki diode based on a vertical heterostructure of MoS2 and 
WSe2 [68].

Figure 3. Illustration of (a) energy band diagram and (b) IV characteristics of an RTD.
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electrons can no longer tunnel while conserving both 
total energy and transverse momentum, and the 
current reaches a minimum.

Vertical stacking of 2D materials can form a double 
potential barrier naturally without any lattice match-
ing restriction. It was observed experimentally that 
resonant tunneling can occur when the energy bands 
of two 2D semiconductors separated by a tunneling 
barrier are aligned. Britnell et al reported resonant 
tunneling of Dirac fermions in two graphene layers 
through a boron nitride barrier, shown in figures 4(a) 
and (b). The resulting NDR in the device characteris-
tics persists up to room temperature and is  gate-volt age 
tunable. Since the carriers tunnel across only a few 
atomic layers, these devices have the potential of ultra-
fast transit times [72]. Zhao et al simulated a symmet-
ric tunneling field-effect transistor (SymFET) which 
consists of an n-type graphene layer and a p-type gra-
phene layer. The authors found that a large current 
peak occurs when the Dirac points of the two graphene 
layers are aligned at a particular drain-to-source bias 
and the resonant current peak is controlled by chemi-
cal doping and applied gate bias [73]. NDR has also 
been observed in rotationally aligned double bilayer 
graphene heterostructures separated by hexagonal 
boron nitride (hBN) dielectric [74, 75]. In addition, 
NDR effects exist in TMD heterostructures as well. Lin 
et al demonstrated direct synthesis of atomically thin 
TMDs on graphene [76]. The conductive atomic force 
microscopy (CAFM) measurements on MoS2–WSe2-
graphene and WSe2–MoS2-graphene heterostruc-
tures show resonant tunneling and room-temperature 
NDR characteristics, shown in figure 4(c). The NDR 
and fast response time in Esaki didoes and RTDs make 
them promising in applications including oscillators, 
THz detectors, multi-value memories, and analog-to-
digital converters. However, a key challenge in mak-
ing these vertical heterostructure based devices is the 
stringent requirement on matching the momentum 
space between layers; otherwise, transport across the 
layers would be phonon-mediated and would tend to 
degrade the performance [77].

2.2. Transistors
2.2.1. Logic transistors
Traditional logic transistors based on silicon are 
facing severe challenges in device scaling. A common 
approach used to suppress short-channel effect 
involves reducing the channel thickness to enhance the 
gate electrostatic control on the channel. In the past, 
silicon-on-insulator (SOI), ultra-thin SOI (UTSOI) 
and extremely thin SOI (ETSOI) have been pursued 
[78, 79]. However, the mobility degrades and threshold 
voltage varies significantly as the thickness is scaled 
down due to surface roughness [80–83]. TMDs with 
atomically thin body and sizable bandgap can uniquely 
address these challenges [55, 84]. Simulations revealed 
that monolayer MoS2 FETs show 52% smaller drain-
induced barrier lowering (DIBL) and 13% smaller 
subthreshold swing (SS) than 3 nm thick-body Si FETs 
at a channel length of 10 nm [85]. Figure 5(a) shows 
that monolayer MoS2 with double gate can effectively 
reduce DIBL as compared to silicon SOI technology 
[86]. In the meantime, 2D materials suffer much less 
mobility degradation as compared to silicon, when 
the channel thickness reduces to nanometer scale, 
shown in figure 5(b). Cao’s simulation indicated 
that MoS2 FETs can meet high performance (HP) 
requirement up to 6.6 nm gate length using bilayer 
MoS2 as the channel material. The scaling of the 
TMD transistors was also explored experimentally 
[87–89]. Yang et al demonstrated scaled devices with 
10 nm channel length as well as ultrathin (2.5 nm) gate 
dielectrics which show effective immunity to short-
channel effects, shown in figure 5(c) [90]. Desai et al 
demonstrated MoS2 transistors with a 1 nm physical 
gate length using a single-walled carbon nanotube 
(SWCNT) as the gate electrode, illustrated in 
figure 5(d). These ultra-short devices show near ideal 
subthreshold swing of ~65 mV per decade and high 
On/Off current ratio of ~106 [91]. These results clearly 
show that TMDs have high potential in extremely 
scaled logic devices.

Due to the atomically thin bodies and large band-
gaps of TMD materials, the contact resistances in 

Figure 4. RTDs based on 2D materials. (a) and (b) Schematic diagram and measured current–voltage characteristics of a graphene-
BN RTD [72]. (c) Experimental I–V traces for different combinations of dichalcogenide-graphene interfaces [76].
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TMD transistors are usually much higher than those 
in transistors based on graphene and black phospho-
rus [92]. Reducing contact resistance in TMD transis-
tors is one of the key issues that needs to be addressed 
before 2D TMD based electronic and photonic devices 
can be competitive with the current state-of-the-art 
electronic devices. Several approaches have been inves-
tigated to reduce contact resistance [93], including 
using low work-function metals for n-channel FETs 
(high work function for p-channel FETs) [94, 95], 
increasing doping in the source/drain region [96–98], 
converting semiconducting 2H phase to metallic 1T 
phase at the contact region [99], or using graphene as 
contact to resolve the Fermi-level pinning issues and 
tune the work function electrically [100–103].

The performance of the TMD transistors is also 
influenced by the defects in the TMD layers, the charge 
impurities and the topography of the gate dielectrics 
and the substrates [104–107]. Zhu et al quantified the 
density of the gap states in CVD MoS2 on SiO2 sub-
strate and found that the trapped charges can degrade 
subthreshold slope, and also lead to a large underesti-
mation of the true band mobility [88]. Cui et al showed 
that encapsulating MoS2 layers with hexagonal boron 
nitride, in conjunction with the utilization of edge 
contact, can significantly reduce the extrinsic scatter-

ing and demonstrated Hall mobility of 34 000 cm2 V−1 
s−1 for six-layer MoS2 at low temperature (~3 K) [103].

2.2.2. RF transistors
Traditional RF devices were typically based on 
silicon, SiGe and III–V materials. The maximum 
frequency of oscillation, fmax, based on III–V materials 
has exceeded 1 THz [108]. To further increase the 
operating frequency and bandwidth, higher mobility 
and saturation velocity material and further optimized 
device structures/processes with less geometric 
and parasitic capcitance are needed. Graphene was 
intensely investigated as a potential candidate for RF 
devices, due to its extremly high carrier mobility. The 
cut-off frequency, fT , of graphene RF devices was 
shown to be comparable to that of the best available 
III–V RF devices [109–113]. However, since graphene 
does not have a bandgap, it is very difficult to achieve 
current saturation, which will limit the fmax and power 
gain of the RF devices. TMDs with sizable bandgap 
can potentially address this issue. Krasnozhon et al 
demonstrated top-gated MoS2 RF transistors with 
fT  reaching 6 GHz and fmax of 8.2 GHz on silicon 
substrate, illustrated in figure 6(a) [114]. Cheng et al 
demonstrated a high-performance MoS2 RF device on 
flexible substrate with an intrinsic cut-off frequency fT  

Figure 5. Scaling of TMD logic transistors. (a) Drain-induced barrier lowering (DIBL) with gate length scaling for 1L–3L MoS2 
FETs and Si ultra-thin-body (UTB) transistor. SOI and DG stand for semiconductor-on-insulator and double-gate, respectively 
[86]. (b) Carrier mobility as a function of channel thickness. Data for WS2, WSe2, MoSe2 and MoS2 are taken from [31, 39, 171–175]. 
Data for silicon SOI and silicon nanowire are taken from [176, 177]. (c) SEM image of the MoS2 transistors with 10, 20, 40, 60, and 
80 nm nominal channel length after the deposition of 40 nm Ni. Magnified part shows the 10 nm nominal channel length [90]. (d) 
Schematic of 1D2D-FET with a MoS2 channel and SWCNT gate [91].

2D Mater. 6 (2019) 032004
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up to 42 GHz and a maximum oscillation frequency 
fmax up to 50 GHz, and an intrinsic gain over 30, shown 
in figure 6(b) [115]. Figures 5(c) and (d) show fT  and 
fmax  of TMD RF devices, together with the best RF 
devices based on graphene, black phosphorus, silicon, 
III–V materials, silicon nanomembranes and indium 
gallium zinc oxide (IGZO). For flexible electronics, 
the RF devices based on TMDs are very promising, as 
the fT  and fmax of the TMD RF devices are higher than 
or comparable to that of RF devices based on other 
flexible electronic materials such as silicon membrane 
and IGZO. For electronics on rigid substrates, however, 
RF devices based on III–V materials and silicon are 
more promising, since TMDs have limited mobilities 
and high contact resistances. The issue of limited 
mobilities should become less important as device 
channel length approaches that of the scattering mean 
free path, and entering the ballistic transport limit. 
Achieving low Ohmic contact resistance presents a 
more pressing issue in this regard.

2.2.3. Tunneling field-effect transistors (TFETs)
Power consumption is one of the main challenges 
for future electronics. Reducing the subthreshold 
swing is key to lowering the supply voltage and 
power consumption. In a conventional MOSFET, the 
minimum subthreshold swing (SS) is 60 mV/decade 
at room temperature, determined by the thermal 

energy of the carriers. This places a fundamental limit 
on the supply voltage. TFET can overcome this limit 
by using band-to-band tunneling, rather than thermal 
injection, to inject charge carriers into the device 
channel [116–118]. In TFETs, the carriers in the source 
are energetically forbidden to tunnel to the channel 
in the OFF state, due to the lack of available states in 
the channel, illustrated in figure 7(c). This effectively 
cuts off the current induced by the carriers in the high-
energy tail of the Femi–Dirac distribution. When the 
device is turned on, i.e. the conduction band of the 
channel is below the valence band edge of the source 
region, the electrons can now tunnel from the source to 
the channel, as illustrated in figure 7(d). This ON/OFF 
switch is controlled by the availability of the energy 
states in the channel, instead of the carrier energy 
distribution, resulting in a much steeper subthreshold 
swing in TFET as compared to MOSFET.

Researchers have explored various TFET devices 
using group IV semiconductors [119, 120], III–V 
semiconductors [121], and carbon based materials 
[122]. InAs/silicon heterostructure TFETs show sub-
threshold swing as low as 20 mV/decade; however, 
the on-current is only ~6 nA μm−1 [123, 124]. Type 
II arsenide/antimonide compound semiconductor 
with highly staggered GaAs0.35Sb0.65/In0.7Ga0.3As het-
erojunction demonstrated very high on-current (190 
μA μm−1 at VDS  =  0.75 V); however, the subthreshold 

Figure 6. RF transistors based on TMDs. (a) An illustration of a MoS2 RF device with metal gate. (b) A schematic illustration of a 
dual-channel self-aligned MoS2 FET with transferred gate stacks, and the inset shows the schematic cross-section of the self-aligned 
device. (c) Cut-off frequency fT  and (d) maximum oscillation frequency fmax as a function of gate length of MoS2 RF transistors, 
together with the representative results for RF devices based on graphene, black phosphorus (BP), InP, GaAs, Si, IGZO and silicon 
nanomembranes. (e) fT  versus fmax of MoS2 RF transistors, together with the best results reported for RF devices based on graphene, 
BP, InP, GaAs, Si, IGZO and silicon nanomembranes. For (c)–(e), data for MoS2 RF transistor are taken from [114, 115]. Data for 
black phosphorus are taken from [178, 179]. Data for graphene is taken from [111, 180–182]. Data for SI MOSFET, InP HEMT and 
GaAs HEMTs are taken from [182, 183]. Data for silicon nanomebranes are taken from [184, 185]. Data for IGZO are taken from 
[186, 187].

2D Mater. 6 (2019) 032004
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swing in this device is very high (~750 mV/decade) 
[125]. However, one should note that the presence of 
hysteresis can often mask the true SS of the device.

The key challenges in TFETs are the formation of 
atomically sharp transition between n-i-p regions 
and reduction of the interface traps. In recent years, 

2D materials emerged that can be stacked on top of 
each other to form atomically sharp pn junctions. In 
addition, the 2D materials are free of surface dangling 
bonds, which potentially can reduce the interface 
states. Simulation of the TFETs based on 2D TMDs, 
their heterostructures and superlattices shows very 

Figure 7. Energy diagram of MOSFET and TFETs. Figures (a) and (b) are the energy diagrams of a MOSFET at OFF and ON states. 
Figures (c) and (d) are the energy diagrams of a TFET at OFF and ON states.

Figure 8. TFETs based on 2D TMDs. (a) Schematic device cross section of a thin-TFET [130]. (b) Intrinsic switching energy 
and delay for high performance (HP) CMOS, low power (LP) CMOS, heterojunction TFET (HetJTFET), homojunction TFET 
(HomJTFET), and thin-TFETs with VDD  =  0.2, 0.3, 0.4 V, and RC  =  52, 320 Ωμm [130]. (c) Schematic diagram showing the probing 
configuration for measurement of the characteristics of the ATLAS-TFET [133]. (d) SS as a function of drain current for an ATLAS-
TFET (green triangles) as well as a conventional MOSFET (blue squares) at VDS  =  0.5 V. The red line demarcates the fundamental 
lower limit of SS of conventional FETs [133].

2D Mater. 6 (2019) 032004
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promising results [126]. For example, Ghosh’s simula-
tion of the lateral TFETs based on five MX2 mat erials 
(MoS2, MoSe2, MoTe2, WS2, WSe2) shows steep SS 
(4 mV/decade) and high on-current (150 μA μm−1 
at Vd  =  0.1 V) [127]. Planar TFET based on narrow 
bandgap material Bi2Se3 (0.252 eV) can operate under 
ultralow supply voltage of 0.2 V, with an ON/OFF cur-
rent ratio of 104 [128].

TFETs made of a vertical heterojunction of single-
layer MoTe2 and SnS2 show on-currents  >75 μA μm−1 
and the inverse subthreshold slope reaches 25 mV/
decade at 0 V [129], while TFETs based on WSe2/SnSe2 
heterostructure can reach a steep subthreshold swing 
(SS) of ~14 mV/decade and a high on-current of ~300 
μA μm−1 [130]. Li’s simulation shows that 2D TFETs 
may outperform CMOS and III–V TFETs in terms of 
both switching speed and energy consumption at low 
supply voltages (figures 8(a) and (b)) [130]. Lu et al 
simulated TFETs based on MoS2/WSe2 superlattices 
and found that the on-current of the TFETs based on 
the superlattices is more than 4 orders of magnitude 
greater than that in TFETs based on MoS2 or MoSe2 
homojunction [131]. However, there are very few 
experimental results of TFETs showing subthresh-
old swing below 60 mV/decade. The key challenge of 
the 2D TFETs is the interface states in the real devices, 
which can severely degrade subthreshold swing. 
TFETs based on WSe2/SnSe2 heterostructures with 

clean interfaces yield a subthreshold swing of 100 mV/
decade for more than two decades of drain current at 
room temperature [132]. Recently, Sarkar et al dem-
onstrated vertical TFETs based on highly doped ger-
manium and atomically thin MoS2 with solid polymer 
electrolyte as gate dielectric, which exhibit minimum 
subthreshold swing of 3.9 mV/decade and an average 
subthreshold swing of 31.1 mV/decade for four dec-
ades of drain current at room temperature, shown in 
figures 8(c)–(e) [133]. These TFETs will have broad 
applications from mobile devices to medical implant-
able devices and data centers. The availability of a large 
library of 2D materials would offer ideal materials 
alignment needed for TFET applications. Low et al 
recently surveyed a wide range of 2D semiconductor 
band alignments and identified combinations with 
momentum matched type III heterostructures [77]. 
Type III band alignment is most favorable in terms of 
yielding a larger ON state current.

2.2.4. Bipolar transistor
A traditional bipolar transistor (BJT) typically consists 
of a pnp or npn junction. Unlike MOSFET, where only 
one type (unipolar) of carrier dominates the current 
transport in a given device, in BJT, both types (bipolar) 
of carrier are involved. BJT is commonly used for 
current amplification. Traditionally the npn and 
pnp junctions were fabricated by local doping of the 

Figure 9. BJTs and MESFETs based on 2D TMDs. (a) Schematic and (b) map of BJT current gain β with varying VS and VG2 
determined at VD  =  0.2 V [134]. (c) A 3D schematic view of atomic layer NbS2/MoS2 MESFET [139]. (d) ID–VGS transfer and IG–VGS 
gate leakage curves of the MESFET, as measured with VDS increase [139].

2D Mater. 6 (2019) 032004



9

W Zhu et al

silicon wafers. Recently, Agnihotri et al demonstrated 
a BJT device based on WSe2 by using buried gates to 
electrostatically create doped regions with back-to-
back pn junctions. These WSe2 bipolar transistors 
show a current gain of 1000 and photocurrent gain 
of 40, shown in figures 9(a) and (b) [134]. The key 
advantage of this new type of the bipolar transistor 
is the re-configurability, where an npn BJT can be 
dynamically reconfigured into a pnp BJT using 
electrical signal, a feature non-existent in traditional 
semiconductor based BJT. In addition to these 
homojunction bipolar transistors, heterojunction 
bipolar transistors (HBT) based on TMDs were also 
explored. HBTs based on 2D TMDs can address several 
challenges in traditional HBTs based on bulk materials, 
such as dopant diffusion, lattice match restriction and 
dislocation propagation. Lin et al demonstrated lateral 
HBT based on p-WSe2/n-MoS2 junctions with current 
gain of around 3 [135]. Lee et al fabricated vertical 
HBTs based on n-MoS2/p-WSe2/n-MoS2 stacks, which 
show very high current gain (~150) [136]. These 
prototype bipolar devices open a new application for 
2D heterostructures in analog and high-frequency 
electronics.

2.2.5. Junction field-effect transistor (JFET)
JFET uses the depletion in a pn junction to control the 
current in the channel. The depletion-layer width of 
the pn junction can be varied by modulating a reverse-
bias voltage applied to the junction. Traditional 
JFETs based on silicon were fabricated by forming 
the local doping. In 2D materials, these pn junctions 
can be formed by stacking n- and p-type TMDs or by 
combining TMDs with other materials, which have 
complementary doping types. Kim et al demonstrated 
an n-channel depletion-mode β-Ga2O3 junction JFET 
through van der Waals bonding with an exfoliated 
p-WSe2 flake [137]. These heterojunction JFETs 
exhibited excellent transfer and output characteristics 
with a high ON/OFF ratio (~108) and low subthreshold 
swing (133 mV/decade). VdW JFETs based on n-MoS2 
and p-MoTe2 were also demonstrated with ON/OFF 
current ratio up to 104 [138].

2.2.6. Metal semiconductor field-effect transistor 
(MESFET)
In a MESFET, a metal-semiconductor Schottky 
barrier instead of a pn junction is used for the gate 
electrode. As compared to JFETs, the potential 
advantages of MESFETs are low-temperature process, 
low gate resistance and good heat dissipation. Shin 
et al demonstrated vdW MESFETs based on metallic 
NbS2 and semiconducting n-MoS2, illustrated in 
figure 9(c). The Schottky-effect MESFET displays little 
gate hysteresis and an ideal subthreshold swing of 60–
–80 mV/decade due to low-density traps at the vdW 
interface, shown in figure 9(d) [139].

2.3. Memory devices
Semiconductor memory is a digital electronic data 
storage device. Random access memory (RAM) is 
semiconductor memory, which allows data items to 
be read or written in almost the same amount of time 
irrespective of the physical location of data inside 
the memory. There are two types of RAM: volatile 
memory, which loses its stored data when the power 
to the memory chip is turned off, and nonvolatile 
memory, which preserves the data stored in it during 
periods when the power to the chip is turned off. 
Major types of volatile memory are dynamic RAM 
(DRAM) and static RAM (SRAM). The major types 
of nonvolatile memory are flash memory, resistive 
RAM (RRAM), ferroelectric RAM (FRAM), phase-
change RAM (PCRAM), and magnetoresistive RAM 
(MRAM). Volatile memories can be faster than 
nonvolatile memories, while nonvolatile memories 
can consume less power and save the data while the 
power is off. Volatile memories are typically used as 
the main memory in the computers, while nonvolatile 
memories, such as flash memories, are typically used 
as solid-state hard drives, and in portable devices such 
as personal digital assistants (PDAs), USB flash drives, 
and removable memory cards used in digital cameras 
and cell phones.

2.3.1. SRAM
SRAM is a type of semiconductor memory that uses 
bistable latching circuitry (flip-flop) to store each 
bit. A typical SRAM cell is made up of six MOSFETs 
(2 pFETs and 4 nFETs). TMDs with sizable bandgap 
and atomically thin body, which provide excellent 
immunity to short-channel effects, are very attractive 
for future extremely-dense low-voltage SRAM arrays. 
Han et al demonstrated functional SRAM based 
on bilayer MoS2 using direct-coupled FET logic 
technology, shown in figures 10(a) and (b) [140]. In 
order to form devices with different threshold voltages, 
the authors used metals with different work functions 
as the gate electrodes to form depletion-mode and 
enhancement-mode transistors. TCAD simulation 
reveals that monolayer TMDs with excellent device 
electrostatics and superior stability are promising 
for low-power SRAM applications, while the bilayer 
TMDs, with higher carrier mobility, are more suitable 
for high-performance SRAM applications [141].

2.3.2. DRAM
DRAM is a type of random access memory that 
stores each bit of data in a separate capacitor. The 
capacitor can either be charged or discharged. These 
two states are taken to represent the two values of a bit, 
conventionally called ‘0’ and ‘1’. A typical DRAM cell 
consists of one transistor and one capacitor (1T1C). In 
this type of DRAM cell, the read is destructive and a 
write-back operation is needed. Recently Kshirsagar 
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et al demonstrated a DRAM cell based on two MoS2 
transistors, shown in figures 10(c) and (d) [142]. In this 
DRAM cell, the read is non-destructive. In addition, 
since MoS2 has wide bandgap (1.8 eV in monolayer) 
and high effective masses, which lead to extremely low 
OFF-state leakage currents, this new type of DRAM is 
promising for low-power applications [142].

2.3.3. Flash memory
Flash memory stores information in an array of 
memory cells made from floating-gate transistors. 
In the traditional flash memory, the floating gate is 
typically made of a polycrystalline silicon conductive 
layer. Bertolazzi et al demonstrated a floating gate 
memory device using graphene as the floating gate 
and MoS2 as the channel, as shown in figures 11(a) 
and (b). Due to its 2D nature, monolayer MoS2 is 
highly sensitive to the presence of charges in the 
charge trapping layer, which leads to a ratio of channel 
resistance (104) between memory program and erase 
states [143]. Cao et al had shown that employing 
multilayer graphene as floating gate can effectively 
reduce cell-to-cell interference (CTCI) and threshold 
voltage variation due to reduced floating gate 
thickness. In addition, due to the band offset between 
graphene and TMD layer, the stored electrons in the 
graphene floating gate are unlikely to leak out, which 
can help to prolong the retention of the memory cell 
[144]. The reverse device structure, where graphene 
serves as the channel and MoS2 is used as the charge 
trapping layer, was also demonstrated [145]. Large 
memory window and stable retention were observed 
in these devices [145].

2.3.4. FRAM
FRAM utilizes ferroelectric polarization switching 
for data storage. In a FRAM cell, the dipoles tend 
to align themselves with the field direction when 
an external electric field is applied to the dielectric 
structure. The dipoles retain the polarization state 
after the electric field is removed. Therefore, FRAM 
is ideally nonvolatile. Typically, the memory cell in 
FRAM consists of 1 transistor (1T), or 1 transistor 
and 1 capacitor (1T1C). In the 1T1C structure, the 
read operation is destructive and a ‘write-back’ 
operation is needed, which can severely degrade the 
endurance of the memory cell. In the 1T structure, 
however, the read operation is nondestructive, which 
provides advantages including high endurance and 
low energy consumption. Lipatov et al fabricated 
ferroelectric memory based on MoS2 on a lead 
zirconium titanate (Pb(Zr,Ti)O3, PZT) substrate that 
was used as a gate dielectric, shown in figures 11(c) 
and (d). The MoS2/PZT ferroelectric transistors 
exhibit a large hysteresis and high ON/OFF ratios. 
Interestingly, the authors found that this type of 
FRAM can be written and erased both electrically 
and optically [146]. Ferroelectric memory devices 
based on monolayer MoS2 and aluminium (Al)-
doped hafnium oxide (HfO2) as the ferroelectric 
gate dielectric were also demonstrated [147]. 
These memory transistors show sizable memory 
window and clear wake-up effect [147]. Recently, 
Si et al demonstrated FRAM based on MoS2 and 2D 
ferroelectric material CuInP2S6, which opens up a 
new route toward ferroelectric memories based on 
vdW heterostructures [148].

Figure 10. SRAM and DRAM based on 2D TMDs. (a) Optical micrograph, schematics of the electronic circuits, and (b) output 
voltage of a flip-flop memory cell (SRAM) based on MoS2 [140]. (c) Circuit schematic and (d) illustration of 2T DRAM memory cell 
based on MoS2 [142].
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2.3.5. RRAM
RRAM is based on an array of memristors, where 
the high-resistance and low-resistance states are 
used to store data. Traditional memristors were 
mainly based on metal oxide, such as titanium 
oxide or tantalum oxide. Wang et al demonstrated a 
memristor based on a van der Waals heterostructure 
composed of graphene/MoS2−xOx/graphene. These 
memristors exhibit excellent switching performance 
with an endurance of up to 107 and a high operating 
temperature of up to 340 °C. The authors attribute 
the switching mechanism to the migration of oxygen 
ions in MoS2−xOx [149]. Ge et al demonstrated vertical 
memristors based on various TMDs including MoS2, 
WS2, MoSe2 and WSe2, shown in figures 11(e) and (f). 
Stable nonvolatile resistance switching was observed 
in these single-layer atomic TMD sheets sandwiched 
between metal electrodes [150]. These memristors can 
be used as nonvolatile flexible memory fabrics and in 
brain-inspired (neuromorphic) computing.

2.3.6. PCRAM
PCRAMs are based on phase-change materials that 
exist in two or more phases with different properties 
[151, 152]. These phases typically correspond to 
different resistances which can be used to store data. 
There are mainly two types of PCM: metal oxides (such 
as VO2 and NbO2) which can undergo a Mott metal-
to-insulator transition [153], and chalcogenide glasses 
(such as Ge2Sb2Te5) which can have amorphous-to-
crystalline phase transition [152]. It was discovered 
recently that Mo- and W-dichalcogenides can exist 
in several 2D phases (2H and 1T or 1T′ phase) [154, 
155]. The energy differences between the H and T′ 
monolayer phases, for six pure MX2 compounds 
(M  =  Mo or W, X  =  S, Se or Te), were calculated 

using DFT [25]. MoTe2 and WTe2 have the smallest 
energy difference between H and T′ phase, which 
makes them the best candidates for phase transitions 
in these 2D materials [25]. More interestingly, the 
energy difference between H and T′ is positive for 
MoTe2, while it is negative for WTe2, which means that 
MoTe2 is stable in the 2H phase, while WTe2 is stable in 
the 1T′ phase. Alloying these two materials can lower 
the energy barrier between these two phases and the 
transition temperature can be tuned continuously 
from 0 K to ~933 K [156]. In the past, the phase 
transition was mainly achieved by thermal effect (Joule 
heating and laser illumination). The high reset current 
and the heat dissipated to the surrounding materials 
consume a large amount of energy. It was discovered 
recently that 2D phase change materials such as 
MoTe2 and MoxW1−xTe2 can achieve phase transition 
by electrostatic gating, shown in figure 11(g) [157–
160]. Based on the theoretic calculation, the energy 
consumption per unit volume of the electrostatically 
driven phase transition in monolayer MoTe2 at room 
temperature is 9% of the adiabatic lower limit of 
the thermally driven phase transition in Ge2Sb2Te5 
[161]. These results indicate that 2D TMDs are very 
promising for PCRAM applications.

3. Integrated circuits based on TMDs

Although TMD electronics are still in their early 
exploratory stage, significant progress has been made 
toward integrating these devices into circuits. Wang 
et al demonstrated an inverter, a NAND gate, an 
SRAM, and a five-stage ring oscillator using bilayer 
MoS2 based on the direct-coupled transistor logic 
technology. These circuits comprise between 2 and 12 
integrated transistors with bilayer MoS2 channel. Both 

Figure 11. Nonvolatile memories based on 2D TMDs. (a) Three-dimensional schematic view of the memory device based on 
single-layer MoS2 [143]. (b) Temporal evolution of drain-source currents (Ids) in the erase (ON) and program (OFF) states. The 
drain-source bias voltage is 50 mV and the duration of the control-gate voltage pulse is 3 s [143]. (c) Schematic of and (d) effect of 
visible light illumination on the data retention characteristics of a MoS2/PZT FeFET [146]. (e) Schematic and (f) typical I–V curves 
of monolayer TMD atomristors [150]. (g) Positive (pink) and negative (blue) voltage required to switch the relative stability of 
H-MoTe2 and T′-MoTe2 [157].
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enhancement-mode and depletion-mode transistors 
were fabricated by using gate metals with different 
work functions [140]. Tosun et al demonstrated a 
complementary logic inverter based on WSe2 flake 
[162]. High work function metal Pt was used as the 
contact metal for p-FET to facilitate the hole injection, 
while potassium was used to form degenerately doped 
n+ contacts for n-FET to enhance electron injection. 
These inverters show a dc voltage gain higher than 
12 [162]. Yu et al demonstrated a high-performance 
WSe2 CMOS inverter using F4TCNQ for n-type 
doping. These inverters show large voltage gain (~38) 
and small static power (picowatts) [163]. Wachter 
et al moved one step further and demonstrated a 
1-bit implementation of a microprocessor using a 
MoS2 [164]. The microprocessor can execute user-
defined programs stored in an external memory, 
perform logical operations and communicate with its 
periphery circuits [164]. Integrated circuits based on 
the combination of various 2D TMDs or combining 
2D TMDs with other materials have also been 
demonstrated. Yu et al demonstrated a complementary 
inverter by vertically stacking graphene, Bi2Sr2Co2O8 
(p-channel), graphene, MoS2 (n-channel) and a metal 
thin film in sequence [165]. Cho et al reported on the 
design of a complementary inverter, based on a MoS2 
n-type transistor and a WSe2 p-type transistor [166]. 
Pezeshki et al employed a direct imprinting technique 
to fabricate inverters using α-MoTe2 for the p-channel 
FETs and MoS2 for the n-channel FETs [167]. To avoid 
ambipolar behavior and produce α-MoTe2 FETs with 
clean p-channel characteristics, the authors have 
employed the high work function metal platinum for 
the source and drain contacts [167]. These inverters 
show voltage gains as high as 33, switching delay of 25 
μs, and static power consumption of a few nanowatts.

Beyond the planar integrated circuit, 3D inte-
grated circuits were also explored recently. 3D inte-
gration can bring various types of circuits in close 
proximity in the vertical direction to achieve per-
formance improvements with reduced power and a 
smaller footprint than the conventional 2D processes. 
A processor-in-memory (PIM) architecture has been 
proposed recently, wherein a logic layer is 3D stacked 
with a DRAM layer to reduce energy consumption 
related to data transfer while simultaneously increas-
ing the performance [168, 169]. In the past, 3D inte-
gration was mainly achieved by stacking wafers/dies 
and interconnecting them vertically, using through-
silicon vias (TSVs). This technique has the drawbacks 
of high cost, long vertical distance between the wafers, 
and the very limited number of wafers that can be 
stacked. 2D materials can be stacked layer-by-layer and 
address this issue [51]. Yang et al demonstrated the first 
1-transistor-1-resistor (1T1R) memory cell using the 
atomically thin MoS2 FET and RRAM [170]. Yang et al 
demonstrated a monolithic 3D image sensor, which 
consists of large-area monolayer MoS2 phototran-

sistor array on top of silicon logic/memory circuits. 
This 3D monolithic integration of 2D TMD devices 
with traditional silicon circuits opens up a new route 
toward high-density and energy-efficient electronic 
and optoelectronic systems.

4. Conclusion and outlook

This paper provides a comprehensive overview of 
electronic devices based on 2D TMDs, ranging from 
two-terminal devices such as Esaki didoes and RTDs, 
to transistors such as TFETs and RF devices, and to 
memories. The unique properties of 2D materials, 
including atomically thin body, dangling bond-free 
surface, and atomically sharp heterojunction interface 
bring new features to the traditional devices. For 
example, TMD heterostructures with broken-gap band 
alignment can enable Esaki diodes with prominent 
NDRs, TMD heterogeneous pn junctions enable 
vertical TFETs with super-steep subthreshold slope, and 
TMD atomically thin body provides TMD transistors 
with superior immunity to short-channel effects. TMDs 
with low energy barrier between 1H and 1T phase, such 
as MoTe2 and MoxW1−xTe2 alloys, are very attractive for 
phase-change memories. The phase transition tunable 
by electrostatic gating can enable PCRAMs with ultralow 
energy consumption. In addition, 3D monolithic 
integration of the 2D electronic devices opens up a new 
route toward high-density and low-power applications. 
However, there are many limitations and challenges in 
2D TMD electronics, such as large-scale high-quality 
synthesis of TMDs and contact resistance issues. Much 
research and development effort is still needed before 
these materials and devices are ready for mainstream 
applications. If these efforts are successful, 2D electron 
devices can potentially have broad applications from 
data centers to mobile devices, THz detectors, and 
wearable electronics.
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