

1 **Revisiting the dynamics of eyewall contraction of tropical cyclones**

2 Yuanlong Li^{1,2}, Yuqing Wang^{2,3*}, and Yanluan Lin¹

3 ¹Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System
4 Science and Joint Center for Global Change Studies (JCGCS), Tsinghua University, Beijing,
5 China

6 ²International Pacific Research Center and Department of Atmospheric Sciences, School of
7 Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii,
8 USA

9 ³State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, China
10 Meteorological Administration, Beijing, China

11 March 22, 2019 (submitted)

12 July 25, 2019 (revised)

13 Dataline

14 Submitted to *The Journal of the Atmospheric Sciences*

15 *Corresponding author address:

16 Prof. Yuqing Wang
17 International Pacific Research Center
18 University of Hawaii at Manoa
19 404A/POST, 1680 East West Road,
20 Honolulu, HI 96822, USA.
21 Email: yuqing@hawaii.edu

23

Abstract

24

The dynamics of eyewall contraction of tropical cyclones (TCs) has been revisited in this

25

study based on both three-dimensional and axisymmetric simulations and dynamical diagnostics.

26

Because the eyewall contraction is closely related to the contraction of the radius of maximum

27

wind (RMW), its dynamics is thus often studied by examining the RMW tendency in previous

28

studies. Recently, Kieu and Stern et al., respectively, proposed two different frameworks to

29

diagnose the RMW tendency, but had different conclusions. In this study, the two frameworks are

30

evaluated first based on theoretical analysis and idealized numerical simulations. It is shown that

31

the framework of Kieu is a special case of the earlier framework of Willoughby et al. if the

32

directional derivative is applied. An extension of Stern et al.'s approach can not only reproduce but

33

also predict the RMW tendency. A budget of the azimuthal mean tangential wind tendency

34

indicates that the contributions by radial and vertical advections to the RMW tendency vary with

35

height. Namely, radial advection dominates the RMW contraction in the lower boundary layer and

36

vertical advection favors the RMW contraction in the upper boundary layer and lower troposphere.

37

In addition to the curvature, the increase of radial gradient of horizontal mixing (including the

38

resolved eddy mixing in three-dimensions) near the eyewall prohibits the eyewall contraction in

39

the lower boundary layer. Besides, the vertical mixing including surface friction also plays an

40

important role in the cessation of eyewall contraction in the lower boundary layer.

41

42 **1. Introduction**

43 The eyewall contraction is closely related to intensification, often rapid intensification, of a
44 tropical cyclone (TC). Therefore, understanding the dynamics of eyewall contraction is of
45 fundamental importance for understanding the dynamics of TC intensification. However, although
46 the eyewall contraction is a common feature during the TC intensification, its dynamics has not
47 been well understood so far. Because the eyewall contraction is closely tied with the contraction of
48 the radius of maximum wind (RMW), the dynamics of eyewall contraction is thus often studied by
49 examining the change of the RMW in previous studies (Willoughby et al. 1982, hereafter W82;
50 Kieu 2012, hereafter K12; Stern et al. 2015, hereafter S15). Note that although the inner core of a
51 TC could be quite asymmetric and the RMW may vary azimuthally, the RMW is often defined
52 using the azimuthal mean tangential wind, which may change with height (S15).

53 Although no theory exists for the size of the RMW or its change, previous studies have
54 attempted to examine key processes to the size of the RMW based on idealized high-resolution
55 numerical simulations (e.g., Xu and Wang 2010a, b). Wang and Xu (2010) and Xu and Wang
56 (2010a) showed that the RMW would contract more if the surface enthalpy flux outside 2~2.5 times
57 of the RMW was removed. This is because the removal of surface enthalpy flux in the outer region
58 suppressed outer rainband activities and thus diabatic heating outside the eyewall, which otherwise
59 would reduce low-level inflow into the eyewall and reduce the eyewall contraction (cf. Xu and
60 Wang 2010a). Xu and Wang (2010b) found that both the initial size of the RMW and the initial
61 moisture in the lower troposphere could affect the rainband activities and thus the quasi-steady

62 RMW of a simulated TC. They also proposed that the effects of the initial vortex size and initial
63 moisture are coupled with each other, although the quasi-steady RMW is more sensitive to the
64 initial vortex size. Rotunno and Bryan (2012) found that the steady-state RMW is insensitive to the
65 vertical mixing length, but sensitive to the horizontal mixing length in their simulations using an
66 axisymmetric TC model, while Bu et al. (2017) showed that the RMW tends to be larger with
67 stronger vertical mixing in the boundary layer or higher sea surface temperature. Bu et al. (2017)
68 also found that cloud-radiative forcing can increase the RMW because the cloud-radiative forcing
69 can promote rainband activities.

70 Note that the mechanisms for the steady-state RMW in the mature phase and the RMW
71 contraction during the intensification stage could be different. For example, a larger surface drag
72 coefficient (C_D) usually results in a faster contraction rate (e.g., Bryan 2013; Smith et al. 2014),
73 but there was no obvious relationship between C_D and the steady-state RMW (e.g., Bryan 2012,
74 2013) unless C_D was rather small or zero (Kilroy et al. 2017). Similar to the steady-state RMW,
75 the contraction rate of RMW has been shown to be also sensitive to many parameters in previous
76 numerical studies. For instance, a faster contraction rate can occur in simulations with a smaller
77 Coriolis parameter (Smith et al. 2015; Deng et al. 2018). These are only some qualitative results
78 from numerical simulations since the contraction rate of the RMW has not been the main focus of
79 these studies.

80 Shapiro and Willoughby (1982) proposed a mechanism to explain the contraction of RMW
81 in a TC based on balanced vortex dynamics. They showed that the tangential wind tendency in

82 response to diabatic heating in the eyewall is greater inside of the RMW than at the RMW, leading
83 to not only the intensification of a TC vortex but also the contraction of the RMW. This has become
84 the major dynamical mechanism used for the explanation of the contraction of the RMW or the
85 eyewall of a TC. However, this conceptual explanation could not be used to quantitatively estimate
86 the contraction of the RMW. W82 proposed a kinematic RMW contraction equation following a
87 moving frame of reference of the RMW, which showed good agreements with observations for the
88 hurricane cases diagnosed.

89 Some recent efforts have been devoted to quantitatively estimate the contraction rate of
90 RMW (K12; S15). K12 derived an equation for the contraction rate of RMW based on the
91 tangential wind equation and a kinematic equation of the RMW under some
92 assumptions/approximations (see Section 2c). K12 proposed a dependence of the contraction rate
93 of RMW on both the radial inflow and surface friction, with the former favoring the inward
94 penetration of angular momentum and thus the RMW contraction and the latter being responsible
95 for the slowdown and termination of the contraction. S15 proposed a method to diagnose the
96 contraction rate of RMW based on the geometrical definition of the RMW, which was attributed
97 to the radial gradient of tangential wind tendency and the curvature (or sharpness) of radial profile
98 of tangential wind at the RMW. Kieu and Zhang (2017) presented concerns with the work of S15
99 in terms of the lack of dynamics to the contraction rate of the RMW because the method was based
100 purely on kinematics. S15 and Stern et al. (2017) also argued that the equation of K12 could not
101 explain the contraction rate of RMW because of some contradictory mathematical assumptions

102 used in the derivation of the equation (see Section 2c). All of the concerns in S15 and Stern et al.
103 (2017) for K12 were disputed by Kieu and Zhang (2017).

104 In this study, the dynamics of the RMW contraction is revisited based on both theoretical
105 consideration and diagnostics of numerical simulations. We first review the existing theories and
106 compare their contraction rates of RMW with those from idealized numerical simulations. Both
107 axisymmetric and three-dimensional simulations are conducted to understand the dynamics of the
108 eyewall contraction. The rest of paper is organized as follows. Section 2 briefly reviews the main
109 existing theories on eyewall contraction, including the balanced dynamics and those discussed in
110 W82, K12, and S15. An evaluation of W82 and S15 using results from idealized simulations and
111 an azimuthal mean tangential wind budget is discussed in Section 3, in which a three-dimensional,
112 cloud-permitting high-resolution model is used. The axisymmetric dynamics of the RMW
113 contraction and the roles of horizontal and vertical mixings are discussed in Section 4 using a series
114 of axisymmetric simulations. Concluding remarks are given in Section 5.

115 **2. A brief review of existing theories**

116 *a. Balanced vortex dynamics*

117 Balanced vortex dynamics assumes a quasi-balanced basic axisymmetric vortex that is in
118 both hydrostatic and gradient wind balances. Given the spatial distributions of heat source and
119 momentum forcing, a partial differential equation for the streamfunction of the transverse
120 circulation, namely, the so-called Sawyer-Eliassen equation (SEQ, Eliassen 1951) can be obtained.

121 Since the SEQ is a linear partial differential equation and its solutions to different forcings are
122 additive and thus can be used to understand the response of the transverse circulation in a TC vortex
123 to various heat sources or momentum forcing. Because the low-level inflow in the transverse
124 circulation can bring absolute angular momentum inward to spin up the tangential wind, the
125 solution of the SEQ has been used to understand the TC intensification and the eyewall contraction
126 (e.g., Shapiro and Willoughby 1982; Schubert and Hack 1982; Pendergrass and Willoughby 2009;
127 Bui et al. 2009; Heng and Wang 2016; Heng et al. 2017), the TC outer-core size change (e.g.,
128 Fudeyasu and Wang 2011), and the secondary eyewall formation (e.g., Zhu and Zhu 2014; Wang
129 et al. 2016).

130 Shapiro and Willoughby (1982) found that the low-level tangential wind tendency in
131 response to diabatic heating in the eyewall is greater inside of the RMW than at the RMW. As a
132 result, as the TC vortex intensifies, its RMW would move inward, namely experiencing a
133 contraction. The simultaneous intensification and eyewall contraction have been observed in real
134 TCs (e.g., W82; Willoughby 1990) and in numerical simulations (e.g., Bryan 2013; Smith et al.
135 2014; Smith et al. 2015, Wang and Heng 2016; Deng et al. 2018). However, recent observations
136 (e.g., Wang and Wang 2013; Stern et al. 2015; Qin et al. 2016) indicate that it is very common for
137 the asynchrony between TC intensification and eyewall contraction. This means that although the
138 balanced vortex dynamics has been considered as a dominant dynamical mechanism responsible
139 for the contraction of RMW or the eyewall of a TC, it could not explain all aspects of the eyewall

140 contraction. Furthermore, it only provides a qualitative explanation but not a quantitative
141 estimation of the RMW contraction.

142 *b. Willoughby et al. (1982)*

143 As reviewed by Kieu and Zhang (2017), W82 proposed an RMW contraction equation, which
144 can be derived from the definition of the directional derivative in a moving frame of reference
145 following the RMW of a TC, namely

146
$$\left(\frac{d\bar{V}}{dt}\right)_{RMW} = \left(\frac{\partial \bar{V}}{\partial t}\right)_{rmw} + \frac{dRMW}{dt} \left(\frac{\partial \bar{V}}{\partial r}\right)_{RMW}, \quad (1)$$

147 where r is the radial distance from the TC center; overbar denotes azimuthal mean or the variable
148 in an axisymmetric framework as in W82. Note that the subscript “ rmw ” denotes the arriving radial
149 location of the RMW. Equation (1) indicates that the change in tangential wind \bar{V} following the
150 RMW, namely the intensity change, is caused by the local change of tangential wind at the arriving
151 radial location of the RMW (first term on the rhs) and the advective change of tangential wind due
152 to the contraction of the RMW (second term on the rhs). W82 also assumed that the local change
153 of tangential wind at the arriving RMW is primarily determined by the maximum local tangential
154 wind tendency. Equation (1) can then be rearranged as follows

155
$$\frac{dRMW}{dt} = \frac{\left(\frac{d\bar{V}}{dt}\right)_{RMW} - \left(\frac{\partial \bar{V}}{\partial t}\right)_{rmw}}{\left(\frac{\partial \bar{V}}{\partial r}\right)_{RMW}}. \quad (2)$$

156 In Eq. (2), $(d\bar{V}/dt)_{RMW}$ is the intensification rate of the storm; $(\partial \bar{V}/\partial t)_{rmw}$ denotes local
157 tangential wind tendency at the arriving radius of the RMW. Note that although the radial gradient

158 of tangential wind, $\partial\bar{v}/\partial r$, should be zero at the RMW by definition, here $(\partial\bar{V}/\partial r)_{\text{RMW}}$ should
159 be considered being related to the upwind radial gradient of tangential wind, i.e., relative to the
160 arrival location of the RMW (noted as subscript “ rmw ”). This means that $(\partial\bar{V}/\partial r)_{\text{RMW}}$ should be
161 calculated using an upwind (backward in this case) finite-differencing scheme, as used in W82 and
162 recently emphasized by Kieu and Zhang (2017, see their Fig. 1). In practical applications of W82,
163 the radial gradient of tangential wind inside the current RMW was approximated as \bar{V}_{max}/RMW ,
164 namely a Rankine vortex wind profile was assumed inside the RMW. Note that because the local
165 tendency of tangential wind at the arriving RMW needs to be known before the tendency of RMW
166 can be calculated, Eq. (2) can only be used for diagnostic purpose and could not be used to predict
167 the contraction of RMW. Furthermore, Eq. (2) is a pure kinematic contraction rate and does not
168 provide understanding of dynamics of the RMW contraction. To distinguish the notions of
169 “dynamics” and “kinematics/geometrics”, one must recall the difference between “physics” and
170 “mathematics”. The “dynamical” process reveals the physical reasoning for RMW contraction and
171 can thus provide understanding of physical mechanisms, while the “kinematics/geometrics”
172 mathematically describes the contraction rate of RMW with little insights into dynamics of RMW
173 contraction. For example, in the kinematic case of W82, the tangential wind profiles at both the
174 current and arriving RMW should be given in order to know the RMW change.

175 *c. Kieu (2012)*

176 K12 and Kieu and Zhang (2017) developed an equation for the contraction rate of the RMW

177 of a TC. They started with the tangential wind equation at the RMW for an axisymmetric TC vortex
 178 given below

179

$$\frac{\partial \bar{V}}{\partial t} = -\bar{U} \frac{\partial \bar{V}}{\partial r} - \frac{\bar{U} \bar{V}}{\text{RMW}} - \bar{W} \frac{\partial \bar{V}}{\partial z} - f \bar{U} + \bar{F}_\lambda^*, \quad (3)$$

180 where z and f denote height and Coriolis parameter; the upercases and the superscript * denote
 181 those variables at the RMW exactly; U and W denote radial and vertical velocity at the RMW;
 182 and, \bar{F}_λ^* is the momentum forcing, including subgrid horizontal and vertical turbulent mixing (and
 183 surface friction), and eddy advection if the asymmetric effect is included, at the RMW. By assuming
 184 (i) wind profile within and at the RMW is a Rankine vortex, i.e., $\bar{v}(t, r) \sim \bar{\Omega}(t)r$, and, (ii) the
 185 angular velocity, $\bar{\Omega}$, is a strict function of time within and at the RMW, i.e., $\partial \bar{\Omega}(t) / \partial t = d\bar{\Omega}(t) / dt$,
 186 and further considering $\partial \bar{V}(t, \text{RMW}) / \partial r = 0$, Eq. (3) can be rewritten as

187

$$\frac{d\bar{\Omega}^*}{dt} \text{RMW} = -\bar{U} \bar{\Omega}^* - \bar{W} \frac{\partial \bar{V}}{\partial z} - f \bar{U} + \bar{F}_\lambda^*. \quad (4)$$

188 K12 also assumed that the wind profile within the RMW maintained as a Rankine vortex at all
 189 times, implying $\bar{V}(t) = \bar{\Omega}^*(t) \times \text{RMW}(t)$, thus one can have

190

$$\left(\frac{d\bar{V}}{dt} \right)_{\text{RMW}} = \frac{d\bar{\Omega}^*}{dt} \text{RMW} + \frac{d\text{RMW}}{dt} \bar{\Omega}^*, \quad (5)$$

191 where $(\cdot)_{\text{RMW}}$ denotes an operator, in which the derivation follows the RMW rather than the air
 192 parcel. By definition, the $(d\bar{V}/dt)_{\text{RMW}}$ is the intensification rate of the TC. Plugging Eq. (5) into
 193 Eq. (4), one can get

194

$$\frac{d\text{RMW}}{dt} \bar{\Omega}^* = \left(\frac{d\bar{V}}{dt} \right)_{\text{RMW}} + \bar{U}(\bar{\Omega}^* + f) + \bar{W} \frac{\partial \bar{V}}{\partial z} - \bar{F}_\lambda^*. \quad (6)$$

195 Note that Eq. (6) would be reduced to Eq. (6) in K12 if $\partial \bar{V} / \partial z$ is omitted and \bar{F}_λ^* is
 196 assumed for a slab boundary layer in an axisymmetric TC vortex. Equation (6) can be rewritten as

197
$$\frac{d\text{RMW}}{dt} = \frac{\text{RMW}}{\bar{V}} \left(\frac{d\bar{V}}{dt} \right)_{\text{RMW}} + \frac{\text{RMW}}{\bar{V}} \bar{U} (\bar{\Omega}^* + f) + \frac{\text{RMW}}{\bar{V}} \bar{W} \frac{\partial \bar{V}}{\partial z} - \frac{\text{RMW}}{\bar{V}} \bar{F}_\lambda^* . \quad (7)$$

198 The four terms on the rhs of Eq. (7) denote the TC intensification forcing, inflow effect, vertical
 199 advection effect, and subgrid vertical turbulent mixing including surface friction and eddy
 200 advection, respectively. According to K12, Kieu and Zhang (2017), and Qin et al. (2018), in the
 201 boundary layer, the intensification forcing and vertical advection effect are negligible compared to
 202 the inflow effect and the frictional effect. In addition, the inflow term can be simplified as \bar{U} ,
 203 because $\bar{\Omega}^* \gg f$. That is, the boundary layer inflow advects angular momentum inward and thus
 204 contributes to the RMW contraction and surface friction slows down or retards the RMW
 205 contraction.

206 The framework of K12 and Kieu and Zhang (2017) outlined above was challenged by S15
 207 and Stern et al. (2017). First, S15 indicated that the total derivative of $\bar{\Omega}^*$, $(d\bar{\Omega}^*/dt)$ is not equal
 208 to its partial derivative $(\partial\bar{\Omega}^*/\partial t)$, because $\bar{\Omega}^*$ should be also a function of r , but this argument
 209 seems to be inconsistent with the assumption of K12 or in Kieu and Zhang (2017) as mentioned
 210 above. In addition, Stern et al. (2017) noted that the contraction rate in the simulations of K12
 211 obviously increased with surface friction or C_D , which is in contradictory to the explanation of Eq.
 212 (6). The positive correlation between C_D and the eyewall contraction rate has been also reported
 213 in previous studies (e.g., Bryan 2013; Smith et al. 2014; Heng and Wang 2016). We also noticed
 214 that the dependence of RMW contraction rate on C_D should be a local behavior, that is, in addition
 215 to surface friction, the radial advection in Eq. (7) and the TC structure during the initial spin-up
 216 period will also change considerably if C_D is changed (e.g., Smith et al. 2014; Heng et al. 2016).

217 Therefore, it is hard to tell the role of surface friction in the RMW contraction just by changing C_D
218 from the beginning of a simulation.

219 Here, we would show that Eq. (7) can be considered as a special case of W82. Based on Eq.
220 (3) the sum of the last three terms on the rhs of Eq. (6) is exactly the negative local tendency of the
221 azimuthal mean tangential wind at the RMW because $\partial\bar{V}/\partial r = 0$, i.e., $(\partial V/\partial t)_{RMW} =$
222 $-\bar{U}(\bar{\Omega}^* + f) - \bar{W}\partial\bar{V}/\partial z + \bar{F}_\lambda^*$. Plugging this into Eq. (7) yields

223
$$\frac{dRMW}{dt} = \frac{RMW}{\bar{V}} \left[\left(\frac{d\bar{V}}{dt} \right)_{RMW} - \left(\frac{\partial\bar{V}}{\partial t} \right)_{RMW} \right] \quad (8)$$

224 The first term is related to the intensification rate of the TC, $(d\bar{V}/dt)_{RMW}$, and the second
225 term is related to the local change of tangential wind at the RMW, $(\partial\bar{V}/\partial t)_{RMW}$. Note that Eq. (8)
226 looks similar to Eq. (2) if one assumes that the tangential wind within and at the RMW strictly
227 satisfies a Rankine vortex, i.e., $\partial\bar{v}/\partial r|_{r \leq RMW} = \bar{V}/RMW$, which is the key assumption of K12
228 and also an assumption used in estimating the RMW contraction based on the flight-level data in
229 W82. The major difference between Eq. (8) and Eq. (2) lies in where the local tendency of the
230 azimuthal mean tangential wind is defined. In Eq. (2) it is defined at the arriving point of the RMW,
231 while in Eq. (8) it seems to be defined at the current time. Since the contraction of RMW could not
232 be evaluated if the local change of tangential wind is defined at the current time (see Fig. 1 of Kieu
233 and Zhang 2017), this suggests an alternative problem of K12. As a result, only when the local
234 tendency of tangential wind or the last three terms are evaluated at the arriving point of the RMW,
235 Eq. (7) can be used to diagnose the contraction rate of the RMW. However, in this case, Eq. (7)
236 becomes equivalent to Eq. (2) and it does not provide any extra dynamical insights into the

237 contraction of the RMW as claimed by K12 and Kieu and Zhang (2017). Therefore, K12 will not
238 be included in the following discussion.

239 *d. Stern et al. (2015)*

240 Based on the kinematic/geometric definition of the RMW (i.e., $\partial\bar{V}(r, t)/\partial r|_{r=\text{RMW}} = 0$), a
241 diagnostic equation for the contraction rate of the RMW can be derived without any assumption as
242 given in S15, i.e.,

243
$$\frac{d\text{RMW}}{dt} = -\frac{(\partial/\partial r)(\partial\bar{V}/\partial t)}{\partial^2\bar{V}/\partial r^2}|_{\text{RMW}}. \quad (9)$$

244 The numerator and denominator of Eq. (9) denote the radial gradient of local time tendency of the
245 azimuthal mean tangential wind and the curvature of the azimuthal mean tangential wind in the
246 radial direction at the RMW, respectively. Because of the radially peaked tangential wind profile
247 at the RMW, the curvature is always negative. Two main implications can be inferred from Eq. (9).

248 First, for a given radial gradient of tangential wind tendency at the RMW, the TC with a stronger
249 curvature or sharpness at the RMW is harder to contract. The curvature, however, is usually become
250 sharper with the intensification of a TC, which was hypothesized as the reason for the cessation of
251 the RMW contraction in S15. Second, because the curvature is negative definite at the RMW, the
252 sign of the RMW tendency depends on the radial gradient of tangential wind tendency at the RMW,
253 i.e., the RMW tends to contract if $\partial(\partial\bar{V}/\partial t)/\partial r < 0$ and vice versa. However, these were
254 regarded as an invalid statement by Kieu and Zhang (2017), who argued that there was no involved
255 dynamics of the RMW contraction because the radial gradient of tangential wind tendency is not

256 dynamically determined in S15. Although later Stern et al. (2017) pointed out that it was possible
257 to substitute the tangential wind tendency equation into Eq. (9) as shown in their Eq. (24), and as
258 applied in Tang et al. (2019) for explaining the different RMW contraction rates under different
259 radiative forcings, they did not provide any detailed insight into the dynamical processes that
260 control the contraction of the RMW.

261 **3. Evaluation of W82 and S15**

262 In this section, the performances of W82 and S15 in capturing the contraction rate of the
263 RMW are evaluated using the outputs from three-dimensional high-resolution idealized numerical
264 simulations and a tangential wind budget analysis.

265 *a. Model and experimental design*

266 The Weather Research and Forecasting (WRF) model version 3.8.1 (Skamarock et al. 2008)
267 was used, which is a fully compressible, nonhydrostatic model with a terrain-following vertical
268 coordinate. The triply nested and fixed domains were used with the finest resolution of 2 km in the
269 innermost domain. Physical parameterizations used in our simulations include the Mellor-Yamada
270 Nakanishi Niino (MYNN) Level 2.5 scheme (Nakanishi and Niino 2009) for the surface layer and
271 the planetary boundary layer processes, the Dudhia shortwave radiation scheme (Dudhia 1989), the
272 Rapid Radiative Transfer Model (RRTM; Mlawer et al. 1997) for longwave radiation scheme, the
273 Thompson microphysical scheme (Thompson et al. 2008) for cloud microphysics, and the Kain–

274 Fritsch cumulus parameterization (Kain 2004) in the outermost 18-km mesh only. The average
275 moist tropical sounding during June–October 2002 of Dunion and Marron (2008) was used as the
276 unperturbed environment with the sea surface temperature was fixed at 29°C.

277 Two idealized three-dimensional simulations were conducted. In the control experiment, the
278 experimental design followed that in Zhu and Zhu (2014), in which a strong initial TC vortex with
279 the maximum tangential wind speed of 36 m s^{-1} at a radius of 45 km was used. A sensitivity
280 experiment was conducted to ensure the robustness of the results from the control experiment. The
281 sensitivity experiment was the same as the control experiment except that a weaker initial TC
282 vortex with the maximum tangential wind speed of 18 m s^{-1} was used. All results discussed below
283 were based on the model outputs from the innermost domain at 10-min intervals.

284 To make the finite differencing smoother enough to facilitate the evaluation of the theoretical
285 work summarized in section 2, similar to S15, we first filtered out the small-scale perturbations
286 less than 40 min in time using a time mean and less than 8 km in radial direction using a spatial
287 average, and then we interpolated all the azimuthal mean variables from a radial grid spacing of 2
288 km into a 50-m grid spacing using the cubic spline interpolation. The results discussed below are
289 all based on the filtered variables and the results are not sensitive to the filtering scale qualitatively.

290 *b. Evaluation results*

291 Consistent with previous studies, in the control experiment, after about 15 h initial adjustment,
292 a rapid contraction of the RMW occurred, which stopped well before the end of intensification (Fig.

293 1). The largest hourly contraction rate reached $\sim 16 \text{ km h}^{-1}$ at about 17 h of the simulation. The
294 RMW remained almost constant after about 22.5 h, but the TC continued to intensify. This means
295 that the contraction of RMW is not necessarily accompanied by TC intensification, which is
296 consistent with observations (Stern et al. 2015; Qin et al. 2016; Wang and Wang 2013). Figure 2a
297 compares the time tendency of the RMW from the control experiment with those calculated using
298 Eqs. (2) and (9), respectively, from W82 and S15 at a height of 250 m, which is the same as in S15.
299 Note that here the finite-differencing scheme for W82 exactly followed that suggested by Kieu and
300 Zhang (2017) using the tangential wind profile at the arriving RMW, and a centered finite-
301 difference scheme was used for S15 in both time and space at the current time and current location
302 of RMW. We can see that the diagnosed tendency of the RMW using Eq. (2) or Eq. (9) is almost
303 identical to that of the model simulation. This is not surprising since both equations were derived
304 without any mathematical simplification, although Eqs. (2) and (9) are not equivalent
305 mathematically (Kieu and Zhang 2017). In addition, there is almost no error for W82 (Fig. 2c)
306 because it is a fully closed kinematic model, in which the arriving profile has been provided, as
307 mentioned earlier. As we can see from Figs. 2b and 2d, the conclusion is unchanged with an initially
308 weaker TC vortex.

309 To understand contributions to the RMW contraction in S15, we show in Fig. 3a the time
310 series of both the radial gradient of the azimuthal mean tangential wind tendency and the curvature
311 of the azimuthal mean tangential wind in the radial direction at the RMW and 250-m height. We
312 can see from Fig. 3a that the curvature of tangential wind was negative definite throughout the

313 simulation as mentioned earlier, while the radial gradient of tangential wind tendency showed large
314 variability with both negative and positive values corresponding to the contraction and expansion
315 of RMW in the simulation (Fig. 2). During the early stage of the rapid RMW contraction period
316 15–19 h (Fig. 1), the radial gradient of the azimuthal mean tangential wind tendency at the RMW
317 was largely negative and the curvature of the azimuthal mean tangential wind was small,
318 corresponding to the rapid contraction of the RMW. With the rapid contraction, the curvature of
319 the azimuthal mean tangential wind increased rapidly, and the tangential wind showed large
320 sharpness near the RMW (Fig. 3b). S15 attributed the cessation of the RMW contraction to the
321 increase in the curvature or sharpness of tangential wind. In our simulation, both the decrease in
322 the negative radial gradient of azimuthal mean tangential wind tendency and the increase in the
323 sharpness of the azimuthal mean tangential wind contributed to the cessation of the RMW
324 contraction as we can see from Figs. 2 and 3a.

325 *c. The azimuthal mean tangential wind budget*

326 Based on the above analysis, the method in S15 can be used as a good starting point to
327 understand the dynamical processes responsible for the RMW contraction (or the RMW change, in
328 general). Because of the negative definite nature of $\partial^2\bar{V}/\partial r^2$ in Eq. (9), the sign of the RMW
329 tendency depends on the radial gradient of the azimuthal mean tangential wind tendency at the
330 RMW ($\partial/\partial r)(\partial\bar{V}/\partial t)$. To understand dynamical processes that contribute to the radial gradient
331 of the azimuthal mean tangential wind in Eq. (9), we performed a budget analysis for the azimuthal

332 mean tangential wind tendency as in Fudeyasu and Wang (2011) and Qin et al. (2018). The budget
333 equation can be given as,

334

$$\frac{\partial \bar{v}}{\partial t} = -\bar{u}\bar{\zeta}_a - \bar{w}\frac{\partial \bar{v}}{\partial z} - \overline{u'\zeta_a'} - \overline{w'\left(\frac{\partial v'}{\partial z}\right)} - \frac{\alpha'}{r}\left(\frac{\partial p'}{\partial \lambda}\right) + \bar{F}_{fric} + \bar{F}_{diff}, \quad (10)$$

335 where variables or terms with overbar denote the azimuthal mean, and those with prime denote the
336 deviations from the corresponding azimuthal mean, $\zeta_a = \partial v / \partial r + v / r + f$ is the absolute
337 vertical vorticity, p is air pressure, λ is the azimuth, and α is the specific volume of dry air. The
338 first two terms on the rhs of Eq. (10) denote the mean horizontal (radial) advection (ADV_H) and
339 mean vertical advection (ADV_V); followed by eddy horizontal advection (Eddy_H), eddy vertical
340 advection (Eddy_V), perturbation pressure gradient force, turbulent vertical mixing including
341 surface friction (Ff), and subgrid-scale horizontal diffusion (Diff), respectively. Note that our
342 results show that the perturbation pressure gradient force is rather small, at least four orders smaller
343 in magnitude than the leading terms in Eq. (10), and thus is omitted in the following discussions.

344 Note also that the RMW tilts mostly outward with height after the initial adjustment. This implies
345 the importance of boundary layer dynamics for the contraction of RMW. Therefore, the budget
346 analysis is confined below 3 km.

347 To ensure a nearly residual-free budget analysis, in addition to the instantaneous values, all
348 the 10-min mean \bar{u} , \bar{v} , \bar{w} , horizontal advection, vertical advection, turbulent vertical mixing
349 (including surface friction), subgrid-scale horizontal diffusion, and pressure gradient force were
350 directly calculated during the model integration. All these variables were then interpolated into the
351 cylindrical coordinates. The TC center was defined as the circulation center, which maximizes the

352 TC maximum tangential wind speed at 250 m height above the sea surface. Note that during the
353 WRF integration only the total advects ($-\bar{u}\zeta_a$ and $-\bar{w}\partial v/\partial z$) could be explicitly given and
354 saved. This means that both the eddy advection terms ($-\bar{u}'\zeta_a'$ and $-\bar{w}'(\partial v'/\partial z)$) and the mean
355 advects ($-\bar{u}\zeta_a$ and $-\bar{w}\partial v/\partial z$) should be calculated off-line. However, the off-line
356 calculations would induce some numerical errors in the partitioned mean and eddy advects due
357 to the coordinate transformation, interpolation, and the use of different finite-differencing schemes.
358 To reduce any bias in such partitioning, we first directly calculated both mean and eddy advects
359 off-line and then indirectly obtained the mean (eddy) advection terms by subtracting the off-line
360 directly calculated eddy (mean) advects from the WRF-output total advects. Finally, the
361 mean (eddy) advects used in the final budget analysis are defined as the average of the two mean
362 (eddy) advects obtained above. In this way, the calculation errors are distributed equally
363 between the mean and eddy advects. Note that to minimize errors that might be introduced due
364 to the use of different finite-differencing algorithms in calculating the advection terms in the WRF
365 model and in the budget, as in the WRF model, the staggered grid finite-differencing in both
366 vertical and radial directions was used to improve the precision. Figure 4 compares the eddy
367 advection terms obtained from the above method and that directly calculated using the 10-min
368 mean wind field at 19 h (Figs. 4a–d) and 21 h (Figs. 4e–h). The overall patterns are very similar
369 except some discrepancies. Note that the 10-min mean field was used to define the storm center to
370 avoid any inconsistencies in the calculated eddy contributions. This might introduce some extra
371 errors. However, because the TC motion in 10 minutes in the simulation on an f -plane in a quiescent

372 environment is often less than one half of the finest grid spacing (often less than 1 km), the errors
373 would not affect our main conclusions. Therefore, the budget results can be used to understand
374 contributions of various forcing processes to the RMW contraction.

375 To provide a general view on the structure of the local azimuthal mean tangential wind
376 tendency and their relative position to the RMW, a 40-min averaged budget during the rapid RMW
377 contraction period (19 h) is shown in Fig. 5. Note that the azimuthal mean tangential wind
378 tendencies from both the model and budget are shown in Fig. 5 for a comparison. Clearly, the
379 budget reproduced the tendency structure from the simulation very well (Figs. 5a, b), with
380 negligible errors ($\sim 10^{-5} \text{ m s}^{-1} \text{ h}^{-1}$) from interpolations. As we can see from Fig. 5, the tangential
381 wind tendency inside the RMW is larger than that outside, which results in the contraction of the
382 RMW during this period (cf. Figs. 1 and 2a). Some key points can be noticed by comparing all
383 individual terms in Figs. 5c–5h. First, the contribution by mean advection varies with height. For
384 example, the mean vertical advection (ADV_V) contributes to an expansion below ~ 300 m but a
385 contraction above; the mean horizontal advection (ADV_H) contributes to a contraction of the
386 RMW below ~ 400 m but an expansion above. The turbulent vertical mixing including surface
387 friction (Ff), eddy horizontal advection (Eddy_H), and subgrid-scale horizontal diffusion (Diff) all
388 contribute to the RMW expansion in the boundary layer, and eddy vertical advection (Eddy_V)
389 contributes to the RMW contraction at this time.

390 Following Stern et al. (2017), substituting Eq. (10) into Eq. (9) and omitting the perturbation
391 pressure gradient force, we get

392
$$\frac{d\text{RMW}}{dt} = \left[\frac{\partial}{\partial r} (\bar{U} \bar{\zeta}_a) + \frac{\partial}{\partial r} (\bar{W} \frac{\partial \bar{V}}{\partial z}) + \frac{\partial}{\partial r} (\bar{u}' \bar{\zeta}_a') + \frac{\partial}{\partial r} (\overline{w' \left(\frac{\partial v'}{\partial z} \right)}) - \frac{\partial}{\partial r} (\bar{F}_{fric}) - \frac{\partial}{\partial r} (\bar{F}_{diff}) \right] \Big|_{\text{RMW}}. \quad (11)$$

393 Considering the contribution by mean advection to the RMW tendency varies with height (cf. Figs.
 394 5c, d), and the turbulent vertical mixing is large below 500-m height (cf. Fig. 5e), two different
 395 integral averages are calculated, i.e., between 0–500 m (the lower boundary layer) and between
 396 500–1500 m (the upper boundary layer and lower troposphere), to illustrate the contribution of
 397 each tangential wind tendency forcing to the RMW tendency. Figure 6 shows each integral-
 398 averaged tangential wind tendency at the RMW [Figs. 6a and 6b; cf. Eq. (10)] and the
 399 corresponding contribution to the RMW tendency [denoted by the prefix “S15” in Figs. 6c and 6d;
 400 cf. Eq. (11)].

401 In the lower boundary layer, as expected, the mean horizontal advective forcing (S15_ADV_H)
 402 dominates the contraction of the RMW (Fig. 6c), consistent with its large magnitude (ADV_H, Fig.
 403 6a). The subgrid-scale horizontal diffusion forcing (S15_Diff) and eddy vertical advective forcing
 404 (S15_Eddy_V) contribute marginally to the RMW contraction (Fig. 6c), consistent with their small
 405 magnitudes (Fig. 6a). In addition, although the mean vertical advection (ADV_V) at the RMW is
 406 much larger than the eddy vertical advection (Eddy_V) (Fig. 6a), its contribution to the RMW
 407 tendency is small and comparable with S15_Eddy_V (Fig. 6c). The role of mean vertical advection
 408 in the RMW tendency (S15_ADV_V) is alternately positive and negative during the simulation
 409 (Fig. 6c). Consistent with K12, the turbulent vertical mixing including surface friction (Ff)
 410 contributes to the RMW expansion (Fig. 6c). Besides, the increase of eddy horizontal advective
 411 forcing (S15_Eddy_H) also plays an important role in the cessation of RMW contraction from the

412 later rapid contraction stage (after ~ 20 h) (Fig. 6c). Note that although Ff in the later rapid
413 contraction stage is comparable with Eddy_H (Fig. 6a), its contribution (S15_Ff) to the RMW
414 tendency is smaller than S15_Eddy_H (Fig. 6c). This difference is understandable, because
415 $\bar{F}_{fric}^* \sim -C_D/H [\bar{V}\sqrt{(\bar{V}^2 + \bar{U}^2)}] \sim -C_D\bar{V}^2/H$ (see K12), considering $\bar{V}^2 \gg \bar{U}^2$ therefore,
416 $\partial\bar{F}_{fric}^*/\partial r \sim -(2C_D\bar{V}/H)(\partial\bar{V}/\partial r) \sim 0$, if we assume C_D and H are constant. Indeed, the
417 contours of Ff near the RMW are almost perpendicular to the RMW (Fig. 5e), indicating a small
418 radial gradient of Ff at the RMW, except for those levels near the surface where the approximation,
419 $\bar{V}^2 \gg \bar{U}^2$ is often invalid. However, the contours of Eddy_H near the RMW in the lower boundary
420 layer are almost parallel to the RMW (Figs. 4a,b, 4e,f, and 5f), which implies a large radial gradient
421 of Eddy_H.

422 In the upper boundary layer and lower troposphere, consistent with the above analyses (Fig.
423 5), the results change a lot, especially for the mean advection terms (Figs. 6b, d), compared to that
424 in the lower boundary layer (Figs. 6a, c). First, the sign of mean horizontal (vertical) advection
425 term to the TC intensification changes (Fig. 6b). Second, the mean horizontal (vertical) advective
426 forcing changes to dominate the expansion (contraction) of the RMW from the later rapid
427 contraction stage (Fig. 6d). As a result, the increase of the mean horizontal advective forcing
428 (S15_ADV_H) prevents further contraction of the RMW in this layer. Note that the S15_ADV_H
429 also contributes to the RMW contraction during the early rapid contraction stage around 17 h (Fig.
430 6d). In addition, both the vertical mixing forcing and eddy horizontal advective forcing play a
431 marginal role in the RMW tendency in this layer, and the eddy vertical advective forcing changes

432 to favor the RMW contraction.

433 Based on the above analyses, in addition to the curvature of the azimuthal mean tangential
434 wind, the increase in the radial gradient of eddy horizontal advection at the RMW also plays an
435 important role in preventing further contraction of the RMW, especially in the lower boundary
436 layer (Fig. 6c). Since the eddy horizontal advection reflects the horizontal mixing by the resolved
437 eddies in three-dimensions, we thus can consider that the radial gradient of (both resolved and
438 parameterized) horizontal mixing contributes to the cessation of the RMW contraction. Note that
439 the resolved eddy mixing in three-dimensions is implicitly parameterized by horizontal diffusion
440 in axisymmetric simulations (Bryan and Fritsch 2002). Therefore, if the horizontal eddy mixing in
441 three-dimensional simulation is really important for the cessation of RMW contraction, the
442 subgrid-scale horizontal mixing in axisymmetric simulations should be important for the cessation
443 of the RMW contraction. This may imply that larger horizontal diffusion (e.g., with a larger
444 horizontal mixing length) in axisymmetric simulations may result in a larger steady-state RMW.
445 This is indeed the case already given by Bryan (2012) and Rotunno and Bryan (2012). To further
446 verify this implication, an axisymmetric model was used to perform several sensitivity experiments
447 in the next section.

448 **4. Axisymmetric dynamics of the RMW contraction**

449 This section gives insights into the axisymmetric dynamics of the RMW contraction with the
450 focus on examining the role of horizontal mixing processes in preventing the RMW contraction as

451 implied from the three-dimensional simulations discussed in section 3.

452 *a. Model and experimental design*

453 The axisymmetric model selected for our numerical experiments is the state-of-the-art cloud
454 model CM1, version 19.4 (Bryan and Fritsch 2002), which has been used widely for understanding
455 TC dynamics (e.g., Bryan 2012; Rotunno and Bryan 2012; Bu et al. 2017). The model resolution
456 was 3 km within a radius of 300 km and then stretched to 13 km near the lateral boundary of the
457 model domain at 1500 km. The model had 59 vertical levels with a stretching vertical grid spacing
458 from 25 m at the surface to 500 m at 5.5 km and remains at 500 m above. The initial TC vortex
459 was axisymmetric with the maximum tangential wind of about 15 m s^{-1} at an 82.5-km radius, which
460 decreases to zero with radius out to 412.5 km and the height up to 20 km. An idealized saturated
461 and neutral sounding (Bryan and Rotunno 2009) with a fixed sea surface temperature of 28°C was
462 used to initialize the unperturbed atmospheric environment in all simulations. The Coriolis
463 parameter was set to $5 \times 10^{-5} \text{ s}^{-1}$, corresponding to 20° N . Similar to Bryan (2012), the Morrison
464 double moment scheme was used for cloud microphysics (Morrison et al. 2009) and no cumulus
465 convective parameterization was used. The Newtonian cooling capped at 2 K day^{-1} was used to
466 represent longwave radiation. The ratio of surface exchange coefficients for enthalpy and
467 momentum, C_K/C_D , was fixed at 0.5 with the C_D fixed at 2.4×10^{-3} . Following Bryan (2012), the
468 Smagorinsky scheme (Bryan and Fritsch, 2002) was used to parameterize eddy mixings. Namely,
469 the horizontal viscosity, $K_{m,h}$, is calculated by $K_{m,h} = l_h^2 S_h$, and the vertical viscosity, $K_{m,v}$, is

470 calculated by $K_{m,v} = l_v^2 S_v (1 - Ri/Pr)^{1/2}$, where S_h and S_v denote horizontal and vertical
471 deformations; Ri and Pr denote Richardson number and Prandtl number; l_h and l_v denote
472 horizontal and vertical mixing lengths. The vertical mixing length at each level is determined by
473 $l_v^{-2} = (kz)^{-2} + l_\infty^{-2}$, where k denotes Karman constant and l_∞ denotes asymptotic ($z \rightarrow \infty$)
474 vertical mixing length. In the control experiment, the l_h and l_∞ were set at 1000 m and 50 m,
475 respectively. In addition to the control experiment, four sensitivity experiments were conducted
476 with the l_h and l_∞ doubled and halved, respectively, during contraction period after the initial
477 adjustment to examine the effects of horizontal and vertical mixing on the RMW contraction.
478 Similar to the WRF simulation, every 10-min model output of CM1 were used in the analysis.

479 *b. Results*

480 The temporal evolution of the maximum wind speed and RMW at the lowest model level (25
481 m) and 250 m in the control simulation are shown in Figs. 7a and 7b. The RMW experienced an
482 overall contraction but with large fluctuations in the early stage of simulations. Similar to that in
483 the three-dimensional WRF simulation, the contraction stopped at the early stage of intensification
484 by about 60 h of simulation, but the TC intensity reached a quasi-steady state after about 140 h.
485 Note that because the initial vortex was weaker with larger RMW than that in the WRF simulation,
486 the TC vortex experienced a longer initial adjustment period up to 48 h during which the RMW
487 changed more irregularly and discontinuously. Since Eq. (9) assumes a continuous change of the
488 RMW, following the current location of the RMW to predict its radial movement, we focus on the

489 period of a nearly continuous RMW contraction after the initial adjustment or from the later rapid
490 contraction stage (i.e., 48 h). Similar to the analysis in section 3, the model output after the initial
491 48 h of simulation was also filtered and interpolated onto a 50-m radial resolution. As expected,
492 the method of S15 and W82 can capture the RMW tendency very well in the axisymmetric
493 simulation (Fig. 7c).

494 To understand the dynamics of the RMW contraction, a tangential wind budget during the
495 contraction period (50 h) was conducted as what was done in section 3c. All the tangential wind
496 tendency terms in Eq. (10) excepted for those eddy terms were direct output from the model
497 simulation. Note that these tendencies were not averaged in time because the budgeted tendency at
498 any given time (e.g., Fig. 8b) can well capture the tendency from the model (e.g., Fig. 8a). Overall,
499 the results are consistent with those from the WRF model simulations. The local tendency of
500 tangential wind is larger inside the RMW than outside during the contraction period, corresponding
501 to the RMW contraction (Fig. 7). Contributions by (both horizontal and vertical) advection terms
502 varies with height (Figs. 8c–d). The direct contribution by vertical mixing (and surface fiction)
503 makes the RMW expansion in the boundary layer (Fig. 8e). As expected, the horizontal mixing in
504 the boundary layer is larger than that in the WRF simulation and contributes to the RMW expansion
505 (Fig. 8f), similar to the eddy horizontal advection in the WRF simulations.

506 The individual tendencies in Eq. (10) at the RMW below and above 500-m height and their
507 corresponding contributions to the RMW tendency in Eq. (11) are shown in Fig. 9. The overall
508 results are consistent with those from the WRF model simulations. First, except for the horizontal

509 advection (ADV_H), all other terms slow down the TC intensification rate during the
510 intensification period in the lower boundary layer (Fig. 9a), and the sign of mean horizontal
511 (vertical) term to the TC intensification changes from the lower boundary layer (Fig. 9a) to the
512 upper boundary layer and lower troposphere (Fig. 9b). Second, the horizontal advective forcing
513 (S15_ADV_H) dominantly contributes to the RMW contraction in the lower boundary layer (Fig.
514 9c) but expansion above (Fig. 9d). In addition, the vertical advective forcing on RMW tendency
515 (S15_ADV_V) is mainly positive during the rapid contraction period (48–57 h) and plays a small
516 role later in the lower boundary layer (Fig. 9c), but dominantly contributes to the RMW contraction
517 throughout the analysis period in the upper boundary layer and lower troposphere (Fig. 9d). As
518 expected, the horizontal mixing forcing (S15_Diff) increases during the rapid contraction period,
519 and then makes an obvious inhibitory effect on the RMW contraction in the lower boundary layer
520 (Fig. 9c), similar to the resolved eddy horizontal advection/mixing shown in Fig. 6c in the three-
521 dimensional WRF simulation. Note that Diff and S15_Diff in Fig. 6 are different from those in Fig.
522 9, in which both the resolved and parameterized horizontal mixing are included as mentioned above.
523 In addition, turbulent vertical mixing including surface friction (Ff) also contributes to the cessation
524 of the RMW contraction in the lower boundary layer (Fig. 9c). Note that although the Ff in the
525 contraction stage is about twice the value of Diff in the lower boundary layer (Fig. 9a), their
526 contributions (S15_Ff and S15_Diff) to the RMW tendency are comparable with each other (Fig.
527 9c) because the contours of Diff are more parallel to the RMW than that of Ff (cf. Fig. 8e, f),
528 consistent with the analysis in the three-dimensional WRF simulation. In addition, the roles of Ff

529 and S15_Diff become marginal above the lower boundary layer (Fig. 9d).

530 The above analyses for the control axisymmetric simulation demonstrate that horizontal
531 advective forcing predominantly contributes to the RMW contraction during the RMW contraction
532 period in the lower boundary layer, while the horizontal mixing forcing plays an important role in
533 preventing the RMW contraction, as the eddy horizontal advection in three-dimensional
534 simulations. In addition, the vertical mixing (including surface friction) forcing also plays an
535 important role in the cessation of RMW contraction. These two conclusions are further confirmed
536 by results from four sensitivity experiments, in which the horizontal mixing length and the
537 asymptotic vertical mixing length were doubled or halved of that used in the control experiment
538 from 48 h of simulation in the control experiment. Figure 10 shows the evolutions of the RMW
539 (Figs. 10a, c) and the corresponding mixing forcing (S15_Diff, S15_Ff; Figs. 10b, d). As expected,
540 the increased horizontal and vertical mixing slowed down the RMW contraction in the rapid RMW
541 contraction period (Figs. 10b and 10d) and resulted in a larger steady-state RMW (Figs. 10a and
542 10c), which are consistent well with Bryan (2012) and Bu et al. (2017). Therefore, our results
543 indicate that in addition to the sharpness of tangential wind as identified by S15, eddy and/or
544 subgrid-scale mixing also play an important role in slowing down and finally stopping the RMW
545 contraction in TCs.

546 **5. Concluding remarks**

547 In this study, we have revisited the dynamics of the RMW contraction in TCs based on both

548 theoretical consideration and diagnostics of high-resolution axisymmetric and three-dimensional
549 numerical simulations. The existing theories are first reviewed and evaluated using idealized
550 numerical simulation results. Dynamically, the RMW contraction results from larger tangential
551 wind tendency inside of the RMW than that outside of it. The balanced response of a TC vortex to
552 eyewall heating, which shows a larger tangential wind tendency inside the RMW, is considered to
553 be the major reason for TC eyewall contraction (Shapiro and Willoughby 1982). This concept was
554 quantified based on the definition of the directional derivative in a moving frame of reference
555 following the RMW of a TC (W82).

556 More recently, K12 and S15 developed different frameworks for RMV contraction. Although
557 the equation of K12 could be simplified to the RMW tendency equation of W82 under some
558 assumptions, the framework of S15 can provide a tendency equation of the RMW without any
559 assumption/simplification. We have shown that both W82 and S15 can reproduce precisely the
560 changing rate of RMW in idealized high-resolution numerical simulations in both three-
561 dimensional and axisymmetric models. However, compared with that of W82, an extension of
562 equation of S15 can be further used to provide insights into the dynamics of the RMW contraction.
563 Based on S15, the rate of the RMW change is directly proportional to the radial gradient of local
564 tangential wind and inversely proportional to the curvature or sharpness of tangential wind at the
565 RMW. In addition to the increase of the sharpness, as suggested by S15, this study indicates that
566 the decrease in the negative radial gradient of azimuthal mean tangential wind tendency also
567 contributes to the cessation of the RMW contraction.

568 The azimuthal-mean tangential wind budget, based on the three-dimensional and
569 axisymmetric idealized simulations, indicates that the mean horizontal advective forcing
570 contributes predominantly to the RMW contraction (expansion) in the lower boundary layer (the
571 upper boundary layer and lower troposphere) in the later rapid contraction stage. The mean vertical
572 advective forcing is secondary but also plays a role in the lower boundary layer, particularly during
573 the rapid contraction stage, but contributes predominantly to the RMW contraction above. Overall,
574 the vertical mixing and surface friction often lead to the RMW expansion and the cessation of
575 RMW mainly in the lower boundary layer. An interesting finding is that in addition to the increase
576 of sharpness of tangential wind, with the TC intensification, the increase of radial gradient of (both
577 resolved and parameterized) horizontal mixing also slows down the RMW contraction, mainly in
578 the lower boundary layer, and subsequently contributes to the cessation of the RMW contraction.
579 Note that although the conclusions here are similar to those in K12, Kieu and Zhang (2017), and
580 Qin et al. (2018), in which the mean advection effects make a net positive while the mixing effects
581 make a net negative impact on the RMW contraction, we refer to the radial gradient of these
582 processes while K12 and KZ17 referred to those processes themselves.

583 Finally, note that the framework of S15 assume continuous changes of the RMW in both time
584 and space. As a result, the method can not be applied to understand discontinuity or jump of the
585 RMW, such as prior to the formation of an eyewall structure and the concentric eyewall
586 replacement. Note that in the diagnostic viewpoint W82 is still valid even the RMW change is
587 discontinuous because the directional derivative is involved. In addition, although the resolved

588 eddy mixing prevents the RMW contraction, it may contribute positively to the initial organization
589 of the eyewall through the eddy-mean flow interaction. Therefore, eddy processes could play
590 different roles in different stages of a TC. This remains an issue for a future study.

591 **Acknowledgments:** The authors thank three anonymous reviewers for their thoughtful review
592 comments. This study has been supported in part by National Natural Science Foundation of China
593 under grant 41730960 and in part by NSF grants AGS-1326524 and AGS-1834300. Y. Li is funded
594 by China Scholarship Council (File 201806210324).

595 **References**

596 Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic
597 numerical model. *Mon. Wea. Rev.*, **130**, 2917–2928, doi:10.1175/1520-
598 0493(2002)130<2917:ABSMN>2.0.CO;2.

599 Bryan, G.H., and R. Rotunno, 2009: Evaluation of an analytical model for the maximum intensity
600 of tropical cyclones. *J. Atmos. Sci.*, **66**, 3042–3060, doi:10.1175/2009JAS3038.1.

601 Bryan, G. H., 2012: Effects of surface exchange coefficients and turbulence length scales on the
602 intensity and structure of numerically simulated hurricanes. *Mon. Wea. Rev.*, **140**, 1125–
603 1143, doi:10.1175/MWR-D-11-00231.1.

604 Bryan, G. H., 2013: Comments on ‘Sensitivity of tropical-cyclone models to the surface drag
605 coefficient’. *Q. J. R. Meteorol. Soc.*, **139**, 1957–1960, doi:10.1002/qj.2066.

606 Bu, Y. P., R. G. Fovell, and K. L. Corbosiero, 2017: The influences of boundary layer mixing and
607 cloud-radiative forcing on tropical cyclone size. *J. Atmos. Sci.*, **74**, 1273–1292,
608 doi:10.1175/JAS-D-16-0231.1.

609 Bui, H. H., R. K. Smith, M. T. Montgomery, J. Peng, 2009: Balanced and unbalanced aspects of
610 tropical cyclone intensification. *Quart. J. Roy. Meteor. Soc.*, **135**, 1715–1731,

611 doi:10.1002/qj.502.

612 Deng, L., T. Li, M. Bi, J. Liu, M. Peng, 2018: Dependence of tropical cyclone development on
613 Coriolis parameter: A theoretical model. *Dyn. Atmos. Ocean*, **81**, 51-62,
614 doi:10.1016/j.dynatmoce.2017.12.001.

615 Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment
616 using a mesoscale two-dimensional model. *J. Atmos. Sci.*, **46**, 3077-3107, doi:10.1175/1520-
617 0469(1989)046<3077:NSOCOD>2.0.CO;2.

618 Dunion, J.P. and C.S. Marron, 2008: A reexamination of the Jordan mean tropical sounding
619 based on awareness of the Saharan air layer: Results from 2002. *J. Climate*, **21**, 5242–5253,
620 doi:10.1175/2008JCLI1868.1.

621 Eliassen, A., 1951: Slow thermally of frictionally controlled meridional circulation in a circular
622 vortex. *Astrophys. Norv.*, **5**, 19-60.

623 Fudeyasu, H. and Y. Wang, 2011: Balanced contribution to the intensification of a tropical cyclone
624 simulated in TCM4: Outer-core spinup process. *J. Atmos. Sci.*, **68**, 430–449,
625 doi:10.1175/2010JAS3523.1.

626 Heng, J. and Y. Wang, 2016: Nonlinear response of a tropical cyclone vortex to prescribed eyewall
627 heating with and without surface friction in TCM4: Implications for tropical cyclone
628 intensification. *J. Atmos. Sci.*, **73**, 1315–1333, doi:10.1175/JAS-D-15-0164.1.

629 Heng, J., Y. Wang, and W. Zhou, 2017: Revisiting the balanced and unbalanced aspects of tropical
630 intensification. *J. Atmos. Sci.*, **74**, 2575-2591, doi:10.1175/JAS-D-17-0046.1.

631 Kain, J. S. 2004: The Kain–Fritsch convective parameterization: an update. *J. Appl. Meteor.*, **43**,
632 170-181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

633 Kieu, C. Q., 2012: An investigation into the contraction of the hurricane radius of maximum wind.
634 *Meteorol. Atmos. Phys.*, **115**, 47-56, doi:10.1007/s00703-011-0171-7.

635 Kieu, C. Q., and D.-L. Zhang, 2017: Comments on “Revisiting the relationship between eyewall
636 contraction and intensification”. *J. Atmos. Sci.*, **74**, 4265–4274, doi:10.1175/JAS-D-17-0011.1.

637 Kilroy, G., M. T. Montgomery, and R. K. Smith, 2017: The role of boundary-layer friction on
638 tropical cyclogenesis and subsequent intensification. *Q. J. R. Meteorol. Soc.*, **143**, 2524-2536,
639 doi:10.1002/qj.3104.

640 Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer
641 for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. *J.*
642 *Geophys. Res.*, **102**, 16663-16682, doi:10.1029/97JD00237.

643 Morrison, H., G. Thompson, and V. Tatarki, 2009: Impact of cloud microphysics on the
644 development of trailing stratiform precipitation in a simulated squall line: Comparison of one-
645 and two- moment scheme. *Mon. Wea. Rev.*, **137**, 991-1007, doi:10.1175/2008MWR2556.1.

646 Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the
647 atmospheric boundary layer. *J. Meteorol. Soc. Japan*, **87**, 895-912, doi:10.2151/jmsj.87.895.

648 Pendergrass, A.G. and H.E. Willoughby, 2009: Diabatically induced secondary flows in tropical
649 cyclones. Part I: Quasi-steady forcing. *Mon. Wea. Rev.*, **137**, 805–821,
650 doi:10.1175/2008MWR2657.1.

651 Qin, N., D.-L. Zhang, and Y. Li, 2016: A statistical analysis of steady eyewall sizes associated with
652 rapidly intensifying hurricanes. *Wea. Forecasting*, **31**, 737–742, doi:10.1175/WAF-D-16-
653 0016.1.

654 Qin, N., D.-L. Zhang, W. Miller, and C. Q. Kieu, 2018: On the rapid intensification of Hurricane
655 Wilma (2005). Part IV: Inner-core dynamics during the steady radius of maximum wind stage.
656 *Q. J. R. Meteorol. Soc.*, **144**, 2508-2523, doi:10.1002/qj.3339.

657 Rotunno, R. and G. H. Bryan, 2012: Effects of parameterized diffusion on simulated hurricanes. *J.*
658 *Atmos. Sci.*, **69**, 2284–2299, doi:10.1175/JAS-D-11-0204.1.

659 Schubert, W. H. and J. J. Hack, 1982: Inertial stability and tropical cyclone development. *J. Atmos.*
660 *Sci.*, **39**, 1687–1697, doi:10.1175/1520-0469(1982)039%3C1687:ISATCD%3E2.0.CO;2.

661 Shapiro, L. J. and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources
662 of heat and momentum. *J. Atmos. Sci.*, **39**, 378–394, doi:10.1175/1520-

663 0469(1982)039%3C0378:TROBHT%3E2.0.CO;2.

664 Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers,
665 2008: A description of the Advanced Research WRF version 3. *NCAR Tech Note-4751STR*,
666 113 pp, doi:10.5065/D68S4MVH.

667 Smith, R. K., G. Kilroy, and M. T. Montgomery, 2015: Why do model tropical cyclones intensify
668 more rapidly at low latitudes? *J. Atmos. Sci.*, **72**, 1783–1804, doi:10.1175/JAS-D-14-0044.1.

669 Smith, R. K., M. T. Montgomery, and G. L. Thomsen, 2014: Sensitivity of tropical-cyclone models
670 to the surface drag coefficient in different boundary-layer schemes, *Q. J. R. Meteorol. Soc.*,
671 **140**, 792-804, doi:10.1002/qj.2057.

672 Stern, D. P., J. L. Vigh, D. S. Nolan, and F. Zhang, 2015: Revisiting the relationship between
673 eyewall contraction and intensification. *J. Atmos. Sci.*, **72**, 1283–1306, doi:10.1175/JAS-D-
674 14-0261.1.

675 Stern, D. P., J. L. Vigh, D. S. Nolan, and F. Zhang, 2017: Reply to “Comments on ‘Revisiting the
676 relationship between eyewall contraction and intensification.’” *J. Atmos. Sci.*, **72**, 4275–4286,
677 doi:10.1175/JAS-D-17-0120.1.

678 Tang, X., Z. Tan, J. Fang, E.B. Munsell, and F. Zhang, 2019: Impact of the diurnal radiation
679 contrast on the contraction of radius of maximum wind during intensification of Hurricane
680 Edouard (2014). *J. Atmos. Sci.*, **76**, 421–432, doi:10.1175/JAS-D-18-0131.1.

681 Thompson, G., P.R. Field, R.M. Rasmussen, and W.D. Hall, 2008: Explicit forecasts of winter
682 precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new
683 snow parameterization. *Mon. Wea. Rev.*, **136**, 5095-5115, doi:10.1175/2008MWR2387.1.

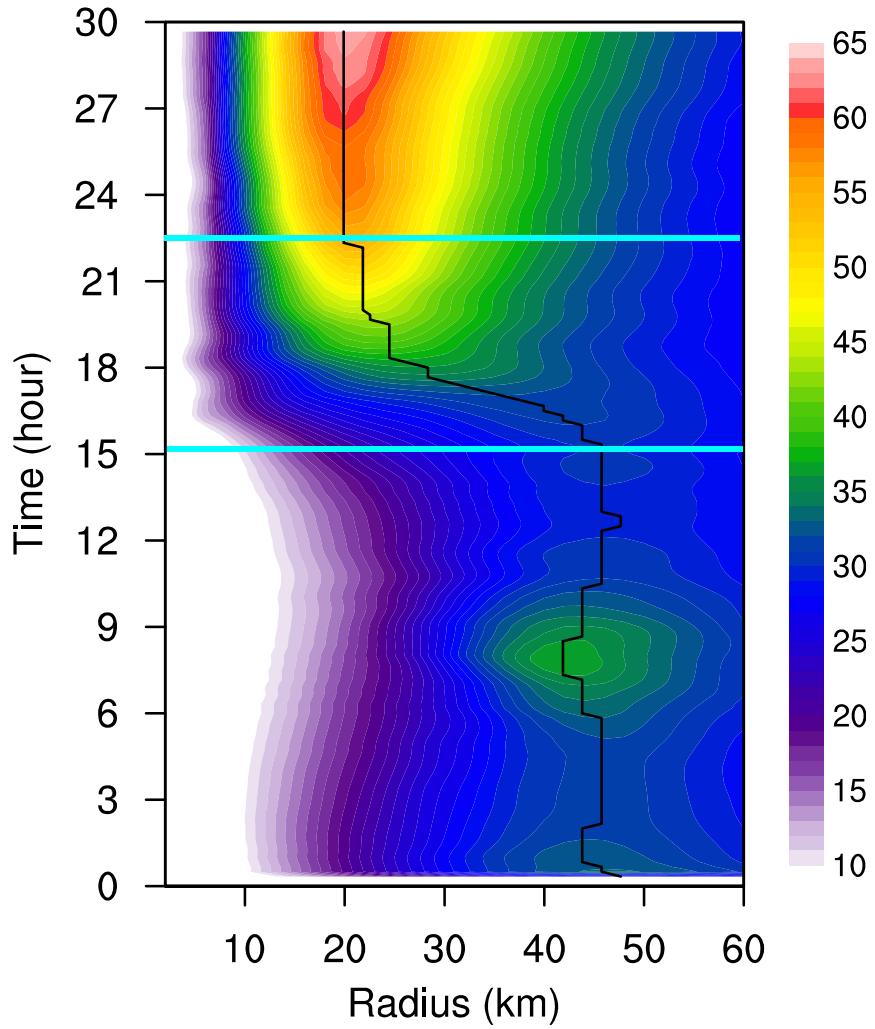
684 Wang, H., C. Wu, and Y. Wang, 2016: Secondary eyewall formation in an idealized tropical
685 cyclone simulation: Balanced and unbalanced dynamics. *J. Atmos. Sci.*, **73**, 3911–3930,
686 doi:10.1175/JAS-D-15-0146.1.

687 Wang, Y. and H. Wang, 2013: The inner-core size increase of Typhoon Megi (2010) during its
688 rapid intensification phase. *Tropical Cyclone Res. Rev.*, **2**, 65-80,

689 doi:10.6057/2013TCRR02.01.

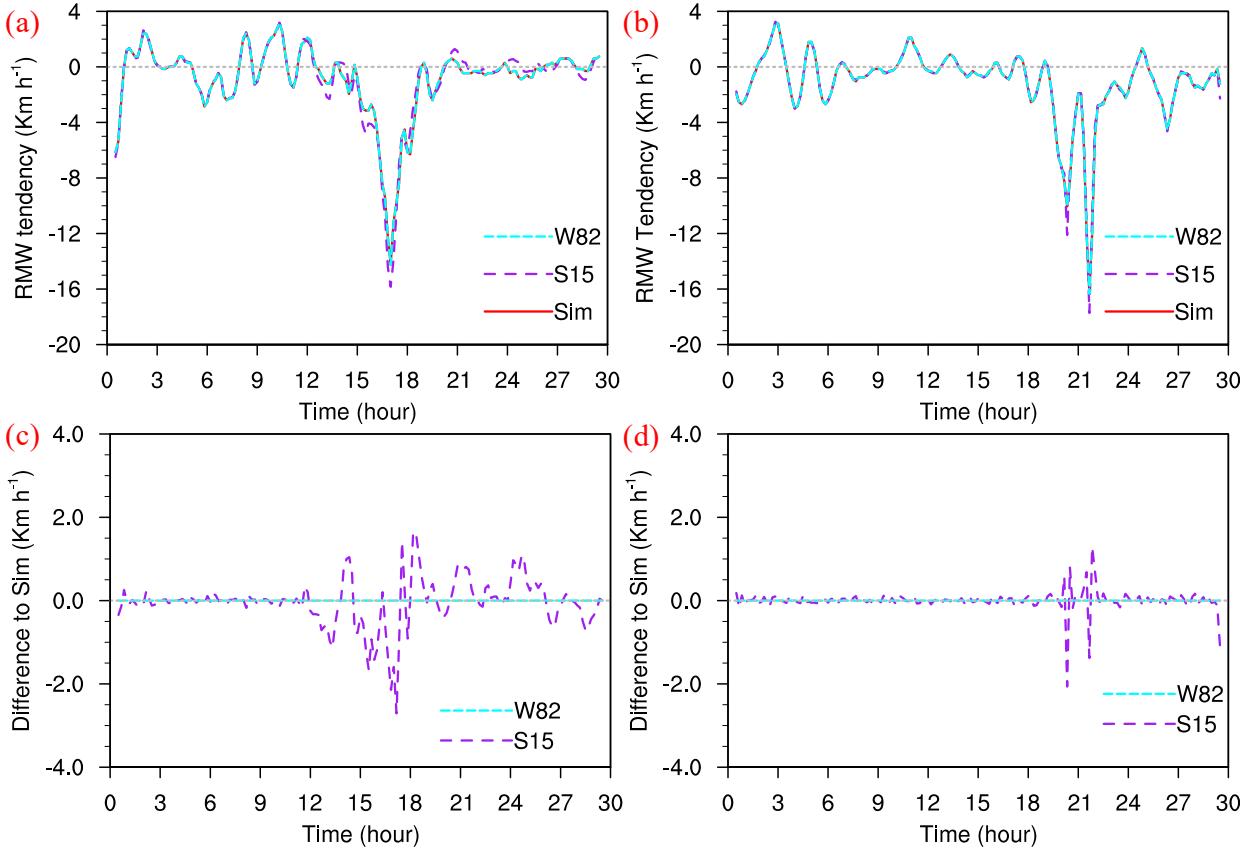
690 Wang, Y. and J. Xu, 2010: Energy production, frictional dissipation, and maximum intensity of a
691 numerically simulated tropical cyclone. *J. Atmos. Sci.*, **67**, 97–116,
692 doi:10.1175/2009JAS3143.1.

693 Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eye walls, secondary wind
694 maxima, and the evolution of the hurricane vortex. *J. Atmos. Sci.*, **39**, 395–411,
695 doi:10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2.

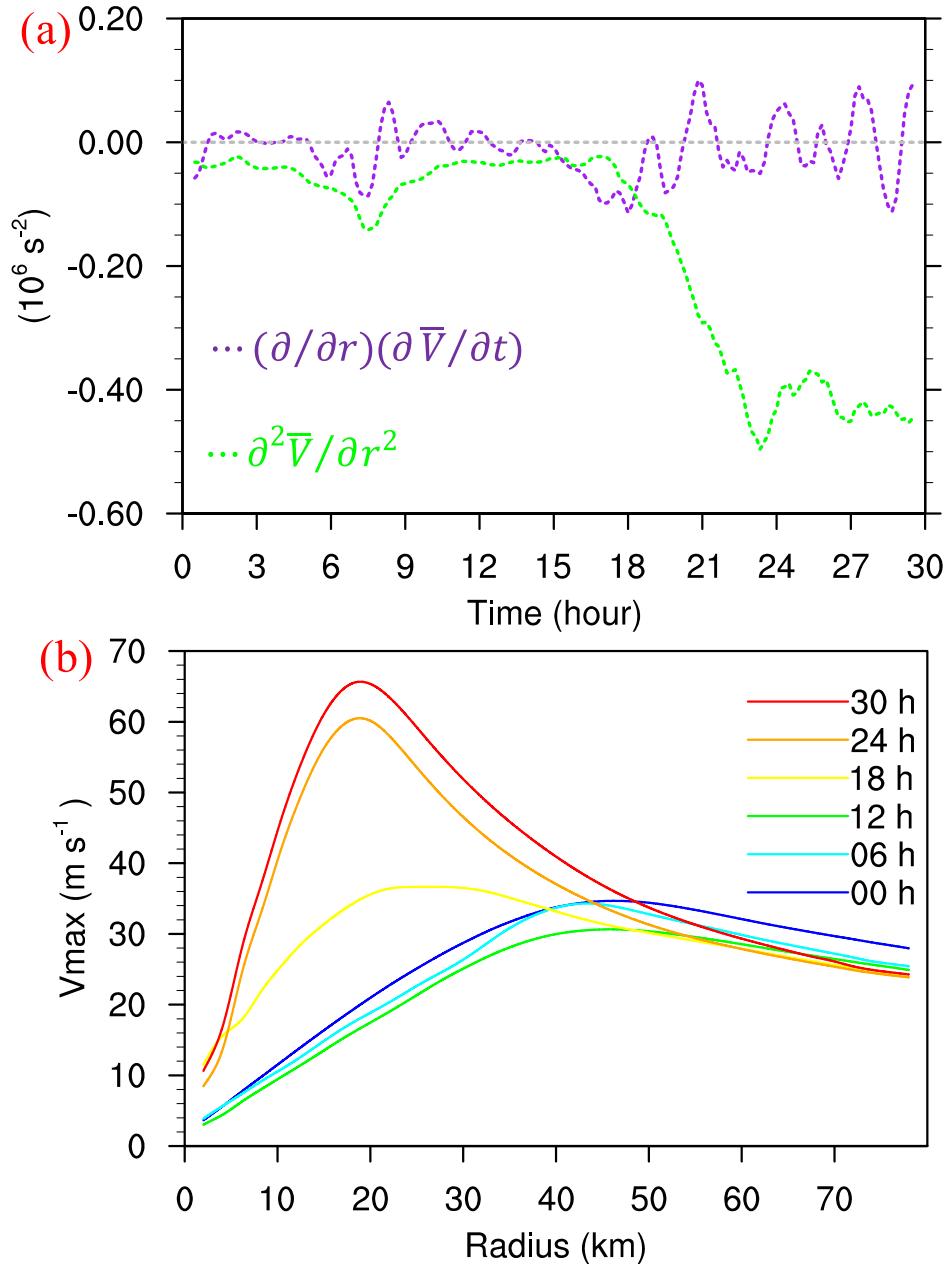

696 Willoughby, H.E., 1990: Temporal changes of the primary circulation in tropical cyclones. *J. Atmos. Sci.*, **47**, 242–264, doi:10.1175/1520-0469(1990)047<0242:TCOTPC>2.0.CO;2.

697 Xu, J. and Y. Wang, 2010a: Sensitivity of tropical cyclone inner-core size and intensity to the radial
698 distribution of surface entropy flux. *J. Atmos. Sci.*, **67**, 1831–1852, doi:
700 10.1175/2010JAS3387.1.

701 Xu, J. and Y. Wang, 2010b: Sensitivity of the simulated tropical cyclone inner-core size to the
702 initial vortex size. *Mon. Wea. Rev.*, **138**, 4135–4157, doi:10.1175/2010MWR3335.1.

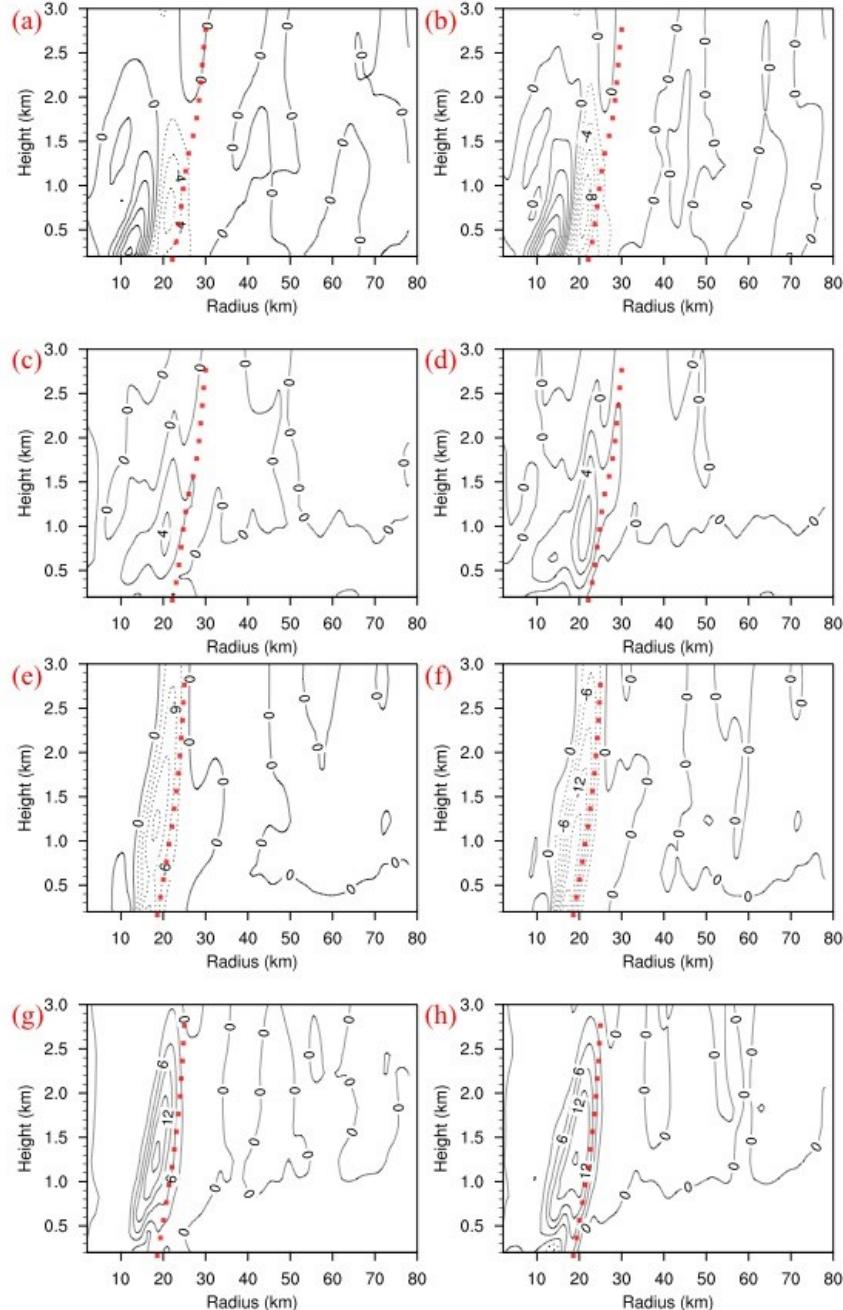

703 Zhu, Z., and P. Zhu, 2014: The role of outer rainband convection in governing the eyewall
704 replacement cycle in numerical simulations of tropical cyclones. *J. Geophys. Res. Atmos.*, **119**,
705 8049-8072, doi:10.1002/2014JD021899.

706



707
708
709
710
711

FIG. 1. Radius-time Hovmöller plot of the azimuthal mean tangential wind speed (shades, m s^{-1}) at a height of 250 m, overlaid by the radial position of RMW (black), and the two cyan horizontal lines mark the rapid contraction period of the RMW.



712
713 FIG. 2. (a) Time series of the tendency of the RMW simulated in control experiment (red solid)
714 and diagnosed by S15 (purple dashed) and W82 (cyan dashed), respectively. (b) Same as (a),
715 but for the sensitivity experiment with an initially weak TC vortex of maximum wind speed of
716 18 m s^{-1} . (c)–(d) Same as (a)–(b), but showing the difference between the diagnosed and
717 simulated results.
718

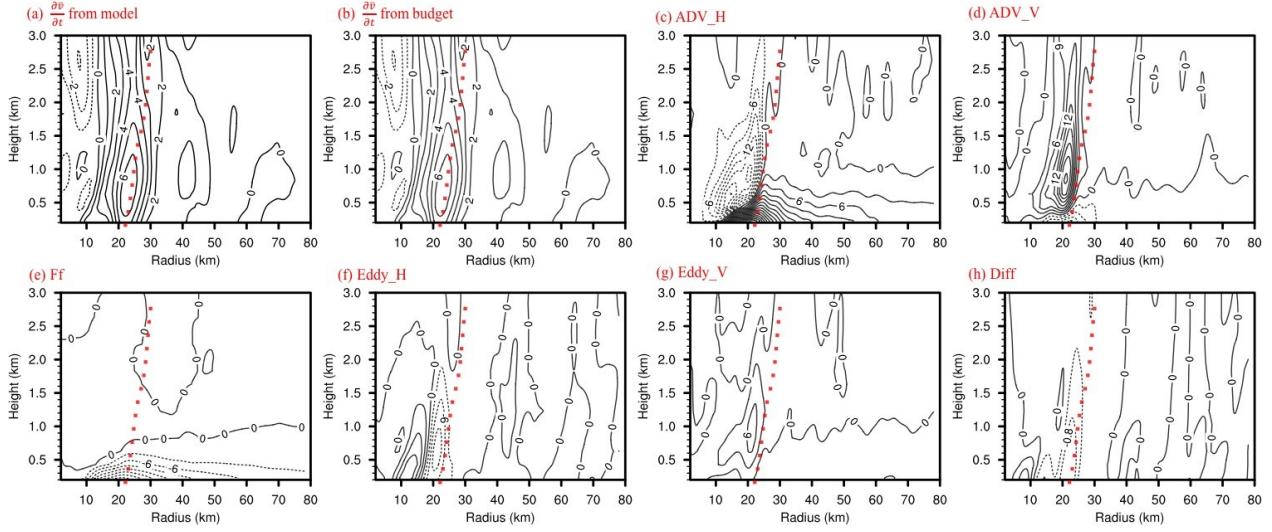
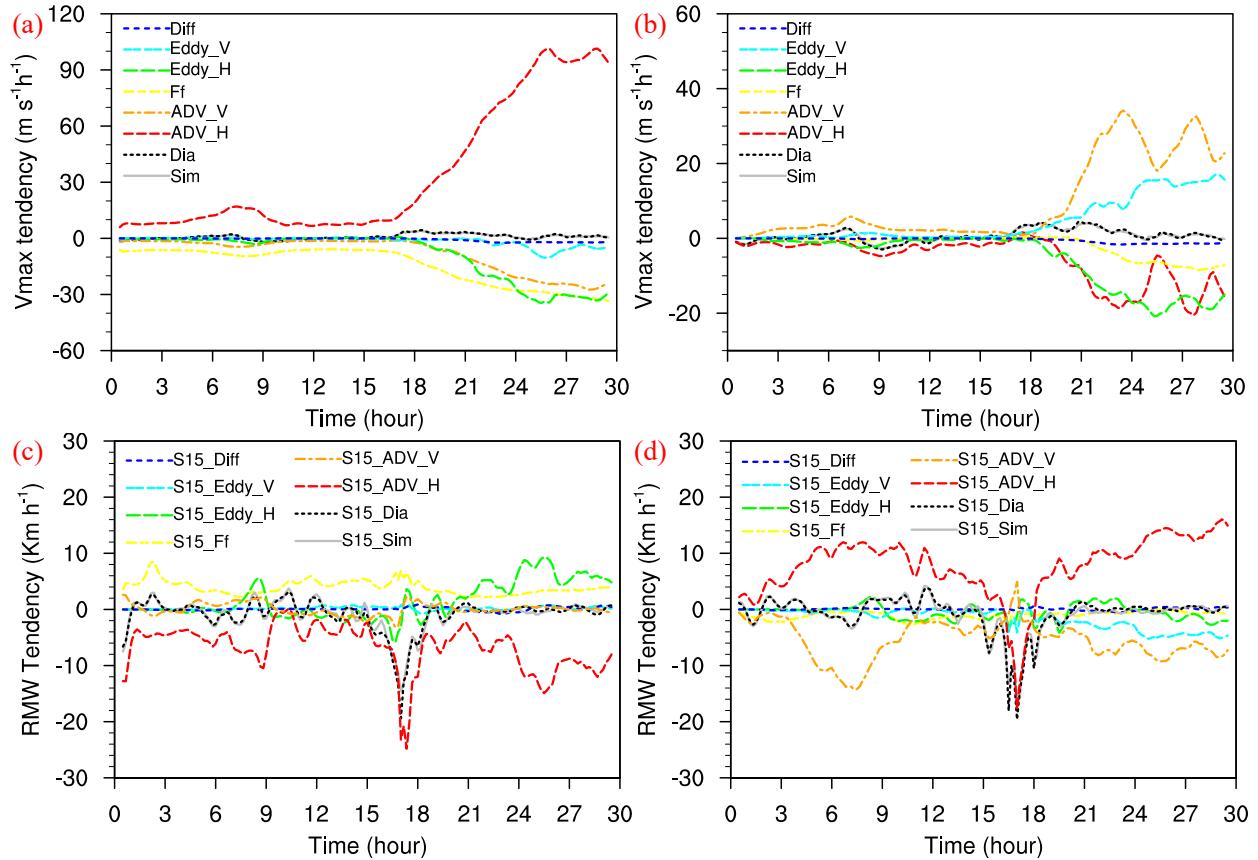
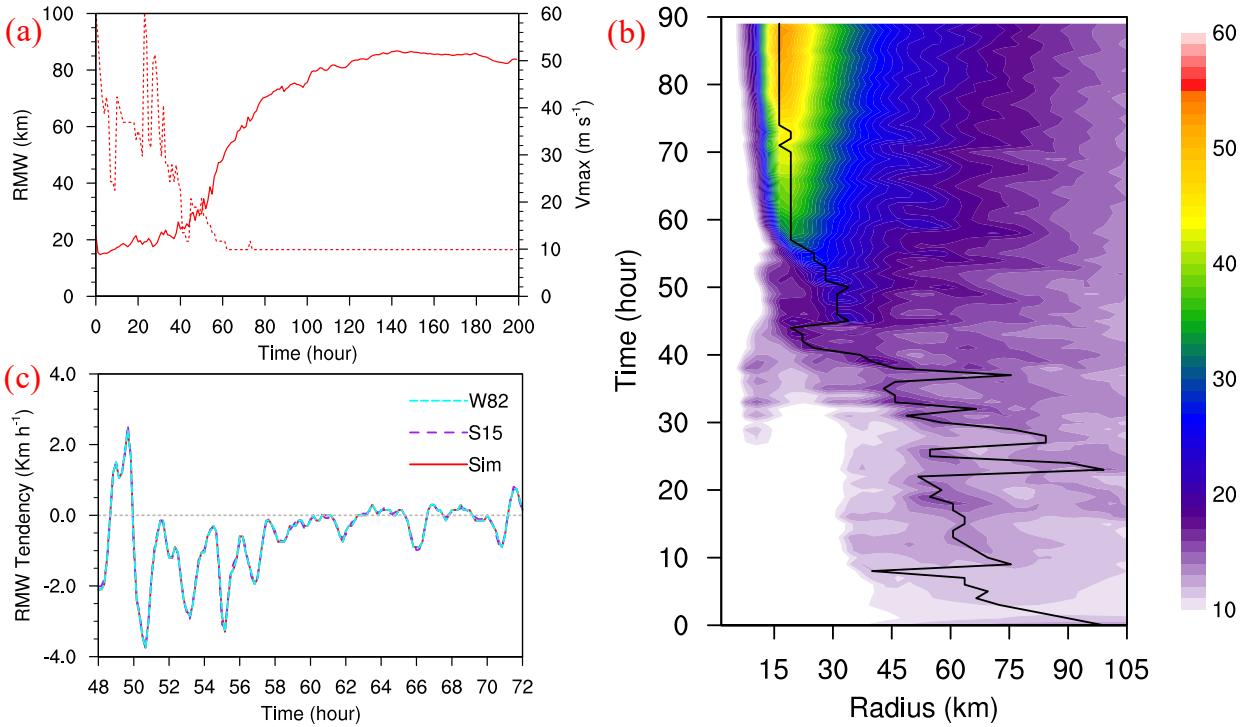

719
720
721
722
723
724

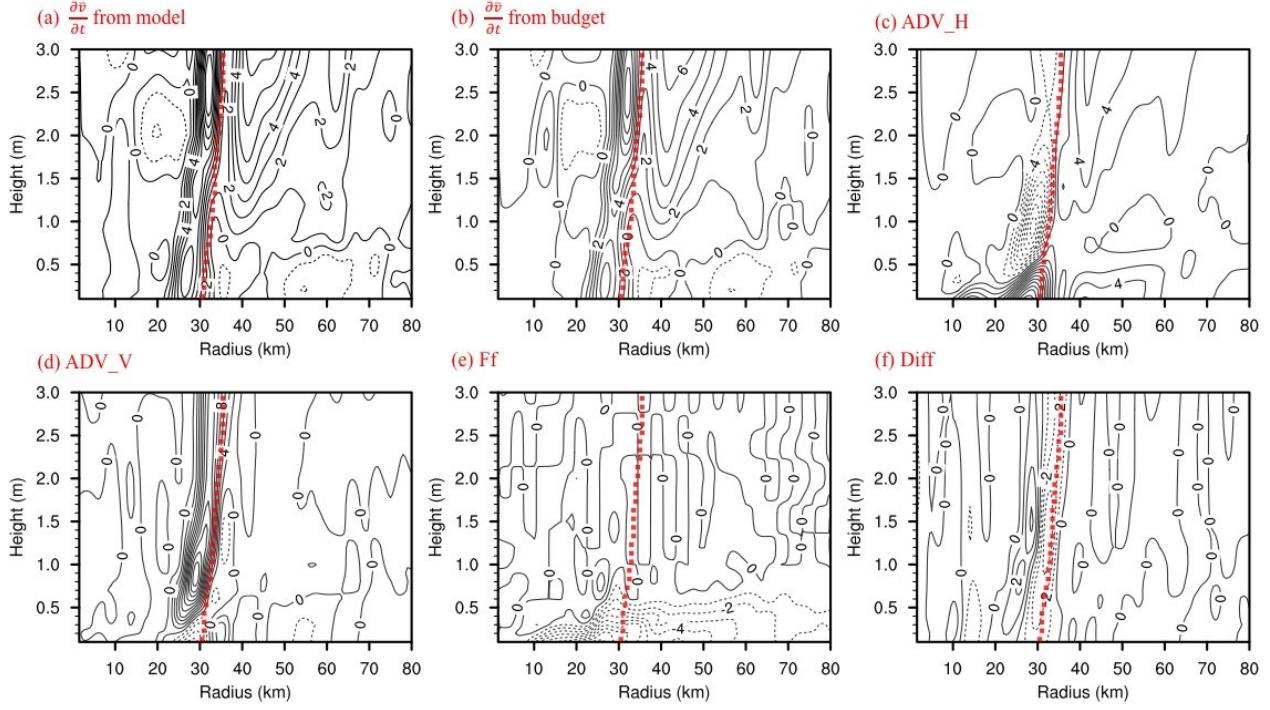
FIG. 3. (a) Time series of the radial gradient of time tendency of the azimuthal mean tangential wind $(\partial/\partial r)(\partial \bar{V}/\partial t)$ (purple dashed) and the curvature of the azimuthal mean tangential wind in radial direction at the RMW $\partial^2 \bar{V}/\partial r^2$ (green dotted) at a height of 250 m. (b) The radial profile of the azimuthal mean tangential wind speed at a height of 250 m.

725

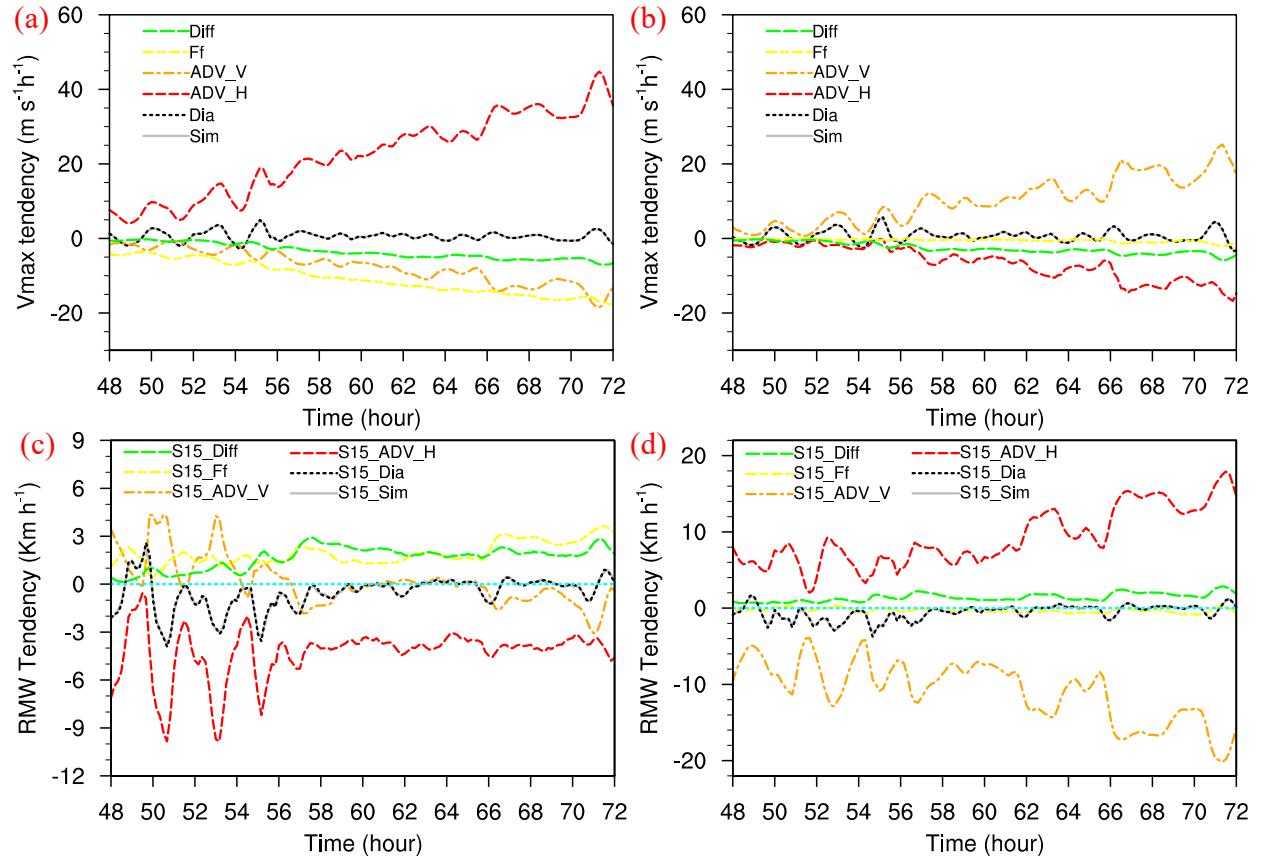

726 FIG. 4. Radius-height cross-sections of the (a)–(b) eddy horizontal advection at 19 h with an 40-
 727 min average, from (a) direct off-line calculation based on 10-min average wind field and (b)
 728 average between the direct off-line calculation and the difference between total horizontal
 729 advection and the off-line calculated mean horizontal advection. (c)–(d) Same as (a)–(b), but
 730 for vertical advection. The contour interval is $2 \text{ m s}^{-1} \text{ h}^{-1}$. (e)–(h) Same as (a)–(d), but for 21
 731 h with an contour interval of $3 \text{ m s}^{-1} \text{ h}^{-1}$.
 732


733

734 FIG. 5. Radius–height cross-sections of the averaged local acceleration of the azimuthal mean
 735 tangential wind at 19 h with a 40-min average of simulation based on (a) model simulation and
 736 (b) budget. (c)–(h) Same as (b), but for the individual contributions by mean horizontal
 737 advection, mean vertical advection, vertical mixing including surface friction, eddy horizontal
 738 advection, eddy vertical advection, and horizontal diffusion terms, respectively. The contour
 739 interval is $1 \text{ m s}^{-1} \text{ h}^{-1}$ in (a)–(b); $3 \text{ m s}^{-1} \text{ h}^{-1}$ in (c)–(g); and $0.4 \text{ m s}^{-1} \text{ h}^{-1}$ in (h). The red dotted
 740 line shows the RMWs at different vertical levels.

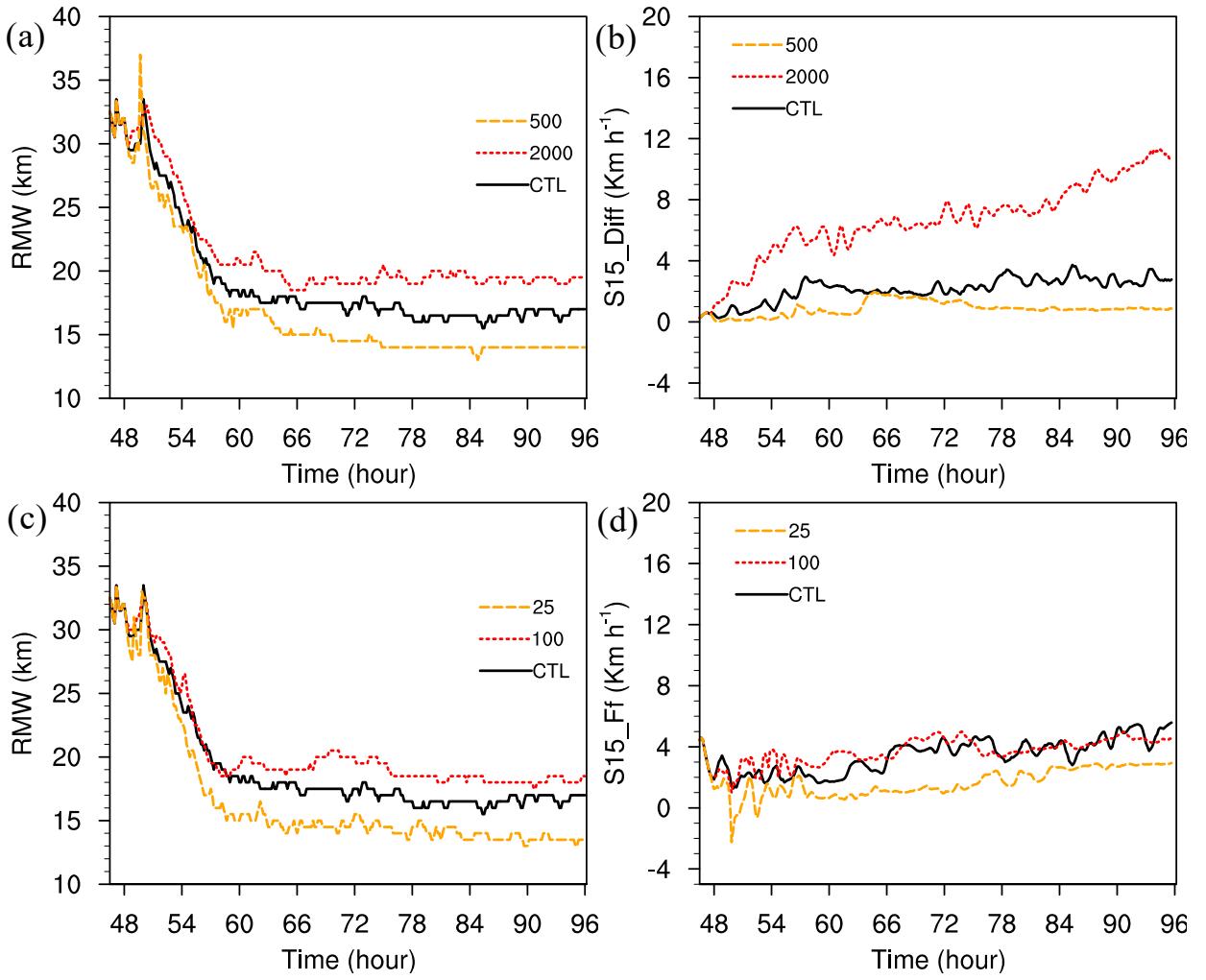

741

742
743 FIG. 6. (a) Time series of each tangential wind tendency at the RMW averaged below 500-m height.
744 (b) Same as (a), but averaged between 500–1500-m height. (c)–(d) Same as (a)–(b), but for the
745 contributions by each tangential wind tendency to the RMW tendency.
746



747
748 FIG. 7. (a) Time series of the maximum azimuthal-mean tangential wind speed (Vmax; red solid)
749
750 at the lowest model level (25 m) and its corresponding radius (RMW; red dotted). (b) and (c)
751 Same as Fig. 1 and Fig. 2, but for the control experiment from CM1.

752
753
754
755
756


FIG. 8. Same as Fig. 5, but for the control experiment from CM1 at 50 h with a 40-min average, and the eddy terms are excluded here. The contour interval is $1 \text{ m s}^{-1} \text{ h}^{-1}$ in (a)–(b) and (e)–(f); and 2 m s^{-1} in (c)–(d).

757

758 FIG. 9. Same as Fig. 6, but for the control experiment from CM1 with the eddy terms being
 759 excluded.

760

761
 762 FIG. 10. (a) Time series of RMW at 250 m from CM1 for control experiment (CTL; black solid),
 763 and sensitivity experiments with the horizontal mixing length doubled (2000; red dotted) and
 764 halved (500; yellow dashed). (b) Same as (a), but showing S15_Diff. (c) Same as (a), but with
 765 the asymptotic vertical mixing length doubled (100; red dotted) and halved (25; yellow
 766 dashed). (d) Same as (c), but showing S15_Ff.