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We provide a critical overview of progress and challenges in
computationally modeling multistep reaction mechanisms
relevant for catalysis and electrocatalysis. We first discuss
how the chemical and materials space of energetically ef-
ficient catalysis can be explored with computational chem-
istry. Since reactions for renewable energy catalysis can
involve acid-base chemistry and/or ions under aqueous con-
ditions, we then summarize how solvation can be modeled
with quantum chemistry schemes using implicit, mixed im-
plicit/explicit, and fully explicit solvation modeling. We will
discuss the insights (and limitations) of these solvation mod-
els primarily through the scope of understanding CO,, reduc-
tion reaction mechanisms, but these will also be applicable
for future work elucidating other reaction mechanisms of
critical importance for human sustainability such as H,O
oxidation and N, reduction.
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1 | INTRODUCTION

Developing sources of renewable energy is paramount to long-term human sustainability. 13 For instance, CO, emis-
sions correlate with severe weather patterns 4 and global climate change,® but more than 78% of the world’s energy
consumption through the year 2040 is expected to come from fossil fuels.® Thus, many are interested in recycling

7-11 12,13 and/or hydrogen. 1415

anthropogenic CO, into fuels and chemicals as well as sustainably producing ammonia
Unfortunately, most of these are currently unfeasible on large scales due to low conversion efficiency and/or high
electrochemical overpotentials. For CO, electroreductions into fuels and chemicals, selectivity and energy efficiency
remain as major challenges for proton and electron transfers. 16 These challenges are also present in other fundamental

transformations such as N, reduction for ammonia synthesis 17 and H, O oxidation for H, generation. 18

Computational quantum chemistry modeling can help interpret and guide experimental work in this area by provid-
ing insights into chemical reaction mechanisms. Advances in algorithms and hardware make it easier to computationally
model larger scale systems with higher accuracy, but the central challenges of understanding what processes to model
and how to physically model them in a reliable way still remain. Indeed, many chemical reactions have intermedi-
ate states that are stabilized by different degrees of solvating environments, and neglecting or incorrectly modeling
these environments can significantly impact the quality of predictions from computational modeling. We begin this
mini-review by summarizing how one can use computational modeling to explore the chemical and materials space
of renewable energy catalysis through the lens of identifying energetically efficient hydrogenation pathways for CO,
reduction catalysis. We will then summarize different approaches to model solvating environments in reaction mecha-
nism studies while also reviewing knowns and unknowns from recent literature to offer perspective for future efforts in
this and related fields.

2 | THE CHEMICAL SPACE OF (DE)HYDROGENATION REACTIONS
MECHANISMS

At a fundamental level, any hydrogenation (or dehydrogenation) process for any reaction might occur as:

1. One or more covalent hydrogen atom (H-) transfers (e.g. with thermal heterogeneous catalytic processes). 17

Stepwise or coupled proton and electron transfers that originate from different sites within the system (e.g. with
electrochemical processes).20
3. Formal hydride (H™) transfers that may also be coupled with a proton transfer (e.g. with biomimetic processes). 2!

22-28 5nd

Analogous classifications have been used by many others to distinguish different modes for hydrogenation,
each class has been studied in different contexts of homogeneous, 2% heterogeneous, 3° or biological catalysis. 3! Clearly,
the local chemical environment (especially a solvating environment) will play a role in determining the nature of the
hydrogenation mechanism.

To understand how environmental conditions can influence multistep processes, we can start by defining a map
of elementary electrochemical processes using a ‘square-scheme’ or ‘schemes of squares’ 32 and draw analogies to
moves on a chessboard (see Figure 1). Here, a generic molecule A can undergo elementary steps to form a new reduced,
hydrogenated state (AH,). Individual proton transfer steps are normally represented as vertical steps, individual
electron transfer steps are then represented as horizontal steps, and proton-coupled electron transfer steps are
diagonal steps, i.e. all possible moves that a king piece is allowed to make in a chess game. Alternatively, an elementary
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FIGURE 1 A“square-scheme” diagram of hypothetical pathways for a multistep (de)hydrogenation process.

hydride transfer would be an ‘L-shaped step that involves two electron transfers and one proton transfer, i.e. a possible
move that a knight piece can make. Before going too far, some aspects warrant mention. First, it is usually rare to find a
reaction intermediate having a charge with an absolute magnitude of two or more unless there is a polarizing solvent
and/or counterions nearby. 33 Thus, it is usually not likely (though not impossible) to move two or more steps away
from the diagonal line depicting neutral intermediate states. Second, this square-scheme shows that several different
pathways may exist for any multistep process, just like there are multiple paths a chess piece might move from one
corner of a board to another. To actually distinguish the different pathways requires confirmations from experiment and
reliable computational modeling to assess which pathways are relevant under specific conditions. We will now describe
how computational quantum chemistry can be leveraged to accelerate the discovery of energetically efficient reaction
steps.

2.1 | Theoretical Phase Diagrams

If hypothetical reaction intermediates can be identified, one can then use computational quantum chemistry to cal-
culate the absolute free energies of each species using the standard ideal gas, rigid rotor, and harmonic oscillator
approximations. From these data, one can then make phase diagrams that are functions of parameters (e.g. solution
pH, an electrode potential, and/or partial pressures of molecular species) that can be used to navigate chemical and/or
materials space. 34 For instance, one can define a generic reaction that refers to intermediates from Figure 1 using

Equation 1:

A+ gHz - AH,, (1)

The corresponding free energy for this reaction at an arbitrary standard state (°) is simply the difference of the free
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energies of the individual products and reactants:

n

AGf = Gi, = Gi = 5

Gy, (2)

Note that the free energy of H, is also related to the definition for the standard hydrogen electrode (SHE) potential,

H++e’\ﬁ1§H2 E =0V vs.SHE (3)

while the free energy for protons, electrons, or other species such as A or AH,, can be expressed as linear functions of a
local environmental parameters such as pH, applied potential ¢, or the relative difference in chemical potential from
its standard state Aux, respectively. Note that SHE is a commonly used reference electrode which is a hypothetical
electrode immersed in a 1 M aqueous solution of proton with unit activity and no ionic interactions. Other reference
electrode systems (SCE, NHE, RHE, etc.) can be computationally modeled as well, and some discussion is found the
perspective paper by Marenich et al. 3> Using the SHE reference electrode model, one could define the reaction free
energy from Equation 2 in an expanded form of several different species, each having a corresponding parameter (all

expressed in eV units):
AGrxn = (G, + Aran, ) — (GR + Apa) — (Gpy —0.059 pH) — (G- - eUste) (4

Note that values such as GZHH and G, can be straightforwardly calculated using quantum chemistry codes. G;fﬁ and
G correspond to absolute free energies of a proton and electron in some environment and can be referenced from the
literature. 3> The remaining Aux terms are treated as linear variables that describe environmental factors, e.g. partial
pressure of a specific species, a solution pH, or an applied potential.

Considering large numbers of hypothetical reactions and determining the most favorable state at any given set of
environmental conditions in this general framework begets “ab initio” atomistic thermodynamics phase diagrams that
would show any AG for any hypothetical reaction at a specified set of conditions. For instance, if pH (x-axis) and ¢ (y-axis)
were used as parameters, one would create a Pourbaix diagram, i.e. a phase diagram that depicts the thermodynamically
most stable state for a system at a given pH and ¢. 3¢ A representative set of Pourbaix diagrams is given in Figure 2.

While Pourbaix diagrams only provide insights into the thermodynamics of different intermediate states, they are
still quite useful. First, they are a convenient representation of pK,s, pH-independent standard redox potentials, and
pH-dependent proton-coupled electron transfer steps by separating the regions of the Pourbaix diagram with vertical,
horizontal, and diagonal boundary lines, respectively. These properties can be useful thermodynamic descriptors for
catalysis. Second, the boundaries between different regions of a Pourbaix diagram define theoretical electrochemical
conditions where free energies of reaction for a (de)hydrogenation step are zero, and thus at those electrochemical
conditions the process should be highly reversible and thus energetically efficient. Pourbaix diagram boundary lines
therefore show theoretical electrochemical conditions that a species would facilitate energetically efficient shuttling of protons
and electrons. One step further, if one considers a Pourbaix diagram for a reactant such as CO,, (Figure 2a) and another
Pourbaix diagram for a hypothetical catalyst (Figure 2b), one could then overlay the two on top of the other (Figure 2c).
Regions where boundaries of the two Pourbaix diagrams overlap signify electrochemical conditions where one species
(i.e. a hypothetical catalyst) would facilitate shuttling of protons and electrons to another species (i.e. a reactant). This
can be thought as an extension to the Sabatier principle of catalysis, where optimal catalyst activity is achieved when
the substrate binds strongly enough to be activated but also weakly enough that it can still be removed and not poison

the catalyst. Thus, Pourbaix diagram analyses allow one to search for the catalyst state under specific electrochemical
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Applied Potential o
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FIGURE 2 a) Pourbaix diagram showing stable states of the reactant, CO,; b) Pourbaix diagram showing stable
states of a hypothetical molecular catalyst, 1,10-phenanthroline; c) overlaid Pourbaix diagrams from a) and b) showing
similar boundaries for hydrogen shuttling and CO, reduction. Vertical lines represent pK_ s, the horizontal lines
represent the pH-independent standard redox potentials and the diagonal lines represent the pH-dependent
proton-coupled electron transfer steps.

environments that would provide the lowest hypothetical overpotential.

Our group has used Pourbaix diagram analyses to study a variety of homogeneous and heterogeneous catalysis
systems for CO, reduction. Interestingly, we have predicted that reaction conditions for several CO, electroreduction

37.38 and homogeneous ruthenium 32

processes ranging from homogeneous pyridinium -complexes as well as heteroge-
neous N-doped nanocarbons 4° and partially reduced SnO, oxides*! all coincidentally share a similar characteristic -
all have Pourbaix boundary lines showing the formation of a new intermediate state near the conditions where CO,,
electrocatalysis has been reported. Experimentally validating these computational predictions has been difficult, in
part due to difficulties reproducing experimental data that has been reported in the literature. 4243 However, other
experimental studies have implicated transiently formed hydride-containing species in CO, reduction that are inter-
mediates predicted to be thermodynamically stable by Pourbaix diagram analyses.***> From our perspective, we see
opportunities to use computational modeling to discover new catalysts in chemical and materials space and synergis-
tically guide experimental design with high-throughput screening. However, though numerous hurdles pertaining to

modeling reaction mechanism under solvating reaction conditions must be overcome first.

2.2 | Challenges of Modeling Electrochemical Reaction Mechanisms

As stated earlier, Pourbaix analyses require that all the salient reaction intermediate states be correctly identified.
When modeling catalytic reactions on surfaces, especially gas phase reactions on conducting surfaces, standard Kohn-
Sham density functional theory (DFT) is normally suitable for reliably modeling charge neutral reaction intermediates.
Additionally, modeling electrochemical reactions using the computational hydrogen electrode model 4% (i.e. modeling
electrochemical proton and electron transfers as a 1/2 H, transfer coupled to a linear potential correction) can bring
helpful and testable insights into electrocatalysis. However, as illustrated by Exner and Over 47 as well as Janik and
Asthagiri, *8 modeling reaction mechanisms without accounting for barriers provides an incomplete picture and can

result in qualitatively different outcomes that might be wrong and/or misguide future research efforts.

Carrying out thorough computational investigations is easier said than done. Calculating barrier heights requires

substantial computational effort, and these efforts would all be for nothing if an unphysical model system were used.
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First, simplistic models are never guaranteed to represent the actual atomistic environment, though understanding
model systems can provide useful insight into which pathways are feasible and which are unlikely. Adding to this com-
plexity, it is well known that commonly used DFT approaches have self-interaction errors that make them sometimes
unphysically model charged intermediate states and/or highly correlated systems, *°-51 and so higher-level theories
are required. Today, we see most development and applications in this area are using models that 1) enable enhanced
sampling of reaction mechanisms to identify meaningful reaction pathways; >2->4 2) enable physical modeling of elec-
trochemical (i.e. potential dependent) reaction mechanisms; >>~¢2 and 3) improve the quality of continuum solvation
energies of static systems.¢3-66 There is a growing understanding that solvation is important not just in homogeneous
catalysis but also heterogeneous catalysis. 47 Also, solvation modeling treatments are sometimes revealed to not be
as reliable as generally believed. 48 While some computational studies are starting to explicitly account for potential-
dependent reaction mechanisms in different forms, there has been little consensus of the best practices for doing so. All
of these challenges are important, and the pathway to addressing them will likely be coupled. To better understand
these challenges through the lens of solvation, we briefly summarize and provide our perspective on different solvation
modeling techniques. Table 1 summarizes all the different solvation treatments that will be discussed in the next
sections. It serves as a quick guide for the remainder of this minireview.

3 | IMPLICIT SOLVATION

Continuum solvation models have been used for many decades and there are many detailed reviews in the literature
explaining the theory and the applications.47-74 We only briefly overview how continuum solvation models work and
how they are used to describe renewable energy catalysis. Figure 3 shows a cartoon model representation of implicit
solvation of a methanol molecule with cluster and surface calculations.

o9
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FIGURE 3 a) lllustration of a methanol molecule modeled within a cavity of a non-periodic continuum solvation
model. b) lllustration of a methanol molecule modeled at a surface within a cavity of a periodic continuum solvation
model.

Continuum solvation models were first developed for non-periodic systems of small and neutral molecules, and
most treat the solvent as a structure-less, homogeneous medium using a polarizable dielectric described by a dielectric
constant . In the most commonly used methods, a solute cavity is created around a solute to represent a boundary
surface that allows a semiempirical calculation of a solvation energy based on the electronic structure of the system
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Models Overview

Implicit e Are relatively computationally efficient
e Are based on different mathematical for-
mulations that may or may not yield similar
results for the same modeled system

e Can be used in either cluster or periodic
systems

e Omit explicit interactions with solvent

molecules that may be important

Mixed e Explicit interactions are included by intro-
ducing solvent molecules into the system

e There is no simple way of knowing pre-
cisely how many solvent molecules should

be included and where they should go

Explicit e Computational cost is often substantially
higher than for continuum solvation mod-
els

e Classical molecular dynamics treatments
require existing force field parameters

e Born-Oppenheimer molecular dynamics
(BOMD) simulations with quantum chem-

istry can be prohibitively expensive

TABLE 1 Overview of material reviewed of all solvation methods that will be discussed in the upcoming sections.

Key findings

e Calculations using periodic slabs or cluster models
will result in very different solvated adsorbate bind-
ing energies, but relative energetics from the same
model can be similar

o Solvation energies are sensitive to cavity definitions
o Implicit models can stabilize metastable zwitterion
intermediates (e.g. M-(CO,)~ complexes) not observ-
able in gas phase calculations

e More developments are needed to model solvent

mixtures

o A complete first (or second) solvation shell should
be treated whenever possible

e Thermodynamic descriptors (e.g. pK,s and standard
redox potentials) and reaction pathways can be cal-
culated more accurately using mixed implicit/explicit
models

e Recent schemes have been found to yield similar

results as fully explicit simulations

e Solution phase nudged elastic band calculations can
be useful as collective variables for umbrella sampling
simulations

e 0 K nudged elastic band and 298 K potentials of
mean force calculations show interesting similarities

and differences

of interest. The subtle differences in defining the cavity, the theoretical foundations, and the boundary conditions
are what gives rise to the various implicit solvation models.”5-83 For instance, one of the first and most widely used
continuum solvation models is the conductor-like screening model (COSMO), 84 which differs from other models by
employing a scaled conductor instead of exact dielectric boundary condition, and this approximation considerably
simplifies the mathematics. Also, COSMO uses a Green’s function as the dielectric operator, and that enabled it to be

the first continuum solvation model that was implemented with analytical gradients and used a real cavity shape. 8>

Expanding the applicability of implicit models to periodic systems requires treatment of the ionic response of
charged species and interfaces. 8¢ Fattebert and Gygi were the first to make an isodensity continuum model adaptable
to periodic systems that would be appropriate for modeling solvation on surfaces.8” The simplest way to treat the
ionic response is by using Poisson-Boltzmann (PB) theory which considers ions as point particles with mean-field

interactions. 8¢ There are many other ways to treat a solvent implicitly on surfaces and still account for ionic responses.



8 BASDOGAN, MALDONADO, AND KEITH

For example, joint DFT was developed to combine typical electronic DFT with a classical DFT description of the liquid
environment in order to reduce computational costs of large periodic systems. 88 This was first described by a modified
polarizable continuum model (PCM) that has a linear dielectric response for the solvent (linearPCM).8? The linear
dielectric response approximation tends to fail with systems containing strong electric fields like ionic surfaces and
electrochemical systems, so Gunceler et al. developed an improved model by using a nonlinear dielectric response
(nonlinearPCM). 87 Alternatively, the self-consistent continuum solvation (SCCS) was developed to extend the utility
of implicit solvation to plane-wave codes with improved robustness. ?°-92 More recently, the CANDLE method was
explicitly developed to handle charged species because it takes into account the charge asymmetry in the solvation
structure. In this method the cavity is defined by a nonlocal functional of the solute electron density and potential that
enables modeling the system’s asymmetric solvent charge. 73 Additionally, separate field-aware approaches are being
developed for cavity descriptions that can account for charged species without the need of continued modulation of
cavity definitions to improve experimental fitting. 74

There are several open challenges associated with applying implicit solvation models for periodic systems. In
particular, it remains challenging to reliably determine electrochemical interfacial structures as well as reaction en-
ergetics. For example, some models cannot capture the local field variations from cations and in some cases default
parametrization can place the ionic countercharge unphysically close to the surface.? Recently, there has been a
number of exciting developments in implicit solvent modeling by improving numerical stability and reducing unphysical
artifacts of cavities to better describe the electrochemical environments. For example, Fisicaro et al. used a continuous
permittivity to model complex dielectric environments or electrolytes that should be accurate for neutral and charged
systems. 76 Also, Andreussi et al. have developed an improved continuum solvation model that eliminated unphysical
cavity “pockets” by smoothly varying solute cavities. 77

Overall, one of the main purposes for an implicit solvation model is to avoid the complexity and computational cost
of explicitly modeling solvent molecules. The computational expense for these systems is low and thus these methods
are among the most used in applied studies of reaction mechanisms. Continuum solvation models such as COSMO,
PCM, and the more recent solvation model based on density (SMD) 83 are highly cited because they are often used
in diverse applications including reaction mechanism studies. We now will discuss a few applied studies in detail, but
mention several others studies that have employed implicit solvation models to study aqueous CO, reduction. ?8-107

Note that modeling extended surfaces are more physically representative of an actual surface, but being able to
model surfaces as clusters can sometimes make it easier to introduce high level theory. However, finite clusters can
also have complicated spin states that need to be accounted for (e.g. Ref. 108) while periodic analogs to these systems
may not have significant spin polarization. To understand the extent that continuum solvation models can and should
be used in applications of surface cluster models, Gray and co-workers computationally modeled adsorbate binding
energies under the presence of continuum solvation on both periodic slab and large cluster models. 1°? They modeled
the Pt(111) surface with a variety of adsorbates: H* O* and OH* at different binding sites. It was found that sufficiently
large model clusters captured similar gas phase binding energies as those obtained using periodic calculations and
having relatively low surface coverages. It was found that the two fundamentally different models gave similar gas
phase binding energies and thus showed promise for future work modeling heterogeneous catalyst sites using modern
QM-in-QM embedding models. 110111

Once the gas phase energies were benchmarked for these systems, the energy contributions from continuum
solvent methods could then be accounted for. Interestingly, using the COSMO model on the finite cluster resulted
in a calculated solvation energies ranging from about —0.6 to —0.9 eV, and these were quite different in magnitude
compared to the VASPsol energy contributions using the periodic systems that ranged from +0.1 to —0.35 eV. This

should not be surprising since the surface cluster model had unphysical corners and edges that were being solvated
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while the periodic slab model had no unphysical corners or edges. The net effect of this was significantly different
solvated adsorbate binding energies even though the gas phase adsorbate binding energies between the two models
had been found to be similar. However, we also found that the relative solvated adsorbate binding energies were similar
across different sites for both the surface cluster and periodic slab models. Since the relative energetics were similar, we
concluded that reaction mechanism studies using continuum solvated surface cluster models probably will give similar
insights as studies using continuum solvated periodic slab models. The salient point is that if reaction mechanism studies
necessitate the use of solvated surface cluster models, it will likely be the case that continuum solvation energies will be
less physically relevant, but error cancellations can be leveraged to give useful insights. However, when an intermediate
state is being modeled that is different from the rest, the results from a continuum solvation model should be considered
with more suspicion and thus warrant additional care to ensure that the solvation model is appropriate for that case.

Another important aspect with continuum solvation models is their cavity definitions. Programs such as GAUSSIAN
allow the user to select different cavities based on different empirical radii, and Yang compared some of these models
on homogeneous metal complexes for CO, hydrogenation. 112 Yang modeled PNP-ligated metal pincer complexes for
formation of formic acid from CO, and H,. To model solvation effects the integral equation formalism polarizable
continuum model (IEFPCM) was used with van der Waals (i.e. Bondi radii 113) atomic radii-for geometric optimizations-
and United Atom Topological Model applied on radii (UAKS)-for electronic energy corrections-to describe the cavity.
UAKS is based on a model where hydrogen atoms are always enveloped within the molecular cavity while hydrogen
atoms from Bondi radii cavities will appear in the cavity surface. Yang compared solvation energies of small ions and
found that solvation energies using the UAKS radii were more accurate than energies using Bondi atomic radii. For
the test case of CO, + H, + OH™ —— HCOO™ + H, 0 it was found that UAKS cavity data were within 5 kcal/mol
of experimental data while Bondi radii cavity data had an error of 16 kcal/mol. While UAKS radii have been shown

14 most benchmarking has been done for

to be useful in many applications, for instance when predicting pK, values, 1
assessments of thermodynamic properties and reaction energies, but much less work has been done in understanding
their applicability for determining kinetic barriers. In the cases of modeling (de)hydrogenation processes, it is not
yet understood whether one should use a solvent model that explicitly accounts for hydrogen atoms or not. What is
understood is that highly parameterized continuum solvation models are clearly very sensitive to cavity definitions, and
tuning any specific radii for any specific application should be avoided.

Koper has also studied numerous mechanisms for CO,, and N,, reduction. 115117 For example, his group has studied
CO,, reduction mechanisms involving cobalt porphyrins, 120 and they identified CO as being the main product from this
reaction mechanismand CO,,~ as the key intermediate. Co(P) guided the formation of CO through decoupled proton
and electron transfers; however, additional concerted proton-coupled electron transfers involving CO resulted in
minor CH,, formation. This work was made possible using the COSMO implicit solvation model to account for solvation
effects. One complex modeled to form during the reaction, [Co(P)—(CO,)] ~, was only stable when solvation treatments
were included; however, another complex was still not stable when implicit solvation was included in the calculations
([Co(P)—(COZ)]O). An analogous observation was also seen in work by Carter, 33 who modeled an anionic complex,
[Re(bpy)(CO)3-(CO,)]~, and found it was only stable with an explicit counter ion or under the presence of a continuum
solvent method. Thus, continuum solvation models have been and will likely continue to be used to assess metastable

(and potentially zwitterionic) reaction intermediates in homogeneous reaction mechanisms.

With the success of implicit models in previous studies, many researchers are attempting to apply these techniques
to reactions involving solvent mixtures. Garza et al. studied a tetraaz [co" N4H]2+ catalyst to understand the selective
reduction of CO, to CO. 121 Those authors used PCM to include the solvent effects. They used pure acetonitrile in their
calculations although the experimental contributions used a wet (10 M water) acetonitrile environment. Mixed solvents

present a challenge for computational modeling since only a few models such as COSMO-RS can be used to model
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mixed solvents, and this model has not yet been as extensively used for mechanistic investigations as the conventional
COSMO approach. 122 Garza et al. modeled both pure H, 0 and acetonitrile systems and noted that their calculated
reaction energies do not differ significantly between these two solvents, and we have observed similar results as well.
Those authors then inferred that mixed solvents would also not be significantly different even though experimental data
has shown that mixed solvents can bring peculiar and non-intuitive solvation energies depending on the solute and the
mixed solvent composition. 123124 From our perspective, since continuum solvation models generally cannot be trusted
to recognize the significance of an explicitly bonded solvent molecule, they should not be assumed to be a physical
model for any mixed solvent in an arbitrary solvent composition. It is true, however that any errors arising from an
insufficient solvation treatment of any one intermediate might cancel out with errors from a different intermediate, and
thus the relative energy difference between the two would be reasonably accurate due to fortuitous error cancellation.

Another study by Cao et al. considered Ir(lll) pincer dihydrides as electrocatalysts for CO, reduction to formate
(or formic acid) in acetonitrile/H, O mixtures. 125 They used IEFPCM with UAKS radii and cavity-dispersion-solvent-
structure terms from the SMD solvation model to describe the solvation effects using the GAUSSIAN code. Experiments
show that the reaction does not happen in anhydrous acetonitrile and that a water concentration of 5% or more is
needed. As with the study by Garza et al, these authors used continuum solvation models to gain insights into chemical
reactivity in pure H,O and acetonitrile solvents. They mainly discuss reaction pathways under acetonitrile because
the experimental conditions had a higher percentage of acetonitrile; however, almost all of the calculated barriers are
very similar in magnitude compared to calculated barriers in pure H,O. The barrier for formation of the formate anion
appears to have lower energy when it is modeled in water, which indicates that water explicitly plays an important effect
in this reaction mechanism by forming hydrogen bonds with the formate.

To summarize this section, we note that continuum solvation models are very useful, but they are sometimes
unreliable and thus should be used cautiously when making predictions. Users should be aware that modeling and
comparing different solvents, such as water and acetonitrile, generally only involve a slightly different cavity definition
and dielectric constant that may result in a relatively small solvation energy difference. As a result, it should not be
surprising when a continuum solvation model gives similar solvation energies for different solvent systems. However,
mixed solvent systems are known to exhibit non-linear effects as a function of solvent composition, and standard
continuum solvation models have not yet reproduced this behavior, 123124

4 | MIXED IMPLICIT/EXPLICIT SOLVATION

One technique to improve the performance of continuum solvation models is with so-called mixed implicit/explicit or
cluster-continuum solvation modeling, which has been used in practice in an ad hoc manner for decades. 12¢ Instead of
a lone solute being considered, some number of explicit solvent molecules are added to the system, and the resulting
cluster of molecules is placed into the dielectric medium. In periodic systems of face-centered cubic metals, explicit
solvent molecules are generally added as one or more layers of solvent molecules and then an implicit solvation model
can be used on top of that. On other surfaces one or more solvent molecules need to be added to the system in an
ad hoc manner to build up an interfacial solvation structure. Mixed implicit/explicit solvation approaches usually
used calculations using an implicit solvation model is not sufficient to model a system of interest. For instance, mixed
implicit/explicit solvation is used to predict energy calculations of ions and/or small molecules, 127:128 though it is also
used for studying reaction mechanisms that involve the participation of the solvent molecule. A model cluster is shown

in Figure 4 with three explicit solvent molecules and implicit solvent.

The main challenge of mixed implicit/explicit solvation modeling is to know how many solvent molecules are
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required to capture the crucial solvation effects and where to place those solvent molecules in a meaningful way. The
most commonly used way to overcome this challenge is to place solvent molecules according to chemical intuition
and/or with trial and error attempts. This requires a priori knowledge of the reaction mechanism and the active sites
that need to be stabilized. Even if one can place the solvent molecules with chemical intuition, there is still the open
question of how many solvent molecules are needed. Furthermore, one should keep in mind that an entropic penalty
would be expected to form solvent clusters, and that might play an important role in interpreting calculated energies.

Different research groups show different preferences about determining how many solvent molecules are needed
for an accurate calculation. Some will only add a single solvent molecule at the site of interest while others may add
more solvent molecules until a desired result is achieved. Ahlquist studied CO, hydrogenation with a homogeneous
iridium catalyst using two explicit water molecules together with Poisson-Boltzmann self-consistent reaction field as
defined in the Jaguar simulation package. 127 Ahlquist reported agreement with the experimental values only when both
implicit solvation and two water molecules are present in the system. Groenenboom et al. modeled thermodynamic
descriptors for a large set of aromatic N-heterocycle molecular catalysts for electrochemical CO, reduction. 38 Across
27 different molecular catalysts, using one explicit water molecule located at the relevant hydrogen bonding site for
each molecule improved direct pK calculations to reasonably low errors of about 1 pK_ unit.

For reaction mechanisms, including explicit solvent molecules plays an important role as well. Lim et al. studied
hydride transfer pathways from dihydropyridine to CO,, by including one or two explicit water molecules together with
CPCM model in their system. 130 Those authors found that this was an adequate treatment of the solvent because the
resulting polar transition state structure was substantially stabilized by explicit solvent molecules that also facilitated
a proton shuttle mechanism. Those authors also looked at a similar system where they used pyridine to catalyze
CO, reduction by using different degrees of solvation. In this study they considered up to three solvent molecules as
participating in their reaction mechanism as well as up to ten more solvent molecules to further solvate the reaction-
relevant molecules, and then the entire cluster was then embedded in CPCM implicit solvation model. The authors
reported good agreement with experimental values when they used three solvent molecules in the active reaction
mechanism and ten solvent molecules to solvate the core structure (calculated: 13.6 kcal/mol; experimental: 16.5
kcal/mol), and thus it is not clear if the experimental barrier relates to what was modeled or to a different process such
as hydrogen evolution. 4243 While the computational results may or may not reflect the actual mechanism, they do
highlight the important role of proton shuttling networks that standard continuum solvent models (as well as explicit
solvent molecule using classical force fields) would not be able to physically model. 131

FIGURE 4 A model cluster with three explicit solvent molecules and implicit solvation.
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Lim et al. also revisited the pteridine molecule 132 that had been proposed as a potential CO, reduction catalyst with
some controversy. 42133 The authors’ model system included seven water molecules and the entire cluster embedded in
the CPCM model. They then benchmarked results from this implicit/explicit solvation modeling treatment to QM/MM
simulations (vida infra) where the seven water molecules were kept in a QM region and the rest of this cluster was
explicitly solvated with 200 water molecules treated using a classical force field. The authors found that the two
solvation treatments resulted in very similar energies, and they also found that the reaction barrier was consistently
too high to be valid for a reaction that would be expected to occur at room temperature (QM/MM: 29.7 kcal/mol, QM:
30.9 kcal/mol). Savéant has commented that QM calculations were not necessary to rule out some pathways, *2 but
Lim et al's work is is nevertheless useful because it demonstrates that simpler cluster continuum models can provide
similar results as far more computationally intensive QM/MM simulations and thus suggesting other means forward for
modeling these systems besides computationally costly QM/MM simulations. The important role of solvent molecules
in reaction mechanisms is not only limited to just H,O. Rohmann et al. studied CO, reduction to formate with a
homogeneous ruthenium complex. They modeled their system in DMSO solvent using 10 explicit solvent molecules
together with SMD solvation model. They show DMSO solvent molecules are vital for the mechanistic study because
the hydrogen bonding between the formate (the end product) and the solvent results with a thermodynamic driving

factor for desirable concentrations of the products. 134

There are far fewer studies on mixed implicit/explicit solvation on periodic surfaces. Carter has studied CO,
reduction on GaP (110) surface by modeling it as a cluster that can be straightforwardly solvated with a non-periodic
solvation model, 13° similar to the work by Gray et al. mentioned previously. Their treatment used structures arising
from a full monolayer of half-dissociated water molecules together with the SMD solvation model. They identified
2-pyridinide as an active intermediate in Py-cocatalyzed CO, reduction at p-GaP photoelectrodes.

As stated before, there is no easy way to determine how many solvent molecules are needed for an accurate and
reliable treatment of mixed implicit/explicit solvation. As a test to deconvolute the relative energy contributions of
electronic correlation, explicit solvation, as well as the presence of a counter ion in a reaction mechanism, Groenenboom

and Keith followed work by Johnson 136

who studied borohydride hydrolysis using a procedure involving high tempera-
ture Born-Oppenheimer molecular dynamics (BOMD) simulations to observe an elementary hydrogenation process
and then characterized that pathway using nudged elastic band methods. 137 Groenenboom and Keith used a similar
procedure to model CO, reduction by NaBH, and NaBH;OH. Molecular clusters from the NEB calculations were then
used with different analyses using high-level single point energy calculations and implicit solvation. In general, it was
found that the full first solvation shell along with COSMO solvation resulted in an energy profile almost identical to
the fully explicit solvated case. Somewhat surprisingly, a range of different levels of theories found calculated barriers
differing by only 0.1 eV while using a continuum solvation model without the first solvation shell resulted in differences
as large as 1 eV. This study points out the importance of the solvation treatment however using BOMD simulations
together with NEB calculations can become very computationally expensive. It would be especially interesting if there
were a means to sufficiently solvate reaction intermediates without the need for dynamics or even fully explicit solva-
tion models. Recently Basdogan and Keith have demonstrated a generalizable modeling scheme that facilitates mixed
implicit/explicit solvation treatments for reaction mechanisms, i.e. systems where where implicit models are known to
sometimes fail. The calculation scheme involves generating microsolvated clusters using a global optimization code
called ABCluster, 138 and after identifying globally optimized clusters they used single-ended GSM calculations 139-141

to explore reaction pathways systematically.
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5 | EXPLICIT SOLVATION

Many research groups explicitly solvate their systems to gain detailed information not available from implicit methods.
Studies typically use Monte Carlo (MC) or molecular dynamics (MD) to treat the entire solvent box as shown in Figure
5. Still, complications could arise when studying polarizing systems or significant electron density changes. Born-
Oppenheimer molecular dynamics (BOMD) and its variant Car-Parrinello Molecular Dynamics (CPMD) 142 have been
critical in broadening the scope of systems we could study explicitly. Both use real-time electronic structure calculations
to describe the system’s behavior instead of parameterized force fields or potentials; however, they are only meaningful
if the run time is long enough for the system to visit all energetically relevant configurations. For complicated systems,
large energy barriers could separate chemically relevant configurations and severely limit sampling.

Currently there are a couple of ways to avoid the high computational costs of BOMD. First, is to use simulation
schemes that are computationally faster. These methods often depend on reducing the frequency of full electronic
structure calculations or simply reducing the region being treated quantum mechanically and employing a classical
treatment for the remaining system. The latter solution is referred to as quantum mechanics/molecular mechanics
(QM/MM) which is a hybrid method that combines QM and MM frameworks to make simulations faster than BOMD and
more accurate than MM. In QM/MM simulations, the system is divided into primary and secondary subsystems. 143 The
primary system is the QM region which contains the reaction-relevant molecules under investigation. The secondary
subsystem is the environmental zone where the other solvent molecules are modeled with forcefields to capture the
bulk solvation effects.

It is common practice to include solvent molecules from the first solvation shell in the QM region to capture the
crucial solvation effects using a higher level of theory. Although difficulties can arise when trying to keep the simulation
as physically realistic as possible. Solvent molecules, in real solutions, will migrate towards and away from solute regions.
This poses a problem in garnering expensive and highly accurate data on short-ranged solvation effects when a solvent
molecule drifts away. Researchers sometimes employ constrained QM/MM; in which a bias is applied to keep solvent
molecules from leaving the predefined QM region. 144-146 While this provides reasonable accuracy, the fundamental
issue with this type of modeling is its unphysical treatment of an essentially frozen solvent shell. Alternatively, a method
of switching the subsystem designation (QM or MM) of solvent molecules based on the proximity to the solute in real
time can be used and is common practice today. 143147148 Thjs adaptive QM/MM scheme is very useful, but it could still
benefit from a reduction of spatial artifacts that affect multiscale modeling. 14? We expect to see substantially more
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FIGURE 5 A methanol molecule being explicitly solvated by water.
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Energy

Collective Variable

FIGURE 6 A model metadynamics simulation profile. Gaussian functions are placed on the free energy surface to
flatten the energy wells over time during the simulation (lighter to darker curves). This is used to reduce oversampling
of the local minima and pushes the system away from it.

applications of these methods in the coming years as they can allow higher levels of QM theory for improved insights

into catalytic reactions. 130:151

5.1 | Sampling Techniques

QM/MM free energy simulations are commonly used to sample free energy surfaces. In renewable energy catalysis
a reaction often needs to be modeled by bond breaking or forming. In order to model such catalysis one needs to
treat the system with quantum chemistry. However, the calculations will become very expensive if the entire system is
treated with quantum chemistry, i.e. using some variant of BOMD. To overcome this challenge, algorithms are applied to
enhance the sampling of reaction-relevant areas of free energy surfaces. These algorithms can vaguely be distinguished
into two categories as methods that either introduce additional degrees of freedom along which the free energy is
calculated (metadynamics) or methods that sample the system in equilibrium (umbrella sampling). In the following

sections we will broadly introduce one technique from each category.

5.1.1 | Metadynamics

Metadynamics is a sampling technique that is based on adding an additional bias potential that acts on a selected
number of collective variables (CV). For reactive systems, bond breaking or bond forming are two examples of widely
used collective variables. 152-15¢ To accomplish this, Gaussian potentials are placed on the free energy surface in order
to flatten the energy wells and reduce oversampling of local minima. A very simplified representation is shown in Figure
6. Itis an accelerated sampling technique of rare events that is based on pushing the system away from the local minima.
Metadynamics is generally used to explore new reaction pathways without a priori knowledge of the free energy surface.
However, one must be careful to identify a set of CVs appropriate for describing complex processes. 1>7 CVs should be a
function of the microscopic coordinates of the system and should distinguish between the initial and final states while
also describing relevant intermediates. If one can come up with CVs that meet all the requirements then metadynamics
should work effectively to model free energy surfaces. 153

There are handful of examples where ab initio metadynamics is used to study CO,, reduction or any reaction
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mechanism. Urakawa et al. was exploring a ruthenium dihydride catalyst and its ability to hydrogenate CO,. 158 Their
work demonstrated that a trans isomer route was more energetically favorable (higher stability intermediates) while the
rate-limiting step was the insertion of H, into formate, but there were no explicit solvent molecules included in this
study that would account for their role in the reaction mechanism. Ghoussoub et al. studied the effect of temperature
on frustrated Lewis pairs on nanoparticles for heterogeneous catalytic reduction of CO,. 159 They concluded that at
higher temperatures, CO, adsorbed more easily on the surface which suggests an adsorptive reaction mechanism may
be relevant. This study also did not consider how solvation can affect the reaction mechanism, but they investigated
H, O adsorption on the surface at different temperatures. Gallet et al. used metadynamics to simulate the reaction of
CO, with one, two, or three explicit solvent molecules in the gas phase. 160 This work provides a useful and thorough
protocol to study relatively small systems. Future advances of computation resources will continue to allow more
extensive studies to be carried out.

There are few studies on CO, chemistry that used metadynamics with fully explicit solvation models. Stirling
studied the free energy barriers of reversible bicarbonate formation in water at high pH. 161 It was determined that the
free energy barrier of CO, + OH™ —— HCO,~ was 13.8 kcal/mol, which coincides with the 11.5 kcal/mol experimental
value. Interestingly, the forward reaction free energy barrier was mostly entropic while the reverse barrier was mostly
enthalpic. This conclusion was only possible because extensive metadynamics simulations had been performed with
explicit solvent. This study outlines an accurate way to calculate free energy barriers of other processes in solvated
systems as well; however, the number of reacting atoms that need to be considered will be a limiting factor. Galib et
al. also examined the mechanistic and energetic effects of solvent cluster size on the decomposition of H,CO,. 162
They selected atoms to form two small (6 and 9) and large (20 and 45) water clusters around a H,CO4 molecule in
a Car-Parrinello molecular dynamics simulation. Metadynamics then allowed sufficient sampling to demonstrate
that the small and large clusters led to a concerted and stepwise mechanism, respectively. Thus, H,CO, decompo-
sition likely follows a stepwise mechanism in bulk-like water, but it might be different in other environments like an
air/water interface. Goddard and co-workers have investigated multiple aspects of CO reduction on copper surfaces
and copper nanoparticles with explicit water layers at different pH levels. >7:163-166 Theijr studies of solvated systems
were carried out using reactive force fields which significantly decrease the computational time required. However,
even well-parameterized reactive potentials should be assumed to be less accurate than the QM calculation, and thus

interpretations based on predictions from these model warrant more caution than all-QM methodologies.

5.1.2 | Umbrella Sampling

Umbrella sampling is another technique to calculate the free energy profile of reaction mechanisms. 167 The main idea
behind umbrella sampling relies heavily on splitting the reaction pathway into windows and sampling each window
individually. However sampling a full momentum space is difficult, and that is why a bias potential is introduced as an
additional term to the energy expression as shown in Equation 5.

Eb(r) = E“(r) + wi(£) (5)
This additional term ensures efficient sampling along the reaction pathway by allowing the reaction variable to vary

along a biased potential (restrain) and not limiting the variable to a constant value (constrain). The most commonly used
biased potential is the harmonic potential as shown in Equation 6.

wi (&) = K/2 % (& - &°7)? (6)
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Harmonic potentials are appealing because they contain only few parameters: K (spring constant), the number of
images (i), and a reference point of the respective window i (fl.’ef). One needs to decide on the K value before starting
the simulations, and make sure it is large enough to drive the system over the energy barrier. 168169 This is important
because if K is too large there will be too narrow sampling and thus sufficient overlap between the windows will not be
achieved. A good example of overlapping windows is shown in Figure 7. Having adequate overlap is required to analyze
umbrella sampling with weighted histogram analysis (WHAM) or umbrella integration which depends less on overlap
but is still advantageous. 170-172

Umbrella sampling is widely used for physical transformations from ion solvation to protein folding with force
fields; 173 however, modeling chemical reactions is more computationally extensive since it generally requires BOMD
simulations. Leung et al. computationally examined a cobalt porphyrin catalyst for CO, reduction to CO in water. 174
First they used DFT calculations with implicit solvation and then validated their results with BOMD simulations with
an explicit agueous environment. These simulations demonstrated that the water molecules stabilized the reaction
intermediates from the CO,-cobalt complex. With the use of potential of mean force (PMF) calculations they were
able to identify the rate limiting step as the transfer of electrons between the polymerized catalyst and gas diffusion
electrode. This study is a good example of how to use umbrella sampling to calculate free energy barriers and identify
transition state structures, however one must keep in mind that it is very computationally expensive and limits the
number of reactions that can be studied.

Several studies have been dedicated to understanding the hydrophobicity of aqueous CO,; however, many employ
classical force field methods which demonstrate sensitivity to Lennard-Jones parameters. 17> To reduce parameter
dependence, Leung et al. performed BOMD simulations to investigate the solvation shell of CO, and other dissolution
species in water. 17 Ultimately their computations supported the previously observed hydrophobic nature of CO,in
water. Furthermore, they calculated the free energy change of bicarbonate formation from CO, and H, O to be -9.8
kcal/mol which agrees with the -9.4 kcal/mol experimental value.

Inwork related to the previously mentioned CO, reduction with sodium borohydride, Groenenboom and Keith
used calculated reaction energy barriers from NEB calculations at O K and compared them to free energy barriers
obtained at 300 K using PMF calculations from umbrella sampling. They show two different free energy barriers with
NEB and PMF calculations which suggests both temperature effects and solvent molecules would play an important
role in this reaction mechanism. The NEB pathway obtained at O K only slightly differed from the pathway used for the
PMF calculation, but energies along the two pathways were found to vary by as much as 0.25 eV. The overall barrier

Energy

Constrained Variable

FIGURE 7 Simplistic view of umbrella sampling along a hypothetical constrained variable.
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heights from the O K NEB calculations and the 298 K PMF calculations for three different elementary steps were quite
similar as well. However, the overall reaction energies from the NEB and PMF calculations differed by as much as 0.6 eV
when the NEB pathway was based on local minima and the PMF calculations sampled lower energy states. 177 Thus,
PMF calculations based on umbrella sampling appear to be more reliable for insights than NEB calculations alone, but

PMF calculations are also far more costly.

6 | CONCLUSION

We have given areview of recent and legacy approaches that are used to model reaction mechanisms under solvating
environments. We introduced our perspective of where computational catalysis is heading. It will be critical to integrate
solvation energy contributions and other environmental parameters into future high-throughput screening approaches,
and so we give an overview of implicit, mixed implicit/explicit, and explicit solvation modeling that would be needed
to do so. Though already widely used, continuum solvation models still have room for improvement. Notably, few if
any can reliably treat explicit solute-solvent bonding or solvation effects that can arise, and they should not be used to
glean insights into systems involving solvent mixtures. There is are still paths forward for computational modeling using
more robust (though computationally cumbersome) techniques that incorporate explicit solvation at least in part. In the
absence of accurate forcefield parameters and/or computational resources to run lengthy BOMD simulations, mixed
implicit/explicit procedures are a promising route for studying reaction mechanisms in complex environments. Future
directions continue to point toward more mixed implicit/explicit modeling as well as the development more accurate
and physical continuum solvation models and explicit solvation models. These advances will help improve the quality of

computational predictions that would guide the development of technologies for renewable fuels and chemicals.
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