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ABSTRACT

Energy 3D printing processes have enabled the manufacturing of energy storage devices with
complex structures, high energy density, and high power density. Among these processes, Freeze Nano
Printing (FNP) has risen as a promising process that seamlessly integrates freeze casting and inkjet printing
processes. FNP can fabricate flexible energy products with both macroscale and microscale features,
resulting in good mechanical and electrical properties with a lightweight structure of the final product.
However, quality problems are among the biggest barriers that FNP, and other 3D printing processes, need
to overcome. In particular, the droplet solidification time in FNP governs the thermal distribution, and
subsequently determines the product solidification, formation and quality. To describe the solidification
time, physical-based heat transfer model is built. But it is computationally inefficient for real-time
solidification time prediction during the printing process. Therefore, the objective of this work is to build an
efficient emulator for the physical model. We need to face several challenges unaddressed before: 1) the
solidification time at various locations, which is a tensor response, needs to be modeled and predicted; 2)
the construction and evaluation of the emulator at new process settings need to be quick and accurate, to
guide potential process adjustments. Here, we integrate joint tensor decomposition and Nearest Neighbor
Gaussian Process (NNGP) to construct an efficient tensor response emulator with process settings as inputs.
Specifically, structured joint tensor decomposition decomposes the tensor responses at various process
settings into the setting-specific core tensors and shared low dimensional factorization matrices. Then, each
independent entry of the core tensor is modeled with a NNGP, which addresses the computationally
intensive model estimation problem by sampling the nearest neighborhood samples. Finally, tensor
reconstruction is performed to make predictions of solidification time for new process settings. The proposed
framework is demonstrated by emulating the physical model of FNP, and compared with alternative tensor
regression models.

Keywords: Energy 3D Printing, Freeze Nano Printing, Gaussian Process, Nearest Neighbor Gaussian Process,

Tensor Response Emulation.
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INTRODUCTION

Micro-energy storage devices such as batteries and supercapacitors that possess
high energy density and high power density properties are fundamental for smart and
wearable micro-devices in domains such as the Internet of Things (loT) and medicine [1,
2]. However, as reported by the U.S. defense logistics agency, the current energy storage
materials and devices can have either high energy density or high-power density, but they
do not have both properties [3]. In order to solve this issue, several approaches such as
energy harvesting, element doping, and surface functionalization have been tested [4, 5].
For instance, piezoelectric and triboelectric nanogenerators are used for energy
harvesting. These devices convert mechanical motion into electricity to replenish the
energy of conventional batteries and supercapacitors, thus compensating their limited
energy storage capacity [4]. Additionally, element doping and surface functionalization
are effective strategies to increase the capacitance of electrode materials for asymmetric
capacitors. However, these strategies require external agents (e.g., hematite and
polyurethane) for modifying the electrical properties and surface properties of the
electrode materials [5]. Nevertheless, these methods do not fully acquire the desired high
energy density and high power density; there is always a tradeoff between them.

The advent of 3D printing has generated important progress towards the
manufacturing of complex structures to improve the energy storage devices. It has risen
as a promising technique to build architectures that can efficiently achieve the high
energy density and high power density of batteries and supercapacitors [6]. 3D printing

techniques, varying from material extrusion (e.g., Fused Deposition Modeling, FDM),
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material jetting (e.g., inkjet printing), and powder bed fusion (e.g., Selective Laser
Melting, SLM), are capable of fabricating functional parts layer by layer and have been
widely used to produce customized products [7]. Among them, material extrusion and
material jetting have been successfully demonstrated to produce energy products, such
as fuel cells, supercapacitors and batteries, with outstanding electrical properties [8, 9].
Lately, a novel 3D printing technique, Freeze Nano Printing (FNP), has been
developed to produce energy storage devices [10]. FNP integrates inkjet printing with
freeze casting to produce complex shaped Graphene Aerogels (GAs) with both macroscale
and microscale feature printing capabilities. Fig. 1 shows an illustration of the FNP
process. Firstly, Graphene Oxide (GO) ink with the concentration of around 0.5 mg/ml is
prepared to guarantee the GO ice structure (Step 1). The GO ink droplets are controllably
ejected to a cold substrate through a nozzle, following a designed path to form the printed
layers (Steps 2-3). Particularly, the droplets are supplied by a piezoelectric nozzle that
controls the demand of the aqueous solution. The GO droplets are instantly frozen and
the ice crystals are formed once the droplets are deposited onto the cold substrate at an
ambient temperature of around -20 °C. The 3D printed part is then submerged in liquid
nitrogen to be firstly frozen in critical cooling condition at around -190 °C and
subsequently placed in an ultralow temperature chamber at -80 °C for 24 hours to enable
further ice crystallization (Step 4). To remove water, the three-dimensional graphene

structure is freeze dried for 48 hours (Step 5). Finally, the printed part undergoes thermal
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reduction at 1000 °C for 1 hour in a tube furnace with hydrogen atmosphere to obtain

the ultralight 3D printed structure (Step 6) [11].

Step 1: Material Preparation Step 2: Ice Support Printing ‘ Step 3: Nano Material Deposition
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Fig. 1 An lllustration of the Freeze Nano Printing Process [10]

The FNP has been proved to possess a great potential to achieve structures that
can improve both energy density and power density for energy products due to
hierarchical porous structures balancing mass transport, ion diffusion, and diffusion
length [10]. Different from continuous inkjet technique to print graphene structures by
adjusting the rheological properties, namely shear-thinning behavior of non-Newtonian
GA inks, FNP uses a low viscous Newtonian GO suspension that performs the printing
droplet by droplet until the layers are formed. This is beneficial to improving the bonding
strength among layers since newly deposited not-yet-frozen droplets melt the already
frozen surface. Then, the two layers are refrozen due to ambient temperature (-20 °C)
[12].

Current studies on 3D printing of energy products have focused on proof-of-

concept demonstration, yet do not pay attention to the quality and repeatability of the
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printed products. In fact, limited quality and high uncertainty remain big challenges for
3D printing processes [13]. In FNP, thermal management of droplet solidification time is
a critical quality-determining factor. It will govern the waiting time between layers and
consequently affect the part bonding strength and dimensional accuracy. The waiting
time will also affect the productivity of the printing process. It is therefore crucial to study
the solidification time to determine the optimal waiting time. However, studying the
droplet solidification time is an intricate problem due to the complex thermal interactions
among the droplets, substrate, and ambient. In addition, newly deposited GO suspension
droplets undergo phase changes during solidification due to the release of latent heat of
previously deposited layers. This will prevent the newly deposited droplets from freezing,
thus affecting the macro- and micro-structures. Moreover, the droplets solidification is
dependent on the process parameters (e.g., layer thickness) and material properties (e.g.,
heat transfer coefficient).

Since graphene is a very expensive material ($250/g), it is impractical to study the
droplet solidification time and optimize the waiting time in a trial-and-error approach.
Therefore, a physical-based thermal model is proposed to describe the droplet thermal
interactions and solidifications as well as to determine the waiting time [14]. Nonetheless,
the physical-based model can be computationally inefficient for moderate to large parts,
and they can hardly be used for real-time droplet solidification study and waiting time
determination. Therefore, the objective of this work is to propose an efficient and
accurate emulator for the physical-based modeling results of high dimensional droplet

solidification time. The droplet solidification time at various locations form a tensor
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response for the emulator, with the process settings as predictors. The Gaussian Process
(GP) is widely used for physical model emulation and calibration [15, 16, 17], due to its
flexibility to capture the nonlinear relationships usually represented by the physical-
based differential equations. However, most existing GP emulators are designed for scalar
responses and are computationally expensive during model training and evaluation.
Recently, some endeavors are spent for multivariate and high-dimensional responses in
GP emulation [16, 17], but they are either not applicable to general tensor responses or
not efficient for real-time solidification prediction. Therefore, two challenges need to be
addressed in the proposed emulator: 1) the modeling of the tensor responses (i.e.,
solidification time); 2) the efficient construction and evaluation of the emulator at new
process settings.

In this paper, we integrate joint tensor decomposition and Nearest Neighbor
Gaussian Process (NNGP) for the physical model emulation. Tensor decomposition is
widely used for sparse representation of tensors [18]. While most tensor decomposition
methods are for a single tensor, here, we jointly decompose multiple tensor responses at
various process settings with joint tensor decomposition [19, 20]. As a result, the tensor
responses are represented with the outer product of corresponding vectors in the shared
low dimensional factorization matrices and entries in the setting-specific core tensor [19,
20]. In particular, we design a structured joint tensor decomposition for the solidification
time in FNP so that the core tensor is superdiagonal (see details in the Proposed Method
and Case Study sections). Other structures of the joint tensor decomposition can be

deployed for other applications. After the joint tensor decomposition, we then model the
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independent entries in the core tensors with NNGP. NNGP performs the model estimation
based on local nearest neighbors for each sample, and enjoys significant computational
savings compared with the conventional GP model [21].

As will be demonstrated in the Case Study section, the proposed emulator is able
to yield good prediction results and can have very fast solidification time predictions. Such
a model is applicable to the tensor responses emulation from the physical model and can
be widely used for other 3D printing processes, such as the thermal simulation in SLM and
droplet simulation in inkjet printing [22, 23]. Although there are several methods to
model tensor responses [24], to the extent of our knowledge, this is the first study
dedicated to emulating the physical model with tensor responses for 3D printing
processes. The proposed model is extensively compared to alternative models shown in
[24, 25, 26], in which regression models are used for tensor responses modeling. The
results showed that our proposed model outperformed the accuracy of the other
alternatives.

The organization of this paper is as follows. In the next section, we present the
relevant literature on 3D printing of energy products, quality modeling, and control of 3D
printed parts, and tensor decomposition and tensor response modeling for
manufacturing. We then illustrate the proposed method for the tensor response
emulation. After that, the proposed method is demonstrated in an FNP process for the
solidification time prediction. Finally, we conclude the paper and discuss the future work.

STATE-OF-THE-ART
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3D printing of anode, cathode, and electrolyte, which are the main components
of energy storage devices, has shown promising results to improve the performance of
batteries and supercapacitors. However, 3D printing of these devices is a non-trivial task,
and researchers have devoted lots of efforts on this topic [12]. For instance, a Li-lon
microbattery was developed in [27]. Interdigitated electrodes were integrated on a
submillimeter scale, where LisTisO12 (LTO) and LiFePO4 (LFP) were used as anode and
cathode electrodes, respectively. The authors claimed their device yielded the highest
areal energy and power densities reported to date. Additionally, GO-based electrode inks
for Li-lon batteries were 3D printed in [28]. The printed GO porous structure benefits the
high areal surface, consequently more LTO and LFP nanoparticles can be allocated to
increase the energy storage capacity. Other attempts to improve the performance of
energy storage devices through the addition of graphene nanoplates and extrusion of
silicon, activated carbon, and gel electrolyte, are shown in [29, 30]. Although there is a lot
of work related to 3D printing for energy storage devices, these efforts are at the proof-
of-concept fabrication and the product integrity, quality, and productivity have not been
fully considered.

Several 3D printed products’ defects are investigated by using data-driven,
physical models, or hybrid approaches. To model and quantify the layer-wise spatial
evolution of porosity in 3D printed parts, an augmented layer-wise spatial log Gaussian
cox process was proposed in [31]. A systematic model to predict part shrinkage and an
optimal shrinkage compensation plan to achieve dimensional accuracy were presented in

[32]. The dimensional variation was also studied by extracting 3D point cloud data from
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3D printed parts in [33]. Moreover, approaches based on physical models are utilized to
improve quality in 3D printing parts. For instance, to improve mechanical properties,
surface finish, and dimensional accuracy in 3D printed parts, physical models based on
heat transfer and fluid dynamics were presented in [14, 34]. These models can be time-
consuming to be evaluated and may suffer from model uncertainty. Hybrid approaches
allow the development of emulation/calibration models by integrating data-driven and
physical-based models. For instance, to predict the parts’ porosity at any given process
settings in SLM of metallic parts, a GP model was used to characterize process porosity
[35]. Li et al. used a multivariate GP model for the physical model calibration [36]. See
also [37] for an FNP application in distributed printers. Nevertheless, the high dimensional
matrix/tensor responses are rarely studied in the existing emulation/calibration models.
Moreover, the computational requirements for GP model can be high, especially for large
datasets. To accelerate the GP model learning process, NNGP provides a scalable
alternative by using local information from few nearest neighbors [38], and will be
explored in this paper.

Recently, much attention was drawn to the tensor decomposition and tensor
responses modeling. Tensor decomposition is widely used for dimensionality reduction
of tensor objects in denoising, completion, etc., and is also crucial for later analysis with
methods such as regression, GP, and NNGP [18]. The tensor decomposition techniques,
such as Candecomp/Parafac (CP) and Tucker decomposition, have a sparse
representation of the tensor data [39]. While the majority of tensor decompositions are

for a single tensor [18], the joint tensor decompositions are recently investigated [19, 20],

10
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and used for manufacturing applications. For instance, a regularized tensor regression
was proposed for the turning process optimization based on the point cloud
measurement of cylinder parts as predictors and dimensional accuracy as the response
[40]. Additionally, a method to quickly classify part geometrical integrity with minimal
point cloud data in FDM was proposed in [41]. See also [42] for an application in process
monitoring. The above methods use tensor as predictors, rather than responses, and
cannot be used in the FNP emulation. Currently, the tensor responses were modeled in
some medical applications. For instance, Sparse TensOr REsponse regression (STORE),
with a tensor response and vector predictor, was proposed in [24]. Sparse Ordinary Least
Squares (Sparse OLS) was presented in [25]. This method first vectorizes the tensor
response, and then fits a regularized multivariate regression with the Lasso penalty.
Additionally, Higher-Order Low-Rank Regression (HOLRR) method, which enforces a low-
rank tensor structure, was demonstrated in [26]. In this work, we integrate the joint
tensor decomposition and NNGP model to handle the matrix/tensor responses from the
physical model of FNP and then compare our proposed framework to alternative models
in [24, 25, 26].
PROPOSED METHOD

A schematic illustration of the proposed framework is presented in Fig. 2. First,
physical model to describe the droplets’ thermal distribution in the FNP process shown in
Fig. 2 (a) and (b) is modified from [14]. Fig. 2 (c) shows an example of the droplet
solidification time at various locations at a certain layer of a square-shaped part at a

certain combination of process settings, which include material properties (X, X3, X5,

11
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Fig. 2 An lllustration of the Proposed Framework: (a) Scheme of the FNP setup, (b)
Process settings for the physical model input simulation, (c) Physical heat transfer
process model, and (d) Tensor response modeling via joint tensor decomposition and
NNGP

and X in Fig. 2 (b)) and process parameters (X, and X, in Fig. 2 (b)). The solidification
times at multiple process settings are factorized by structured joint tensor decomposition,
as illustrated in Fig. 2 (d), where the core tensor is superdiagonal. After the tensor
decomposition, we model each independent entry at a fixed coordinate of the core
tensors from different process settings with a NNGP model. Finally, after separately
training the NNGP models, the droplet solidification time can be predicted by the
reconstruction from the predicted core tensor entries and the factorization matrices. The
reconstructed tensor will be compared with the droplet solidification time simulated from
the physical model.

In the proposed method, the simulation data generation from the physical model,
the joint tensor decomposition, and the training of NNGP models are performed offline.

12
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Once the models are trained, the predictions of the solidification time at new process
settings from NNGP can be performed much faster than executing the physical model.
Thus, the real-time process optimization and control could be feasible, which are out of
the scope in this paper and will be investigated in the future. The following section is
dedicated to explaining the details of the proposed method.
Joint Tensor Decomposition

Tensor decomposition is a powerful dimensional reduction technique. The basic
idea of tensor decomposition is to approximate the high dimensional tensor with the
tensor product of low dimensional factorization matrices (e.g., U and V in Fig. 2 (d)) and
core tensor (e.g., G in Fig. 2 (d)). Without loss of generality, we illustrate the method with
a third order tensor T € R™™/*X_ |n general, T can be decomposed by CP decomposition
T~ TP =Y, 9PulP o vP o weP = [GP; UP,VEP,WCP] or Tucker decomposition
T ~ TTucker =y 1 5 GTucker (| m nyyTucker (i [yyTucker j mypyTucker (j ny =
[GTucker, yTucker yTucker yTucker] [18]. For CP decomposition, UF = {uff,vr} €
R™R VP = (pfP vr} € RI*R and WP = {wfP, vr} € RK*R are factorization matrices,
GP = {gEFf,vr} € RR*R¥R is 3 superdiagonal core tensor that specifies the weight for

each rank-one tensor u‘? o v

o wtP to reconstruct T, and the rank R is the minimum
number of rank-one tensors to represent T (i.e., r=1,---,R) (See Fig. 3 for an
illustration). o is the outer product. For Tucker decomposition, UT%4cker g RIXL yTucker ¢
RIXM and WTucker ¢ RKXN jre factorization matrices, GT4cker ¢ RLXMXN s the core

tensor. These two approaches are the generalized form of each other [18]. In this work,

we use the CP decomposition to represent the high dimensional tensor responses.

13
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Throughout the paper, we drop CP in the above notation, and have the decomposition

T~T=Y,gu.0v. 0w, =[G;U,V,W].

IxX] XK

I XR :' ____________________ |
| T; — Solidification Time for Sample i :
~ | G; —» Core Tensor for Sample i |
T ~ | U,v,w - Shared Factorization Matrices |
U : Across Samples |
L
Wi Wa Wrp .

______ s LT L

g1 1y g2 [ E=——v, dr EEEE VR

; : L ;

uy u,; ) ug )

Fig. 3 A Schematic lllustration of the Joint Tensor Decomposition

To represent the droplet solidification time at various process settings, we use the
joint tensor decomposition, where the factorization matrices U,V and W for T;’s at
various process settings are shared, as illustrated on the top of Fig. 3. We can therefore
characterize the tensors with G; given the shared decomposition matrices U,V and W
[20]. In particular, the joint tensor decomposition can be solved via,

min = 3,lIT; =[G U, V, W1l (1)
where ||*||z is the Frobenius norm, n is the number of samples, and [‘] is the tensor
product. The problem is solved with nonlinear least square (i.e., trust-region Quasi-
Newton methods), where U, V and W are initialized with random matrices [43]. The rank
R can be determined so that the variation explained in the approximation tensor T;, Vi is

larger than a threshold percentage of the variation in the raw tensor T;. The rank R

14
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needed is usually a small number compared with the original dimensionality of the tensor.
Such a selection approach is also widely used in determining the number of principal
components in principal component analysis [44]. After the joint tensor decomposition,
other than modeling the raw tensor responses directly, the emulation problem can be
simplified to model each g; ,’s in G; with a NNGP model, r = 1,---, R, respectively. This is
because the non-zero entries in the core tensor only appear in the superdiagonal and can
be modeled independently. For other applications, one can use other tensor
decomposition formulations, and separately model the orthogonal entries in the core
tensor.
Nearest Neighbor Gaussian Process (NNGP) Emulation

GP models provide a very flexible non-parametric approach to capture the spatial
patterns [38]. In our previous work [45], GP emulation was used for the tensor response
modeling of the solidification time (after the joint tensor decomposition) in FNP with a
relatively small sample size. The GP emulator can deal with the tensor response, but the
prediction error is not small enough for the future process optimization. To improve the
model performance, in this work, we increase the number of samples from the physical
model simulation. This will make GP model not applicable, since GP model is
computationally intensive for median and large sample sizes. To ameliorate this problem,
a NNGP model using an extension of the Vecchia approximation [46] is used to build the
emulator [38].

In general, for a certain rank r of the core tensors after the joint tensor

decomposition, the GP model g; , for G; at the i-th sample is
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Gir(x) = m(x) + 0 (%) + ;- (x;), (2)
where x; contains the physical model inputs, such as layer thickness, droplet frequency,
and the detailed values of these inputs are provided in Table 1. m;,.(x;) = x;” B, is the
mean function capturing the mean effect of x; on g;,,, and B, is the model parameters
for the mean effect; w;,(x;) follows a GP w;,(x)~GP(0,C (x;x;")), where
Cr(x;,x;") = o2exp(—X; ¢y ||xi; — xi;'||) is the covariance function capturing the
spatial relationship of samples. ¢,. ; is used to adjust the weight of each direction j while
calculating the distance, and ¢ is a scaling parameter. For instance, based on the
covariance function, the close-by samples in the process settings are highly correlated,
whereas the far-away samples tend to have lower correlation. &;,.(x;)~N(0,77) is the
error term. The unknown parameters in the model are @, = {ﬁr, o2, brjs 72, Vj}, and can
be learned from the Markov Chain Monte Carlo (MCMC) sampling from the posterior

distribution [47]

P (,19:-(x)) & p(OIN(gs (X Iy (%), Cr (i, ") + T21) (3)
where p(0,.) is the prior distribution for the unknown parameters. The detailed
specifications of p(0,.) will be provided in the Case Study section. After obtaining the
posterior distribution, one can predict the Gy » (X5ew) at @ new process setting X,

Evaluation of the density above involves computing the inverse and determinant
of C,.(x;,x;") + 721, which is computational intensive for large datasets [48]. Hence, a
small set of m nearest neighbors of x; rather than all samples are used in NNGP for the

model estimation [48]
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(GO x) + 27 =~ (1= A)™D 7 (= Ay, (4)
where A, is a sparse and lower triangular matrix with at most m non-zero entries in each
row, and D, is a diagonal matrix. The determinant of {C,(x;, x;") + t2I} equals to the
determinate of D,.. Particularly, the non-zero elements, indexed by the corresponding m
nearest neighbors of x; in the i-th row of A,, are used to exploit sparsity and reduce the

computational complexity for model estimation [38], and are computed by [49]

Ar (LN D) = 6 (xi NGOG (NG, Nx) + 221} (5)
which are obtained by predicting g; - (x;) based on its neighborhood locations N(x;). The
neighborhood is selected by the Euclidean distance [21]. The i-th diagonal of D, is
obtained by [49]

Dr(i' l) = Cr(xilxi) + T%
» (6)
— Cr(x;, NxD){C-(N(x), N(x) + T21} ~C.(N(x)), x;)

where D, (i,i) elements are the variance of g;,(x;) conditional on its neighbors in
gir(N(x)).

By constructing the sparse lower triangular matrix A, (with no more than m non-
zero entries in each row) and the diagonal matrix D,., the inverse of the covariance matrix
{C (x;,x;') + T2I1}71 is sparse and enjoys faster computation than GP. NNGP showed
suitable probability distribution for values of neighborhood m between 10 and 20 [21].
Tensor Reconstruction and Comparison

The tensor response of the droplet solidification time T,,,, of a new process

setting Xy, can be predicted via tensor reconstruction. In particular, Gnew r(Xnew), V7
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can be predicted from the individual NNGP models to form G,,,,, in the core tensor. We
can then reconstruct T, = [[Gnew; uv, W]] based on the U, V and W learned from the
joint tensor decomposition. The predicted T,,,,, will be compared with the simulated T,
from the physical model for the emulation model evaluation.
CASE STUDY

As mentioned in the Introduction section, the accurate and efficient evaluation of
droplet solidification time will affect the determination of the waiting time among layers,
and subsequently affect the printed part quality in FNP. For instance, Fig. 4 (b)-(c) shows
the parts with proper and improper waiting times for the designed part in Fig. 4 (a). In this
section, we demonstrate the proposed framework for the accurate and efficient

prediction of droplet solidification time in FNP.

(a) - o)
Fig. 4 A Comparison of CAD Model and FNP Parts: (a) Part CAD model, (b) Printed part
with proper droplet solidification time, and (c) Printed part with improper droplet
solidification time

To demonstrate the proposed framework, we simulate a single layer FNP part with
10 by 10 droplets modified from the physical model in [14]. Other more complicated

shapes can be modeled similarly with the proposed framework. Fig. 5 shows the

simulation setup. The deposited droplets have an initial temperature of 5 °C and are
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ejected based on the path specified in Fig. 5 (b). After the ejection (Fig. 5 (a)), the droplets
solidify in a short time due to the heat conduction with the heat sink (at -20 °C) under the
build bed and heat convection with the ambient (Fig. 5 (c)). The corresponding droplet
solidification time (time required for a droplet to cool down from 5 °C to -19 °C in this
paper) is summarized as shown in Fig. 5 (d). In the simulation, we vary six process settings
that will affect the thermal distribution. The names and ranges (lower and upper bounds)
of these settings are shown in Table 1. In particular, the specific heat (X;), density (X3),
interface heat transfer coefficient (X5), and element heat transfer coefficient (Xg) are the

material properties in the physical model representing how much heat the droplets
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absorb, the concentration, and the rate of heat transfer. On the other hand, frequency
(X,) and layer thickness (X,) are process parameters adjustable in the printing process.
For our previous study in [45], we used 60 simulation runs to perform the GP emulation
from the physical model. However, according to the model evaluation [45], the predicted
results were not accurate enough (average Normalized Root Mean Squared Error
(NRMSE) NRMSE = 11.59% in 5-fold Cross Validation (CV)). One of the most effective
approach to improve the model performance is to increase the sample size (i.e., the
number of simulation runs. Therefore, we generate 500 simulation runs from the physical
model in this work. In these simulation runs, the process settings are determined by a
Latin hypercube sampling-based space filling design [50].

Table 1 Simulation Process Settings and Ranges for the Case Study

IDs Parameters Lower Bounds Upper Bounds
X, Specific heat J /(kg - K) 3350 3450

X, Frequency (Hz) 50 500

X3 Density (kg/m”3) 1000 1300

X, Layer thickness (mm) 0.1 0.6

Xs Interface heat transfer coefficient (W /m? - K) 200 500

Xs Element heat transfer coefficient (W /m? - K) 50 150

We then apply the proposed framework to the simulation data from these runs.
During the model training, the simulated samples are divided into five randomly
generated and equally sized folds for CV. In iterations, four out of the five folds are used
for model training and the remaining fold is used for model testing. Training and testing
iterations are repeated for five times. During the model training, the rank R in the joint
tensor decomposition varies from 10%, 20%, up to 90% of the total tensor dimension

and the final rank is selected to keep the proportion of the explained variation not less
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than 99.5% of the total variation of the droplet solidification time in any process settings,

i.e., min ||G;; U, V,W||g/IIT;||r = 99.5%. 99.5% is used here to preserve majority of the
l

variation, and other threshold values such as 95% can also be used in other applications.
For the joint tensor decomposition in our case, the selected rank R is 3 or 4, depending
on the training and testing CV folds. After the determination of tensor rank R and the
learning of the factorization matrices U, V and W, these factorization matrices are applied
to the samples in the left-out CV fold to learn the core tensors. The corresponding core
tensor entries will be used as the testing data for the NNGP model evaluation. m = 20 is
used as the number of nearest neighbor of x; in NNGP.

For the NNGP model training for Eq. (2), we have each core tensor entries (e.g.,
the r-th entry g; ,, Vi) in the training data as the outputs and the corresponding process
settings as inputs x. In Eq. (2), the prior distributions for 3, ;, T and o,- are set as Gaussian
and the prior distribution for ¢,. ; is set as inverse gamma. During the MCMC estimation
of these NNGP model parameters, we have in total 5,000 iterations. Among these 5,000
iterations, 2,000 iterations are used for burn-in (i.e., the burn-in iterations will be
discarded to stabilize the posterior distribution). After the burn-in, the MCMC mixed well,
which indicates that the posterior distributions converge. We then use the last 3,000
MCMC iterations for the model prediction at certain process settings. Particularly, we
calculate the mean of the predicted Gpew r(Xnew)'s from 3,000 posterior draws. The
above procedures are repeated for all r =1,:--,R. We then organize the predicted
Grow = diag(ﬁnew’l,gnew,z, ---,gneW,R), and perform the tensor reconstruction

introduced in the Proposed Method section.
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We then compare the model performance of NNGP with alternative tensor
response regression approaches: STORE, OLS, Sparse OLS, and HOLRR. For the alternative
models, [24] considers the tensor response regression model of the form

T; = B* Xg11 X; + &, (7)
where T; € R%*"%dq js an gth-order tensor response (droplet solidification time in our
case), x; € RP is a vector of predictors (i.e., specific heat, frequency, etc.), B* €
R4*%dqXP s an (q + 1)th-order tensor coefficient, and &; € R%*"*% is an error
tensor independent of B*. The ultimate goal is to estimate B* given observations
{(x;,T;),i = 1,...,n}. Once the tensor coefficient B* is estimated, the new solidification
time Tpey fOr Xy, can be obtained by evaluating 7oy = B* X 41 Xpew [51].

Identically to what we applied in the proposed framework, we utilize the same
equally sized five folds for CV (referred as outer-CV hereafter) for the alternative models.
In particular, four folds are taken for model training and the remaining fold is deployed
for model testing, and the process is repeated for in total five iterations. For the STORE
framework [24], the tuning parameters rank and sparsity need to be determined. We set
the rank = {1, 2, ..., 10} and sparsity = {0.1,0.2, ..., 1}, where sparsity refers to the
proportion of significant coefficients in B* [24]. Another CV (referred to as inner-CV
hereafter) is used for the selection of these tuning parameters. Specifically, the training
samples in the outer-CV (i.e., the four folds used in model training) is equally divided into
five folds again. In iterations, we train STORE with four out of the five inner-CV folds at
each tuning parameter combination, and test its performance with the left-out inner-CV

fold. We then average the testing errors at all tuning parameter combinations over the
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five inner-CV iterations, and select the best tuning parameter combination of rank and
sparsity with the smallest average testing error. With the selected tuning parameter
combination, we train the model with the training samples (the four folds used in model
training) in the outer-CV, and evaluate the model with the left-out folder in the outer-CV
similar to NNGP. Sparse OLS and HOLRR are compared similarly, see [25] and [26],
respectively, for details.

The mean NRMSE prediction error and its standard deviation over five CV folds for
NNGP and alternative models are presented in Fig. 6. The NRMSE is calculated via

Zi”Ti — Tl”p /Y Tillp, where T is the true simulated solidification time and T, is the

predicted solidification time. From Fig. 6, the proposed method can capture the variations
in the solidification time with accurate predictions (a small NRMSE). While the NRMSE in
STORE is considerably higher compared to the NRMSE in NNGP. On the other hand, OLS,

Sparse OLS, and HOLRR performed a little better than STORE, but still do not perform as

16

ElMean NRMSE
[ Standard Deviation
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Fig. 6 NNGP and Alternative Models Prediction Error Comparison
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good as our proposed framework. To compare the models, Fig. 7 shows the relationship

between the normalized Frobenius norm (normalized to the range of [-10, 10]) of actual

values (i.e., true simulated solidification time) and predicted values (i.e., predicted

solidification time) for all the NNGP and alternative models, and the corresponding R?

value. It can also be observed that the Sparse OLS model (R? = 74.95%) stands out from

the other alternatives, while the NNGP model performs the best (R? = 98.78%). To
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further assess the prediction of solidification time at a certain process setting, Fig. 8 shows
the error of droplet solidification time at the 500™ process settings for the NNGP and
alternative models (in terms of the simulation step size, where each step is 0.001 s).

According to the figures, the NNGP has more accurate predictions than alternative tensor
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response regression models, due to its capability of capturing the nonlinear relationships
between the process settings and droplet solidification time.

Moreover, the NNGP model prediction for a new sample can be performed in
around 0.2 seconds. This is much faster than running physical model, which can take
several minutes for a simple shape. Meanwhile, the NNGP can accurately emulate the
physical model. Thus, the proposed framework can facilitate the future real-time process
optimization and control.

CONCLUSION AND DISCUSSION

FNP is a novel technique capable to produce macroscale and microscale features,
thus advancing the 3D printing of energy products. Particularly, FNP can increase the
power density and energy density of energy storage devices (e.g., batteries and
supercapacitors). However, the quality, integrity, and repeatability of the printed energy
storage devices from FNP are not fully considered. In FNP, thermal management, which
is dependent on the process settings, governs the droplet solidification time and
subsequently the waiting time between layers. Studying the droplet solidification time by
trial-and-error approach is impractical due to the high material costs. Physical models are
an alternative, where the droplet solidification time can be simulated. Nevertheless, their
computation is expensive, which prevents their utilization for real-time prediction and
process optimization. In this work, we explore machine-learning methods to address the
prediction of high dimensional solidification time for future real-time process
optimization and control. We integrate joint tensor decomposition, NNGP model, and the

physical model outputs in our proposed framework. The novelty of this paper lays on the
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effective representation of the tensor responses by low dimensional vectors and the core
tensor, and the modeling can be performed separately for the independent elements in
the core tensor based on NNGP models. The proposed framework can not only build an
efficient and accurate emulator for the prediction of the solidification time under new
process settings, but also properly captures the nonlinear relationships between process
settings and tensor responses (i.e., droplet solidification time). It is demonstrated that the
NNGP emulator outperformed the accuracy of alternative models, namely STORE, OLS,
Sparse OLS, and HOLRR. The framework can be applied to problems with high dimensional
output in additive manufacturing and has broad applications.

There are several potential research directions that can be pursued. One direction
is to extend this framework to smartly determine the number of neighbors rather than
just use m for all samples and develop a fully Bayesian approach for the tensor response
prediction. Another direction is to model the layer-wise evolution considering the layer
correlations. Also, before implementing the proposed framework for the real-time
process control and optimization, it is necessary to validate the model with physical
experiments. Hence, we will take the thermal measurement from the FNP process and
perform the model calibration. We will ultimately use the calibrated model for the
process optimization and control so that we can adjust the waiting time and process
parameters during the printing.
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NOMENCLATURE
T Raw tensor data
TCP Approximated tensor data after Candecomp/Parafac decomposition
T Tucker Approximated tensor data after Tucker decomposition
U Factorization matrix, where U € R'¥R
1% Factorization matrix, where V € R/*R
w Factorization matrix, where W € RX*R
G Core tensor after decomposition
X A vector of physical model inputs
m; - (x) Mean function of rank r corresponding to it* sample at x
B The model parameters for the mean effect of rank r
w;r(x) A stochastic process, which follows a GP(O, C,(x, x’)) with mean 0 and
covariance C,(x,x")
& r(x) Error, which follows a N(0,72) with mean 0 and variance 72
Or,j Weight adjustment parameter of each direction j
o? Scaling parameter
m Number of nearest neighbors
A, A sparse and lower triangular matrix of rank r
D, A diagonal matrix of rank r
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0, Unknown parameters of rank r
r(0,) Prior distribution for the unknown parameters of rank r

New r(Xnew) Predicted core tensor at new process settings Xy,

Thew Tensor response of the droplet solidification time at new process settings
xnew
Trew Predicted tensor response of the droplet solidification time at new process

settings X,
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with proper droplet solidification time, and (c) Printed part with improper droplet

solidification time
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(a) Freeze Nano Printing Scheme b) Process Tool Path
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Fig. 5 Simulation Setup: (a) Droplet ejection from FNP, (b) Process tool path, (c)
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Fig. 6 NNGP and Alternative Models Prediction Error Comparison
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NNGP, (b) STORE, (c) OLS, (d) Sparse OLS, and (e) HOLRR
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Fig. 8 Error of Droplet Solidification Time at the 500" Process Setting: (a) NNGP, (b)
STORE, (c) OLS, (d) Sparse OLS, and (e) HOLRR
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Table 1 Simulation Process Settings and Ranges for the Case Study

IDs Parameters BLguWans Upper Bounds
X, Specific heat J/(kg - K) 3350 3450

X, Frequency (Hz) 50 500

X5 Density (kg/m”3) 1000 1300

X, Layer thickness (mm) 0.1 0.6

Xs Interface heat transfer coefficient (W /m? - K) 200 500

Xe Element heat transfer coefficient (W /m? - K) 50 150
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