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 ABSTRACT 
 
 Energy 3D printing processes have enabled the manufacturing of energy storage devices with 

complex structures, high energy density, and high power density. Among these processes, Freeze Nano 

Printing (FNP) has risen as a promising process that seamlessly integrates freeze casting and inkjet printing 

processes. FNP can fabricate flexible energy products with both macroscale and microscale features, 

resulting in good mechanical and electrical properties with a lightweight structure of the final product. 

However, quality problems are among the biggest barriers that FNP, and other 3D printing processes, need 

to overcome. In particular, the droplet solidification time in FNP governs the thermal distribution, and 

subsequently determines the product solidification, formation and quality. To describe the solidification 

time, physical-based heat transfer model is built. But it is computationally inefficient for real-time 

solidification time prediction during the printing process. Therefore, the objective of this work is to build an 

efficient emulator for the physical model. We need to face several challenges unaddressed before: 1) the 

solidification time at various locations, which is a tensor response, needs to be modeled and predicted; 2) 

the construction and evaluation of the emulator at new process settings need to be quick and accurate, to 

guide potential process adjustments. Here, we integrate joint tensor decomposition and Nearest Neighbor 

Gaussian Process (NNGP) to construct an efficient tensor response emulator with process settings as inputs. 

Specifically, structured joint tensor decomposition decomposes the tensor responses at various process 

settings into the setting-specific core tensors and shared low dimensional factorization matrices. Then, each 

independent entry of the core tensor is modeled with a NNGP, which addresses the computationally 

intensive model estimation problem by sampling the nearest neighborhood samples. Finally, tensor 

reconstruction is performed to make predictions of solidification time for new process settings. The proposed 

framework is demonstrated by emulating the physical model of FNP, and compared with alternative tensor 

regression models. 

Keywords: Energy 3D Printing, Freeze Nano Printing, Gaussian Process, Nearest Neighbor Gaussian Process, 

Tensor Response Emulation. 
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INTRODUCTION 

Micro-energy storage devices such as batteries and supercapacitors that possess 

high energy density and high power density properties are fundamental for smart and 

wearable micro-devices in domains such as the Internet of Things (IoT) and medicine [1, 

2]. However, as reported by the U.S. defense logistics agency, the current energy storage 

materials and devices can have either high energy density or high-power density, but they 

do not have both properties [3]. In order to solve this issue, several approaches such as 

energy harvesting, element doping, and surface functionalization have been tested [4, 5]. 

For instance, piezoelectric and triboelectric nanogenerators are used for energy 

harvesting. These devices convert mechanical motion into electricity to replenish the 

energy of conventional batteries and supercapacitors, thus compensating their limited 

energy storage capacity [4]. Additionally, element doping and surface functionalization 

are effective strategies to increase the capacitance of electrode materials for asymmetric 

capacitors. However, these strategies require external agents (e.g., hematite and 

polyurethane) for modifying the electrical properties and surface properties of the 

electrode materials [5]. Nevertheless, these methods do not fully acquire the desired high 

energy density and high power density; there is always a tradeoff between them.  

The advent of 3D printing has generated important progress towards the 

manufacturing of complex structures to improve the energy storage devices. It has risen 

as a promising technique to build architectures that can efficiently achieve the high 

energy density and high power density of batteries and supercapacitors [6]. 3D printing 

techniques, varying from material extrusion (e.g., Fused Deposition Modeling, FDM), 
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material jetting (e.g., inkjet printing), and powder bed fusion (e.g., Selective Laser 

Melting, SLM), are capable of fabricating functional parts layer by layer and have been 

widely used to produce customized products [7].  Among them, material extrusion and 

material jetting have been successfully demonstrated to produce energy products, such 

as fuel cells, supercapacitors and batteries, with outstanding electrical properties [8, 9].  

 Lately, a novel 3D printing technique, Freeze Nano Printing (FNP), has been 

developed to produce energy storage devices [10]. FNP integrates inkjet printing with 

freeze casting to produce complex shaped Graphene Aerogels (GAs) with both macroscale 

and microscale feature printing capabilities. Fig. 1 shows an illustration of the FNP 

process. Firstly, Graphene Oxide (GO) ink with the concentration of around 0.5 mg/ml is 

prepared to guarantee the GO ice structure (Step 1). The GO ink droplets are controllably 

ejected to a cold substrate through a nozzle, following a designed path to form the printed 

layers (Steps 2-3). Particularly, the droplets are supplied by a piezoelectric nozzle that 

controls the demand of the aqueous solution. The GO droplets are instantly frozen and 

the ice crystals are formed once the droplets are deposited onto the cold substrate at an 

ambient temperature of around -20 °𝐶. The 3D printed part is then submerged in liquid 

nitrogen to be firstly frozen in critical cooling condition at around -190 °𝐶 and 

subsequently placed in an ultralow temperature chamber at -80 °𝐶 for 24 hours to enable 

further ice crystallization (Step 4). To remove water, the three-dimensional graphene 

structure is freeze dried for 48 hours (Step 5). Finally, the printed part undergoes thermal 
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reduction at 1000 °𝐶 for 1 hour in a tube furnace with hydrogen atmosphere to obtain 

the ultralight 3D printed structure (Step 6) [11]. 

The FNP has been proved to possess a great potential to achieve structures that 

can improve both energy density and power density for energy products due to 

hierarchical porous structures balancing mass transport, ion diffusion, and diffusion 

length [10]. Different from continuous inkjet technique to print graphene structures by 

adjusting the rheological properties, namely shear-thinning behavior of non-Newtonian 

GA inks, FNP uses a low viscous Newtonian GO suspension that performs the printing 

droplet by droplet until the layers are formed. This is beneficial to improving the bonding 

strength among layers since newly deposited not-yet-frozen droplets melt the already 

frozen surface. Then, the two layers are refrozen due to ambient temperature (-20 °𝐶) 

[12].   

Current studies on 3D printing of energy products have focused on proof-of-

concept demonstration, yet do not pay attention to the quality and repeatability of the 
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Fig. 1 An Illustration of the Freeze Nano Printing Process [10] 
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printed products. In fact, limited quality and high uncertainty remain big challenges for 

3D printing processes [13]. In FNP, thermal management of droplet solidification time is 

a critical quality-determining factor. It will govern the waiting time between layers and 

consequently affect the part bonding strength and dimensional accuracy. The waiting 

time will also affect the productivity of the printing process. It is therefore crucial to study 

the solidification time to determine the optimal waiting time. However, studying the 

droplet solidification time is an intricate problem due to the complex thermal interactions 

among the droplets, substrate, and ambient. In addition, newly deposited GO suspension 

droplets undergo phase changes during solidification due to the release of latent heat of 

previously deposited layers. This will prevent the newly deposited droplets from freezing, 

thus affecting the macro- and micro-structures. Moreover, the droplets solidification is 

dependent on the process parameters (e.g., layer thickness) and material properties (e.g., 

heat transfer coefficient).  

Since graphene is a very expensive material ($250/g), it is impractical to study the 

droplet solidification time and optimize the waiting time in a trial-and-error approach. 

Therefore, a physical-based thermal model is proposed to describe the droplet thermal 

interactions and solidifications as well as to determine the waiting time [14]. Nonetheless, 

the physical-based model can be computationally inefficient for moderate to large parts, 

and they can hardly be used for real-time droplet solidification study and waiting time 

determination. Therefore, the objective of this work is to propose an efficient and 

accurate emulator for the physical-based modeling results of high dimensional droplet 

solidification time. The droplet solidification time at various locations form a tensor 
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response for the emulator, with the process settings as predictors. The Gaussian Process 

(GP) is widely used for physical model emulation and calibration [15, 16, 17], due to its 

flexibility to capture the nonlinear relationships usually represented by the physical-

based differential equations. However, most existing GP emulators are designed for scalar 

responses and are computationally expensive during model training and evaluation. 

Recently, some endeavors are spent for multivariate and high-dimensional responses in 

GP emulation [16, 17], but they are either not applicable to general tensor responses or 

not efficient for real-time solidification prediction. Therefore, two challenges need to be 

addressed in the proposed emulator: 1) the modeling of the tensor responses (i.e., 

solidification time); 2) the efficient construction and evaluation of the emulator at new 

process settings. 

In this paper, we integrate joint tensor decomposition and Nearest Neighbor 

Gaussian Process (NNGP) for the physical model emulation. Tensor decomposition is 

widely used for sparse representation of tensors [18]. While most tensor decomposition 

methods are for a single tensor, here, we jointly decompose multiple tensor responses at 

various process settings with joint tensor decomposition [19, 20]. As a result, the tensor 

responses are represented with the outer product of corresponding vectors in the shared 

low dimensional factorization matrices and entries in the setting-specific core tensor [19, 

20]. In particular, we design a structured joint tensor decomposition for the solidification 

time in FNP so that the core tensor is superdiagonal (see details in the Proposed Method 

and Case Study sections). Other structures of the joint tensor decomposition can be 

deployed for other applications. After the joint tensor decomposition, we then model the 
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independent entries in the core tensors with NNGP. NNGP performs the model estimation 

based on local nearest neighbors for each sample, and enjoys significant computational 

savings compared with the conventional GP model [21].  

As will be demonstrated in the Case Study section, the proposed emulator is able 

to yield good prediction results and can have very fast solidification time predictions. Such 

a model is applicable to the tensor responses emulation from the physical model and can 

be widely used for other 3D printing processes, such as the thermal simulation in SLM and 

droplet simulation in inkjet printing [22, 23]. Although there are several methods to 

model tensor responses [24], to the extent of our knowledge, this is the first study 

dedicated to emulating the physical model with tensor responses for 3D printing 

processes. The proposed model is extensively compared to alternative models shown in 

[24, 25, 26], in which regression models are used for tensor responses modeling. The 

results showed that our proposed model outperformed the accuracy of the other 

alternatives.  

The organization of this paper is as follows. In the next section, we present the 

relevant literature on 3D printing of energy products, quality modeling, and control of 3D 

printed parts, and tensor decomposition and tensor response modeling for 

manufacturing. We then illustrate the proposed method for the tensor response 

emulation. After that, the proposed method is demonstrated in an FNP process for the 

solidification time prediction. Finally, we conclude the paper and discuss the future work. 

STATE-OF-THE-ART 
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3D printing of anode, cathode, and electrolyte, which are the main components 

of energy storage devices, has shown promising results to improve the performance of 

batteries and supercapacitors. However, 3D printing of these devices is a non-trivial task, 

and researchers have devoted lots of efforts on this topic [12]. For instance, a Li-Ion 

microbattery was developed in [27]. Interdigitated electrodes were integrated on a 

submillimeter scale, where Li4Ti5O12 (LTO) and LiFePO4 (LFP) were used as anode and 

cathode electrodes, respectively. The authors claimed their device yielded the highest 

areal energy and power densities reported to date. Additionally, GO-based electrode inks 

for Li-Ion batteries were 3D printed in [28]. The printed GO porous structure benefits the 

high areal surface, consequently more LTO and LFP nanoparticles can be allocated to 

increase the energy storage capacity. Other attempts to improve the performance of 

energy storage devices through the addition of graphene nanoplates and extrusion of 

silicon, activated carbon, and gel electrolyte, are shown in [29, 30]. Although there is a lot 

of work related to 3D printing for energy storage devices, these efforts are at the proof-

of-concept fabrication and the product integrity, quality, and productivity have not been 

fully considered.  

Several 3D printed products’ defects are investigated by using data-driven, 

physical models, or hybrid approaches. To model and quantify the layer-wise spatial 

evolution of porosity in 3D printed parts, an augmented layer-wise spatial log Gaussian 

cox process was proposed in [31].  A systematic model to predict part shrinkage and an 

optimal shrinkage compensation plan to achieve dimensional accuracy were presented in 

[32]. The dimensional variation was also studied by extracting 3D point cloud data from 
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3D printed parts in [33]. Moreover, approaches based on physical models are utilized to 

improve quality in 3D printing parts. For instance, to improve mechanical properties, 

surface finish, and dimensional accuracy in 3D printed parts, physical models based on 

heat transfer and fluid dynamics were presented in [14, 34]. These models can be time-

consuming to be evaluated and may suffer from model uncertainty. Hybrid approaches 

allow the development of emulation/calibration models by integrating data-driven and 

physical-based models. For instance, to predict the parts’ porosity at any given process 

settings in SLM of metallic parts, a GP model was used to characterize process porosity 

[35]. Li et al. used a multivariate GP model for the physical model calibration [36]. See 

also [37] for an FNP application in distributed printers. Nevertheless, the high dimensional 

matrix/tensor responses are rarely studied in the existing emulation/calibration models. 

Moreover, the computational requirements for GP model can be high, especially for large 

datasets. To accelerate the GP model learning process, NNGP provides a scalable 

alternative by using local information from few nearest neighbors [38], and will be 

explored in this paper. 

Recently, much attention was drawn to the tensor decomposition and tensor 

responses modeling. Tensor decomposition is widely used for dimensionality reduction 

of tensor objects in denoising, completion, etc., and is also crucial for later analysis with 

methods such as regression, GP, and NNGP [18]. The tensor decomposition techniques, 

such as Candecomp/Parafac (CP) and Tucker decomposition, have a sparse 

representation of the tensor data [39]. While the majority of tensor decompositions are 

for a single tensor [18], the joint tensor decompositions are recently investigated [19, 20], 
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and used for manufacturing applications. For instance, a regularized tensor regression 

was proposed for the turning process optimization based on the point cloud 

measurement of cylinder parts as predictors and dimensional accuracy as the response 

[40]. Additionally, a method to quickly classify part geometrical integrity with minimal 

point cloud data in FDM was proposed in [41]. See also [42] for an application in process 

monitoring. The above methods use tensor as predictors, rather than responses, and 

cannot be used in the FNP emulation. Currently, the tensor responses were modeled in 

some medical applications. For instance, Sparse TensOr REsponse regression (STORE), 

with a tensor response and vector predictor, was proposed in [24]. Sparse Ordinary Least 

Squares (Sparse OLS) was presented in [25]. This method first vectorizes the tensor 

response, and then fits a regularized multivariate regression with the Lasso penalty. 

Additionally, Higher-Order Low-Rank Regression (HOLRR) method, which enforces a low-

rank tensor structure, was demonstrated in [26]. In this work, we integrate the joint 

tensor decomposition and NNGP model to handle the matrix/tensor responses from the 

physical model of FNP and then compare our proposed framework to alternative models 

in [24, 25, 26]. 

PROPOSED METHOD 

A schematic illustration of the proposed framework is presented in Fig. 2. First, 

physical model to describe the droplets’ thermal distribution in the FNP process shown in 

Fig. 2 (a) and (b) is modified from [14]. Fig. 2 (c) shows an example of the droplet 

solidification time at various locations at a certain layer of a square-shaped part at a 

certain combination of process settings, which include material properties (𝑋1, 𝑋3, 𝑋5, 
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and 𝑋6 in Fig. 2 (b)) and process parameters (𝑋2 and 𝑋4 in Fig. 2 (b)). The solidification 

times at multiple process settings are factorized by structured joint tensor decomposition, 

as illustrated in Fig. 2 (d), where the core tensor is superdiagonal. After the tensor 

decomposition, we model each independent entry at a fixed coordinate of the core 

tensors from different process settings with a NNGP model. Finally, after separately 

training the NNGP models, the droplet solidification time can be predicted by the 

reconstruction from the predicted core tensor entries and the factorization matrices. The 

reconstructed tensor will be compared with the droplet solidification time simulated from 

the physical model.  

In the proposed method, the simulation data generation from the physical model, 

the joint tensor decomposition, and the training of NNGP models are performed offline. 

Specific Heat 𝑋1
Density 𝑋3

Interface Heat Transfer Coefficient 𝑋5
Element Heat Transfer Coefficient 𝑋6Material

Frequency 𝑋2
Layer Thickness 𝑋4

Nozzle

(b) Process Settings

(c) Physical Process Model

Heat Transfer Governing Equation

Tensor Response

(d) Tensor Response Emulation

      1   2  

Joint Tensor Decomposition

                                   
                           
 ,                                               

Nearest Neighbor Gaussian Process Modeling for Independent 

Core Tensor Entries in   

            1   2  

Droplet Solidification Times Prediction for New Samples 

Fig. 2

 2   
  

 
 
 

 

  

  

(a) Freeze Nano Printing

Fig. 2 An Illustration of the Proposed Framework: (a) Scheme of the FNP setup, (b) 
Process settings for the physical model input simulation, (c) Physical heat transfer 
process model, and (d) Tensor response modeling via joint tensor decomposition and 
NNGP 
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Once the models are trained, the predictions of the solidification time at new process 

settings from NNGP can be performed much faster than executing the physical model. 

Thus, the real-time process optimization and control could be feasible, which are out of 

the scope in this paper and will be investigated in the future. The following section is 

dedicated to explaining the details of the proposed method. 

Joint Tensor Decomposition  

Tensor decomposition is a powerful dimensional reduction technique. The basic 

idea of tensor decomposition is to approximate the high dimensional tensor with the 

tensor product of low dimensional factorization matrices (e.g.,   and   in Fig. 2 (d)) and 

core tensor (e.g.,   in Fig. 2 (d)). Without loss of generality, we illustrate the method with 

a third order tensor  ∈ 𝑅𝐼 𝐽 𝐾. In general,   can be decomposed by CP decomposition 

 ≈  ̃𝐶𝑃  ∑ 𝑔𝑟
𝐶𝑃𝑢𝑟

𝐶𝑃 ∘ 𝑣𝑟
𝐶𝑃 ∘ 𝑤𝑟

𝐶𝑃
𝑟  ⟦ 𝐶𝑃;  𝐶𝑃,  𝐶𝑃,𝑊𝐶𝑃⟧ or Tucker decomposition 

 ≈  ̃𝑇𝑢𝑐𝑘 𝑟  ∑ ∑ ∑  𝑇𝑢𝑐𝑘 𝑟(𝑙,𝑚, 𝑛) 𝑇𝑢𝑐𝑘 𝑟(𝑖, 𝑙) 𝑇𝑢𝑐𝑘 𝑟(𝑗,𝑚)𝑊𝑇𝑢𝑐𝑘 𝑟( , 𝑛) 𝑚𝑙  

⟦ 𝑇𝑢𝑐𝑘 𝑟;  𝑇𝑢𝑐𝑘 𝑟,  𝑇𝑢𝑐𝑘 𝑟 ,𝑊𝑇𝑢𝑐𝑘 𝑟⟧ [18]. For CP decomposition,  𝐶𝑃  {𝑢𝑟
𝐶𝑃, ∀𝑟} ∈

𝑅𝐼 𝑅,  𝐶𝑃  {𝑣𝑟
𝐶𝑃 , ∀𝑟} ∈ 𝑅𝐽 𝑅, and 𝑊𝐶𝑃  {𝑤𝑟

𝐶𝑃, ∀𝑟} ∈ 𝑅𝐾 𝑅 are factorization matrices, 

 𝐶𝑃  {𝑔𝑟
𝐶𝑃, ∀𝑟} ∈ 𝑅𝑅 𝑅 𝑅 is a superdiagonal core tensor that specifies the weight for 

each rank-one tensor 𝑢𝑟
𝐶𝑃 ∘ 𝑣𝑟

𝐶𝑃 ∘ 𝑤𝑟
𝐶𝑃 to reconstruct  , and the rank 𝑅 is the minimum 

number of rank-one tensors to represent   (i.e., 𝑟   ,⋯ , 𝑅) (See Fig. 3 for an 

illustration). ∘ is the outer product. For Tucker decomposition,  𝑇𝑢𝑐𝑘 𝑟 ∈ 𝑅𝐼 𝐿,  𝑇𝑢𝑐𝑘 𝑟 ∈

𝑅𝐽 𝑀, and 𝑊𝑇𝑢𝑐𝑘 𝑟 ∈ 𝑅𝐾 𝑁 are factorization matrices,  𝑇𝑢𝑐𝑘 𝑟 ∈ 𝑅𝐿 𝑀 𝑁 is the core 

tensor. These two approaches are the generalized form of each other [18]. In this work, 

we use the CP decomposition to represent the high dimensional tensor responses. 
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Throughout the paper, we drop CP in the above notation, and have the decomposition 

 ≈  ̃  ∑ 𝑔𝑟𝑢𝑟 ∘ 𝑣𝑟 ∘ 𝑤𝑟𝑟  ⟦ ; ,  ,𝑊⟧. 

To represent the droplet solidification time at various process settings, we use the 

joint tensor decomposition, where the factorization matrices  ,   and 𝑊 for   ’s at 

various process settings are shared, as illustrated on the top of Fig. 3. We can therefore 

characterize the tensors with    given the shared decomposition matrices  ,   and 𝑊 

[20]. In particular, the joint tensor decomposition can be solved via,  

min 
1

 
∑ ‖  − ⟦  ;  ,  ,𝑊⟧‖𝐹  ( ) 

where ‖∙‖𝐹 is the Frobenius norm, 𝑛 is the number of samples, and ⟦∙⟧ is the tensor 

product. The problem is solved with nonlinear least square (i.e., trust-region Quasi-

Newton methods), where  ,   and 𝑊 are initialized with random matrices [43]. The rank 

𝑅 can be determined so that the variation explained in the approximation tensor  ̃ , ∀𝑖 is 

larger than a threshold percentage of the variation in the raw tensor   . The rank 𝑅 

   

≈   

 

 
  

     

   
   

     

   Solidification Time for Sample  
   Core Tensor for Sample  
 , ,  Shared Factorization Matrices                    

Across Samples

      
      

  

  

  

  

  

  

  

  

  

 

Fig. 3

Fig. 3 A Schematic Illustration of the Joint Tensor Decomposition 
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needed is usually a small number compared with the original dimensionality of the tensor. 

Such a selection approach is also widely used in determining the number of principal 

components in principal component analysis [44]. After the joint tensor decomposition, 

other than modeling the raw tensor responses directly, the emulation problem can be 

simplified to model each 𝑔 ,𝑟’s in    with a NNGP model, 𝑟   ,⋯ , 𝑅, respectively. This is 

because the non-zero entries in the core tensor only appear in the superdiagonal and can 

be modeled independently. For other applications, one can use other tensor 

decomposition formulations, and separately model the orthogonal entries in the core 

tensor. 

Nearest Neighbor Gaussian Process (NNGP) Emulation 

 GP models provide a very flexible non-parametric approach to capture the spatial 

patterns [38]. In our previous work [45], GP emulation was used for the tensor response 

modeling of the solidification time (after the joint tensor decomposition) in FNP with a 

relatively small sample size. The GP emulator can deal with the tensor response, but the 

prediction error is not small enough for the future process optimization. To improve the 

model performance, in this work, we increase the number of samples from the physical 

model simulation. This will make GP model not applicable, since GP model is 

computationally intensive for median and large sample sizes. To ameliorate this problem, 

a NNGP model using an extension of the Vecchia approximation [46] is used to build the 

emulator [38].  

In general, for a certain rank 𝑟 of the core tensors after the joint tensor 

decomposition, the GP model 𝑔 ,𝑟 for    at the 𝑖-th sample is 
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𝑔 ,𝑟(𝒙 )  𝑚 ,𝑟(𝒙 )  𝜔 ,𝑟(𝒙 )  𝜀 ,𝑟(𝒙 ), (2) 

where 𝒙  contains the physical model inputs, such as layer thickness, droplet frequency, 

and the detailed values of these inputs are provided in Table 1. 𝑚 ,𝑟(𝒙 )  𝒙 
𝑇𝜷𝑟 is the 

mean function capturing the mean effect of 𝒙  on 𝑔 ,𝑟, and 𝜷𝑟 is the model parameters 

for the mean effect; 𝜔 ,𝑟(𝒙 ) follows a GP 𝜔 ,𝑟(𝒙 )~ 𝑃(0, 𝐶𝑟(𝒙 , 𝒙 
′)), where 

𝐶𝑟(𝒙 , 𝒙 
′)  𝜎𝑟

2𝑒𝑥𝑝(−∑ 𝜙𝑟,𝑗𝑗 ‖𝑥 ,𝑗 − 𝑥 ,𝑗
′‖) is the covariance function capturing the 

spatial relationship of samples. 𝜙𝑟,𝑗 is used to adjust the weight of each direction 𝑗 while 

calculating the distance, and 𝜎𝑟
2 is a scaling parameter. For instance, based on the 

covariance function, the close-by samples in the process settings are highly correlated, 

whereas the far-away samples tend to have lower correlation. 𝜀 ,𝑟(𝒙 )~𝑁(0, 𝜏𝑟
2) is the 

error term. The unknown parameters in the model are 𝜣𝑟  {𝜷𝑟 , 𝜎𝑟
2, 𝜙𝑟,𝑗 , 𝜏𝑟

2, ∀𝑗}, and can 

be learned from the Markov Chain Monte Carlo (MCMC) sampling from the posterior 

distribution [47] 

𝑝 (𝜣𝑟|𝑔 ,𝑟(𝒙 )) ∝ 𝑝(𝜣𝑟)𝑁(𝑔 ,𝑟(𝒙 )|𝑚 ,𝑟(𝒙 ), 𝐶𝑟(𝒙 , 𝒙 
′)  𝜏𝑟

2𝐼) (3) 

where 𝑝(𝜣𝑟) is the prior distribution for the unknown parameters. The detailed 

specifications of 𝑝(𝜣𝑟) will be provided in the Case Study section. After obtaining the 

posterior distribution, one can predict the 𝑔̂   ,𝑟(𝒙   ) at a new process setting 𝒙   . 

Evaluation of the density above involves computing the inverse and determinant 

of 𝐶𝑟(𝒙 , 𝒙 
′)  𝜏𝑟

2𝐼, which is computational intensive for large datasets [48]. Hence, a 

small set of 𝑚 nearest neighbors of 𝒙  rather than all samples are used in NNGP for the 

model estimation [48] 
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{𝐶𝑟(𝒙 , 𝒙 
′)  𝜏𝑟

2𝐼}−1 ≈ (𝐼 − 𝐴𝑟)
𝑇𝐷𝑟

−1 (𝐼 − 𝐴𝑟), (4) 

where 𝐴𝑟 is a sparse and lower triangular matrix with at most 𝑚 non-zero entries in each 

row, and 𝐷𝑟 is a diagonal matrix. The determinant of {𝐶𝑟(𝒙 , 𝒙 
′)  𝜏𝑟

2𝐼} equals to the 

determinate of 𝐷𝑟. Particularly, the non-zero elements, indexed by the corresponding 𝑚 

nearest neighbors of 𝒙  in the 𝑖-th row of 𝐴𝑟, are used to exploit sparsity and reduce the 

computational complexity for model estimation [38], and are computed by [49] 

𝐴𝑟(𝑖, 𝑁(𝒙 ))  𝐶𝑟(𝒙 , 𝑁(𝒙 )){𝐶𝑟(𝑁(𝒙 ),𝑁(𝒙 ))  𝜏𝑟
2𝐼}

−1
, (5) 

which are obtained by predicting 𝑔 ,𝑟(𝒙 ) based on its neighborhood locations 𝑁(𝒙 ). The 

neighborhood is selected by the Euclidean distance [21]. The 𝑖-th diagonal of 𝐷𝑟 is 

obtained by [49] 

𝐷𝑟(𝑖, 𝑖)  𝐶𝑟(𝒙 , 𝒙 )  𝜏𝑟
2

− 𝐶𝑟(𝒙 , 𝑁(𝒙 )){𝐶𝑟(𝑁(𝒙 ), 𝑁(𝒙 ))  𝜏𝑟
2𝐼}

−1
𝐶𝑟(𝑁(𝒙 ), 𝒙 ) 

(6) 

where 𝐷𝑟(𝑖, 𝑖) elements are the variance of 𝑔 ,𝑟(𝒙 ) conditional on its neighbors in 

𝑔 ,𝑟(𝑁(𝒙 )).  

 By constructing the sparse lower triangular matrix 𝐴𝑟 (with no more than 𝑚 non-

zero entries in each row) and the diagonal matrix 𝐷𝑟, the inverse of the covariance matrix 

{𝐶𝑟(𝒙 , 𝒙 
′)  𝜏𝑟

2𝐼}−1 is sparse and enjoys faster computation than GP. NNGP showed 

suitable probability distribution for values of neighborhood 𝑚 between 10 and 20 [21].   

Tensor Reconstruction and Comparison 

 The tensor response of the droplet solidification time      of a new process 

setting 𝒙    can be predicted via tensor reconstruction. In particular, 𝑔̂   ,𝑟(𝒙   ), ∀𝑟 
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can be predicted from the individual NNGP models to form       in the core tensor. We 

can then reconstruct      ≈ ⟦     ;  ,  ,𝑊⟧ based on the  ,   and 𝑊 learned from the 

joint tensor decomposition. The predicted       will be compared with the simulated      

from the physical model for the emulation model evaluation. 

CASE STUDY 

 As mentioned in the Introduction section, the accurate and efficient evaluation of 

droplet solidification time will affect the determination of the waiting time among layers, 

and subsequently affect the printed part quality in FNP. For instance, Fig. 4 (b)-(c) shows 

the parts with proper and improper waiting times for the designed part in Fig. 4 (a). In this 

section, we demonstrate the proposed framework for the accurate and efficient 

prediction of droplet solidification time in FNP. 

 To demonstrate the proposed framework, we simulate a single layer FNP part with 

10 by 10 droplets modified from the physical model in [14]. Other more complicated 

shapes can be modeled similarly with the proposed framework. Fig. 5 shows the 

simulation setup. The deposited droplets have an initial temperature of 5 °𝐶 and are 

Fig 3

(a) (b) (c)

Fig. 4 A Comparison of CAD Model and FNP Parts: (a) Part CAD model, (b) Printed part 
with proper droplet solidification time, and (c) Printed part with improper droplet 
solidification time 
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ejected based on the path specified in Fig. 5 (b).   After the ejection (Fig. 5 (a)), the droplets 

solidify in a short time due to the heat conduction with the heat sink (at -20 °𝐶) under the 

build bed and heat convection with the ambient (Fig. 5 (c)). The corresponding droplet 

solidification time (time required for a droplet to cool down from 5 °𝐶 to -19 °𝐶 in this 

paper) is summarized as shown in Fig. 5 (d). In the simulation, we vary six process settings 

that will affect the thermal distribution. The names and ranges (lower and upper bounds) 

of these settings are shown in Table 1. In particular, the specific heat (𝑋1), density (𝑋3), 

interface heat transfer coefficient (𝑋5), and element heat transfer coefficient (𝑋6) are the 

material properties in the physical model representing how much heat the droplets 

Response

(c) Droplet Thermal History

(b) Process Tool Path(a) Freeze Nano Printing Scheme 

(d) Droplet Solidification Time

Fig. 5

Fig. 5 Simulation Setup: (a) Droplet ejection from FNP, (b) Process tool path, (c) 
Examples of droplet thermal history, and (d) Summarized droplet solidification time 
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absorb, the concentration, and the rate of heat transfer. On the other hand, frequency 

(𝑋2) and layer thickness (𝑋4) are process parameters adjustable in the printing process. 

For our previous study in [45], we used 60 simulation runs to perform the GP emulation 

from the physical model. However, according to the model evaluation [45], the predicted 

results were not accurate enough (average Normalized Root Mean Squared Error 

(NRMSE) 𝑁𝑅𝑀𝑆𝐸    .59% in 5-fold Cross Validation (CV)). One of the most effective 

approach to improve the model performance is to increase the sample size (i.e., the 

number of simulation runs. Therefore, we generate 500 simulation runs from the physical 

model in this work. In these simulation runs, the process settings are determined by a 

Latin hypercube sampling-based space filling design [50]. 

Table 1 Simulation Process Settings and Ranges for the Case Study  

IDs Parameters Lower Bounds Upper Bounds 

𝑋1 Specific heat 𝐽/( 𝑔 · 𝐾) 3350 3450 

𝑋2 Frequency (Hz) 50 500 

𝑋3 Density (kg/m^3) 1000 1300 

𝑋4 Layer thickness (mm) 0.1 0.6 

𝑋5 Interface heat transfer coefficient (𝑊/𝑚2 · 𝐾) 200 500 

𝑋6 Element heat transfer coefficient (𝑊/𝑚2 · 𝐾) 50 150 

 

 We then apply the proposed framework to the simulation data from these runs. 

During the model training, the simulated samples are divided into five randomly 

generated and equally sized folds for CV. In iterations, four out of the five folds are used 

for model training and the remaining fold is used for model testing. Training and testing 

iterations are repeated for five times. During the model training, the rank 𝑅 in the joint 

tensor decomposition varies from  0%, 20%, up to 90% of the total tensor dimension 

and the final rank is selected to keep the proportion of the explained variation not less 



Journal of Manufacturing Science and Engineering 

21 
 

than 99.5% of the total variation of the droplet solidification time in any process settings, 

i.e., min
 

 ‖  ;  ,  ,𝑊‖𝐹/‖  ‖𝐹 ≥ 99.5%. 99.5% is used here to preserve majority of the 

variation, and other threshold values such as 95% can also be used in other applications. 

For the joint tensor decomposition in our case, the selected rank 𝑅 is 3 or 4, depending 

on the training and testing CV folds. After the determination of tensor rank 𝑅 and the 

learning of the factorization matrices  ,   and 𝑊, these factorization matrices are applied 

to the samples in the left-out CV fold to learn the core tensors. The corresponding core 

tensor entries will be used as the testing data for the NNGP model evaluation. 𝑚  20 is 

used as the number of nearest neighbor of 𝒙  in NNGP. 

 For the NNGP model training for Eq. (2), we have each core tensor entries (e.g., 

the 𝑟-th entry 𝑔 ,𝑟 , ∀𝑖) in the training data as the outputs and the corresponding process 

settings as inputs 𝒙. In Eq. (2), the prior distributions for 𝛽𝑟,𝑗, 𝜏𝑟 and 𝜎𝑟 are set as Gaussian 

and the prior distribution for 𝜙𝑟,𝑗 is set as inverse gamma. During the MCMC estimation 

of these NNGP model parameters, we have in total 5,000 iterations. Among these 5,000 

iterations, 2,000 iterations are used for burn-in (i.e., the burn-in iterations will be 

discarded to stabilize the posterior distribution). After the burn-in, the MCMC mixed well, 

which indicates that the posterior distributions converge. We then use the last 3,000 

MCMC iterations for the model prediction at certain process settings. Particularly, we 

calculate the mean of the predicted 𝑔̂   ,𝑟(𝒙   )
′𝑠 from 3,000 posterior draws. The 

above procedures are repeated for all 𝑟   ,⋯ , 𝑅. We then organize the predicted 

      diag(𝑔̂   ,1, 𝑔̂   ,2, ⋯ , 𝑔̂   ,𝑅), and perform the tensor reconstruction 

introduced in the Proposed Method section.  
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We then compare the model performance of NNGP with alternative tensor 

response regression approaches: STORE, OLS, Sparse OLS, and HOLRR. For the alternative 

models, [24] considers the tensor response regression model of the form 

   𝚩∗  𝑞+1 𝒙  𝜀 , (7) 

where    ∈  𝑅
𝑑1 ⋅⋅⋅ 𝑑𝑞 is an  th-order tensor response (droplet solidification time in our 

case), 𝒙 ∈ 𝑅𝑝 is a vector of predictors (i.e., specific heat, frequency, etc.),  𝚩∗ ∈

 𝑅𝑑1 ⋅⋅⋅ 𝑑𝑞 𝑝 is an (   )th-order tensor coefficient, and 𝜀  ∈  𝑅
𝑑1 ⋅⋅⋅ 𝑑𝑞 is an error 

tensor independent of 𝚩∗. The ultimate goal is to estimate 𝚩∗ given observations 

{(𝒙 ,   ), 𝑖   , , 𝑛}.  Once the tensor coefficient 𝚩∗ is estimated, the new solidification 

time       for 𝒙    can be obtained by evaluating       𝚩̂∗  𝑞+1 𝐱    [51]. 

Identically to what we applied in the proposed framework, we utilize the same 

equally sized five folds for CV (referred as outer-CV hereafter) for the alternative models. 

In particular, four folds are taken for model training and the remaining fold is deployed 

for model testing, and the process is repeated for in total five iterations. For the STORE 

framework [24], the tuning parameters rank and sparsity need to be determined. We set 

the 𝑟𝑎𝑛  { , 2,  ,  0} and 𝑠𝑝𝑎𝑟𝑠𝑖 𝑦  {0. , 0.2,  ,  }, where sparsity refers to the 

proportion of significant coefficients in 𝚩∗ [24]. Another CV (referred to as inner-CV 

hereafter) is used for the selection of these tuning parameters. Specifically, the training 

samples in the outer-CV (i.e., the four folds used in model training) is equally divided into 

five folds again. In iterations, we train STORE with four out of the five inner-CV folds at 

each tuning parameter combination, and test its performance with the left-out inner-CV 

fold. We then average the testing errors at all tuning parameter combinations over the 
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five inner-CV iterations, and select the best tuning parameter combination of rank and 

sparsity with the smallest average testing error. With the selected tuning parameter 

combination, we train the model with the training samples (the four folds used in model 

training) in the outer-CV, and evaluate the model with the left-out folder in the outer-CV 

similar to NNGP. Sparse OLS and HOLRR are compared similarly, see [25] and [26], 

respectively, for details.  

The mean NRMSE prediction error and its standard deviation over five CV folds for 

NNGP and alternative models are presented in Fig. 6.  The NRMSE is calculated via 

∑ ‖  −  𝑖̂‖𝐹 /∑ ‖  ‖𝐹 , where    is the true simulated solidification time and  𝑖̂ is the 

predicted solidification time. From Fig. 6, the proposed method can capture the variations 

in the solidification time with accurate predictions (a small NRMSE). While the NRMSE in 

STORE is considerably higher compared to the NRMSE in NNGP. On the other hand, OLS, 

Sparse OLS, and HOLRR performed a little better than STORE, but still do not perform as 

Fig. 6 NNGP and Alternative Models Prediction Error Comparison 
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good as our proposed framework.  To compare the models, Fig. 7 shows the relationship 

between the normalized Frobenius norm (normalized to the range of [-10, 10]) of actual 

values (i.e., true simulated solidification time) and predicted values (i.e., predicted 

solidification time) for all the NNGP and alternative models, and the corresponding 𝑅2 

value. It can also be observed that the Sparse OLS model (𝑅2  74.95%) stands out from 

the other alternatives, while the NNGP model performs the best (𝑅2  98.78%). To 

Fig. 7 Normalized Frobenius Norm of the Actual Values Versus Predicted Values: (a) 
NNGP, (b) STORE, (c) OLS, (d) Sparse OLS, and (e) HOLRR 
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further assess the prediction of solidification time at a certain process setting, Fig. 8 shows 

the error of droplet solidification time at the 500th process settings for the NNGP and 

alternative models (in terms of the simulation step size, where each step is 0.001 s). 

According to the figures, the NNGP has more accurate predictions than alternative tensor 

Fig. 8 Error of Droplet Solidification Time at the 500th Process Setting: (a) NNGP, (b) 
STORE, (c) OLS, (d) Sparse OLS, and (e) HOLRR 
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response regression models, due to its capability of capturing the nonlinear relationships 

between the process settings and droplet solidification time. 

Moreover, the NNGP model prediction for a new sample can be performed in 

around 0.2 seconds. This is much faster than running physical model, which can take 

several minutes for a simple shape. Meanwhile, the NNGP can accurately emulate the 

physical model. Thus, the proposed framework can facilitate the future real-time process 

optimization and control.  

CONCLUSION AND DISCUSSION 

FNP is a novel technique capable to produce macroscale and microscale features, 

thus advancing the 3D printing of energy products. Particularly, FNP can increase the 

power density and energy density of energy storage devices (e.g., batteries and 

supercapacitors). However, the quality, integrity, and repeatability of the printed energy 

storage devices from FNP are not fully considered. In FNP, thermal management, which 

is dependent on the process settings, governs the droplet solidification time and 

subsequently the waiting time between layers. Studying the droplet solidification time by 

trial-and-error approach is impractical due to the high material costs. Physical models are 

an alternative, where the droplet solidification time can be simulated.  Nevertheless, their 

computation is expensive, which prevents their utilization for real-time prediction and 

process optimization. In this work, we explore machine-learning methods to address the 

prediction of high dimensional solidification time for future real-time process 

optimization and control. We integrate joint tensor decomposition, NNGP model, and the 

physical model outputs in our proposed framework. The novelty of this paper lays on the 
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effective representation of the tensor responses by low dimensional vectors and the core 

tensor, and the modeling can be performed separately for the independent elements in 

the core tensor based on NNGP models. The proposed framework can not only build an 

efficient and accurate emulator for the prediction of the solidification time under new 

process settings, but also properly captures the nonlinear relationships between process 

settings and tensor responses (i.e., droplet solidification time). It is demonstrated that the 

NNGP emulator outperformed the accuracy of alternative models, namely STORE, OLS, 

Sparse OLS, and HOLRR. The framework can be applied to problems with high dimensional 

output in additive manufacturing and has broad applications.  

There are several potential research directions that can be pursued. One direction 

is to extend this framework to smartly determine the number of neighbors rather than 

just use 𝑚 for all samples and develop a fully Bayesian approach for the tensor response 

prediction. Another direction is to model the layer-wise evolution considering the layer 

correlations. Also, before implementing the proposed framework for the real-time 

process control and optimization, it is necessary to validate the model with physical 

experiments. Hence, we will take the thermal measurement from the FNP process and 

perform the model calibration. We will ultimately use the calibrated model for the 

process optimization and control so that we can adjust the waiting time and process 

parameters during the printing.  
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NOMENCLATURE 
 

  Raw tensor data 

 ̃𝐶𝑃 Approximated tensor data after Candecomp/Parafac decomposition 

 ̃𝑇𝑢𝑐𝑘 𝑟 Approximated tensor data after Tucker decomposition 

  Factorization matrix, where  ∈ 𝑅𝐼 𝑅 

  Factorization matrix, where  ∈ 𝑅𝐽 𝑅 

𝑊 Factorization matrix, where 𝑊 ∈ 𝑅𝐾 𝑅 

  Core tensor after decomposition 

𝒙 A vector of physical model inputs 

𝑚 ,𝑟(𝒙) Mean function of rank 𝑟 corresponding to 𝑖𝑡ℎ sample at 𝒙 

𝜷𝑟 The model parameters for the mean effect of rank 𝑟  

𝜔 ,𝑟(𝒙) A stochastic process, which follows a   𝑃(0, 𝐶𝑟(𝒙, 𝒙
′)) with mean 0 and 

covariance 𝐶𝑟(𝒙, 𝒙
′) 

𝜀 ,𝑟(𝒙) Error, which follows a 𝑁(0, 𝜏𝑟
2) with mean 0 and variance 𝜏𝑟

2 

𝜙𝑟,𝑗 Weight adjustment parameter of each direction 𝑗 

𝜎𝑟
2 Scaling parameter 

𝑚 Number of nearest neighbors 

𝐴𝑟 A sparse and lower triangular matrix of rank 𝑟  

𝐷𝑟 A diagonal matrix of rank 𝑟 
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𝜣𝑟 Unknown parameters of rank 𝑟  

𝑝(𝜣𝑟) Prior distribution for the unknown parameters of rank 𝑟 

𝜆̂   ,𝑟(𝒙   ) Predicted core tensor at new process settings 𝒙    

     Tensor response of the droplet solidification time at new process settings 

𝒙     

      Predicted tensor response of the droplet solidification time at new process 

settings 𝒙    
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Fig. 1 An Illustration of the Freeze Nano Printing Process [10] 
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(a) Freeze Nano Printing

Fig. 2 An Illustration of the Proposed Framework: (a) Scheme of the FNP setup, (b) 
Process settings for the physical model input simulation, (c) Physical heat transfer 
process model, and (d) Tensor response modeling via joint tensor decomposition and 
NNGP 
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Fig. 3 A Schematic Illustration of the Joint Tensor Decomposition 
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Fig 3

(a) (b) (c)

Fig. 4 A Comparison of CAD Model and FNP Parts: (a) Part CAD model, (b) Printed part 
with proper droplet solidification time, and (c) Printed part with improper droplet 
solidification time 
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Fig. 5

Fig. 5 Simulation Setup: (a) Droplet ejection from FNP, (b) Process tool path, (c) 
Examples of droplet thermal history, and (d) Summarized droplet solidification time 
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Fig. 6 NNGP and Alternative Models Prediction Error Comparison 



Journal of Manufacturing Science and Engineering 

47 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Normalized Frobenius Norm of the Actual Values Versus Predicted Values: (a) 
NNGP, (b) STORE, (c) OLS, (d) Sparse OLS, and (e) HOLRR 
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Fig. 8 Error of Droplet Solidification Time at the 500th Process Setting: (a) NNGP, (b) 
STORE, (c) OLS, (d) Sparse OLS, and (e) HOLRR 
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Table 1 Simulation Process Settings and Ranges for the Case Study  

IDs Parameters 
Lower 

Bounds 
Upper Bounds 

𝑋1 Specific heat 𝐽/( 𝑔 · 𝐾) 3350 3450 

𝑋2 Frequency (Hz) 50 500 

𝑋3 Density (kg/m^3) 1000 1300 

𝑋4 Layer thickness (mm) 0.1 0.6 

𝑋5 Interface heat transfer coefficient (𝑊/𝑚2 · 𝐾) 200 500 

𝑋6 Element heat transfer coefficient (𝑊/𝑚2 · 𝐾) 50 150 

 

 

 

 

 


