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Essential normality — a unified approach in terms
of local decompositions
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ABSTRACT

In this paper, we define the asymptotic stable division property for submodules of L2 (B,). We
show that under a mild condition, a submodule with the asymptotic stable division property is
p-essentially normal for all p > n. A new technique is developed to show that certain submodules
have the asymptotic stable division property. This leads to a unified proof of most known results
on essential normality of submodules as well as new results. In particular, we show that an ideal
defines a p-essentially normal submodule of L2(B,,), Vp > n, if its associated primary ideals are
powers of prime ideals whose zero loci satisfy standard regularity conditions near the sphere.

1. Introduction

Let B,, be the open unit ball in C". The Bergman space L?(B,,) consists of all holomorphic
functions f on B,, such that

112 = / |fPdv < oo.

n

Here v denotes the normalized Lebesgue measure, that is, v(B,) = 1. For ¢ =1,...,n, the
coordinate functions z; acts on LZ(B,,) by multiplication:

Mzif:ziﬂ fe Li(Bn)-

The n-tuple of operators (M,,,..., M. ) are commuting and thus induces a Hilbert
Clz1,- - ., 2n)-module structure on L2(B,,):

Clz1,. .- z0) X L(By) = L2(Br), (p, f) = p(M-,,...,M.,)f =pf.

For any i,j = 1,...,n, it is well known that the commutator [M.,, M? | belongs to the Schatten
class Cp, Vp > n.

A closed subspace P C L2(B,,) that is invariant under M., i = 1,...,n, is called a (Hilbert)
submodule of L2?(B,). The commuting tuple (Ry,...,R,), where R; = M.,|p, defines the
module action on P. Its orthogonal complement Q := P~ is called a quotient module of L?(B,,).
The module action on Q is defined by the tuple (Si,...,S,), where S; = QM.,|o. Here, Q
denotes the projection operator onto Q. For p > 1, we say P (Q) is p-essentially normal if

For an ideal I in C[z1,...,2,], let P; denote its closure in L2(B,,). Then it is easy to see
that Py is a submodule of L2(B,,). Therefore, Q; := P; is a quotient module.
Arveson—-Douglas Conjecture: Suppose that I is a homogeneous ideal in C[zy, ..., 2,]. Then

the quotient module Q; is p-essentially normal for all p > dim¢ Z(1).
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REMARK 1.1. The Arveson—Douglas Conjecture was originally stated on the Drury—Arveson
space H2. Later, it was shown that, for a homogeneous ideal I and any p > n, the p-essential
normalities for the closures of I in the Drury—Arveson space, the Bergman space, and the
Hardy space, are equivalent. Closures of non-homogeneous ideals and non-polynomial generated
submodules are also considered. Submodules on other domains were also considered.

In this paper, we consider submodules in the Bergman module. We will consider p-essential
normality for p > n. For p > n, the p-essential normality of a submodule P is equivalent to the
p-essential normality of its quotient module Q.

The Arveson—Douglas Conjecture arises from Arveson’s study of row contractions in
multivariable operator theory [1]-[5]. Later, Douglas [7] showed that, given an essentially
normal quotient module Q;, the short exact sequence

0=-K—-C"({S}, )+ K—=C(X1)—0

defines an element [Q;] in the odd K-homology group K;(X;) of a topological space Xj.
One can show that B, NZ(I)NdB, C X; C 9B, NZ(I). In the case I is homogeneous,
X1 =Z(I)NOB,. The element [Q;] carries geometric information of Z(I). This gives a new
kind of index theorem. Moreover, a positive result of the Arveson—Douglas Conjecture will lead
to an analytic Grothendieck—Riemann—Roch theorem allowing singularities [9].

The existing results of the Arveson—Douglas Conjecture can be roughly categorized into three
types. The first type contains results concerning varieties of dimension 1, or codimension 1. In
[15], Kuo and Wang proved the cases of homogeneous ideals I when n < 3, or dim Z(I) < 1,
or I is principal. Douglas and Wang [10] showed that for a principal ideal I, not necessarily
homogeneous, P; C L2(B,,) is p-essentially normal for all p > n. Fang and Xia [13, 14] extended
the results to polynomial-generated principal submodules of the Hardy space H?(B,), and,
under additional assumptions, the Drury—Arveson space H2. Douglas, Guo, and Wang [8]
showed that a principal submodule of L2(Q) generated by a function h € Hol(Q) is p-essentially
normal for all p > n. Here, 2 C C" is any bounded strongly pseudoconvex domain with smooth
boundary. The result was extended to the Hardy spaces H?(Q2) by Wang and Xia [25].

The second type of results concern a geometric version of the Arveson—Douglas Conjecture.
The results involve varieties with geometric conditions such as smoothness and transversality
on OB,,. Englis and Eschmeier [12] showed that if a variety V is homogeneous and its only
possible singular point is the origin, then the radical ideal I of all polynomials vanishing on
V' defines a p-essentially normal quotient module for any p > dim V. Douglas, Tang, and Yu
[9] showed that if I is radical and Z(I) is a complete intersection space that is smooth on
0B, intersects transversely with 0B,,, then Q; is essentially normal. Douglas and Wang [11]
showed that if I is a radical ideal and Z(I) is smooth on 0B,, and intersects transversely with
OB,,, then Q7 is p-essentially normal for all p > 2dim Z(I). The result was then refined to all
p > dim Z(I) by Wang and Xia [24].

The third type of results involves conditions that ensure decompositions of the submodules,
or quotient modules into nice parts [17, 18, 21-23]. In particular, in [21], Shalit considered the
stable division property of a submodule in H? and showed that a graded submodule with the
stable division property is p-essentially normal for all p > n. An approximate stable division
property was defined and studied in [22].

The aim of this paper is to provide a unified proof of most of the known Bergman-space
results above. We define the asymptotic stable division property (Definition 3.1) and show
that the asymptotic stable division property leads to essential normality. Our first main result
is the following.

THEOREM 1.2 (Theorem 3.2). Suppose that P is a submodule of L7, (B,,) with the asymptotic
stable division property. If the generating functions h; are all defined in a neighborhood of B,,,
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and the controlling constants C;, N;, determined by h; (as in Theorem 2.16), are bounded
for all i € A, then the submodule P is p-essentially normal for all p > n. In particular, if the
generating functions h; are polynomials of bounded degrees, then P is p-essentially normal for
all p > n.

The proof of Theorem 3.2 involves an inequality of a new type (Theorem 2.16) that first
appeared in [8]. Since principal submodules and graded submodules with the stable division
property have the asymptotic stable division property trivially, Theorem 3.2 provides a unified
proof for the two types of results immediately.

We will also introduce technical hypotheses (Hypothesis 1) that lead to the asymptotic stable
division property (Theorem 3.4). Then we will prove our second main result.

THEOREM 1.3 (Theorem 4.1). Suppose that I is an ideal in Clz,...,z,| with primary
decomposition I = ﬂ?zlljmj, where I; are prime ideals. Assume the following.

(1) For each j=1,...,k, Z(I;) has no singular points on 0B, and intersects OB,
transversely.
(2) Any pair of the varieties {Z(I;)} does not intersect on 0B,,.

Then the submodule P; has the asymptotic stable division property with generating elements
{hi} being polynomials of uniformly bounded degrees. As a consequence, Py is p-essentially
normal for all p > n.

In [9, 5.2], the authors mentioned a plan of studying non-radical ideals. Theorem 1.3 partially
accomplishes this goal, with a different approach.

Theorem 4.1 shows that results of the second type also fit into this framework. The proof
of Theorem 4.1 combines several techniques. First, we construct a covering that satisfies the
bounded overlap condition for Bergman neighborhoods with large radius. The construction
involves a radial-spherical decomposition method in [26]. Then we construct a decomposition
formula for each covering set. The generating functions are modified from local canonical
defining functions of the variety. Combining these techniques, we show that the ideals in
Theorem 4.1 satisfy Hypothesis 1, and therefore are p-essentially normal for all p > n.

In Section 2, we provide some tools that will be used in this paper. In Section 3, we introduce
the asymptotic stable division property, and give a proof of Theorem 3.2. In Sections 4-6, we
prove Theorem 4.1. In the concluding remarks, we describe our future plans. In the Appendix,
we prove some results involving algebraic sets. These results will be used mainly in Section 6.

2. Preliminaries
This section contains some basic tools that we are going to use in this paper. Besides the classic
tools in the study of operators on the Bergman space, we will also use the theory of complex
analytic sets substantively.
2.1. Arveson’s lemma
The following lemma provides an approach to the Arveson—Douglas Conjecture.

LEMMA 2.1 [4]. Suppose P C L2(B,,) is a submodule and Q is the corresponding quotient
module. Then for any p > n, the following are equivalent.

(1) P is p-essentially normal.
(2) Q is p-essentially normal.
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(3) [M.,,P] €Cyp,Yi=1,...,n.
(4) [M.,,Q] €Cqp,Vi=1,...,n.
Here P, Q are the projections onto P and Q, respectively.

Notice that
M., Q" =QM; — M;Q=QM; —QM; Q=QM;P.

Compared with the cross commutators [M.,, M 2*7,], the operators QM P are easier to work
with. We will use Lemma 2.1 in the proofs in Section 3.

2.2. Complex analytic sets

The definitions and results come from [6].

DEFINITION 2.2. Let © be a complex manifold. A set A C € is called a (complex) analytic

subset of Q if for each point a € €, there are a neighborhood U of a and functions f1,..., fx
holomorphic in U such that
ANU={z€U: fi(z) =--- = fn(z) =0}.

A point a € A is called regular if there is a neighborhood V of a in Q such that ANV is a
complex submanifold of 2. The (complex) dimension dim, A at a is naturally defined to be
the (complex) dimension of the manifold ANV.
A point a € A is called a singular point of A if it is not regular. One can show that the set
of regular points is dense in A. The dimension of A at a singular point is defined as
dim, A = limsupdim, A.

z—a
zEregA

A is said to be of pure dimension p if dim, A = p, Va € A.

In this paper, our main objects of study are algebraic sets in C™, that is, zero loci of
polynomials in n-variables. By Hilbert’s Nullstellensatz, there is a one-to-one correspondence
between algebraic sets and radical polynomial ideals, and irreducible algebraic sets correspond
to prime ideals. We will also consider powers of radical ideals. Thus it is convenient to use the
language of holomorphic chains.

DEFINITION 2.3. A holomorphic chain on a complex manifold €2 is a formal, locally finite sum
> k;A;, where A; are pairwise distinct irreducible analytic subsets in © and k; # 0 are integers.

For f € Hol(2), we use the notation f|s>x,4, =0 to indicate that f is, locally, a linear

combination of functions of the form Hjﬂfi 1 fij, where f;; are holomorphic functions vanishing
on Aj.

DEFINITION 2.4. A continuous map f : X — Y of topological spaces is called proper if the
pre-image of every compact set K C Y is a compact set in X. The spaces X and Y are assumed
to be Hausdorff and locally compact.

Proper maps are important tools in the study of analytic sets. The following results will be
used in the proofs.
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THEOREM 2.5. Let A be an analytic set in C", a € A, dimjA=p, 0<p<n, U a
neighborhood of a, and w: ANU — U' C CP, z+ 2/ := (z1,...,2p) a proper projection. Then
there is an analytic subset o C U’ of dimension less than p and a natural number k such that

(1) m: ANU\r"!(0) = U'\o is a locally biholomorphic k-sheeted cover, in particular,
#r1(Z)NANU =k for all 2’ € U\o;
(2) (o) is nowhere dense in A,y NU. Here A(,) = {z € A:dim, A = p}.

In particular, if A is pure of dimension p, then w1 (o) is nowhere dense in A. We say that

7 defines a k-sheeted analytic cover. The set o is called the critical set of .

A proper projection on a complex analytic set A gives rise to a set of canonical defining
functions [6].

DEFINITION 2.6. (1) Let aq,...,a; C C™, not necessarily distinct. We compose the polyno-
mial

P(z,w) = (z —a,w) -+ (z — ap, w)

in the variable (z,w) € C*™. One can show that P(z,w) =" 0 if and only if z is one of the
points ai, ..., ar. Suppose

P(z,w) = > Pa(z)u®,

la|=k
where « denotes a multi-index (ayq, ..., a,,). Then the condition P(z,w) =" 0 is equivalent to
that P,(z) = 0, Va, |a| = k. The polynomials P, (z) are called the canonical defining functions

for the system a = {aq,...,ax}.

(2) More generally, suppose that A is an analytic subset of U = U’ x U” C C", where U’ C
CP,U" c C™andlet 7 : (2/,2") + 2’ € CP. Suppose 7|4 : A — U’ is a k-sheeted analytic cover.
Let o C CP be the critical set of m|4. For each 2’ € U'\o,

M) NANU = {(#,a1(2)), ..., (¢, ax(2)},
where a;(z’) are holomorphic functions defined in a small neighborhood of z’. Define

PW‘A(z,w) =" —a1(Z),w)y - (2 —ap(Z),w), z€ U\Wﬁl(a),w eCcm™

and
Pr,(z,w) = Z Py a(2)w®.
|| =k
Here, we write @ = (ap41, ...,y ) to be consistent with the coordinates in C”. The coefficients

of powers of z” in the functions Py, , are locally bounded holomorphic functions on U'\o.
Since dim o < p, they can be uniquely extended to holomorphic functions on U’. Therefore,
Pr|,.o extend to holomorphic functions on U (in fact, on U’ x C™). They are called the
canonical defining functions for the projection 7.

(3) One can also define canonical defining functions for holomorphic chains. We will only
use the canonical defining functions for mA, where m is a positive integer. Then we set
Pry, 4 (z,w) = Pr(z,w)™ and Py, (2,w) = 32— pp Prla,o(2)w®. The functions Py, , o (2)
will be the canonical defining functions for the holomorphic chain mA.

REMARK 2.7. We remark that in Definition 2.6, the functions P, and P, . are
constructed under a specific choice of basis. Our estimates in this paper involve change of basis.
It is convenient to generalize Definition 2.6 to the following ‘coordinate-free’ form. Suppose
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E ={ey,...,e,} is an orthonormal basis of C* and 7 is the orthonormal projection onto
span{ei,...,e,}. Suppose that m|4 is proper. Define

n

P e(z,w) = ocr1r(:)nalz — a, Z we;), z€C weC P,
i=p+1

Suppose that [ is a unitary transformation on C" and 7|;4) is also proper. Let
E, = {l"te,...,l" e, }. Then

Pryya),2(1(2),w) = Macr—1mi(z)n(a) <l(2) —a, Z wiei>

i=p+1

= Hbel_lﬂ"lﬂ'l(z)ﬁA <Z - b, Z w7;l_l(€i)> .

i=p+1
In other words,
Prjja),e(1(2), w) = Proim 5, (2, w).
We will use this fact in the proof of Lemma 6.1. In the subsequent discussions, we will omit
the subscript £ where no confusion is caused.
2.3. Moébius transform and Bergman metric
For z€B,, z#0, let P. and Q. be the orthogonal projections from C" to Cz and z*,

respectively.

DEFINITION 2.8. The Mébius transform ¢, is defined by the formula

2= P(w) — (1 |2[1)/*Q.(w)

P S Bn~
1—(w,z) v

e (w) =

The following lemma contains some basic properties of the Mébius transform ¢,. One can
find a proof in [20, Chapter 2].

LEMMA 2.9. Ifa, z, w € B, then

(1)

(1 —{a,a))(1 = (z,w))

1- <§0a(z)7§0a(w)> = (1 _ <z7a>)(1 — <CL, w))

(2) As a consequence of (1),

(1 —lal*) = |2%)
1—(z,a)]?

1—|pa(2)]* =
(3) The Jacobian of the automorphism ¢, is

A=y
(Jopz(w)) = [T — (w,z) 2+

DEFINITION 2.10. The pseudo-hyperbolic metric p is defined by

p(z,w) = |p-(w)], zweB,.
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The hyperbolic metric 8 is defined by

L1 14 p(zw)
) =5 )

[ is also called the Bergman metric on B,,. For r > 0 and z € B,,, denote

D(z,r) ={w: B(z,w) <r}.

, zZ,w € B,.

The two metrics p and 8 define the same topology on B,,. In the estimations, we will use
whichever is more convenient. The following lemmas are straightforward to check. We omit the
proofs.

LEMMA 2.11. For z,w € B,,, we have

(1) ﬁ(z’w) € [_% log(l - P2(Z,U))),10g2 - %log(l - PQ(Z,w)));
(2) 1— p2(z’w) c [efZﬁ(z,w)yllefZﬁ(z,w)).

LEMMA 2.12. For z,w € B,,, the following hold.
1)
1 2
1=z w)l > 51 = 2.
(2)
2 1 2 oy 41— 27
1=Jez(w)]” € { (A= [z)(A = Jwl), 47— 5 | -

1= Jw]?

2.4. Spherical distance

The following definitions and lemmas will be used in Section 5.

DEFINITION 2.13. Let S = 0B, be the unit sphere in C". For (, £ € S, the spherical distance
d(¢, €) is defined by

Then d defines a metric on S (cf. [20]). For § > 0, denote

Q(¢6,6) ={¢ € 5:d(¢¢) <}

Let o denote the normalized surface measure on S, that is, o(S) = 1. For z,w € B,,, we will
also write d(z,w) = |1 — (z,w)|"/2. Then d also satisfies the triangle inequality [20, Proposition
5.1.2].

LEMMA 2.14 [20, Proposition 5.1.4]. When n > 1, the ratio o(Qs)/6*" increases from 27"
to a finite limit Ay as § decreases from /2 to 0.

On the punctured unit ball B,,\{0}, consider the projection

z

s : B \{0} = S, z+— o
z

For z,w € B,,, we will consider the spherical distance between their projections on S. Let us

denote

1/2

ds(z,w) = d(rs(z), 7s(w)) = ’1 _ < z w >

K
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LeEMMA 2.15. For z,w € B,,, we have

(1) d®(z,w) < dg(z,w) + (1= [2]*) + (1 = [w]?);
(2) d*(z,w) > %d%(z,w).

Proof. By definition,

P == Gl &) =|1- (£

Therefore,
(2, 0) < (1= |2lJw]) + |2 flwl 1 - <| |lu‘j|> < (1= =2) + (1 ) + (2 w).

This proves (1).
The proof of (2) relies on the fact that 2|1 —rc| > |1 — ¢| for any r € (0,1) and c € C, |¢| < 1.
So

&(z,w) = 1= (z,w)] >;‘1—< zow >‘ — L w),

12] Jw] 2
2|

This completes the proof. O

2.5. An inequality

In [8], the following theorem was proved, and then used to obtain p-essential normality of
principal submodules.

THEOREM 2.16. Suppose that h is a holomorphic function defined in a neighborhood of B,,.
Then there exist a constant C > 0 and a positive integer N, such that for any z,w € B,, and
any f € Hol(B,,), we have

— (Z, W N
Ih(Z)f(w)KCMV L Sl (21)

The constants C' and N depend on the function h. In the case when h is a polynomial, the
constants depend only on the degree of h. We provide a direct proof here.

THEOREM 2.17. Suppose that p is a polynomial and N = degp. Then for any f € Hol(B,,)
and z,w € B,

1=z w)Y

z wSC—/ A) f(A)|dv(N). 2.2
Ip(2) f (w)] 0 o)y o [p(A)f(A)]dv(X) (2.2)
The constant C' depends only on N.

Proof. For w € B,,, w # 0 and a,b > 0, denote

Qu(a,b) = {z € B, : [Pu(z) —w| < a(l — [w]?),|Qu(2)] < b(1 — [w[*)"/*}.

From [20, 2.2.7], there exist a,b such that D(w, 1) contains Q.,(a,b) for any w € B,,, w # 0.

For a polynomial p with degp = N and for w € B,,, choose an orthonormal basis {ey,...,e,}
such that e; = . Then w = (Jwl],0,...,0). In the case w = 0, choose any orthonormal basis.
For any multi-index a = (a1, ..., ay,) such that |a] < N, applying [10, Lemma 3.2] to the one

variable polynomial 9%2 - - - 9% p(-, wa, ..., w,), we get
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0°p(|wl,0,...,0)f(lw],0,...,0)]

1 (0% (03
< (1_w|2)(x1+2/|)\ . \‘)'a 2007 p(A1,0,...,0)f(A1,0,...,0)[dv(A).

Applying [10, Lemma 3.2] again to 95° - -- 95" p(A1, -, ws, ..., wy,), we get
|052 - 0pmp(A1,0,...,0)f(A1,0,...,0)]
e
S—————%ma 05 -+ 95 p(A1, A2,0,...,0) f (A1, A2, 0,..., 0)[dv(A2).
(1 — |w2)2* Jpojc ot w2
Inductively, for any k. =1,...,n — 1,
10,570 p(M, - Ak 0,0, 0) f(AL, oo, Ak, 0,10, 0))

1
< Ok 2 9% (A, .., A 0,...,0
- (1 - |U1|2)ak/2+1 /Ak+1< rffr(l—\wIZ)l/? I k42 " p( b PR ’ )

f()\h ey )\k+170, PN 7O)|d’l}()\k+1>.
Combining the inequalities above, we get

o 1
0% ) ()| S s o anieats o PO SO0
N[ <b(1—|w[?)"/?

1
e [ Pl

Since p(2) = 3| < n Ca0“p(w) (2 — w)“, where ¢, are the Taylor coefficients, we have

(1 = Jwl

|21 = |w]]* 2|2 - - 2]
<
p(2) f(w)] < | Z<N = 0l T o PO FON) | do(N).
Notice that
Jz = w]® \w|| Bk
R 2 g = e <1
‘We have
1= (z,w)|
21— |wl| < 1= (z,w)], || < ————=,i=2,...,n.
T )
Therefore,

—Az.w ai+|a’|/2
pEfw) S T (1'1@'2’)&3“@,/2%“ / L PO )

la|<N D(w,1)

_ =)y

~ (l—IwIQ’)NW/D(w,l) [P fF(N)]dv(X).

From the previous argument, we know that the controlling constant depends only on N. This
completes the proof. O
2.6. Some useful computations

The following inequality will be useful in subsequent estimates. Its proof is a direct application
of the Holder’s inequality.
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LEMMA 2.18. For a positive integer M and a1, ...,ap > 0,

(a1 —|—a2+~--+aM)2 < M(at +a3+---+ad3y).
We will use the following version of Schur’s test.

LEMMA 2.19. Let (X,du) and (X,dv) be measure spaces and T be an integral operator
with non-negative integral kernel K (z,y),

/f K(z,y)duly), z,y€X.

Suppose that there exist a pu-measurable positive function h and a v-measurable positive
function g on X such that

[ nK e int) < Ag(a). - acl
and
| s@ K @ )avia) < Brw). ol
then T defines a bounded operator from L*(X,du) to L?(X,dv) and ||T| < AY/?B'/2.

We want to apply Schur’s test to operators determined by the following integral kernels. For
any r > 0 and non-negative integers [ > 0, 0 < d < n, define

(1—
1) = [ S |1zlff;|”)+1“d”(w)’

l
o= [ G

|1 — (2, wy|n it

(1= )
Tif (2 /f T (o af ),

. 1— |w?)
T = [ ) g o)

1— |w|? !
Rife) = [ (Z’T)Cf<w>|1_(<zﬂ'ﬂ>',fﬂ+ldv<w>

. 1— 112y
l,df(z) = /D((z’,o) e f(’UJ) |1 _( <Z’, |:)/>||n)+1+l dv(w)

Here w' = (wy,...,wq).

LEMMA 2.20. For the operators defined above, the following hold.

(1) For any positive integer | and 0 < d < n, T}, Ty, define bounded operators on L*(B,,).
If1 > 1, then Ty also defines a bounded operator on L*(B,,, (1 — |z|*)dv(2)).

(2) Forl >0, T; defines a bounded operator from L*(B,,, (1 — |z|?)dv(z)) to L*(B,,).

(3) For any positive integer | and for any f € Hol(B,,),

Tlrf(z) = Cr,lf(z)’

I
where ¢y = [}, (1— |2]2) dv(z).
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(4) For any 0 < d < n, any positive integer | and any r > 0, the operators R] and R] ; define
bounded operators on L2(B,,). Moreover,

max{|| Ry ||, | Biqll} < €r.1;

where we have €,; — 0 as r — oo, for fixed .

Proof. We will only prove the statements for Ty, T, T}, and Ry ;. We will use the Rudin—
Forelli estimates [20, Proposition 1.4.10].

Let h(z) = (1 — |z’|2)71/2. Then

1—|w')?)
/IB 1 —( <z’,Lu’)||'"?+1+lh(w)dv(w)

n

(1= fw/ )™
- Ldv,,—q(w")dvg(w")
/w’EIBd ‘1 - <Z/’w/>‘n+1+l /|’w”|2<1—’w’2 "

(1- |w,|2)l+n7d71/2

~ !
~ /Bd 11— (2, w)[n+ 1+l dvg(w')
SA-1P)7 = hn(2).

Here, v, denotes the Lebesgue measure on CF. Similarly, we have

_ w12
/B 1 _(1<z’ |w/>||n)+1+lh(z)dv(z) S h(w).

This proves (1).

To prove (2), take h(z) = (1 — |2[2) "/ and g(w) = (1 — [w|?)”". We omit the calculations.
For any f € Hol(B,,) and any z € B,
7 f(2) = /D g _(1<Z, Z‘;';);H do(w)
AT Joi?%i')?iw ) EERs
_ /D(O,T) Fop.(\) i (1<;’ L/;I;)jm dv(N)

crif(2).
This proves (3).
Let E = {(z,w) : f(w, (2,0)) > r}. Denote f; the Bergman metric on By. If (2, w) € E, then
1- |90(z’,0) (w)]? < 4e~?". Since
o (L= —|wf?)
1= (&, w)|?

1 —|@er0)(w)]

1— |w]?

= (1— » N2y - T
(1= b (@) T

either 1 — |,/ (w')]? <2 or Lol 90— Let By = {(z,w) : Ba(z,w") > Lr} and

1_|w/|2

Ey ={(z,w) : 1wl 2¢7"}. Then E C Ey U Es. It is easy to show that the integral kernels

1—|w’[?
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’ l ’ 1
XE, % and XEQ% define bounded operators with norms tending to 0
as r — oo. This proves (4). O

We will also use the weighted Bergman norm. For [ a positive integer and f € Hol(B,,),

9132, = [ UEPQ- B oo

n

The following lemma is well known (cf. [13]).

LEMMA 2.21. Let T be a bounded linear operator on L2(B,). If there exists a constant
C > 0 such that

ITFIP < CIfI3: . Vi € LA(B.),

then T' € C,, for all p > 2n.

3. Asymptotic stable division property and essential normality

By Lemma 2.1, in order to show that a submodule P is p-essentially normal, Vp > n, one
needs to show that QM? P is in C, for any p > 2n. That means, for f € P, one needs to
find an element in P that is close enough to M7 f. In the case when P is principal with
generator h, the set of functions {hf : f € C[z1,...,2,]} is dense in P. For a function hf, a
reasonable approximation of M (hf) will be hM? f (cf. [8, 10, 13-15]). In general, suppose

P is generated by {h1,...,hx}, it may happen that 25:1 h;f; equals 0 , while Z?Zl h; M f;
does not. Thus, the distance between M;(Zle h;f;) and Z?:l h;M? f; may not be small
k
(compared to | S5, hyfy 2 -
One can avoid such problems by putting restrictions on the decomposition of f. In [21],

Shalit considered submodules of the Drury—Arveson module, with the stable division property.
For a submodule with the stable division property, one can always find a decomposition

f = Z?:l hjfj with

k
> £l < ClIfl, (3.1)
j=1

where C'is a constant depending only on P. Shalit showed that graded submodules with stable
division property are essentially normal.
We propose the following definition of asymptotic stable division property.

DEFINITION 3.1. Suppose that P is a submodule of the Bergman module L2(B,,). P is said
to have the asymptotic stable division property if there exists an invertible operator 7" on P, a
subset {h;};ca C P, finite or countably infinite, and constants Cy, Cs, such that for any f € P,
there exists {g; };cn C Hol(B,,) with the following properties.

(1) Tf = 3,24 higs, where the convergence is pointwise if A is countably infinite.
(2)

/B (Zhi(z)gi(z)|> dv(z) < C1| fl12:-

€A
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/| (Zm (= ) (1~ |2)dv(=) < Call 12 .

€A

Similar to the case of stable division property, we have the following theorem.

THEOREM 3.2. Suppose P is a submodule of L?(B,) with the asymptotic stable division
property. If the generating functions h; are all defined in neighborhoods of B,, and the sets of
constants {C;}ien, {N;}iea, determined by h; (as in Theorem 2.16), are bounded, then the
submodule P is p-essentially normal for all p > n. In particular, if the generating functions h;
are polynomials of bounded degrees, then P is p-essentially normal for all p > n.

Proof. Denote P the projection operator onto P and @ the projection operator onto P-=.
By Lemma 2.1, it suffices to show that [M , P] = QM} Pisin Cy,, Vp > 2n. Let N = max{N; :
i € A}. Since C; are uniformly bounded, by Lemma 2.12(1), there is a constant C' such that
inequality (2.1) holds for all h; with constants C' and N. Choose a positive integer I > N.
Define

X - _ !
MO e = [ KD e~ ol dow),
where K (l)( )= W is the weighted reproducing kernel, and ¢ =
fIB 1—\w| dv(w). For f € L2(B,),

M2, f(2) = M) f(2)]

/ (wr = 25) f(w) K (2)do(w) — Cl_l/ (k. — 22) f(w) KD (2)(1 = [w]?) dv(w)
B, Bn

w — 2|
S /JBn \f(w)|de(w)

1
S /IBW, \f(w)|de(w).

By Lemmas 2.20 and 2.21, M, MZ(Q* is in C,, for any p > 2n.
For f € P, by assumption, Tf > iea higi. Define

Sef(2) = hi(2)

€A

where
) -1 — ) . o] .
Gi2) =" [ () K - o) du(w), i€ A
For each i € A, applying Theorem 2.16, we get

|hi(2)Gi(2)] = ¢! hi(Z)/wkgi(w)Kff)(Z)(l - Iw2)ldv(w)‘

) 1= (z,w)|V / (1— |w?)’
e [ (e e wp)
<O | G T g, PO o)
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1
= Cc—l/ hi(\)gi(A
1 Bn| (Ngi(N)] b (1 — |w‘2)n+1+N4|1 — (z, w)|rHN

dv(w)dv(N)

A
S C/ |1 E (z, |)\>||n)+1+l v dv(A)-

By Lemma 2.20 and our assumption, h;G; belongs to L?(B,,). By [8, Proposition 5.5, h;G; is
in the principal submodule generated by h;, which is contained in P. Moreover,

11— "
Z hi(2)Gi(2)] < 0/ (Z [hi(A)gi(A ) I _( <Z’|)\>|n)+1+lNdU(>\)'

iEA 1EA

By condition (2) in Definition 3.1, the series >, \ h;G; converges weakly. Therefore,
Skf = ZieA h;G; € P.

Next, we show that QMZ,Zc “P is in C, for any p > 2n. Once this is done, we will have
QM: P =Q(M;, — MY )P + QM) P € C,, which is exactly what we need.

For any f € 7D

M Tf(2) = Suf(2)]

@'

€A

/ Wiy (w)gi (W) KD (2)(1 = |w]?) do(w)

- / wihi(2)gi (w) KD (2)(1 — |w|2>ldv<w>’
=c -1 Z
iEA

- /(Wk — Zi)hi(2)gi(w) KL (2)(1 lez)ldv(w)'

/w’“_zk J(w)gi(w) KD (2)(1 ~ [w]?) dv(w)

1 — |wl|? !
S Z/lh w)gi(w (<Z’U}|>|T|L<‘r)1/2+l dv(w)

€A
1— |wl? !
+§%/|h Vg (w (<Z,w>|7|ﬁ)1/2+ldv(w).
Again,
1—|wl? :
/ |hz(z)91<w)| |1 —(<Z,U)|>|n+)l/2+l dv(w)
1=z e a—fwp)
S G g MO OO )
< [ s S o,
Thus,

oNI=N
IMO*Tf(2) = Sif(2 /(Zm >|1_<<127_w|;1|)7|1+)1/2+l]vdv(w).

€A
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Applying Lemma 2.20(2) on the right-hand side, we obtain

2
QYT < MY TS - Sf 5 | (Z |hi<w>gi<w>|> (1~ fw?)do(w) £ 113

€A
By Lemma 2.21, QMZ(?*TP is in C, for any p > 2n. Since T is invertible on P, we

have QMY P = QMY TPT~'P € C,, ¥p > 2n. Thus, QM, P is in C, for any p > 2n. By
Lemma 2.1, P is p-essentially normal for all p > n. This completes the proof. g

REMARK 3.3. As indicated in the title, the aim of this paper is to find a unified proof
that works for most known results of the Arveson—-Douglas Conjecture. First, suppose that
h is a holomorphic function defined in a neighborhood of B, and Pj is the principal
submodule generated by h. Then P; has the asymptotic stable division property trivially.
Second, Theorem 3.2 generalizes Shalit’s result in that we do not require the generators to be
polynomials and we do not require the submodule to be graded. In fact, by Theorems 2.16
and 3.2, any finite set of generators {h;}*_,, defined in a neighborhood of B, satisfying
inequality (3.1) for relevant norms, generates an essentially normal submodule. Finally, we
will show in Theorem 4.1 that most of the submodules in [9, 11, 12] have the asymptotic
stable division property.

Before proving Theorem 4.1, let us discuss the matter with some generality. Consider the
following technical hypotheses.

HypoTHESIS 1. Suppose I C C[zy,...,2,] is an ideal, N, M are positive integers, C' > 0. For
any € > 0 sufficiently small, there exists Ry > 0 with the following property. For R > Ry, there
exist constants 0 < 6 < 1, C' > 0, open covers {F; }ica, {F;}ica, finite or countably infinite, of
Bs :={z € B, : |2| > ¢}, and for each i € A, asubset {p;;};er, C I, finite or countably infinite,
such that the following hold.

(1) E;, C F; CB,.
(2) For k € N, denote

E = {w cB,: 5(w,El) < ]{?R}

Then E;3 C F;. Moreover, any z € B,, belongs to at most M of the sets {F;}ica.
(3) Forany i € A,j €T, degp;; < N.
(4) For any ¢ € A and any f € Py, there exist {f;;};ecr, € Hol(E;3) such that

()
/ [ s - s v < /Filf(k)l dv(\)

jel;

/Em Z pij (A) fij (A dv(\) < C/Fi | (V) [Pdu(N)

jel;

(iii)

2

[N DT CN RCETR e

jerl;
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<¢ [ IFOPQ - PP,
F;
(iv) The maps f — f;; are linear.

THEOREM 3.4. Under Hypothesis 1, P; has the asymptotic stable division property with
generating functions consisting of polynomials of bounded degrees.

Combining Theorems 3.2 and 3.4, we have the following corollary.

COROLLARY 3.5. Assume Hypothesis 1. Then the submodule P; is p-essentially normal for
allp > n.

Proof of Theorem 3.4. Let I, N,M,C be as in Hypothesis 1. Let ¢ >0, R >r >0 be
determined later. We will always assume that R > Ry, where R is determined by ¢, as in
Hypothesis 1. For i € A, define

()= {1 BEE) <R
’ 0, otherwise.

It is easy to see that
(2) {#z:pi(2) # 0} = Ei1, and
(3) lpi(2) — pilw)| < 25
Fix a positive integer [ > N. Define the linear operator
T:I1=Pr, [foTfz)= Y piy2)g:0),
i€AGET;
where

9ij(2) :/ pilw) fis (W) KD (2) (1 = |w]?) dv(w).

B

First, we show that T is well defined and extends to a bounded operator on P;. For each pair
1,7 and any z € B,,,

pij(2)gi; (2)]

N
<ot [ el duw)

L Y TN e 1 M
s f Al [ o) i)

o I—N
</ I _<1<; L/;ln)HHNdv()\). 652

Here, the second inequality comes from Theorem 2.17. Hence,

Ipsigisl? < / by fis 2w < CLfI
2

i

Therefore, the map f — p;;g;; extends to a bounded linear operator from P; to the principal
submodule generated by p;;. By [8, Proposition 5.5], the image for any f € Pr equals p;;gi;
for some g¢;; € Hol(B,,).
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Next, we show that T itself extends to a bounded linear operator. From inequality (3.2), we
see that

o\[=N
Z pi(2)gi5(2)| < Z/Ez i (N) fiz (V)] I _(1<Z’ )\)>\||n)+1+l—]\idv(>‘)

- [ (2« N L s S Y
- i ELQ ij ij |1 N <Z, )\>|n+1+l7N .
By Lemma 2.20 (1),
ITFIP < 1D IpigisI°
]

2

< /B > e Z\pu V1| do().

By our hypotheses, for each A, there are at most M functions yg,, with xg,,(A) # 0. By
Lemma 2.18,

2

2
ZXEIZ Z ‘ng fz] )l < MZXE7,2 Z ‘ng fzg

Therefore,

2

71 < I ol S MY [ S Al | o)
<y [ foPan)

< oM f|*.

Hence, T defines a bounded operator.
Arguments similar to those in the proof of Theorem 3.2 show that T'f € P; for all f € I.
To sum it up, 7" extends to a bounded linear operator on P; and for each f € Py, T'f has
the form Zi,j pi;j9i;- Moreover,

2

> lpigil|| S CMPIfIP (3:3)

Since [ > N, by Lemma 2.20, the estimates above will also give us the following:

2

/ Z|pu i) | (L= |=)dv(z) £ M| I (3.4)

Next, we want to show that inequality (1) in Definition 3.1 holds. We will obtain this by
showing that a finite rank perturbation of 7' is invertible on P;. For any z € B,, and the
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chosen r < R,

() - Yoo [ el @)KDE0 - ) do(w)

i, D(z,r)
<Z\P \/ £ |%dv(w)
K B \D(z,r) i 11— (z, w)[rH1H
l
Ltz / (1— wl?)

: G [ e o
%/EH\D(ZJ-) (1_|w|2)n+1+N D(,w’l)| J( ) J( )‘ ( )|1—<z,w>|n+1+l ( )
="

<
Z/ Ei\D(zr—1) |pw )fz]()\)ul <Z,)\>|n+1+ldeU()‘)

1— A2
= /D(“ N (Zmz )pis () fis (A >)|1_(<Z’ )\>||n>+1+l_Ndv()\).

Also,

Z)/ pi(w) fis () KD (2)(1 = [w]) dv(w)

D(z,r)

Zplj(z)spz(z)/D( )fm( )K(l ( )( *|’LU|2)ld’U(w)
r — w2}

< Z |pi; (2)] ‘/Em R|fij(w)||1_(1<z7|w>||n)+1ﬂdv(w)

|1— ZU} N (1_|w‘2)l
SR Z/E . W /D(w,l) \pij(A)fij(A)Idv(A)de(w)

1— A2
SEX [ sl R

r (1=»"
= E ZXE73 ()‘)|pw(>‘)f1](>‘)| |1 — <Z, )\>|71,+1+1_Ndv()‘)'
]
Finally, notice that if ¢;(z) # 0, then z € E;;. By Lemma 2.20(3),
S | B @D ol () = = s
i,j z,T

By Lemma 2.20 and the previous arguments,

Tf—CrlZ%ZPzgfzg ZXE3|pzjf2J

N(Er 1,1-N t+ )

S (ermvamw + 35 ) (€M) £
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On the other hand, by Hypothesis 1

/ SO0 = 1)) do(h) < e JRICIRIES

So,

2
A Z‘Pz szj fzj sz dv()‘)

2

210 D DS HCIHESEFIeY RTEEY
10 DY VICVHEY

< M| f]%.

Combining the above estimates, we get

Tf—cn Zm

Let Ts-~ . be the Toeplitz operator with symbol >, ¢i- Then the above implies

=) (€M) 4 20| £

5 |:(€T—171—N + R

17 = eriTs, o I S [ (errion + ) (€)Y 4+ /20 ] | . (3.5)

Since C,I, N, and M are fixed, we can choose ¢, r, and then R > Ry so that
(Gr 11-N + ) (CM)Y? 4+ €2 M < 1/2¢,..
For a positive integer k, denote
I, ={q e I,degq < k}.

Since > ¢; = xB;s, we can choose k large enough so that the compression of Is p, on Proly

is invertible on P; © I}, and the norm of its inverse is less than 2. Then the compression of T on
Pr & I, is invertible. By a block matrix argument, it is easy to see that T := T(P —Pr)+ Pr,
is invertible on P;. Here, P denotes the orthogonal projection onto P;. Choose an orthonormal
basis {h;} for I} under the Bergman norm. For any f € Py,

Tf= Zpijgij + P f= Zpijgij + Zcihi
,J 5 i

Then by inequalities (3.3) and (3.4),
2

[ Z ol | dos i - PsI? < 1112
i,j
Since Iy, is finitely dimensional, we also have

/(Zi:|cihi|>2dv <

2
S IR

Z Cihi
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It is also easy to see that P, extends to a bounded operator on the closure of I in L3,1(Bn)~
Therefore,

2
/ (Z_ |cihi|> (1= =)o S 171 -

and
2
/ > Ipigisl | (A= [=P)dv SIf = Profll7z S5 -
.
This completes the proof. (I

4. A distance estimate

As promised in Remark 3.3, we are going to show that most submodules in the known results
of the geometric Arveson—-Douglas Conjecture have the asymptotic stable division property. In
fact, we will prove the following more general result.

THEOREM 4.1. Suppose that I is an ideal in Clz,...,z,] with primary decomposition
I = ﬂ?f:lljmj , where I; are prime ideals. Assume the following.

(1) Foranyj =1,...,k, Z(I;) has no singular points on 0B,, and intersects 0B,, transversely.
(2) Any pair of the varieties {Z(I;)} does not intersect on 0B,,.

Then I satisfies Hypothesis 1. Consequently, the submodule P; has the asymptotic stable
division property with generating functions being polynomials of uniformly bounded degrees,
and P; is p-essentially normal for all p > n.

We will prove Theorem 4.1 in the remaining sections.

NoOTATIONS. For the remainder of this paper, we reserve the notations I, m;, and I; for the
ones mentioned in Theorem 4.1. Denote Z = Z(I), Z; = Z(I;), Z2 = ZNB,,and Z; = Z; N B,,.

As a preparation, we will prove a distance estimate for Z(I) in this section.

PROPOSITION 4.2. For fixed R > 0,

sup  B(w,T.Z4+z2) =0, |z|—=>1,z€Z. (4.1)
weD(z,R)NZ

Here, T, Z is the complex tangent space of Z at z, viewed as a linear subspace of C™.

Proof. Since Z intersects 0B,, transversely, there exists C; > 0 such that, for any z € Z
close enough to dB,,, there exists a non-zero vector v, € T, Z such that

|Q=(v2)] < Cif{vz, 2)]-

It is also easy to see that there exists Cy > 0 such that for r > 0 sufficiently small and any
z € Z close enough to 0B,

sup  dist(w,T.Z + 2) < Cor?.
weZNB(z,r)
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Here, we use ‘dist’ to denote the Euclidean distance. Also, since R > 0 is fixed, there exists
C5 > 0 such that for any z,w € B,, and 8(z,w) < R,

[Pe(w = 2)| < Cs(1 = [2),  |w— 2" <C3(1 =2
For any z € Z and w € D(z, R) N Z, let A € T, Z be such that
dist(w, A + 2) = dist(w, T, Z + 2).
Then
[ — (A +2)] < Colw — 2> < CoC3(1 — [2[?).

Let N = \— &F2=w2) ), Then X € T,Z. We need to estimate B(\ + z,w). Noticing that

<'UZ>Z>
(N + z,2) = (w, z), we have

(1= 2)1Qu(w = N)| _ 1Qx(w — )|

|Lpz()‘/ + Z) - L)Oz(w)| =

T (w Al (1)
Since
, [((A+ 2z —w, 2)|
Q- (w —X)| <[Q.(w—N)| + sz(%ﬂ

_ A+ 2 —w,2)|

=|Q:(w — (A +2))| + W|Qz(vz)|

<A +C)lw—(A+2)|

§ (1 + 01)0203(1 — |Z|2),
we have

1/2

=N+ 2) = g (w)] < (1 = |2]?)

Since w € D(z, R), from the above inequality, for z close enough to dB,,, . (w), . (N + 2) fall
into a compact subset of B,,. Hence,

BN + 2,w) = Blp=(N + 2), 02 (w)) = 9= (N' + 2) — p:(w)]| < (1 = [2]*)

This completes the proof. O

1/2

It is convenient to consider the following modified version of tangent space, because it is
invariant under the Mobius transform ..

DEFINITION 4.3. For z € Z, let us define the normal tangent cone NT,Z to be
NT.Z =T.ZNz" +Cz.
Note that z € NT. Z.

LEMMA 4.4. For any R > 0, we have

sup B(w,NT.Z) -0, z€Z |z|—1.
we(T,Z+z)ND(z,R)

Proof. For z € Z close enough to 0B, let 2o = Pr_zz. Since Z intersects 0B,, transversely,
we can assume that |zo| > € for some 0 < e < 1.
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Suppose w € T, Z and B(w + z,2) < R. Let A = P,w +w — (w, 2) |;U“|2. Then A € NT,Z and
(w, z) = (A, 2). So g, (A + 2z) is well defined. Therefore,
1/2 (w,z —|z
- {ERQ.(0) | .

|20l -1 2y1/2
e (1—-1z — 0,
1—(z+w,z) N(l_‘z|2)1/2 (1=12%)

| 2

|<PZ(Z + w) - @z(z + )‘)‘ =

where the first inequality follows from the fact that |(w, z)| = |[(w + z — 2,2)| < 1 — |z|?. This
completes the proof. O

Combining Proposition 4.2 and Lemma 4.4, we have the following lemma.

LEMMA 4.5. For any R > 0, we have

sup B(w,NT,Z) -0, z€Z |z|—1.
weZND(z,R)

5. A covering lemma

As a first step to proving Theorem 4.1, for arbitrarily large R > 0, we will construct covers
{E:}ien and {F;}ica. In [26], Xia constructed covers of B,, with the bounded overlap condition
(2) in Hypothesis 1. Our construction will follow the general framework of [26], but with
additional requirements. First, our covers need to take the variety Z into account. For this
reason, we will construct the covers in two steps: first on Z and then on B,. Second, to
construct the decompositions on each cover set, we need the sets to be rotation invariant in
certain directions. This property will be used in the proof of Lemma 6.4.
For an arbitrarily large R > 0, choose s’ so that

(s —1)log2 < 16R < s'log 2,
and then take s = 10s’. For a positive integer k, define
re=V1—2"2k  pl=1/1—2"25F

Write Z;, = r,S N Z, where 1,5 = {rix : € S}. Let L C 25 be maximal with respect to the
following property: if w;, u; € Lj, and u; # u;, then dg(u;,u;) > s27 k=2,
For u € Ly, set

- 1— |22
E’u, = {Z S IB” 1 — |Z|2 > 2755, |1 — <Z,U>| > 872, |]_—<,;L,>|2 < 223},

F = {z B, 1|2 > 270 1 (s > L2, LB 2—8},
2 [1—(z,u)|?
and
Eu=¢u(E.), Fu=pu(Fu).
Let
O ={weB,: B(w,Z) > 5s"log2}.
Take S, = 1,5 N O. Let L) C Sy, be maximal with respect to the following property: if v;,v; €

Sy and v; # v;, then dg(v;,vj) > §'2=5'k=2 For v € L., let

-~ / 1—|z? /
E;} = {ZGBn1|Z|2 >275S ,|1*<Z,’U>‘ >5/27|1—<2,|’21|,L>|2 <2728 },



ESSENTIAL NORMALITY — A UNIFIED APPROACH 23

and
qu) = 5071(E~I1l))'
Set
F;:E:;Bv F:;:ELS»

where for any set A C B, and j € N, we denote A; = {w € B, : f(w, A) < jR}. Let K be a
positive integer determined later, and £ = Up>k Lk, £ = U105 L}
Let us establish some basic properties of the sets.

LEMMA 5.1. For k, s’ large enough and u € Ly, v € L, the following hold.
(1)

E,={weB, :1—|w?e 2 2k+3s 9=2k+Ds) iy ) < 62755 1 — |, (w)[]* > 27°%},
E, ={weB,: :1—|w]e (2203 2720+ iy w) < 275 1 — |, (w)[> > 27},
Fy={weB,:1—|wf e (27 Fs 2727%) d(u,w) < V252771 — |, (w)]* > 27}

(2)
E, C D(u,3slog2), E. C D(v,3s'log2), F, C D(u,4slog2).
3)
(weB, : fw,E,) < Zlog 2} C F.
Thus, F,.4 C F,.
(4)
E, D {,w €B,:1— |’LU‘2 c [2_2(k+2)s,2_2(k+1)5),ds(u,w) < 82—]65—1}’
E D{weB, :1—|w?e 2720+ o=2(k+1)s"y go(p w) < s'27F' 1},

(5) There exists a constant M > 0, depending only on n, such that any z € B,, belongs to
at most M of the sets {Fy,}yer U{F, }ver-

Proof. First, we prove (1). Suppose u € L. By definition, w € E,, if and only if ¢, (w) € E,,
that is,

_ w)|2 —5s _ w). u 52 1 — [pu(w)]?
1 —pu(w)]">27, 1= {pu(w),u)| > "= (pu(w), w2

Since 1 — |u|? = 272%% and by Lemma 2.9 (1), the conditions above are equivalent to

1= Jpu(w)]* >27%, |1 = (w,u)| < s272F, 1 — |w|* <2720FDs,

<2732

Also, by Lemma 2.12(2),
1 1 = .
1= ful? =1~ [pugu(w)? > (1~ )1~ pu()?) > 727245 > 9720495,
Thus, we have
E, = {w €EB, :1— |’U}‘2 c (2—2(k+3)s,2_2(k+1)5),d(u,w) < 82_ks, 1— |80u(w>|2 > 2—55}.

The proof of (1) for E! and F, is similar.
The proof of (2) is a straightforward application of Lemma 2.11 to the estimate of
1 — |pu(w)|? above.
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To prove (3), suppose w € B,, and B(w, E,) < §log2. Choose z € E, such that 3(w,z) <
B(w, £,) +1log2 < §log2+log2. Then by Lemma 2.11,

1— |§0w(z)|2 > 6—25(2,111) > e—%log2—2log2 _ 2—%—2.

By Lemma 2.12(2) and part (1) proved above,

1 1 s
L= fuf? > 1= o)1~ pu(2) ) > 7 - 2720490 37572 5 g2thri (5.1)
and
1— |Z‘2 9—2(k+1)s o
o 2 2ks—s
1—|wl” < 41 EPETE <4 593 <2 . (5.2)
Also,
1— |Z|2)(1 _ |U}|2) 272(k+1)s . 272]@878 B 3
d4 =11 — 2:( _ 24195 25'
(sz) | <va>‘ 1— |<Pw(z)|2 < 2—:5—2 <
Therefore, d(z,w) < 27%~3. Hence,
d(u,w) < d(u, 2) + d(z,w) < s27F 427873 < \/2527F, (5.3)

Finally, by Lemma 2.11,

1 , 1. ... (5

B(z,u) <log2 — ilog(l —|eu(2)]?) <log2 — 510g2 =13 +1]log2.
Therefore,
)
Blw,u) < B(w, z) + B(z,u) < Zlog2—|—log2—|— (28 + 1) log2 < 3slog?2

and

1 — |y (w)|> > e 2351082 = 9=6s (5.4)
From inequalities (5.1)—(5.4), we have

{w €B, : B(w,E,) < Zlog2} C F,.

This proves (3).
Suppose 1 — |z|? € [272(k+2)s 9=2(k+1)s) and dg(u,z) < s27%*~1. By Lemma 2.15,

d*(u, 2) < di(u,2) + (1= [2]*) + (1 = [uf’)
< 822—2]@5—2 +2—2(k+1)8 +2—2k:s
< 82272}’@571.

‘We have

(1~ Ju?)(A — |2%) - 9—2ksg—2(k+2)s
11— (u, 2)|? A9 —1ks—2

By (1), we have z € E,,. This proves (4).

Finally, we prove (5). Suppose z € B,,. Let k be the positive integer such that 2 2(k+1)s <1 —
|22 <272k If z € F, and u € £;, then by (1), 2720445 <1 — |22 < 2725 Thus, k — 3 <
I < k. Since z € F, and by Lemma 2.15(2), ds(z,u) < v/2d(z,u) < 2527'*. By our construction,

if uy # us, u1,us € Ly, then dg(u1,us) > 52772, By Lemma 2.14, the number of u € £; such

—1s | so—sl—2
that z € F,, does not exceed C(%)zn < C2'9" where C > 0 is a constant. Thus,
2

L= |§Du(2’)|2 = — g49—4s+2  9—bs
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the number of u € £ such that z € F,, does not exceed C2'°"*2, Replacing s with s’ in the
proof of (3) will give us that the set {w € B, : B(w, E}) < T log2} is contained in
{w c Bn -1 = |U}|2 c (2—2(k+4)3/’ 2—2ks/_,g/)’d(v’ w) < \/58/2—/63/’ 1 |QO,U(U))‘2 > 2—65/}.

Thus, E 4 is contained in the right-hand side of the above. Thus, similar proof will show that
z belongs to at most C2!9" of the sets F! = E/;. Altogether, the total number of u € £ and
v € L' such that z € F, or z € F’ does not exceed M := C219"*3_ This completes the proof. [

LEMMA 5.2. For k large enough and z € Z with 1 — |z|? € [272(k+3)s 272ks]  there exists
u € Ly, such that

ds(u,z) < %273]".

Proof. By assumption, Z intersects 0B,, transversely and has no singular points on J0B,,.
It is easy to see that for z € Z close enough to dB,,, the orthogonal projection onto NT,Z,
when restricted to Z, is a one-sheeted analytic cover in an Euclidean neighborhood U of z.

Consider such a specific z. Choose an orthonormal basis {e1,...,e,} of C" such that e; = I—;

and NT.Z = span{ey,...,eq}, where d is the dimension of Z at z. There is a vector-valued
holomorphic function a such that ¢ € ZNU if and only if ¢ = (¢/,a(¢’)) under the new basis,
where ¢’ = ({1, ...,(q), under the new basis.

We have % = (1,0,...,0) € C? and a(2’) = 0 under the new basis. Consider the paths
Z/
~v:[0,1] — Cht s (1—t)2 +t- Tk71|*|7
z

I'(t) = (v(t),0) € NT.Z,
and
A(t) = (v(t),a((1)) € 2.

Note that A(0) = T'(0) = 2, so 1 — |A(0)|> < 272, On the other hand, by the standard inverse
function theorem, there is a constant C' > 0 such that for z € Z close enough to dB,, and X, w’
in a sufficiently small Euclidean neighborhood of 2/, we have

la(\) — a(w")] < CIN —w'|.
So, when £ is large enough,
L= [AMP =1~ Py = la(v(1D)?
> 11—y = C%y(1) = ()
> 9~ 2s(k=1) _ 29—dsk

2—28k7

WV

By the intermediate value theorem, there exists ¢y € [0, 1] such that
1—|A(t)|? = 272",

Denote zg = A(tgp). Then zy € Z5. From our construction of Ly, there exists a u € L such
that

ds(u, z0) < s275F72,
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Also, since 7 = %
d3(z,20) = d&(T(to), Alto))
< 2d%(T(to), Alto))
= 2(1 — |y(to)[*)
< 2(1 = [Ato)[*) + 2[a(~(t))[?
<2272k poC2p sk

< 9 2k+2,
Thus,
ds(z,20) < 27°FFL,
So,
ds(z,u) < ds(z,20) + ds(z0,u) < 275F 1 4 s275k=2 < 22_31".
This completes the proof. O

LEMMA 5.3. For s and K large enough,

{weB,: 1—|w? <27 2ED B, Z) < (s —1)log2} C U U E,.
k=K ueLy

Proof. Suppose w ¢ U= Uyer, Bus and 1 — [w]? € [272502) 2725(+5D) for some k > K.
For any z € Z, we want to show that 8(z,w) > (s — 1) log 2.
If 1 — |2|? ¢ (2725(k+3) 2725F) "then
L= 1P
1— w2’ 1—|z|

1- |(P2(w)|2 < min {4 } < 2—28-‘,—2'

Therefore,
Bz, w) > — 3 lo(1l — o= (w)?) > (5 — 1) log2.
If 1 — |2|? € (2725(+3) 2725k) by Lemma 5.2, there exists u € £, such that
ds(u,z) < 32781“.

Since w ¢ E,, by Lemma 5.1 (4),

ds(w,u) > 27 sk—1,

So,
ds(w,z) > ds(w,u) — ds(z,u) > s27 571 — %275}6 = %2*5?
Hence,
d*(w,z) > 1d?g(w,z) > i2*25k
2 100

Therefore, we have

L= o)A~ [0P) _ g ey e
1— . 2:( 104 42 2s 2 25'
R T
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So,

B(z,w) > —%log(l — |- (w)]?) > slog 2.

This completes the proof. O

Lemma 5.3 shows that, close to the boundary, the sets F, cover a Bergman neighborhood
of the variety Z. In fact, we have the following lemma.

LEMMA 54. For s’ and K large enough, the following are true.
(1) For any k > 10K and v € L],
{weB,: B(w,E,)) <s'log2}nZ=0.
(2)
J U=)u(UUe)ss,
k=10K 'UG[,;C k=K ueLy

where 1 — §2 = 2= 2s(K+1)

Proof. For k > 10K and v € £}, by Lemma 5.1(2),
{weB,: B(w,E)) <s'log2} C D(v,4s log?2).

If {weB,: Bw,E) <s'log2}NZ#D, then B(v,Z) < 4s'log2, which contradicts the
definition of £ . This proves (1).
Suppose w € Bs. Then 1 — |w|?> < 272D If w ¢ ;2 U,ep, Eus then by Lemma 5.3,

B(w, Z) = (s —1)log2 > 9s’ log 2.
Suppose 1 — |w|? € [2725'(+2) 9-28'(k+1)) Then k > 10K. Let wy = %w. Then

(1= [w)(1 = Jwol?) _ 11—fw] _ 2720+

> _ 2—43/—2.
|1 — (w, wo)|? 41— |wpl? 4.2-25'k

1= Jpu(wo)|* =

By Lemma 2.11, S(w,wp) < log2 — %log 245'=2 < 34/10g 2. Therefore,
B(wo, 2) > Blw, 2) — Blw, wo) > 65'log 2.

Thus, wy € ONr,S. By construction, there exists v € £ such that dg(wo,v) < §'2 k=2,
Therefore, dg(w,v) = dg(wo,v) < §275*"2. By Lemma 5.1(4), w € E/,. This completes the
proof. O

6. Local decomposition formulas

To show that the I in Theorem 4.1 satisfies Hypothesis 1, we need to construct decompo-
sitions ) p;;fi; on the sets E,3(or El3), for f € I. It is more convenient to construct the
decompositions on their images under a Mobius transform.

LEMMA 6.1. There exist a positive integer N and a constant C' > 0, depending on I, such
that the following hold. For any R > 0 sufficiently large, let {E, }}uer, {Fu}tuer, {E,}ver and
{F]}vec be as in the beginning of Section 5. Then there exists a positive integer K such that
the following hold.
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(1) For each u € Ly, k > K, there is a finite set of polynomials {p;} C I, sup,degp; < N,
and ljnear maps I — Hol(E,3), f — fi satisfying the following inequalities.
D) [, | 2ipfi = fPPdv < Ceg, [ |f]Pdv.
(i) Jfp s 2 I fil)2dv < CfF \f|2dv

Here eg = € is defined in Lemma 2.20.
(2) For each v € L, k> 10K, there is a p € I such that p is non-vanishing on F,, and

degp < N.
Some preparations are needed for the proof of Lemma 6.1.

LEMMA 6.2. For any positive integer m,k, and x,y € C, x,y # 0, there are constants

{c; Y5 {d; Y52, such that

m—1

k—1
ZCJ +Zodjxk 7ym+3

Proof. We prove by induction on m. For m = 1 and any k,

k—1 i k—1
1 1 11 1 pIyk—1- 1 (x— 1)
(7 %) R e

Suppose the equation holds for m — 1 and any k. Then

1 B j m 1
e DL +Z Jmk Jym e,
j=0
2 P _ k—j—1
_”‘ZC,<x—y>J+Zd,<x—y>m ( L'y oy )
- J k+j7 J —1+7 k—j k—j—i, 141
: ykts ymot \ gkl e byl
m—1

ZCJ k+] +Zdl oF1 m+l

=0 =0

0

<

This completes the proof.
The following lemma is elementary.

LEMMA 6.3. Suppose 0 < a<b and d is a positive integer. Write B? ={z € C? : a < |2| < b}.
Then for any f € Hol(bB,), we have

(1)
2 b 2
[ istar< 2 [ irpan
bB, b—a BY

(2) For any multi-index a = (a1, ..., Qq),

Flw)w¥dv(w) = cqp,00% f(0).

B
Here Ca b0 = o o |w® |2dv(w).

LEMMA 6.4. Let d,m be positive integers, 0 < d < n. For R > 0 and a positive integer k
that are large enough, the following hold. Let s = 10s’, where s’ is the unique integer satisfying
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s’ —1)log2 < 16R < s'log?2. Write r =1 —272ks 4 = (r,0,...,0), and define E := E,,

F := F, as in the beginning of Section 5, that is,

2 —5s o 12 —2s
E={z€B,:1—|z>>27% |1 - (z,u)| > s M= GaE <2

11— (z,u)
and
F= {z €EB,:1— |22 >275% |1 — (2,u)| > 18—271_7|Z|2 < 2—5}.
2 1= (zw)?
Write U’ = 7(F), where  is the projection w: C* — C% 2z ++ 2’ := (21,...,24). Then there

exist 0 > 0, depending only on d,m,R, and C >0, depending only on d,m, with the
following properties.

Suppose a : U' — C"~% is holomorphic and |a(z")| < §,Vz' € U'. Write A = {(2/,a(2')) : 2’ €
U'}. Let {Po = Py, ..o} be the set of canonical defining functions with respect to |ma.
Here a = (441, .. .,0n), |@| = m. Then there exist linear maps f +— f,, where f € Hol(B,),
flma =0, and f, € Hol(E3), with the following properties.

1)
/| 1f= X Ruffan< o PR

la]=m

(2) For any a, 8,]a] = || = m

/ \Pﬁfa|2dv<0/ |f|2dv.
B F

Here eg = € o is the constant defined in Lemma 2.20.

Proof. To simplify notations, we write m(z) = (2/,0) and p(z) = (2, a(z")).
We will construct the functions f, by decomposing the reproducing kernel K,,(z). For z € F
and w € B,,, applying Lemma 6.2 for z = 1 — (z,w), y = 1 — (p(2),w), we get

m—1
<a(2’)*z ;w”)
ch oG n+m+2d T w90~ (o), )

=I(z,w) + II(z,w).
Notice that (a(z) — 2", w")™ = Py, (z,w") =32, =, Pa(z Jw”e. Write

v= ;dj (1- <z7w>>n+l-f‘11 — (p() )
Then I1(z,w) = Y|4 G(2, w)w"™ Py (2). Let
fol) = i | J@)Gz wuTdotw).
Here cp = cp, is the constant in Lemma, ;.20. Then
(Pofa)(2) =i’ | f(w)Gz,w)w ™ Py(z)dv(w). (6.1)

We will show that the functions satisfy inequalities (1) and (2).
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First, we prove inequality (2). Notice that by definition, 1—|z|> >275%Vz € F. If
§ <27%72 and |a(¢)| < 6, V& € U, then for any 2 € E3, w € F, we have

1= (p(2), w)| = |1 = (2, w') = (a("),w")| > 1 = (/,w')] = |a(z)] > |1 = (2/,w')| — 2707

1
> Sl — ().

Here, the last inequality holds because

- W) >21—|w>=(1- |w|2) ~ 9651

N | =

Thus,

n

1
<
\G(z,w)| ~ Z 11— (z,w) |+ 191 — <Z/7w/>|m+j'
j=0

For each pair «, 8, |a| = |8| =m and z € E5,w € F, since

m/2 S ‘1 _ <z’,w')\m/27

7] < ™2 < (1 - ')
and
[Po(2)] < la(z') = 2"/ S 11— ()2,
we have

- 1 1 1
G map, < : - < )
GRS Z:: U= (o)1 = (Zw)F ~ TT= ([ 1= (e, w)[h

By (6.1) and Lemma 2.20, we obtain inequality (2).
Next, we prove (1). For any z € E3, by Lemma 5.1(2) and (3), D(z,R) C F. By

Lemma 2.20(3),
/ F(w) Koy (2)dv(w) — enf(z) = / F (W) K o (2)du(w). (6.2)
F F\D(z,R)
Thus,

fw)I(z,w)dv(w) — /

F\D(z,R)

— e ( /F F) Ko (2)dv(w) — /F e [ w) ~ /F f(w)[](z,w)dv(w))

f(w)Kw(z)dv(w)> ) (6.3)

F

Each term of I has the form %, where 0 < j <m —1 and |a| = j. We want
to prove that their integrals with f are small. First, since B3 C F, E3 C {2 € B, : 1 —|z]* >
2765} which is contained in a compact subset of B,,, we can find C; > 0, depending only on

m, R, such that

< Cl\a(z')| g 015, Vz € Eg,U) e F.

(1 — (p(2),w)) 1+ (1 — (7(2),w))+T1+i
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Therefore,

<—Z”, w//>j

[ e - [ 1) 3 o g msms )| $ 6 [ Ifwidow). 6.4
F F =0 ) F

Notice that for each w’ € U’, we have |1 — (w',u/)] > 572, and therefore,
ﬂ_—l(w/) NF = {(w/,w//) -1 — |w/|2 _ 275|1 _ <w/’u/>‘2 < |w//|2 <1-— |w/|2 _ 2765}.

Each fiber is either a spherical shell or a ball in C"~¢. From this and Lemma 6.3(2), it is easy
to see that for 2’ € w(Es),
m—1 <_Z// w//>j

fw) Z ¢ 2 1’1]/>)n+1+j dv(w) (6.5)

m—1
1
< / feY /
~ ; / = o wpri ) sup 0°£(2,0)| (6.6)

z'em(Es),|a|<m—1

5 26s(n+m) sup |80(f(zl7 0) | (67)
z'en(E3),|al<m—1

It remains to show that sup.c . (g,) jaj<m—1 [0% f(2, 0)| is sufficiently small. Obtain Fy by filling
the ‘holes’ in F', that is,

F1 — {(w/’w//) c IB%,,,, . w/ c U/, |w//|2 <1-— lw/|2 _ 2765}_

By Lemma 5.1, E5 C D(0,4slog2) and F D E,. Thus, for ¢ small enough, the set of points
{m(2): z € Es} U{p(2) : z € E3} has a positive Euclidean distance (independent of k) to the
boundary of Fj. So, there exists a constant Cy > 0 (depending only on d,m, R) such that
Vz € E3,Vg € Hol(F}) and Vo, |a| < m — 1,

(079)(p(2)) — (9°9)(m(2))]* < C3p(2) — m()|* ; lg(w)[*dv(w) < C36° ; lg(w)[*dv(w).

Since f|ma =0, we have (0%f)(p(z)) =0 for all z € E3 and o = (@g1,-- ., ), o <m — 1.
Thus,

sup (0% )(#,0)]* < C2262/ |f(w)|*dv(w), Vz€ Es. (6.8)
z'em(Es),|a|<m—1 Fy

We need to compare the L?-norms on F; and F. For any w’ € U’, if 1 — |w/|> =271 —
(w',u')|? > 0, then for s large enough, we have
1— |w/|2 _ 2—65
0= TwF —25) — (- W — 25— (&, w)])

_ 1— |w/|2 _ 2—65

T EL- (w )P -2
1

< 272572374 _ 2765

< 2253 g1,
Then by Lemma 6.3 and a simple double integral argument, we have

lg|%dv < 225+3s4/ lg|*dv, Vg € Hol(F}). (6.9)
F

Fy
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Combining inequalities (6.5), (6.8), and (6.9), we get

m—1 1/2
=2 w"y
/ f(w) § CJ >)7>L+1+j dv(w)| S 205y - 201257 </ |f2dv> :
F =0 F

Then by inequality (6.4) and Holder’s inequality, we get

1/2
I(z,w)dv(w )‘ S (C16 + 205 Fm) 0y 5. 25+22) (/ |f|2dv) .
F

If we choose ¢ small enough, we can make (C; 0 4 265"+ Cy4 - 257252) < €. Then inequality
(1) follows from inequality (6.3), Lemma 2.20, and our estimates above. This completes the
proof. O

The following lemma is a simplified version of Lemma 6.1(1).

LEMMA 6.5. Suppose that J is a prime ideal in C[zy, . .., z,]. Write A = Z(.J). Suppose that
A has no singular point in 0B, and intersects OB,, transversely. Then for a positive integer
m, there exist a positive integer N and constant C' > 0 with the following property. For R > 0
sufficiently large, there exists a positive integer K such that the following hold. Let s’ be the
positive integer such that (s’ — 1)log2 < 16R < s'log2 and s = 10s’.

(1) For each u€ A, 1—|u|?>=272* k> K, define E, and F, as in the beginning of
Section 5. Then there is a finite set of polynomials {p;} C J™, sup,degp; < N, and linear
maps J —> Hol(E.3), f — fi satisfying the following inequalities.

Q) [5 L2 — fI?dv < Ce3, fp |f1Pdv.
(i) [, O Ipfil)?dv < C [ |Fdv.

(2) For each v € B, B(v,A) > 5s'log2, 1 — |[v|> =2725% k > 10K, define F' as in the
beginning of Section 5. Then there exists a polynomial p € J™ such that p is non-vanishing on
F! and degp < N.

Proof. We want to apply Lemma 6.4. A Mobius transform ¢, will allow us to transfer
between decompositions on E,3 and Fus. Also, we need to make adjustments so that the
generating functions p; are polynomials in J™.

Denote d = dim A. For any ¢ € 0B,, N A, since A intersects JB,, transversely at ¢, A is not
contained in ¢+ + ¢. By Theorem A.6, the set

U ={leU¢t): Ta)NT.A) NA—C=0}

is dense in U(¢*). Here, we denote L the orthogonal complement of a linear space L in the
complex projective space P,, (cf. the Appendix) and U(¢*) the space of all unitary transforms
on ¢+ = C" . We consider [ @ 1 as acting on the (* by [ and acting on C(¢ as identity.

Let 6 > 0 be the constant in Lemma 6.4 determined by d,m, R. If NTCAL NA—-C¢=0,
then take Ly = NT:A. Otherwise, choose | € Z]C close enough to the identity I.. so that the
Hausdorff distance

disty (Le B, NT,ANB,) < 6/4,
where L = (1 ® 1)(NT¢A). In either case, we have ( € L, Ligj' NA—-(=0,and
diStH(L( OB”,NTCA N Bn) < 5/4

Choose a new basis {e1,...,e,} such that L. = span{es,...,eq}. Denote 7, the projection
from C" onto L.
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By Lemma A.4, m¢|a_¢ is proper. Since ( is a regular point of A and A intersects 0B,
transversely, ¢ defines a one-sheeted analytic cover of A —( in a small neighborhood of 0.
Apply Theorem A.5 to A — ¢ and L¢. Let Uy, U, and W be as in Theorem A.5. Thus, for any
w € W and | € U, the function

Pr
Py

¢lica—oy (z,w)

clica—eyny (z,w)

is non-vanishing and holomorphic in Uj.

Start with an open neighborhood U of . For u € ANU, let L, = L¢ Nu' 4+ Cu and denote
m, the projection from C" onto it. Since ¢ € L¢, the definition is consistent at ¢, and the
spaces L, vary continuously with u. Thus, for u close enough to (, we can find [, € U such
that I;;'(L¢) = Ly. So m, = I 'm¢ly,. For any w € W,

Priliya o (2 0)

P7T<|11,,(A—c)mul (Z’ w)

is non-vanishing in U;. Equivalently, for any w € W,

ot (50 (6.10)
Pﬂ’c\zu(A)m<U1+zu(g)) (zv w)
is non-vanishing in Uy 4 1,,(¢). Note that the definition of canonical defining functions depends
on the choice of a basis. Let e, ; = I, *(e;). By Remark 2.7, under the new basis {e, 1,...,€un},
we have
P, zZ,w
1/)11;(2) = ulA( )

zZ,w
““‘Am(lgluﬁo(’ )

is non-vanishing for z € I;;'U; + ¢ and w € W. It is easy to see that I, 1(U;) + ¢ D Us,Vu € U,
for some open neighborhood Us of . Let us use P with appropriate subscripts to denote the
locally defined canonical defining functions depending on a one-sheeted analytic cover on the
piece of manifold AN U, or its image under a Mdbius transform. Then we have shown that for

any v € U and w € W,
P, . (zw)
Yolz) = a2 2
PﬂulA (27 w)

is non-vanishing on Us.
On the other hand, both L, and the normal tangent spaces NT, A vary continuously. By
shrinking the neighborhood U, we can also assume that

disty (L, NB,,NT,ANB,) <J§/2, YueUNA.
By Lemma 4.5 and 5.1(2), again, by shrinking U, we also have for any u € U,
dist(z, NT, A) < 6/2, Vz € @, (A)NEF,.
Thus,
dist(z, L) <3, Vz € @u(A)NF,.

(1_‘,“‘2)(714’1)/2

For any f e J™, define U,f(z) = fop,(z)-ky(2), where ku(z)zw Then
Uuflmep,(a) = 0. Applying Lemma 6.4 to F = F, and ¢, (A), we can find F, such that

2

[ Usf = Y PuFa dugoeg/ U, f|*dv
Eus ) F,

la|=m;
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and
2
/ S BF | dv< c/ U f2dv.
Bus \ |a)=m, F,
Here P, = Pmb (ay00 that s, 3700 P (z)w® = ]57”‘ (A)(z,w). Therefore,
Umpun (A) = Tl g

/E Z P, 0 0u(2)Fo 0 0u(2)ku(2)|2dv(2)

lo|=

:/ Uf = 3 PuFul2do(z)
Eus3

lal=m

<C%/iwufmu>
Fy,

—cé [ 1r@Pau)

u

Similarly, for each pair «, 8, |a| = |8] =

L 1Bsoeu@Fe o pueku(e)Pdn) < € [ 1) Pante
Eus
Using the formula for ¢,,, it is easy to verify that
1/2
: (- [u)?
P,rub’u(A)((pu(Z),’w) = —mPﬂ.U‘A(&w). (6.11)

Let I' = {a = (@g41,---,an) : || = m} and let K = #I'. By Lemma A.2, we can choose K
distinct points {w;}%, C W (independent of u) such that the vectors {(w$)aer}, form a
basis of CK. Let W be the K x K matrix (W aer,i=1,...k. Then W is invertible. Suppose
W=t = (cia).

Denote pi(z) = P (2,w;) and ¢; = ¢y, i =1,..., K. Since J is prime, by Theorem A.3
and Hilbert’s Nulls‘cehensatz7 each p; is a polynomial in J™. Denote Ny the upper bound
of the degrees of the canonical defining functions of A, as in Theorem A.3. Then we have
degp; < mNy. Set N = mNy. Let

.....

(- fup) )" -
fiz) =3 TS Gy Ci,a®i(2)” " Fa 0 pu(2)ku(2),

[e3

then

PRV o e U i RO
p7(2)f7(2’)—z 1—<Z u> Cz,aPTru|A(Zywv,) Fao¢1m(z)k1L(Z)

e}

= Z Ci,ap;:j\wm) (pu(2), wi) Fo 0 pu(z)ku(2)

= Z Z Ci,a;?pﬂ 0@y (2)Fy 0 (pu(z)ku(z),
a  f
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and

From this, it is easy to see that the functions p; and f; satisfy inequalities (i) and (ii).

For each ( € AN 0B, we have found a neighborhood U¢ := U such that for any u € U¢, we
have a decomposition with the stated properties. By compactness, we can cover AN JB,, by
finitely many such neighborhoods. This proves (1).

Next, we prove (2). Suppose v € B, and (v, A) > 5s'log2. By Lemma 5.1(2), F), = E/5 C
D(v,45"log?2). Let £ € A be a point such that 8(v,&) = 8(v, A). Since

Blpc(v),0) = B(v,€) = Blv. 4) > 5s'log?2,
by Lemma 2.11(2),
1— [pe(v)]? < 4e7 26 < 9—105"+2

By [20, 2.2.7], the Euclidean diameter of D(p¢(v),4s'log2) does not exceed 2. Since
e (F)) C pe(D(v,4s log2)) = D(pe(v),4s log2), the Euclidean diameter of y¢(F)) does not
exceed 275

Also, we can assume that v is close enough to dB,, (equivalently, k is large enough) so that
€ is a regular point of A. A simple computation (cf. [23, Lemma 3.12]) shows that ¢¢(v) is
perpendicular to Tppe (A) = e (Te A+ &) (cf. [20, Proposition 2.4.2]).

Let § > 0 be a sufficiently small constant to be determined later. Suppose ( € AN JIB,,. In
the proof of (1), we have constructed an open neighborhood U of ¢ and an open subset W in
C" 4 such that for any u € U N A and any w € W,

PﬂulA (27 w)

ww('z) = pﬂulA (Z, w)

is non-vanishing on Us, where U, is another open neighborhood of (. Here, the canonical
defining functions are constructed based on the basis {e, 1, ..., €y} as in the proof of (1). For
v close enough to ¢, we can assume that v € U and F) C Us. Thus, by shrinking U, we will
have that ,,(z) is non-vanishing on F, for any v € U.

Notice that although W depends on our choice of §, from the proof of Theorem A.5 (which
is used in the proof of (1)), by shrinking the set U, we can always ensure that the volume of
II(W) is greater than half of the volume of P,,_,_1. Here, IT denotes the canonical map from
C"=N\{0} to P,,_q_1.

On the other hand, from the previous argument, we know that the Euclidean diameter
of pe(F!) is less than 2%, ¢ (v) is perpendicular to ¢e(TeA + €), and that 1 — |pe(v)]? <
4e20(Ev) < 9-105+2 By [emmas 4.4 and 4.5 and our construction in (1), for v close enough
to 0B,,, we will have

distr (¢e(A) N D(0,5slog2), Le N D(0,5slog 2)) < 24.

Denote Wy = {w € C"~%: Pﬂ&l%m) (z,w) is non-vanishing on ¢¢(F})}. For s large enough and
d small enough, we will have that the volume of II(W),) is greater than half of the volume of
P,,_4_1. Choose such a . Then W N W is non-empty. Choose a wy € W N W;. Let U be the
open neighborhood of ¢ determined by é. Then for any v € U, by (6.11) and the fact that
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~ P, R

wo € Wi, Pr,|,(2,wp) is non-vanishing on Fy. Since wo € W, pfmiioi
mela (7 W0

on F,. Thus, Py, 4(2,wp) is non-vanishing on F. By Theorem A.3 and Hilbert’s Nullstellensatz,

Pr,|,(z,wp) is a polynomial of degree less than N in J. Thus, p = P;Z‘A(z,wo) € J™ is non-

vanishing on F! and degp < N. This proves (2). O

is also non-vanishing

We are ready to prove Lemma 6.1.

Proof of Lemma 6.1. Notice that the varieties Z; are disjoint in a neighborhood of 9B,,.
If ¢ € Z; N OB, then for each i # j, there exists p; € I;" such that p;(¢) # 0. Thus, for each
¢ € Z; N 0OB,,, we can find a neighborhood V; and k — 1 polynomials p; € I/"*, i # j such that
p; are non-vanishing on V;. Choose finitely many open sets V¢ that cover Z N 0B,,. Suppose
F, C V¢, where ¢ € Z; N 0B,,. For f € I, let P, f; be the functions constructed in Lemma 6.5,
for []7_”-7'_ Then we can simply replace P, with p;1l;;p; and f; with Hi;}:ljpj . This proves (1). The
proof for (2) is similar. ' O

We are ready to prove Theorem 4.1.

Proof of Theorem 4.1. For any e > 0 sufficiently small, let C' be the constant in Lemma 6.1.
Choose Ry >0 so that 06%073 <e Let {Ey}uer, {FL ver, {Fulucr, and {F!},cp be
determined by R as in Section 5. Let K, N be the positive integers in Lemma 6.1. Let
6= v 1- 2—2m(K+1). Finall}’a let {E7} = {E’lt}’UEUk;I(ﬁk U {E’:J}UEUA-,;wKﬁ;C' The polynomials
p;; will be the corresponding polynomials in Lemma 6.1. The conditions (1) and (2) in
Hypothesis 1 follow from Lemma 5.1, where we take M = 2!9"+3_ The conditions (3) and
(4)(1)(ii)(iv) follow from Lemma 6.1. By Lemma 5.1(2), (1 — |A|?) is comparable to (1 — |u|?)
for A € F, and (1 — |A]?) is comparable to (1 — [v|?) for A € F. From this, condition (4)(iii)
follows immediately.

Therefore I satisfies Hypothesis 1. The rest of the theorem follows from Theorem 3.4. This
completes the proof. O

7. Concluding remarks

In this paper, we have provided a unified proof for most known results of the Arveson—
Douglas Conjecture. In fact, we have proved the stronger result that the submodules under our
consideration have the asymptotic stable division property. We raise the following question.

QUESTION. Suppose that I is an ideal in C[zy,...,2z,]. Find sufficient conditions for I
to have the asymptotic stable division property. Find sufficient conditions for I to have
the asymptotic stable division property with generating elements {h;} being polynomials of
uniformly bounded degrees.

By Theorem 3.2, a positive result on this question will lead to a positive result of the Arveson—
Douglas Conjecture. We would also like to explore other applications of the asymptotic stable
division property, for example, in index theory.

The techniques we have developed in this paper are aimed at getting more general results.
For the next step, we plan to consider the following examples.

(1) Arbitrary union of smooth, transversal varieties.

(2) Varieties with certain type of singular points on dB,,. For example, singular points ¢
with tangent cones being linear subspaces. This will cover the classic example of singular
point, 27 = 23 at 0.
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Tools, for example, from [6] and [19] can be useful.

We will also use the techniques to study the Arveson—Douglas Conjecture in connection
with the L%-extension problem [27]. The covering constructed in Section 5 can be useful in
constructing a holomorphic extension.

Appendix
For an algebraic set A C C" with pure dimension, we can show that the functions P, and Py o
in Definition 2.6 are polynomials in z and @ := (Wp41, ..., Wy ). Let us first consider a simple
case.

LEMMA A.1. Suppose that A C C™ is an algebraic set of pure dimension n — 1, and suppose
A= C e 2 = (21,0, 201)

is proper. Then Py (z,w) and Py o(z) are polynomials in z and w.

Proof. In this case, there is only one canonical defining function. If 7 is k-sheeted, then
a =k, and

P(z,wy) = Pﬁ,k(z)wk

-
It suffices to show that Py j is a polynomial. By definition, Py j is the Weierstrass polynomial
determined by .

The algebraic set A decomposes into finitely many irreducible algebraic sets. It is easy to see
that Py j is just the product of the canonical defining functions of the irreducible components.
Without loss of generality, we can assume that A is itself irreducible.

By [16, Proposition 1.13], there is an irreducible polynomial Q(z) such that A = Z(Q).
Clearly, deg, @Q > k. Write [ = deg, @ and write @) as a polynomial in z, with coefficients in
(C[Zlv .- ',anﬂy

Consider the set
B={z€A:q(z')=0, or 8,Q(z) =0}.

7(B) is the set of points 2/ € C"~! such that Q(z’,-) do not have [ distinct simple roots.
Since @ is irreducible, B is an analytic subset of dimension < n — 2. By [6, Proposition 3.3.2],
7(B) C C"! is an analytic subset of dimension < n — 2. Thus, C"P\7(B) is dense in C"~ 1.
If | > k, for any 2’ € C"~!\7(B), 7~ 1(2') contains | > k distinct points, a contradiction. Thus,
deg, @Q = k. Also, if degg > 0, then for 2’ ¢ o, comparing the two polynomials in z,,

Q(ZI7 Zn) = Qk(ZI)ZT}; + .
and
Pﬂ,k(zl,zn) = (Z'n, - al(zl)) e (Zn _ ak(Z/)),

we get Q(7, zn) = qi(2')Pr (2, 2n), 2’ ¢ 0,2, € C. Since o is nowhere dense, Q = g Pr k-
But then if g,(2’) = 0 at some 2/, we will have infinitely many points on the fiber 7=1(z’),
a contradiction. Thus, g is a constant. Without loss of generality, we assume ¢y = 1. Then
P: = @ is a polynomial. This completes the proof. O

LEMMA A.2. For any open set U C B,, and any finite collection of indexes

Fc{a=(ai,...,an):a; € N},
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let K =#F. Then there exist K distinct points {w;}¥_, in U such that the vectors

{(w®)aer X, in CX are linearly independent.

Proof. Let
L = span{(w®)oer : w € U}.

It suffices to show that L = CK. Otherwise, choose a non-zero vector (a,)ecr that is
perpendicular with L. Define

flw) = Z Tow®.
ack

Then f is an analytic polynomial that vanishes on the open set U. Therefore f is identically
zero. So a, = 0,Va € F, a contradiction. This completes the proof. O

THEOREM A.3. Suppose that A C C™ is an algebraic set of pure dimension p. Suppose that
the projection
T A—=CPzm 2 = (21,...,2)

is proper. Then the functions Pr(z,w) and Py .(z) are polynomials in z and w. Moreover,
there exists a positive integer N, depending only on A, such that for any choice of basis and
any proper projection , the degrees of P(z,w) (in z) and Py , are less than N.

Proof. Let o C CP be the critical set of m. Suppose that 7 is k-sheeted. Fix any 2’ ¢ o, we

have 7=1(2") = {(2/,a1(2")), ..., (2, ar(2'))}, where {a; (%), ..., ar(2')} are k distinct points in
C"~P. The set
W= {w e C"?:{a1(2),w),...,{ax(z"),w) are distinct at least for one 2’ € U'},

is open in C"~P. Fix any w € W. Consider the projections
T A— CPTL 2 (2, (2", w))
and

7l s Tw(A) C CPHY — CP (2, (2", w)) — 2.

Then 7 = 7, o my. By [6, 3.1(2)], both m, and =], are proper maps. By [6, Theorem 3.2,
Proposition 3.3.2], 7, (A) is a pure algebraic set in CP*! of dimension p, and 7/, is a k-sheeted
analytic cover. By Lemma A.1, P ((2',A),€) is a polynomial in 2/, A, and . Also, from the
proofs of [6, Theorem 3.2, Proposition 3.3.2], the degree (in (2',))) of P ((2',A),€) has a
upper bound determined by any set of generators of the ideal {p € C[z1,...,2,]: p|la =0},
which we denote by N. Checking by definition, we have the equation

Pr(z,w) = P, ((Z/’ <le’w>)v 1).

w

Thus, for any w € W, P.(z,w) is a polynomial in z and deg, P;(z,w) < N. Fix an order of
theset I' = {a = (ap+1,-..,0n) : || =k}, and let K = #I". By Lemma A.2, we can choose K
distinct points {w;}1<; C W such that the K x K matrix W = (w)aer j=1,...x is invertible.
From the equations

Pe(z,w;) =Y Pra(z)u?, j=1,...,K,
acl’

we can solve Py , as linear combinations of {Pr(z,w;) f(:r Thus, P , are polynomials in z,

and then Py (z,w) is a polynomial in z and w. Moreover, deg, Py (z,w) < N, deg Py o(2) < N.
This completes the proof. O
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Let P,, denote the n-dimensional complex projective space. Then C" can be viewed as a
subset of P,, via the natural embedding

C" =P (21,..520) = [1, 21, .0, 20

For any algebraic set A C C", its closure Ain P, is an analytic subset of P,,. For a p-dimensional
linear space L C C", L is a p-dimensional linear space in P,,. Its orthogonal complement in P,
is of dimension n — p — 1.

T = {20, » 2] (200 ++,20) L (1,w),w € L}.
We have the following lemma [6, 7.3].

LEMMA A.4. Let A be a pure p-dimensional projective algebraic set in P,, and let L C P,
be a complex n — p — 1-dimensional plane not intersecting A. Then the projection 7 : A — L+
is proper.

The following theorem will be used in the proof of Theorem 4.1.

THEOREM A.5. Suppose that A C C™ is an algebraic set of pure dimension p < n and 0 € A.
Assume the following.

(1) Denote L = {(z',0): 2z’ € CP} C C™ and suppose I nA=0. Therefore, if we denote
m:C" = CP, 2+ 2/ :=(21,..., %), then 7|4 is proper.

(2) U=U'xU",where0 € U' C C? and0 € U"” C C"~P are open sets. w| sny is also proper.
Moreover, 1=1(0) N ANU = {0}.

Then there exist open sets 0 € U] C U', 0 € Uy C U"”, an open neighborhood U of the n X n
identity matrix I,,«, in U(n), and an open set W C C"~P with the following properties. Denote
Uy = U x U{'. For any | € U, the projections |, 4y and |y 4y, are proper. Moreover, for
any w € W, the function

PW\I(A)(

Pﬂ'll(A)ﬁUl (Z’ w)

2, w)

huw (Z) =
is non-vanishing and holomorphic in U, .

Proof. Since 7|4 is proper, we know that 7—!(0) N A consists of finitely many points.
Suppose

(71(0) N A\{(0,0)} = {(0,a1),- .-, (0,ax)},
where a; € C""P. Take an open set W C C"™P whose closure is contained in the open set
{w e C" P : (a;,w) # 0}. We can find open neighborhoods a; € V; Cc C* P, 0 € Uy C C"P
such that
A=2" w) #0, Vi,VA eV, V" e U/, Yw € W.

We claim that there exist an open neighborhood U of I,,«,, in U(n) and an open set 0 € U] C
U’ with the following property. Denote Uy = U; x Uy’. Then 7[; 4y and 7[;(4)ny, are proper.
Moreover,

k
71U NI(A) Cc U U <U Uj x V;).
i=1

By assumption, T n4d= (). Therefore, we can find an open neighborhood U of I, in
U(n) such that Vi e U, l*l(L)J_ N A = (). Thus, the projection from A onto [~!(L) is proper.
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Equivalently, 7|; 4 is proper. Also, by the proof of [6, Theorem 7.4.2], A is contained in the
union of a ball B:= {z: |z| < R} and a cone K := {z : [2"| < C|Z'|}.
On the other hand, by [6, Corollary 4.2], we can take U} small enough so that

“HUHNAC(UyxU"NU (U Uy x V>

If we shrink U, we can ensure that VI € U, [7'7=*(U})\B is outside the cone K. Then
I='7=1(US) N A C B. Then if we shrink U again, we can find 0 € U] C U} so that VI € U,
I7lr=Y(U))n B c n~1(U}). Thus,

T N UDNA=1""7"U)NBnAcCa Y (U)NAcC (U, xU/) (U Ul x V)

If we replace the right-hand side with a compact neighborhood N of AN 7~ (U;) contained
in (U5 x U}) U (U, U} x V;), then the same method will give us I~ '7—1(U}) N A € N. Then
we can shrink ¢ again to ensure [(N) C (U} x U/') U (UL, Uj x Then we have VI € U,

Then obviously,

V).
U NI(A) € (U3 x U U (UU2 m)

k
“HUDNIA) C (U] x U U (U Uy x

This proves our claim.
The open sets U}" and V; can be chosen to be disjoint. By [6, 3.1(3)], 7[;(4)nv, is also proper.
Let 2z’ € U] be outside the critical sets of both projections. Then

7771(2/) n l(A) = {(Z/a bl(zl))a SR (er bl(zl))v (Z/a al(zl))a SR (2/7 CLk(Z/))}
Here b,(2') € UY, a;(#") € U;V;. By definition, for z € U; and w € W,
P‘ﬂ"l(A) (va) = Hé‘:1<z// - bj(zl)7w> X H§:1<Z“ - aj(zl)’w> = Pﬂ'll(A)mUl (va) X ww(z)a
where
Yu(2) = Ty (2" = a;(2"), w).

From our construction, it is straightforward that ,, is non-vanishing on U;. This completes
the proof. O

THEOREM A.6. Suppose that A is a p-dimensional irreducible affine algebraic set in C" and
0 € A. Assume that A ¢ e;>. Let

G, ={L € G(p,n):e, €L}
and
Go={LeG,: T NA=0}
Here, G(p,n) is the Grassmannian. Then G, is a dense open set in G,,. Equivalently, let
U, ={lcU(n—1):span{l(e1),...,l(e,_1),en} € Gn}.
Then U, is dense in U(n — 1).
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Proof. The two statements are clearly equivalent. Let us prove the first statement. Consider
the canonical projection.

II: C"+1\{0} = Pn, (20,21, 2n) &> [20, 21y« -+ 5 Zn)-

For L € G(p,n), denote L =II"Y(L )U{O} and A=1"1(4 ) U {0}. Then T NA = 0 if and
onlyif LN A = {0}. Since A is irreducible and has dimension p, A is a homogeneous irreducible
algebraic set of dimension p + 1. L is a linear subspace of dimension n — p. The condition that
en € L is equivalent to that LcL, =er CC"L Let A, :=ANL,. Then L € G, if and only
if L cL,and LNA, = {0}.

We claim that dim A, < p. Otherwise, dim A,, = p+ 1. Since A is irreducible, it can-
not properly contain any algebraic set of the same dimension. So A=A, and therefore
A C L,. However, this implies that A = ANC" C M(A\{0})NC" c TI(L,\{0}) NC" =¢e. A
contradiction. Thus, dim A < p.

Assume L C L,,. Both L and A,, are homogeneous varieties in L,, = C". Thus, L N A,, = {0}
if and only if their prelmages in P, do not intersect. The preimages of the two varieties have
dimension n —p — 1, < p — 1, respectively. Thus, the set of L C L, not intersecting A forms
a dense open set in G(n — p,n). From this, it is easy to see that G, is a dense open set in G,,.
This completes our proof. O
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