
FOCUS ARTICLE

Advances and challenges in modeling solvated reaction mechanisms for renewable fuels and chemicals

Yasemin Basdogan¹ | Alex M. Maldonado¹ | John A. Keith¹

¹Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA

Correspondence

John A. Keith, Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
Email: jakeith@pitt.edu

Funding information

U.S. National Science Foundation, Grant/Award Number: CBET-1653392, CBET-1705592

We provide a critical overview of progress and challenges in computationally modeling multistep reaction mechanisms relevant for catalysis and electrocatalysis. We first discuss how the chemical and materials space of energetically efficient catalysis can be explored with computational chemistry. Since reactions for renewable energy catalysis can involve acid-base chemistry and/or ions under aqueous conditions, we then summarize how solvation can be modeled with quantum chemistry schemes using implicit, mixed implicit/explicit, and fully explicit solvation modeling. We will discuss the insights (and limitations) of these solvation models primarily through the scope of understanding CO₂ reduction reaction mechanisms, but these will also be applicable for future work elucidating other reaction mechanisms of critical importance for human sustainability such as H₂O oxidation and N₂ reduction.

KEY WORDS

Solvation modeling, cluster-continuum, mixed implicit/explicit, Pourbaix diagrams, phase diagrams, CO₂ reduction

1 | INTRODUCTION

Developing sources of renewable energy is paramount to long-term human sustainability.¹⁻³ For instance, CO₂ emissions correlate with severe weather patterns⁴ and global climate change,⁵ but more than 78% of the world's energy consumption through the year 2040 is expected to come from fossil fuels.⁶ Thus, many are interested in recycling anthropogenic CO₂ into fuels and chemicals⁷⁻¹¹ as well as sustainably producing ammonia^{12,13} and/or hydrogen.^{14,15} Unfortunately, most of these are currently unfeasible on large scales due to low conversion efficiency and/or high electrochemical overpotentials. For CO₂ electroreductions into fuels and chemicals, selectivity and energy efficiency remain as major challenges for proton and electron transfers.¹⁶ These challenges are also present in other fundamental transformations such as N₂ reduction for ammonia synthesis¹⁷ and H₂O oxidation for H₂ generation.¹⁸

Computational quantum chemistry modeling can help interpret and guide experimental work in this area by providing insights into chemical reaction mechanisms. Advances in algorithms and hardware make it easier to computationally model larger scale systems with higher accuracy, but the central challenges of understanding *what* processes to model and *how* to physically model them in a reliable way still remain. Indeed, many chemical reactions have intermediate states that are stabilized by different degrees of solvating environments, and neglecting or incorrectly modeling these environments can significantly impact the quality of predictions from computational modeling. We begin this mini-review by summarizing how one can use computational modeling to explore the chemical and materials space of renewable energy catalysis through the lens of identifying energetically efficient hydrogenation pathways for CO₂ reduction catalysis. We will then summarize different approaches to model solvating environments in reaction mechanism studies while also reviewing knowns and unknowns from recent literature to offer perspective for future efforts in this and related fields.

2 | THE CHEMICAL SPACE OF (DE)HYDROGENATION REACTIONS MECHANISMS

At a fundamental level, any hydrogenation (or dehydrogenation) process for any reaction might occur as:

1. One or more covalent hydrogen atom (H[·]) transfers (e.g. with thermal heterogeneous catalytic processes).¹⁹
2. Stepwise or coupled proton and electron transfers that originate from different sites within the system (e.g. with electrochemical processes).²⁰
3. Formal hydride (H⁻) transfers that may also be coupled with a proton transfer (e.g. with biomimetic processes).²¹

Analogous classifications have been used by many others to distinguish different modes for hydrogenation,²²⁻²⁸ and each class has been studied in different contexts of homogeneous,²⁹ heterogeneous,³⁰ or biological catalysis.³¹ Clearly, the local chemical environment (especially a solvating environment) will play a role in determining the nature of the hydrogenation mechanism.

To understand how environmental conditions can influence multistep processes, we can start by defining a map of elementary electrochemical processes using a 'square-scheme' or 'schemes of squares'³² and draw analogies to moves on a chessboard (see Figure 1). Here, a generic molecule A can undergo elementary steps to form a new reduced, hydrogenated state (AH_n). Individual proton transfer steps are normally represented as vertical steps, individual electron transfer steps are then represented as horizontal steps, and proton-coupled electron transfer steps are diagonal steps, i.e. all possible moves that a king piece is allowed to make in a chess game. Alternatively, an elementary

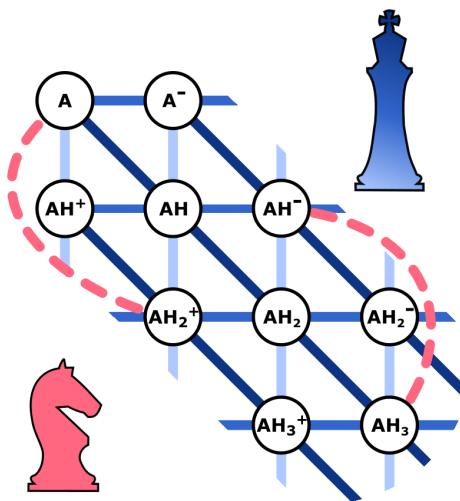


FIGURE 1 A “square-scheme” diagram of hypothetical pathways for a multistep (de)hydrogenation process.

hydride transfer would be an ‘L-shaped step that involves two electron transfers and one proton transfer, i.e. a possible move that a knight piece can make. Before going too far, some aspects warrant mention. First, it is usually rare to find a reaction intermediate having a charge with an absolute magnitude of two or more unless there is a polarizing solvent and/or counterions nearby.³³ Thus, it is usually not likely (though not impossible) to move two or more steps away from the diagonal line depicting neutral intermediate states. Second, this square-scheme shows that several different pathways may exist for any multistep process, just like there are multiple paths a chess piece might move from one corner of a board to another. To actually distinguish the different pathways requires confirmations from experiment and reliable computational modeling to assess which pathways are relevant under specific conditions. We will now describe how computational quantum chemistry can be leveraged to accelerate the discovery of energetically efficient reaction steps.

2.1 | Theoretical Phase Diagrams

If hypothetical reaction intermediates can be identified, one can then use computational quantum chemistry to calculate the absolute free energies of each species using the standard ideal gas, rigid rotor, and harmonic oscillator approximations. From these data, one can then make phase diagrams that are functions of parameters (e.g. solution pH, an electrode potential, and/or partial pressures of molecular species) that can be used to navigate chemical and/or materials space.³⁴ For instance, one can define a generic reaction that refers to intermediates from Figure 1 using Equation 1:

The corresponding free energy for this reaction at an arbitrary standard state (°) is simply the difference of the free

energies of the individual products and reactants:

$$\Delta G_{rxn}^{\circ} = G_{AH_n}^{\circ} - G_A^{\circ} - \frac{n}{2} G_{H_2}^{\circ} \quad (2)$$

Note that the free energy of H_2 is also related to the definition for the standard hydrogen electrode (SHE) potential,

while the free energy for protons, electrons, or other species such as A or AH_n can be expressed as linear functions of a local environmental parameters such as pH, applied potential ϕ , or the relative difference in chemical potential from its standard state $\Delta\mu_X$, respectively. Note that SHE is a commonly used reference electrode which is a hypothetical electrode immersed in a 1 M aqueous solution of proton with unit activity and no ionic interactions. Other reference electrode systems (SCE, NHE, RHE, etc.) can be computationally modeled as well, and some discussion is found the perspective paper by Marenich et al.³⁵ Using the SHE reference electrode model, one could define the reaction free energy from Equation 2 in an expanded form of several different species, each having a corresponding parameter (all expressed in eV units):

$$\Delta G_{rxn} = (G_{AH_n}^{\circ} + \Delta\mu_{AH_n}) - (G_A^{\circ} + \Delta\mu_A) - (G_{H^+}^{\circ} - 0.059 \text{ pH}) - (G_{e^-}^{\circ} - eU_{SHE}) \quad (4)$$

Note that values such as $G_{AH_n}^{\circ}$ and G_A° can be straightforwardly calculated using quantum chemistry codes. $G_{H^+}^{\circ}$ and $G_{e^-}^{\circ}$ correspond to absolute free energies of a proton and electron in some environment and can be referenced from the literature.³⁵ The remaining $\Delta\mu_X$ terms are treated as linear variables that describe environmental factors, e.g. partial pressure of a specific species, a solution pH, or an applied potential.

Considering large numbers of hypothetical reactions and determining the most favorable state at any given set of environmental conditions in this general framework begets “*ab initio*” atomistic thermodynamics phase diagrams that would show any ΔG for any hypothetical reaction at a specified set of conditions. For instance, if pH (x-axis) and ϕ (y-axis) were used as parameters, one would create a Pourbaix diagram, i.e. a phase diagram that depicts the thermodynamically most stable state for a system at a given pH and ϕ .³⁶ A representative set of Pourbaix diagrams is given in Figure 2.

While Pourbaix diagrams only provide insights into the thermodynamics of different intermediate states, they are still quite useful. First, they are a convenient representation of pK_a s, pH-independent standard redox potentials, and pH-dependent proton-coupled electron transfer steps by separating the regions of the Pourbaix diagram with vertical, horizontal, and diagonal boundary lines, respectively. These properties can be useful thermodynamic descriptors for catalysis. Second, the boundaries between different regions of a Pourbaix diagram define theoretical electrochemical conditions where free energies of reaction for a (de)hydrogenation step are zero, and thus at those electrochemical conditions the process should be highly reversible and thus energetically efficient. *Pourbaix diagram boundary lines therefore show theoretical electrochemical conditions that a species would facilitate energetically efficient shuttling of protons and electrons.* One step further, if one considers a Pourbaix diagram for a reactant such as CO_2 (Figure 2a) and another Pourbaix diagram for a hypothetical catalyst (Figure 2b), one could then overlay the two on top of the other (Figure 2c). Regions where boundaries of the two Pourbaix diagrams overlap signify electrochemical conditions where one species (i.e. a hypothetical catalyst) would facilitate shuttling of protons and electrons to another species (i.e. a reactant). This can be thought as an extension to the Sabatier principle of catalysis, where optimal catalyst activity is achieved when the substrate binds strongly enough to be activated but also weakly enough that it can still be removed and not poison the catalyst. Thus, Pourbaix diagram analyses allow one to search for the *catalyst state under specific electrochemical*

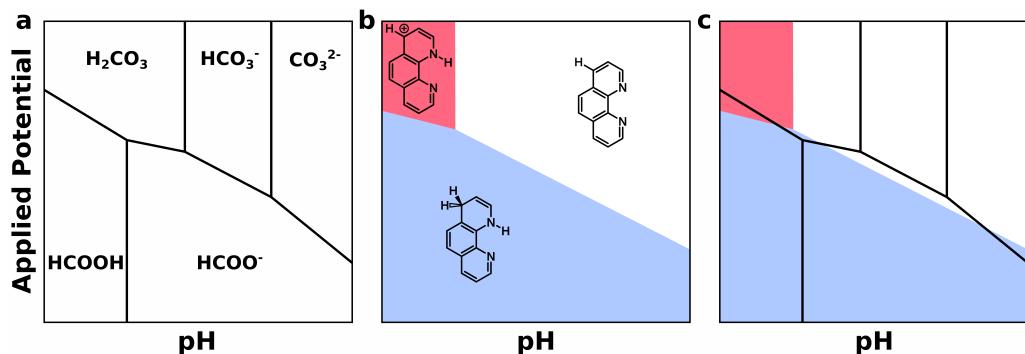


FIGURE 2 a) Pourbaix diagram showing stable states of the reactant, CO_2 ; b) Pourbaix diagram showing stable states of a hypothetical molecular catalyst, 1,10-phenanthroline; c) overlaid Pourbaix diagrams from a) and b) showing similar boundaries for hydrogen shuttling and CO_2 reduction. Vertical lines represent pK_a s, the horizontal lines represent the pH-independent standard redox potentials and the diagonal lines represent the pH-dependent proton-coupled electron transfer steps.

environments that would provide the lowest hypothetical overpotential.

Our group has used Pourbaix diagram analyses to study a variety of homogeneous and heterogeneous catalysis systems for CO_2 reduction. Interestingly, we have predicted that reaction conditions for several CO_2 electroreduction processes ranging from homogeneous pyridinium^{37,38} and homogeneous ruthenium³⁹-complexes as well as heterogeneous N-doped nanocarbons⁴⁰ and partially reduced SnO_2 oxides⁴¹ all coincidentally share a similar characteristic - all have Pourbaix boundary lines showing the formation of a new intermediate state near the conditions where CO_2 electrocatalysis has been reported. Experimentally validating these computational predictions has been difficult, in part due to difficulties reproducing experimental data that has been reported in the literature.^{42,43} However, other experimental studies have implicated transiently formed hydride-containing species in CO_2 reduction that are intermediates predicted to be thermodynamically stable by Pourbaix diagram analyses.^{44,45} From our perspective, we see opportunities to use computational modeling to discover new catalysts in chemical and materials space and synergistically guide experimental design with high-throughput screening. However, though numerous hurdles pertaining to modeling reaction mechanism under solvating reaction conditions must be overcome first.

2.2 | Challenges of Modeling Electrochemical Reaction Mechanisms

As stated earlier, Pourbaix analyses require that all the salient reaction intermediate states be correctly identified. When modeling catalytic reactions on surfaces, especially gas phase reactions on conducting surfaces, standard Kohn-Sham density functional theory (DFT) is normally suitable for reliably modeling charge neutral reaction intermediates. Additionally, modeling electrochemical reactions using the computational hydrogen electrode model⁴⁶ (i.e. modeling electrochemical proton and electron transfers as a $1/2 \text{H}_2$ transfer coupled to a linear potential correction) can bring helpful and testable insights into electrocatalysis. However, as illustrated by Exner and Over⁴⁷ as well as Janik and Asthagiri,⁴⁸ modeling reaction mechanisms without accounting for barriers provides an incomplete picture and can result in qualitatively different outcomes that might be wrong and/or misguide future research efforts.

Carrying out thorough computational investigations is easier said than done. Calculating barrier heights requires substantial computational effort, and these efforts would all be for nothing if an unphysical model system were used.

First, simplistic models are never guaranteed to represent the actual atomistic environment, though understanding model systems can provide useful insight into which pathways are feasible and which are unlikely. Adding to this complexity, it is well known that commonly used DFT approaches have self-interaction errors that make them sometimes unphysically model charged intermediate states and/or highly correlated systems,^{49–51} and so higher-level theories are required. Today, we see most development and applications in this area are using models that 1) enable enhanced sampling of reaction mechanisms to identify meaningful reaction pathways,^{52–54} 2) enable physical modeling of electrochemical (i.e. potential dependent) reaction mechanisms,^{55–62} and 3) improve the quality of continuum solvation energies of static systems.^{63–66} There is a growing understanding that solvation is important not just in homogeneous catalysis but also heterogeneous catalysis.⁶⁷ Also, solvation modeling treatments are sometimes revealed to not be as reliable as generally believed.⁶⁸ While some computational studies are starting to explicitly account for potential-dependent reaction mechanisms in different forms, there has been little consensus of the best practices for doing so. All of these challenges are important, and the pathway to addressing them will likely be coupled. To better understand these challenges through the lens of solvation, we briefly summarize and provide our perspective on different solvation modeling techniques. Table 1 summarizes all the different solvation treatments that will be discussed in the next sections. It serves as a quick guide for the remainder of this minireview.

3 | IMPLICIT SOLVATION

Continuum solvation models have been used for many decades and there are many detailed reviews in the literature explaining the theory and the applications.^{69–74} We only briefly overview how continuum solvation models work and how they are used to describe renewable energy catalysis. Figure 3 shows a cartoon model representation of implicit solvation of a methanol molecule with cluster and surface calculations.

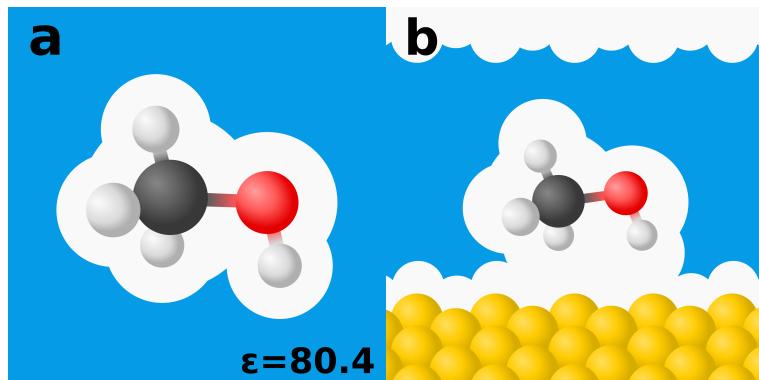


FIGURE 3 a) Illustration of a methanol molecule modeled within a cavity of a non-periodic continuum solvation model. b) Illustration of a methanol molecule modeled at a surface within a cavity of a periodic continuum solvation model.

Continuum solvation models were first developed for non-periodic systems of small and neutral molecules, and most treat the solvent as a structure-less, homogeneous medium using a polarizable dielectric described by a dielectric constant ϵ . In the most commonly used methods, a solute cavity is created around a solute to represent a boundary surface that allows a semiempirical calculation of a solvation energy based on the electronic structure of the system

TABLE 1 Overview of material reviewed of all solvation methods that will be discussed in the upcoming sections.

Models	Overview	Key findings
Implicit	<ul style="list-style-type: none"> • Are relatively computationally efficient • Are based on different mathematical formulations that may or may not yield similar results for the same modeled system • Can be used in either cluster or periodic systems • Omit explicit interactions with solvent molecules that may be important 	<ul style="list-style-type: none"> • Calculations using periodic slabs or cluster models will result in very different solvated adsorbate binding energies, but relative energetics from the same model can be similar • Solvation energies are sensitive to cavity definitions • Implicit models can stabilize metastable zwitterion intermediates (e.g. $M-(CO_2)^-$ complexes) not observable in gas phase calculations • More developments are needed to model solvent mixtures
Mixed	<ul style="list-style-type: none"> • Explicit interactions are included by introducing solvent molecules into the system • There is no simple way of knowing precisely how many solvent molecules should be included and where they should go 	<ul style="list-style-type: none"> • A complete first (or second) solvation shell should be treated whenever possible • Thermodynamic descriptors (e.g. $pK_{a,s}$ and standard redox potentials) and reaction pathways can be calculated more accurately using mixed implicit/explicit models • Recent schemes have been found to yield similar results as fully explicit simulations
Explicit	<ul style="list-style-type: none"> • Computational cost is often substantially higher than for continuum solvation models • Classical molecular dynamics treatments require existing force field parameters • Born-Oppenheimer molecular dynamics (BOMD) simulations with quantum chemistry can be prohibitively expensive 	<ul style="list-style-type: none"> • Solution phase nudged elastic band calculations can be useful as collective variables for umbrella sampling simulations • 0 K nudged elastic band and 298 K potentials of mean force calculations show interesting similarities and differences

of interest. The subtle differences in defining the cavity, the theoretical foundations, and the boundary conditions are what gives rise to the various implicit solvation models.⁷⁵⁻⁸³ For instance, one of the first and most widely used continuum solvation models is the conductor-like screening model (COSMO),⁸⁴ which differs from other models by employing a scaled conductor instead of exact dielectric boundary condition, and this approximation considerably simplifies the mathematics. Also, COSMO uses a Green's function as the dielectric operator, and that enabled it to be the first continuum solvation model that was implemented with analytical gradients and used a real cavity shape.⁸⁵

Expanding the applicability of implicit models to periodic systems requires treatment of the ionic response of charged species and interfaces.⁸⁶ Fattebert and Gygi were the first to make an isodensity continuum model adaptable to periodic systems that would be appropriate for modeling solvation on surfaces.⁸⁷ The simplest way to treat the ionic response is by using Poisson-Boltzmann (PB) theory which considers ions as point particles with mean-field interactions.⁸⁶ There are many other ways to treat a solvent implicitly on surfaces and still account for ionic responses.

For example, joint DFT was developed to combine typical electronic DFT with a classical DFT description of the liquid environment in order to reduce computational costs of large periodic systems.⁸⁸ This was first described by a modified polarizable continuum model (PCM) that has a linear dielectric response for the solvent (linearPCM).⁸⁹ The linear dielectric response approximation tends to fail with systems containing strong electric fields like ionic surfaces and electrochemical systems, so Gunceler et al. developed an improved model by using a nonlinear dielectric response (nonlinearPCM).⁸⁹ Alternatively, the self-consistent continuum solvation (SCCS) was developed to extend the utility of implicit solvation to plane-wave codes with improved robustness.⁹⁰⁻⁹² More recently, the CANDLE method was explicitly developed to handle charged species because it takes into account the charge asymmetry in the solvation structure. In this method the cavity is defined by a nonlocal functional of the solute electron density and potential that enables modeling the system's asymmetric solvent charge.⁹³ Additionally, separate field-aware approaches are being developed for cavity descriptions that can account for charged species without the need of continued modulation of cavity definitions to improve experimental fitting.⁹⁴

There are several open challenges associated with applying implicit solvation models for periodic systems. In particular, it remains challenging to reliably determine electrochemical interfacial structures as well as reaction energetics. For example, some models cannot capture the local field variations from cations and in some cases default parametrization can place the ionic countercharge unphysically close to the surface.⁹⁵ Recently, there has been a number of exciting developments in implicit solvent modeling by improving numerical stability and reducing unphysical artifacts of cavities to better describe the electrochemical environments. For example, Fisicaro et al. used a continuous permittivity to model complex dielectric environments or electrolytes that should be accurate for neutral and charged systems.⁹⁶ Also, Andreussi et al. have developed an improved continuum solvation model that eliminated unphysical cavity "pockets" by smoothly varying solute cavities.⁹⁷

Overall, one of the main purposes for an implicit solvation model is to avoid the complexity and computational cost of explicitly modeling solvent molecules. The computational expense for these systems is low and thus these methods are among the most used in applied studies of reaction mechanisms. Continuum solvation models such as COSMO, PCM, and the more recent solvation model based on density (SMD)⁸³ are highly cited because they are often used in diverse applications including reaction mechanism studies. We now will discuss a few applied studies in detail, but mention several others studies that have employed implicit solvation models to study aqueous CO₂ reduction.⁹⁸⁻¹⁰⁷

Note that modeling extended surfaces are more physically representative of an actual surface, but being able to model surfaces as clusters can sometimes make it easier to introduce high level theory. However, finite clusters can also have complicated spin states that need to be accounted for (e.g. Ref.¹⁰⁸) while periodic analogs to these systems may not have significant spin polarization. To understand the extent that continuum solvation models can and should be used in applications of surface cluster models, Gray and co-workers computationally modeled adsorbate binding energies under the presence of continuum solvation on both periodic slab and large cluster models.¹⁰⁹ They modeled the Pt(111) surface with a variety of adsorbates: H*, O*, and OH* at different binding sites. It was found that sufficiently large model clusters captured similar gas phase binding energies as those obtained using periodic calculations and having relatively low surface coverages. It was found that the two fundamentally different models gave similar gas phase binding energies and thus showed promise for future work modeling heterogeneous catalyst sites using modern QM-in-QM embedding models.^{110,111}

Once the gas phase energies were benchmarked for these systems, the energy contributions from continuum solvent methods could then be accounted for. Interestingly, using the COSMO model on the finite cluster resulted in a calculated solvation energies ranging from about -0.6 to -0.9 eV, and these were quite different in magnitude compared to the VASPsol energy contributions using the periodic systems that ranged from +0.1 to -0.35 eV. This should not be surprising since the surface cluster model had unphysical corners and edges that were being solvated

while the periodic slab model had no unphysical corners or edges. The net effect of this was significantly different solvated adsorbate binding energies even though the gas phase adsorbate binding energies between the two models had been found to be similar. However, we also found that the relative solvated adsorbate binding energies were similar across different sites for both the surface cluster and periodic slab models. Since the relative energetics were similar, we concluded that reaction mechanism studies using continuum solvated surface cluster models probably will give similar insights as studies using continuum solvated periodic slab models. The salient point is that if reaction mechanism studies necessitate the use of solvated surface cluster models, it will likely be the case that continuum solvation energies will be less physically relevant, but error cancellations can be leveraged to give useful insights. However, when an intermediate state is being modeled that is different from the rest, the results from a continuum solvation model should be considered with more suspicion and thus warrant additional care to ensure that the solvation model is appropriate for that case.

Another important aspect with continuum solvation models is their cavity definitions. Programs such as GAUSSIAN allow the user to select different cavities based on different empirical radii, and Yang compared some of these models on homogeneous metal complexes for CO₂ hydrogenation.¹¹² Yang modeled PNP-ligated metal pincer complexes for formation of formic acid from CO₂ and H₂. To model solvation effects the integral equation formalism polarizable continuum model (IEFPCM) was used with van der Waals (i.e. Bondi radii¹¹³) atomic radii—for geometric optimizations—and United Atom Topological Model applied on radii (UAKS)—for electronic energy corrections—to describe the cavity. UAKS is based on a model where hydrogen atoms are always enveloped within the molecular cavity while hydrogen atoms from Bondi radii cavities will appear in the cavity surface. Yang compared solvation energies of small ions and found that solvation energies using the UAKS radii were more accurate than energies using Bondi atomic radii. For the test case of CO₂ + H₂ + OH⁻ → HCOO⁻ + H₂O it was found that UAKS cavity data were within 5 kcal/mol of experimental data while Bondi radii cavity data had an error of 16 kcal/mol. While UAKS radii have been shown to be useful in many applications, for instance when predicting pK_a values,¹¹⁴ most benchmarking has been done for assessments of thermodynamic properties and reaction energies, but much less work has been done in understanding their applicability for determining kinetic barriers. In the cases of modeling (de)hydrogenation processes, it is not yet understood whether one should use a solvent model that explicitly accounts for hydrogen atoms or not. What is understood is that highly parameterized continuum solvation models are clearly very sensitive to cavity definitions, and tuning any specific radii for any specific application should be avoided.

Koper has also studied numerous mechanisms for CO₂ and N₂ reduction.¹¹⁵⁻¹¹⁹ For example, his group has studied CO₂ reduction mechanisms involving cobalt porphyrins,¹²⁰ and they identified CO as being the main product from this reaction mechanism and CO₂⁻ as the key intermediate. Co(P) guided the formation of CO through decoupled proton and electron transfers; however, additional concerted proton-coupled electron transfers involving CO resulted in minor CH₄ formation. This work was made possible using the COSMO implicit solvation model to account for solvation effects. One complex modeled to form during the reaction, [Co(P)–(CO₂)]⁻, was only stable when solvation treatments were included; however, another complex was still not stable when implicit solvation was included in the calculations ([Co(P)–(CO₂)]⁰). An analogous observation was also seen in work by Carter,³³ who modeled an anionic complex, [Re(bpy)(CO)₃–(CO₂)]⁻, and found it was only stable with an explicit counter ion or under the presence of a continuum solvent method. Thus, continuum solvation models have been and will likely continue to be used to assess metastable (and potentially zwitterionic) reaction intermediates in homogeneous reaction mechanisms.

With the success of implicit models in previous studies, many researchers are attempting to apply these techniques to reactions involving solvent mixtures. Garza et al. studied a tetraaz [Co^{II}N₄H]²⁺ catalyst to understand the selective reduction of CO₂ to CO.¹²¹ Those authors used PCM to include the solvent effects. They used pure acetonitrile in their calculations although the experimental contributions used a wet (10 M water) acetonitrile environment. Mixed solvents present a challenge for computational modeling since only a few models such as COSMO-RS can be used to model

mixed solvents, and this model has not yet been as extensively used for mechanistic investigations as the conventional COSMO approach.¹²² Garza et al. modeled both pure H₂O and acetonitrile systems and noted that their calculated reaction energies do not differ significantly between these two solvents, and we have observed similar results as well. Those authors then inferred that mixed solvents would also not be significantly different even though experimental data has shown that mixed solvents can bring peculiar and non-intuitive solvation energies depending on the solute and the mixed solvent composition.^{123,124} From our perspective, since continuum solvation models generally cannot be trusted to recognize the significance of an explicitly bonded solvent molecule, they should not be assumed to be a physical model for any mixed solvent in an arbitrary solvent composition. It is true, however that any errors arising from an insufficient solvation treatment of any one intermediate might cancel out with errors from a different intermediate, and thus the relative energy difference between the two would be reasonably accurate due to fortuitous error cancellation.

Another study by Cao et al. considered Ir(III) pincer dihydrides as electrocatalysts for CO₂ reduction to formate (or formic acid) in acetonitrile/H₂O mixtures.¹²⁵ They used IEFPCM with UAKS radii and cavity-dispersion-solvent-structure terms from the SMD solvation model to describe the solvation effects using the GAUSSIAN code. Experiments show that the reaction does not happen in anhydrous acetonitrile and that a water concentration of 5% or more is needed. As with the study by Garza et al., these authors used continuum solvation models to gain insights into chemical reactivity in pure H₂O and acetonitrile solvents. They mainly discuss reaction pathways under acetonitrile because the experimental conditions had a higher percentage of acetonitrile; however, almost all of the calculated barriers are very similar in magnitude compared to calculated barriers in pure H₂O. The barrier for formation of the formate anion appears to have lower energy when it is modeled in water, which indicates that water explicitly plays an important effect in this reaction mechanism by forming hydrogen bonds with the formate.

To summarize this section, we note that continuum solvation models are very useful, but they are sometimes unreliable and thus should be used cautiously when making predictions. Users should be aware that modeling and comparing different solvents, such as water and acetonitrile, generally only involve a slightly different cavity definition and dielectric constant that may result in a relatively small solvation energy difference. As a result, it should not be surprising when a continuum solvation model gives similar solvation energies for different solvent systems. However, mixed solvent systems are known to exhibit non-linear effects as a function of solvent composition, and standard continuum solvation models have not yet reproduced this behavior.^{123,124}

4 | MIXED IMPLICIT/EXPLICIT SOLVATION

One technique to improve the performance of continuum solvation models is with so-called mixed implicit/explicit or cluster-continuum solvation modeling, which has been used in practice in an ad hoc manner for decades.¹²⁶ Instead of a lone solute being considered, some number of explicit solvent molecules are added to the system, and the resulting cluster of molecules is placed into the dielectric medium. In periodic systems of face-centered cubic metals, explicit solvent molecules are generally added as one or more layers of solvent molecules and then an implicit solvation model can be used on top of that. On other surfaces one or more solvent molecules need to be added to the system in an ad hoc manner to build up an interfacial solvation structure. Mixed implicit/explicit solvation approaches usually used calculations using an implicit solvation model is not sufficient to model a system of interest. For instance, mixed implicit/explicit solvation is used to predict energy calculations of ions and/or small molecules,^{127,128} though it is also used for studying reaction mechanisms that involve the participation of the solvent molecule. A model cluster is shown in Figure 4 with three explicit solvent molecules and implicit solvent.

The main challenge of mixed implicit/explicit solvation modeling is to know how many solvent molecules are

required to capture the crucial solvation effects and where to place those solvent molecules in a meaningful way. The most commonly used way to overcome this challenge is to place solvent molecules according to chemical intuition and/or with trial and error attempts. This requires *a priori* knowledge of the reaction mechanism and the active sites that need to be stabilized. Even if one can place the solvent molecules with chemical intuition, there is still the open question of how many solvent molecules are needed. Furthermore, one should keep in mind that an entropic penalty would be expected to form solvent clusters, and that might play an important role in interpreting calculated energies.

Different research groups show different preferences about determining how many solvent molecules are needed for an accurate calculation. Some will only add a single solvent molecule at the site of interest while others may add more solvent molecules until a desired result is achieved. Ahlquist studied CO₂ hydrogenation with a homogeneous iridium catalyst using two explicit water molecules together with Poisson-Boltzmann self-consistent reaction field as defined in the Jaguar simulation package.¹²⁹ Ahlquist reported agreement with the experimental values only when both implicit solvation and two water molecules are present in the system. Groenenboom et al. modeled thermodynamic descriptors for a large set of aromatic N-heterocycle molecular catalysts for electrochemical CO₂ reduction.³⁸ Across 27 different molecular catalysts, using one explicit water molecule located at the relevant hydrogen bonding site for each molecule improved direct pK_a calculations to reasonably low errors of about 1 pK_a unit.

For reaction mechanisms, including explicit solvent molecules plays an important role as well. Lim et al. studied hydride transfer pathways from dihydropyridine to CO₂ by including one or two explicit water molecules together with CPCM model in their system.¹³⁰ Those authors found that this was an adequate treatment of the solvent because the resulting polar transition state structure was substantially stabilized by explicit solvent molecules that also facilitated a proton shuttle mechanism. Those authors also looked at a similar system where they used pyridine to catalyze CO₂ reduction by using different degrees of solvation. In this study they considered up to three solvent molecules as participating in their reaction mechanism as well as up to ten more solvent molecules to further solvate the reaction-relevant molecules, and then the entire cluster was then embedded in CPCM implicit solvation model. The authors reported good agreement with experimental values when they used three solvent molecules in the active reaction mechanism and ten solvent molecules to solvate the core structure (calculated: 13.6 kcal/mol; experimental: 16.5 kcal/mol), and thus it is not clear if the experimental barrier relates to what was modeled or to a different process such as hydrogen evolution.^{42,43} While the computational results may or may not reflect the actual mechanism, they do highlight the important role of proton shuttling networks that standard continuum solvent models (as well as explicit solvent molecule using classical force fields) would not be able to physically model.¹³¹

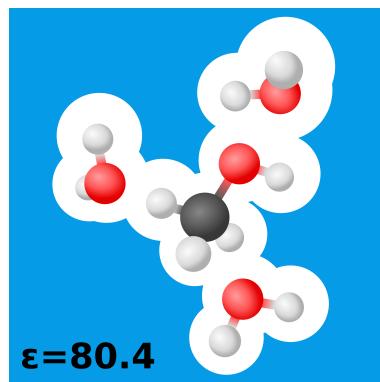


FIGURE 4 A model cluster with three explicit solvent molecules and implicit solvation.

Lim et al. also revisited the pteridine molecule¹³² that had been proposed as a potential CO₂ reduction catalyst with some controversy.^{42,133} The authors' model system included seven water molecules and the entire cluster embedded in the CPCM model. They then benchmarked results from this implicit/explicit solvation modeling treatment to QM/MM simulations (*vida infra*) where the seven water molecules were kept in a QM region and the rest of this cluster was explicitly solvated with 200 water molecules treated using a classical force field. The authors found that the two solvation treatments resulted in very similar energies, and they also found that the reaction barrier was consistently too high to be valid for a reaction that would be expected to occur at room temperature (QM/MM: 29.7 kcal/mol, QM: 30.9 kcal/mol). Savéant has commented that QM calculations were not necessary to rule out some pathways,⁴² but Lim et al.'s work is nevertheless useful because it demonstrates that simpler cluster continuum models can provide similar results as far more computationally intensive QM/MM simulations and thus suggesting other means forward for modeling these systems besides computationally costly QM/MM simulations. The important role of solvent molecules in reaction mechanisms is not only limited to just H₂O. Rohmann et al. studied CO₂ reduction to formate with a homogeneous ruthenium complex. They modeled their system in DMSO solvent using 10 explicit solvent molecules together with SMD solvation model. They show DMSO solvent molecules are vital for the mechanistic study because the hydrogen bonding between the formate (the end product) and the solvent results with a thermodynamic driving factor for desirable concentrations of the products.¹³⁴

There are far fewer studies on mixed implicit/explicit solvation on periodic surfaces. Carter has studied CO₂ reduction on GaP (110) surface by modeling it as a cluster that can be straightforwardly solvated with a non-periodic solvation model,¹³⁵ similar to the work by Gray et al. mentioned previously. Their treatment used structures arising from a full monolayer of half-dissociated water molecules together with the SMD solvation model. They identified 2-pyridinide as an active intermediate in Py-cocatalyzed CO₂ reduction at p-GaP photoelectrodes.

As stated before, there is no easy way to determine how many solvent molecules are needed for an accurate and reliable treatment of mixed implicit/explicit solvation. As a test to deconvolute the relative energy contributions of electronic correlation, explicit solvation, as well as the presence of a counter ion in a reaction mechanism, Groenenboom and Keith followed work by Johnson¹³⁶ who studied borohydride hydrolysis using a procedure involving high temperature Born–Oppenheimer molecular dynamics (BOMD) simulations to observe an elementary hydrogenation process and then characterized that pathway using nudged elastic band methods.¹³⁷ Groenenboom and Keith used a similar procedure to model CO₂ reduction by NaBH₄ and NaBH₃OH. Molecular clusters from the NEB calculations were then used with different analyses using high-level single point energy calculations and implicit solvation. In general, it was found that the full first solvation shell along with COSMO solvation resulted in an energy profile almost identical to the fully explicit solvated case. Somewhat surprisingly, a range of different levels of theories found calculated barriers differing by only 0.1 eV while using a continuum solvation model without the first solvation shell resulted in differences as large as 1 eV. This study points out the importance of the solvation treatment however using BOMD simulations together with NEB calculations can become very computationally expensive. It would be especially interesting if there were a means to sufficiently solvate reaction intermediates without the need for dynamics or even fully explicit solvation models. Recently Basdogan and Keith have demonstrated a generalizable modeling scheme that facilitates mixed implicit/explicit solvation treatments for reaction mechanisms, i.e. systems where implicit models are known to sometimes fail. The calculation scheme involves generating microsolvated clusters using a global optimization code called ABCluster,¹³⁸ and after identifying globally optimized clusters they used single-ended GSM calculations^{139–141} to explore reaction pathways systematically.

5 | EXPLICIT SOLVATION

Many research groups explicitly solvate their systems to gain detailed information not available from implicit methods. Studies typically use Monte Carlo (MC) or molecular dynamics (MD) to treat the entire solvent box as shown in Figure 5. Still, complications could arise when studying polarizing systems or significant electron density changes. Born-Oppenheimer molecular dynamics (BOMD) and its variant Car-Parrinello Molecular Dynamics (CPMD)¹⁴² have been critical in broadening the scope of systems we could study explicitly. Both use real-time electronic structure calculations to describe the system's behavior instead of parameterized force fields or potentials; however, they are only meaningful if the run time is long enough for the system to visit all energetically relevant configurations. For complicated systems, large energy barriers could separate chemically relevant configurations and severely limit sampling.

Currently there are a couple of ways to avoid the high computational costs of BOMD. First, is to use simulation schemes that are computationally faster. These methods often depend on reducing the frequency of full electronic structure calculations or simply reducing the region being treated quantum mechanically and employing a classical treatment for the remaining system. The latter solution is referred to as quantum mechanics/molecular mechanics (QM/MM) which is a hybrid method that combines QM and MM frameworks to make simulations faster than BOMD and more accurate than MM. In QM/MM simulations, the system is divided into primary and secondary subsystems.¹⁴³ The primary system is the QM region which contains the reaction-relevant molecules under investigation. The secondary subsystem is the environmental zone where the other solvent molecules are modeled with forcefields to capture the bulk solvation effects.

It is common practice to include solvent molecules from the first solvation shell in the QM region to capture the crucial solvation effects using a higher level of theory. Although difficulties can arise when trying to keep the simulation as physically realistic as possible. Solvent molecules, in real solutions, will migrate towards and away from solute regions. This poses a problem in garnering expensive and highly accurate data on short-ranged solvation effects when a solvent molecule drifts away. Researchers sometimes employ constrained QM/MM; in which a bias is applied to keep solvent molecules from leaving the predefined QM region.¹⁴⁴⁻¹⁴⁶ While this provides reasonable accuracy, the fundamental issue with this type of modeling is its unphysical treatment of an essentially frozen solvent shell. Alternatively, a method of switching the subsystem designation (QM or MM) of solvent molecules based on the proximity to the solute in real time can be used and is common practice today.^{143,147,148} This adaptive QM/MM scheme is very useful, but it could still benefit from a reduction of spatial artifacts that affect multiscale modeling.¹⁴⁹ We expect to see substantially more

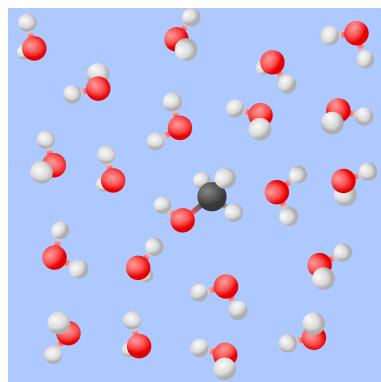


FIGURE 5 A methanol molecule being explicitly solvated by water.

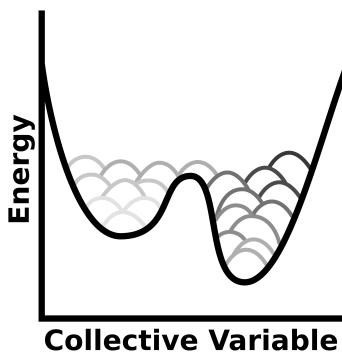


FIGURE 6 A model metadynamics simulation profile. Gaussian functions are placed on the free energy surface to flatten the energy wells over time during the simulation (lighter to darker curves). This is used to reduce oversampling of the local minima and pushes the system away from it.

applications of these methods in the coming years as they can allow higher levels of QM theory for improved insights into catalytic reactions.^{150,151}

5.1 | Sampling Techniques

QM/MM free energy simulations are commonly used to sample free energy surfaces. In renewable energy catalysis a reaction often needs to be modeled by bond breaking or forming. In order to model such catalysis one needs to treat the system with quantum chemistry. However, the calculations will become very expensive if the entire system is treated with quantum chemistry, i.e. using some variant of BOMD. To overcome this challenge, algorithms are applied to enhance the sampling of reaction-relevant areas of free energy surfaces. These algorithms can vaguely be distinguished into two categories as methods that either introduce additional degrees of freedom along which the free energy is calculated (metadynamics) or methods that sample the system in equilibrium (umbrella sampling). In the following sections we will broadly introduce one technique from each category.

5.1.1 | Metadynamics

Metadynamics is a sampling technique that is based on adding an additional bias potential that acts on a selected number of collective variables (CV). For reactive systems, bond breaking or bond forming are two examples of widely used collective variables.¹⁵²⁻¹⁵⁶ To accomplish this, Gaussian potentials are placed on the free energy surface in order to flatten the energy wells and reduce oversampling of local minima. A very simplified representation is shown in Figure 6. It is an accelerated sampling technique of rare events that is based on pushing the system away from the local minima. Metadynamics is generally used to explore new reaction pathways without *a priori* knowledge of the free energy surface. However, one must be careful to identify a set of CVs appropriate for describing complex processes.¹⁵⁷ CVs should be a function of the microscopic coordinates of the system and should distinguish between the initial and final states while also describing relevant intermediates. If one can come up with CVs that meet all the requirements then metadynamics should work effectively to model free energy surfaces.¹⁵³

There are handful of examples where *ab initio* metadynamics is used to study CO₂ reduction or any reaction

mechanism. Urakawa et al. was exploring a ruthenium dihydride catalyst and its ability to hydrogenate CO_2 .¹⁵⁸ Their work demonstrated that a *trans* isomer route was more energetically favorable (higher stability intermediates) while the rate-limiting step was the insertion of H_2 into formate, but there were no explicit solvent molecules included in this study that would account for their role in the reaction mechanism. Ghoussoub et al. studied the effect of temperature on frustrated Lewis pairs on nanoparticles for heterogeneous catalytic reduction of CO_2 .¹⁵⁹ They concluded that at higher temperatures, CO_2 adsorbed more easily on the surface which suggests an adsorptive reaction mechanism may be relevant. This study also did not consider how solvation can affect the reaction mechanism, but they investigated H_2O adsorption on the surface at different temperatures. Gallet et al. used metadynamics to simulate the reaction of CO_2 with one, two, or three explicit solvent molecules in the gas phase.¹⁶⁰ This work provides a useful and thorough protocol to study relatively small systems. Future advances of computation resources will continue to allow more extensive studies to be carried out.

There are few studies on CO_2 chemistry that used metadynamics with fully explicit solvation models. Stirling studied the free energy barriers of reversible bicarbonate formation in water at high pH.¹⁶¹ It was determined that the free energy barrier of $\text{CO}_2 + \text{OH}^- \longrightarrow \text{HCO}_3^-$ was 13.8 kcal/mol, which coincides with the 11.5 kcal/mol experimental value. Interestingly, the forward reaction free energy barrier was mostly entropic while the reverse barrier was mostly enthalpic. This conclusion was only possible because extensive metadynamics simulations had been performed with explicit solvent. This study outlines an accurate way to calculate free energy barriers of other processes in solvated systems as well; however, the number of reacting atoms that need to be considered will be a limiting factor. Galib et al. also examined the mechanistic and energetic effects of solvent cluster size on the decomposition of H_2CO_3 .¹⁶² They selected atoms to form two small (6 and 9) and large (20 and 45) water clusters around a H_2CO_3 molecule in a Car-Parrinello molecular dynamics simulation. Metadynamics then allowed sufficient sampling to demonstrate that the small and large clusters led to a concerted and stepwise mechanism, respectively. Thus, H_2CO_3 decomposition likely follows a stepwise mechanism in bulk-like water, but it might be different in other environments like an air/water interface. Goddard and co-workers have investigated multiple aspects of CO reduction on copper surfaces and copper nanoparticles with explicit water layers at different pH levels.^{57,163–166} Their studies of solvated systems were carried out using reactive force fields which significantly decrease the computational time required. However, even well-parameterized reactive potentials should be assumed to be less accurate than the QM calculation, and thus interpretations based on predictions from these model warrant more caution than all-QM methodologies.

5.1.2 | Umbrella Sampling

Umbrella sampling is another technique to calculate the free energy profile of reaction mechanisms.¹⁶⁷ The main idea behind umbrella sampling relies heavily on splitting the reaction pathway into windows and sampling each window individually. However sampling a full momentum space is difficult, and that is why a bias potential is introduced as an additional term to the energy expression as shown in Equation 5.

$$E^b(r) = E^u(r) + \omega_i(\xi) \quad (5)$$

This additional term ensures efficient sampling along the reaction pathway by allowing the reaction variable to vary along a biased potential (restrain) and not limiting the variable to a constant value (constrain). The most commonly used biased potential is the harmonic potential as shown in Equation 6.

$$\omega_i(\xi) = K/2 * (\xi - \xi_i^{ref})^2 \quad (6)$$

Harmonic potentials are appealing because they contain only few parameters: K (spring constant), the number of images (i), and a reference point of the respective window i (ξ_i^{ref}). One needs to decide on the K value before starting the simulations, and make sure it is large enough to drive the system over the energy barrier.^{168,169} This is important because if K is too large there will be too narrow sampling and thus sufficient overlap between the windows will not be achieved. A good example of overlapping windows is shown in Figure 7. Having adequate overlap is required to analyze umbrella sampling with weighted histogram analysis (WHAM) or umbrella integration which depends less on overlap but is still advantageous.¹⁷⁰⁻¹⁷²

Umbrella sampling is widely used for physical transformations from ion solvation to protein folding with force fields;¹⁷³ however, modeling chemical reactions is more computationally extensive since it generally requires BOMD simulations. Leung et al. computationally examined a cobalt porphyrin catalyst for CO_2 reduction to CO in water.¹⁷⁴ First they used DFT calculations with implicit solvation and then validated their results with BOMD simulations with an explicit aqueous environment. These simulations demonstrated that the water molecules stabilized the reaction intermediates from the CO_2 -cobalt complex. With the use of potential of mean force (PMF) calculations they were able to identify the rate limiting step as the transfer of electrons between the polymerized catalyst and gas diffusion electrode. This study is a good example of how to use umbrella sampling to calculate free energy barriers and identify transition state structures, however one must keep in mind that it is very computationally expensive and limits the number of reactions that can be studied.

Several studies have been dedicated to understanding the hydrophobicity of aqueous CO_2 ; however, many employ classical force field methods which demonstrate sensitivity to Lennard-Jones parameters.¹⁷⁵ To reduce parameter dependence, Leung et al. performed BOMD simulations to investigate the solvation shell of CO_2 and other dissolution species in water.¹⁷⁶ Ultimately their computations supported the previously observed hydrophobic nature of CO_2 in water. Furthermore, they calculated the free energy change of bicarbonate formation from CO_2 and H_2O to be -9.8 kcal/mol which agrees with the -9.4 kcal/mol experimental value.

In work related to the previously mentioned CO_2 reduction with sodium borohydride, Groenenboom and Keith used calculated reaction energy barriers from NEB calculations at 0 K and compared them to free energy barriers obtained at 300 K using PMF calculations from umbrella sampling. They show two different free energy barriers with NEB and PMF calculations which suggests both temperature effects and solvent molecules would play an important role in this reaction mechanism. The NEB pathway obtained at 0 K only slightly differed from the pathway used for the PMF calculation, but energies along the two pathways were found to vary by as much as 0.25 eV. The overall barrier

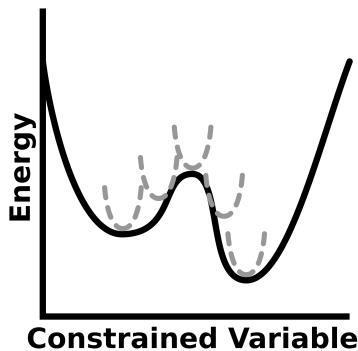


FIGURE 7 Simplistic view of umbrella sampling along a hypothetical constrained variable.

heights from the 0 K NEB calculations and the 298 K PMF calculations for three different elementary steps were quite similar as well. However, the overall reaction energies from the NEB and PMF calculations differed by as much as 0.6 eV when the NEB pathway was based on local minima and the PMF calculations sampled lower energy states.¹⁷⁷ Thus, PMF calculations based on umbrella sampling appear to be more reliable for insights than NEB calculations alone, but PMF calculations are also far more costly.

6 | CONCLUSION

We have given a review of recent and legacy approaches that are used to model reaction mechanisms under solvating environments. We introduced our perspective of where computational catalysis is heading. It will be critical to integrate solvation energy contributions and other environmental parameters into future high-throughput screening approaches, and so we give an overview of implicit, mixed implicit/explicit, and explicit solvation modeling that would be needed to do so. Though already widely used, continuum solvation models still have room for improvement. Notably, few if any can reliably treat explicit solute-solvent bonding or solvation effects that can arise, and they should not be used to glean insights into systems involving solvent mixtures. There are still paths forward for computational modeling using more robust (though computationally cumbersome) techniques that incorporate explicit solvation at least in part. In the absence of accurate forcefield parameters and/or computational resources to run lengthy BOMD simulations, mixed implicit/explicit procedures are a promising route for studying reaction mechanisms in complex environments. Future directions continue to point toward more mixed implicit/explicit modeling as well as the development more accurate and physical continuum solvation models and explicit solvation models. These advances will help improve the quality of computational predictions that would guide the development of technologies for renewable fuels and chemicals.

ACKNOWLEDGEMENTS

We acknowledge support from the R. K. Mellon Foundation and the National Science Foundation (CBET-1653392 and CBET-1705592). We thank the University of Pittsburgh Center for Research Computing for computing time and technical support.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

- [1] Dincer I. Renewable energy and sustainable development: a crucial review. *Renewable and sustainable energy reviews* 2000;4(2):157–175.
- [2] Owusu PA, Asumadu-Sarkodie S. A review of renewable energy sources, sustainability issues and climate change mitigation. *Cogent Engineering* 2016;3(1):1167990.
- [3] Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF. Combining theory and experiment in electrocatalysis: Insights into materials design. *Science* 2017;355(6321):eaad4998.
- [4] Bender MA, Knutson TR, Tuleya RE, Sirutis JJ, Vecchi GA, Garner ST, et al. Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. *Science* 2010;327(5964):454–458.

[5] Le Treut H. Historical overview of climate change. *Climate Change 2007: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change 2007*;

[6] Administration USEI. *International Energy Outlook 2018* July 30, 2018;

[7] Rakowski Dubois M, Dubois DL. Development of molecular electrocatalysts for CO_2 reduction and H_2 production/oxidation. *Acc Chem Res* 2009;42(12):1974–1982.

[8] Zhu X, Li Y. Review of two-dimensional materials for electrochemical CO_2 reduction from a theoretical perspective. *WIREs: Comput Mol Sci*;p. e1416.

[9] Xu S, Carter EA. Theoretical Insights into Heterogeneous (Photo)electrochemical CO_2 Reduction. *Chem Rev* 2018;

[10] Nitopi S, Bertheussen E, Scott SB, Liu X, Engstfeld AK, Horch S, et al. Progress and Perspectives of Electrochemical CO_2 Reduction on Copper in Aqueous Electrolyte. *Chem Rev* 2019;

[11] Wang WH, Himeda Y, Muckerman JT, Manbeck GF, Fujita E. CO_2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO_2 reduction. *Chem Rev* 2015;115(23):12936–12973.

[12] Liu H, Wei L, Liu F, Pei Z, Shi J, Wang Zj, et al. Homogeneous, Heterogeneous, and Biological Catalysts for Electrochemical N_2 Reduction towards NH_3 under Ambient Conditions. *ACS Catal* 2019;9(6):5245–5267.

[13] Lindley BM, Appel AM, Krogh-Jespersen K, Mayer JM, Miller AJ. Evaluating the Thermodynamics of Electrocatalytic N_2 Reduction in Acetonitrile. *ACS Energy Letters* 2016;1(4):698–704.

[14] Rabten W, Kärkäs MD, Åkermark T, Chen H, Liao RZ, Tinnis F, et al. Catalytic water oxidation by a molecular ruthenium complex: unexpected generation of a single-site water oxidation catalyst. *Inorg Chem* 2015;54(10):4611–4620.

[15] Sato S, Arai T, Morikawa T, Uemura K, Suzuki TM, Tanaka H, et al. Selective CO_2 conversion to formate conjugated with H_2O oxidation utilizing semiconductor/complex hybrid photocatalysts. *J Am Chem Soc* 2011;133(39):15240–15243.

[16] Jouny M, Luc W, Jiao F. General techno-economic analysis of CO_2 electrolysis systems. *Ind Eng Chem Res* 2018;57(6):2165–2177.

[17] Chen JG, Crooks RM, Seefeldt LC, Bren KL, Bullock RM, Dahrensbourg MY, et al. Beyond fossil fuel–driven nitrogen transformations. *Science* 2018;360(6391):eaar6611.

[18] Li J, Güttinger R, Moré R, Song F, Wan W, Patzke G. Frontiers of water oxidation: the quest for true catalysts. *Chem Soc Rev* 2017;46(20):6124–6147.

[19] Li W, Wang H, Jiang X, Zhu J, Liu Z, Guo X, et al. A short review of recent advances in CO_2 hydrogenation to hydrocarbons over heterogeneous catalysts. *RSC Adv* 2018;8(14):7651–7669.

[20] Lu Q, Jiao F. Electrochemical CO_2 reduction: Electrocatalyst, reaction mechanism, and process engineering. *Nano Energy* 2016;29:439–456.

[21] Muckerman JT, Achord P, Creutz C, Polyansky DE, Fujita E. Calculation of thermodynamic hydricities and the design of hydride donors for CO_2 reduction. *Proc Nat Acad Sci* 2012;109(39):15657–15662.

[22] Hammes-Schiffer S. Theory of proton-coupled electron transfer in energy conversion processes. *Acc Chem Res* 2009;42(12):1881–1889.

[23] Hammes-Schiffer S, Stuchebrukhov AA. Theory of coupled electron and proton transfer reactions. *Chem Rev* 2010;110(12):6939–6960.

[24] Hammes-Schiffer S, Soudackov AV. Proton-coupled electron transfer in solution, proteins, and electrochemistry. *J Phys Chem B* 2008;112(45):14108–14123.

[25] Warren JJ, Tronic TA, Mayer JM. Thermochemistry of proton-coupled electron transfer reagents and its implications. *Chem Rev* 2010;110(12):6961–7001.

[26] Mayer JM. Proton-coupled electron transfer: a reaction chemist's view. *Annual Review of Physical Chemistry* 2004;55:363–390.

[27] Costentin C, Robert M, Savéant JM. Catalysis of the electrochemical reduction of carbon dioxide. *Chemical Society Reviews* 2013;42(6):2423–2436.

[28] Costentin C, Robert M, Savéant JM. Concerted proton-electron transfers: Electrochemical and related approaches. *Acc Chem Res* 2010;43(7):1019–1029.

[29] Costentin C, Robert M, Savéant JM. Electrochemical and homogeneous proton-coupled electron transfers: Concerted pathways in the one-electron oxidation of a phenol coupled with an intramolecular amine-driven proton transfer. *J Am Chem Soc* 2006;128(14):4552–4553.

[30] Rego LG, Batista VS. Quantum dynamics simulations of interfacial electron transfer in sensitized TiO_2 semiconductors. *J Am Chem Soc* 2003;125(26):7989–7997.

[31] Hammes-Schiffer S, Benkovic SJ. Relating protein motion to catalysis. *Annual Review of Biochemistry* 2006;75:519–541.

[32] Jacq J. Schema carre: Etablissement et discussion de l'équation générale de la courbe intensité-potentiel en régime stationnaire et diffusion convective. *J Electroanal Chem and Interfacial Electrochemistry* 1971;29(1):149–180.

[33] Keith JA, Grice KA, Kubiak CP, Carter EA. Elucidation of the selectivity of proton-dependent electrocatalytic CO_2 reduction by $\text{fac-}\text{Re}(\text{bpy})(\text{CO})_3\text{Cl}$. *J Am Chem Soc* 2013;135(42):15823–15829.

[34] Reuter K, Scheffler M. First-Principles Atomistic Thermodynamics for Oxidation Catalysis: Surface Phase Diagrams and Catalytically Interesting Regions. *Phys Rev Lett* 2003;90:046103.

[35] Marenich AV, Ho J, Coote ML, Cramer CJ, Truhlar DG. Computational electrochemistry: prediction of liquid-phase reduction potentials. *Phys Chem Chem Phys* 2014;16(29):15068–15106.

[36] Pourbaix M. *Atlas of electrochemical equilibria in aqueous solution*. NACE 1974;307.

[37] Marjolin A, Keith JA. Thermodynamic Descriptors for Molecules That Catalyze Efficient CO_2 Electroreductions. *ACS Catal* 2015;5(2):1123–1130.

[38] Groenenboom MC, Saravanan K, Zhu Y, Carr JM, Marjolin A, Faura GG, et al. Structural and Substituent Group Effects on Multielectron Standard Reduction Potentials of Aromatic N-Heterocycles. *J Phys Chem A* 2016;120(34):6888–6894.

[39] Saravanan K, Keith J. Standard redox potentials, pK_a s, and hydricities of inorganic complexes under electrochemical conditions and implications for CO_2 reduction. *Dalton Trans* 2016;45(39):15336–15341.

[40] Saravanan K, Gottlieb E, Keith JA. Nitrogen-doped nanocarbon materials under electroreduction operating conditions and implications for electrocatalysis of CO_2 . *Carbon* 2017;111:859–866.

[41] Saravanan K, Basdogan Y, Dean J, Keith JA. Computational investigation of CO_2 electroreduction on tin oxide and predictions of Ti, V, Nb and Zr dopants for improved catalysis. *Journal of Materials Chemistry A* 2017;5(23):11756–11763.

[42] Savéant JM, Tard C. Attempts to catalyze the electrochemical CO_2 -to-methanol conversion by biomimetic $2\text{e}^- + 2\text{H}^+$ transferring molecules. *J Am Chem Soc* 2016;138(3):1017–1021.

[43] Costentin C, Savéant JM, Tard C. Catalysis of CO_2 Electrochemical Reduction by Protonated Pyridine and Similar Molecules. Useful Lessons from a Methodological Misadventure. *ACS Energy Letters* 2018;3(3):695–703.

[44] Sato S, Morikawa T. $[\text{Ir}(\text{tpy})(\text{bpy})\text{Cl}]$ as a Photocatalyst for CO_2 Reduction under Visible-Light Irradiation. *ChemPhotoChem* 2018;2(3):207–212.

[45] Giesbrecht PK, Nemez DB, Herbert DE. Electrochemical hydrogenation of a benzannulated pyridine to a dihydropyridine in acidic solution. *Chemical Communications* 2018;54(4):338–341.

[46] Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. *J Phys Chem B* 2004;108(46):17886–17892.

[47] Exner KS, Over H. Kinetics of electrocatalytic reactions from first-principles: a critical comparison with the ab initio thermodynamics approach. *Acc Chem Res* 2017;50(5):1240–1247.

[48] Nie X, Esopi MR, Janik MJ, Asthagiri A. Selectivity of CO_2 reduction on copper electrodes: the role of the kinetics of elementary steps. *Angew Chem Int Ed* 2013;52(9):2459–2462.

[49] Carter EA. Challenges in modeling materials properties without experimental input. *Science* 2008;321(5890):800–803.

[50] Nazmutdinov RR, Bronshtein MD, Zinkicheva TT, Glukhov DV. Modeling of electron transfer across electrochemical interfaces: State-of-the art and challenges for quantum and computational chemistry. *Int J Quantum Chem* 2016;116(3):189–201.

[51] Calle-Vallejo F, Koper MT. First-principles computational electrochemistry: Achievements and challenges. *Electrochim Acta* 2012;84:3–11.

[52] Zimmerman PM. Automated discovery of chemically reasonable elementary reaction steps. *J Comput Chem* 2013;34(16):1385–1392.

[53] Behn A, Zimmerman PM, Bell AT, Head-Gordon M. Efficient exploration of reaction paths via a freezing string method. *J Chem Phys* 2011;135(22):224108.

[54] Fu CD, Oliveira LF, Pfaendtner J. Determining energy barriers and selectivities of a multi-pathway system with infrequent metadynamics. *J Chem Phys* 2017;146(1):014108.

[55] Kastlunger G, Lindgren P, Peterson AA. Controlled-potential simulation of elementary electrochemical reactions: Proton discharge on metal surfaces. *J Phys Chem C* 2018;122(24):12771–12781.

[56] Akhade SA, Bernstein NJ, Esopi MR, Regula MJ, Janik MJ. A simple method to approximate electrode potential-dependent activation energies using density functional theory. *Catal Today* 2017;288:63–73.

[57] Cheng T, Xiao H, Goddard III WA. Free-energy barriers and reaction mechanisms for the electrochemical reduction of CO on the $\text{Cu}(100)$ surface, including multiple layers of explicit solvent at $\text{pH } 0$. *J Phys Chem Lett* 2015;6(23):4767–4773.

[58] Singh MR, Goodpaster JD, Weber AZ, Head-Gordon M, Bell AT. Mechanistic insights into electrochemical reduction of CO_2 over Ag using density functional theory and transport models. *Proc Nat Acad Sci* 2017;114(42):E8812–E8821.

[59] Chan K, Nørskov JK. Electrochemical barriers made simple. *J Phys Chem Lett* 2015;6(14):2663–2668.

[60] Taylor CD, Wasileski SA, Filhol JS, Neurock M. First principles reaction modeling of the electrochemical interface: Consideration and calculation of a tunable surface potential from atomic and electronic structure. *Phys Rev B* 2006;73(16):165402.

[61] Akhade SA, Nidzyn RM, Rostamikia G, Janik MJ. Using Brønsted-Evans-Polanyi relations to predict electrode potential-dependent activation energies. *Catal Today* 2018;312:82–91.

[62] Liu L, Liu C. Origin of the overpotentials for HCOO- and CO formation in the electroreduction of CO₂ on Cu (211): the reductive desorption processes decide. *Phys Chem Chem Phys* 2018;20(8):5756–5765.

[63] Calle-Vallejo F, Ferreira de Morais R, Illas F, Loffreda D, Sautet P. Affordable Estimation of Solvation Contributions to the Adsorption Energies of Oxygenates at Metal Nanoparticles. *J Phys Chem C* 2019;123(9):5578–5582.

[64] Steinmann SN, Sautet P, Michel C. Solvation free energies for periodic surfaces: comparison of implicit and explicit solvation models. *Phys Chem Chem Phys* 2016;18(46):31850–31861.

[65] Behtash S, Lu J, Mamun O, Williams CT, Monnier JR, Heyden A. Solvation effects in the hydrodeoxygenation of propanoic acid over a model Pd(211) catalyst. *J Phys Chem C* 2016;120(5):2724–2736.

[66] Lee H, Lim HK, Kim H. Hydration Thermodynamics of Non-Polar Aromatic Hydrocarbons: Comparison of Implicit and Explicit Solvation Models. *Molecules* 2018;23(11):2927.

[67] Zhang X, Sewell TE, Glatz B, Sarupria S, Getman RB. On the water structure at hydrophobic interfaces and the roles of water on transition-metal catalyzed reactions: A short review. *Catal Today* 2017;285:57–64.

[68] Plata RE, Singleton DA. A case study of the mechanism of alcohol-mediated Morita Baylis–Hillman reactions. The importance of experimental observations. *J Am Chem Soc* 2015;137(11):3811–3826.

[69] Tomasi J, Persico M. Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. *Chem Rev* 1994;94(7):2027–2094.

[70] Tomasi J. Selected features of the polarizable continuum model for the representation of solvation. *WIREs: Comput Mol Sci* 2011;1(5):855–867.

[71] Klamt A. The COSMO and COSMO-RS solvation models. *WIREs: Comput Mol Sci* 2011;1(5):699–709.

[72] Heyden M. Disassembling solvation free energies into local contributions—Toward a microscopic understanding of solvation processes. *WIREs: Comput Mol Sci*;p. e1390.

[73] Cramer CJ, Truhlar DG. Implicit solvation models: equilibria, structure, spectra, and dynamics. *Chem Rev* 1999;99(8):2161–2200.

[74] Tomasi J, Mennucci B, Cammi R. Quantum mechanical continuum solvation models. *Chem Rev* 2005;105(8):2999–3094.

[75] Cramer CJ, Truhlar DG. A universal approach to solvation modeling. *Acc Chem Res* 2008;41(6):760–768.

[76] Cossi M, Rega N, Scalmani G, Barone V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. *J Comput Chem* 2003;24(6):669–681.

[77] Miertuš S, Scrocco E, Tomasi J. Electrostatic interaction of a solute with a continuum. A direct utilization of AB initio molecular potentials for the revision of solvent effects. *Chem Phys* 1981;55(1):117–129.

[78] Cossi M, Barone V, Cammi R, Tomasi J. Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. *Chem Phys Lett* 1996;255(4–6):327–335.

[79] Amovilli C, Barone V, Cammi R, Cancès E, Cossi M, Mennucci B, et al. Recent advances in the description of solvent effects with the polarizable continuum model. In: *Adv. Quantum Chem.*, vol. 32 Elsevier; 1998.p. 227–261.

[80] Cancès E, Mennucci B, Tomasi J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. *J Chem Phys* 1997;107(8):3032–3041.

[81] Mennucci B, Cancès E, Tomasi J. Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: theoretical bases, computational implementation, and numerical applications. *J Phys Chem B* 1997;101(49):10506–10517.

[82] Cossi M, Barone V. Time-dependent density functional theory for molecules in liquid solutions. *J Chem Phys* 2001;115(10):4708–4717.

[83] Marenich AV, Cramer CJ, Truhlar DG. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. *J Phys Chem B* 2009;113(18):6378–6396.

[84] Klamt A, Schüürmann G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. *J Chem Soc Perkin Trans 2* 1993;(5):799–805.

[85] Klamt A. COSMO-RS: from quantum chemistry to fluid phase thermodynamics and drug design. Elsevier; 2005.

[86] Grochowski P, Trylska J. Continuum molecular electrostatics, salt effects, and counterion binding—a review of the Poisson–Boltzmann theory and its modifications. *Biopolymers* 2008;89(2):93–113.

[87] Fattebert JL, Gygi F. First-principles molecular dynamics simulations in a continuum solvent. *Int J Quantum Chem* 2003;93(2):139–147.

[88] Petrosyan S, Rigos A, Arias T. Joint density-functional theory: Ab initio study of Cr₂O₃ surface chemistry in solution. *J Phys Chem B* 2005;109(32):15436–15444.

[89] Gunceler D, Letchworth-Weaver K, Sundararaman R, Schwarz KA, Arias T. The importance of nonlinear fluid response in joint density-functional theory studies of battery systems. *Model Simul Mater Sci Eng* 2013;21(7):074005.

[90] Andreussi O, Dabo I, Marzari N. Revised self-consistent continuum solvation in electronic-structure calculations. *J Chem Phys* 2012;136(6):064102.

[91] Fisicaro G, Genovese L, Andreussi O, Marzari N, Goedecker S. A generalized Poisson and Poisson–Boltzmann solver for electrostatic environments. *J Chem Phys* 2016;144(1):014103.

[92] Dupont C, Andreussi O, Marzari N. Self-consistent continuum solvation (SCCS): The case of charged systems. *J Chem Phys* 2013;139(21):214110.

[93] Sundararaman R, Goddard III WA. The charge-asymmetric nonlocally determined local-electric (CANDLE) solvation model. *J Chem Phys* 2015;142(6):064107.

[94] Truscott M, Andreussi O. Field-Aware Interfaces in Continuum Solvation. *J Phys Chem B* 2019;123(16):3513–3524.

[95] Gauthier JA, Ringe S, Dickens CF, Garza AJ, Bell AT, Head-Gordon M, et al. Challenges in Modeling Electrochemical Reaction Energetics with Polarizable Continuum Models. *ACS Catal* 2018;9:920–931.

[96] Fisicaro G, Genovese L, Andreussi O, Mandal S, Nair NN, Marzari N, et al. Soft-sphere continuum solvation in electronic-structure calculations. *J Chem Theory Comput* 2017;13(8):3829–3845.

[97] Andreussi O, Hörmann NG, Nattino F, Fisicaro G, Goedecker S, Marzari N. Solvent-aware interfaces in continuum solvation. *J Chem Theory Comput* 2019;15(3):1996–2009.

[98] Song J, Klein EL, Neese F, Ye S. The mechanism of homogeneous CO₂ reduction by Ni(cyclam): Product selectivity, concerted proton–electron transfer and C–O bond cleavage. *Inorg Chem* 2014;53(14):7500–7507.

[99] Riplinger C, Carter EA. Influence of weak Brønsted acids on electrocatalytic CO₂ reduction by manganese and rhenium bipyridine catalysts. *ACS Catal* 2015;5(2):900–908.

[100] Stanton III CJ, Machan CW, Vandezande JE, Jin T, Majetich GF, Schaefer III HF, et al. Re(I) NHC complexes for electrocatalytic conversion of CO₂. *Inorg Chem* 2016;55(6):3136–3144.

[101] Lim CH, Holder AM, Hynes JT, Musgrave CB. Roles of the Lewis acid and base in the chemical reduction of CO₂ catalyzed by frustrated Lewis pairs. *Inorg Chem* 2013;52(17):10062–10066.

[102] Shaffer DW, Johnson SI, Rheingold AL, Ziller JW, Goddard III WA, Nielsen RJ, et al. Reactivity of a series of isostructural cobalt pincer complexes with CO₂, CO, and H⁺. *Inorg Chem* 2014;53(24):13031–13041.

[103] Lessio M, Carter EA. What is the role of pyridinium in pyridine-catalyzed CO₂ reduction on p-GaP photocathodes? *J Am Chem Soc* 2015;137(41):13248–13251.

[104] Goodpaster JD, Bell AT, Head-Gordon M. Identification of possible pathways for C–C bond formation during electrochemical reduction of CO₂: New theoretical insights from an improved electrochemical model. *J Phys Chem Lett* 2016;7(8):1471–1477.

[105] Garza AJ, Bell AT, Head-Gordon M. Mechanism of CO₂ reduction at copper surfaces: pathways to C₂ products. *ACS Catal* 2018;8(2):1490–1499.

[106] Cheng MJ, Clark EL, Pham HH, Bell AT, Head-Gordon M. Quantum mechanical screening of single-atom bimetallic alloys for the selective reduction of CO₂ to C₁ hydrocarbons. *ACS Catal* 2016;6(11):7769–7777.

[107] Cheng MJ, Kwon Y, Head-Gordon M, Bell AT. Tailoring metal-porphyrin-like active sites on graphene to improve the efficiency and selectivity of electrochemical CO₂ reduction. *J Phys Chem C* 2015;119(37):21345–21352.

[108] Jacob T. The mechanism of forming H₂O from H₂ and O₂ over a Pt catalyst via direct oxygen reduction. *Fuel Cells* 2006;6(3-4):159–181.

[109] Gray CM, Saravanan K, Wang G, Keith JA. Quantifying solvation energies at solid/liquid interfaces using continuum solvation methods. *Mol Sim* 2017;43(5-6):420–427.

[110] Libisch F, Huang C, Carter EA. Embedded correlated wavefunction schemes: theory and applications. *Acc Chem Res* 2014;47(9):2768–2775.

[111] Manby FR, Stella M, Goodpaster JD, Miller III TF. A simple, exact density-functional-theory embedding scheme. *J Chem Theory Comput* 2012;8(8):2564–2568.

[112] Yang X. Hydrogenation of carbon dioxide catalyzed by PNP pincer iridium, iron, and cobalt complexes: a computational design of base metal catalysts. *ACS Catal* 2011;1(8):849–854.

[113] Bondi A. van der Waals volumes and radii. *J Phys Chem* 1964;68(3):441–451.

[114] Ho J, Coote ML. A universal approach for continuum solvent pK_a calculations: are we there yet? *Theor Chem Acc* 2010;125(1-2):3.

[115] Schouten KJP, Qin Z, Pérez Gallent E, Koper MT. Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. *J Am Chem Soc* 2012;134(24):9864–9867.

[116] Schouten K, Kwon Y, Van der Ham C, Qin Z, Koper M. A new mechanism for the selectivity to C₁ and C₂ species in the electrochemical reduction of carbon dioxide on copper electrodes. *Chem Sci* 2011;2(10):1902–1909.

[117] Rosca V, Duca M, de Groot MT, Koper MT. Nitrogen cycle electrocatalysis. *Chem Rev* 2009;109(6):2209–2244.

[118] Koper MT. Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis. *J Electroanal Chem* 2011;660(2):254–260.

[119] Kortlever R, Shen J, Schouten KJP, Calle-Vallejo F, Koper MT. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. *J Phys Chem Lett* 2015;6(20):4073–4082.

[120] Shen J, Kolb MJ, Göttle AJ, Koper MT. DFT study on the mechanism of the electrochemical reduction of CO_2 catalyzed by cobalt porphyrins. *J Phys Chem C* 2016;120(29):15714–15721.

[121] Garza AJ, Pakhira S, Bell AT, Mendoza-Cortes JL, Head-Gordon M. Reaction mechanism of the selective reduction of CO_2 to CO by a tetraaza $[\text{Co}^{\text{II}}\text{N}_4\text{H}]^{2+}$ complex in the presence of protons. *Phys Chem Chem Phys* 2018;20(37):24058–24064.

[122] Klamt A, Eckert F, Arlt W. COSMO-RS: an alternative to simulation for calculating thermodynamic properties of liquid mixtures. *Annu Rev Chem Biomol Eng* 2010;1:101–122.

[123] Kalidas C, Hefter G, Marcus Y. Gibbs energies of transfer of cations from water to mixed aqueous organic solvents. *Chem Rev* 2000;100(3):819–852.

[124] Marcus Y. Gibbs energies of transfer of anions from water to mixed aqueous organic solvents. *Chem Rev* 2007;107(9):3880–3897.

[125] Cao L, Sun C, Sun N, Meng L, Chen D. Theoretical mechanism studies on the electrocatalytic reduction of CO_2 to formate by water-stable iridium dihydride pincer complex. *Dalton Trans* 2013;42(16):5755–5763.

[126] Pliego JR, Riveros JM. The cluster-continuum model for the calculation of the solvation free energy of ionic species. *J Phys Chem A* 2001;105(30):7241–7247.

[127] Bryantsev VS, Diallo MS, Goddard III WA. Calculation of solvation free energies of charged solutes using mixed cluster/continuum models. *J Phys Chem B* 2008;112(32):9709–9719.

[128] da Silva EF, Svendsen HF, Merz KM. Explicitly representing the solvation shell in continuum solvent calculations. *J Phys Chem A* 2009;113(22):6404–6409.

[129] Ahlquist MS. Iridium catalyzed hydrogenation of CO_2 under basic conditions—Mechanistic insight from theory. *J Mol Catal A* 2010;324(1-2):3–8.

[130] Lim CH, Holder AM, Hynes JT, Musgrave CB. Reduction of CO_2 to methanol catalyzed by a biomimetic organo-hydride produced from pyridine. *J Am Chem Soc* 2014;136(45):16081–16095.

[131] Lim CH, Holder AM, Musgrave CB. Mechanism of homogeneous reduction of CO_2 by pyridine: proton relay in aqueous solvent and aromatic stabilization. *J Am Chem Soc* 2012;135(1):142–154.

[132] Lim CH, Holder AM, Hynes JT, Musgrave CB. Dihydropteridine/pteridine as a $2\text{H}^+/2\text{e}^-$ redox mediator for the reduction of CO_2 to methanol: A computational study. *J Phys Chem B* 2017;121(16):4158–4167.

[133] Xiang D, Magana D, Dyer RB. CO_2 reduction catalyzed by mercaptopteridine on glassy carbon. *J Am Chem Soc* 2014;136(40):14007–14010.

[134] Rohmann K, Kothe J, Haenel MW, Englert U, Hölscher M, Leitner W. Hydrogenation of CO_2 to formic acid with a highly active ruthenium acridophos complex in DMSO and DMSO/water. *Angew Chem Int Ed* 2016;55(31):8966–8969.

[135] Xu S, Carter EA. 2-pyridinide as an active catalytic intermediate for CO_2 reduction on p-GaP photoelectrodes: Lifetime and selectivity. *J Am Chem Soc* 2018;140(28):8732–8738.

[136] Li P, Henkelman G, Keith JA, Johnson JK. Elucidation of aqueous solvent-mediated hydrogen-transfer reactions by ab initio molecular dynamics and nudged elastic-band studies of NaBH_4 hydrolysis. *J Phys Chem C* 2014;118(37):21385–21399.

[137] Groenenboom MC, Keith JA. Explicitly Unraveling the Roles of Counterions, Solvent Molecules, and Electron Correlation in Solution Phase Reaction Pathways. *J Phys Chem B* 2016;120(41):10797–10807.

[138] Zhang J, Dolg M. ABCluster: the artificial bee colony algorithm for cluster global optimization. *Phys Chem Chem Phys* 2015;17(37):24173–24181.

[139] Zimmerman P. Reliable transition state searches integrated with the growing string method. *J Chem Theory Comput* 2013;9(7):3043–3050.

[140] Zimmerman PM. Single-ended transition state finding with the growing string method. *J Comput Chem* 2015;36(9):601–611.

[141] Jafari M, Zimmerman PM. Reliable and efficient reaction path and transition state finding for surface reactions with the growing string method. *J Comput Chem* 2017;38(10):645–658.

[142] Car R, Parrinello M. Unified approach for molecular dynamics and density-functional theory. *Phys Rev Lett* 1985;55(22):2471.

[143] Duster AW, Wang CH, Garza CM, Miller DE, Lin H. Adaptive quantum/molecular mechanics: What have we learned, where are we, and where do we go from here? *WIREs: Comput Mol Sci* 2017;7(5):e1310.

[144] Rowley CN, Roux B. The solvation structure of Na⁺ and K⁺ in liquid water determined from high level ab initio molecular dynamics simulations. *J Chem Theory Comput* 2012;8(10):3526–3535.

[145] Shiga M, Masia M. Boundary based on exchange symmetry theory for multilevel simulations. I. Basic theory. *J Chem Phys* 2013;139(4):044120.

[146] Takahashi H, Kambe H, Morita A. A simple and effective solution to the constrained QM/MM simulations. *J Chem Phys* 2018;148(13):134119.

[147] Zheng M, Waller MP. Adaptive quantum mechanics/molecular mechanics methods. *WIREs: Comput Mol Sci* 2016;6(4):369–385.

[148] Bulo RE, Ensing B, Sikkema J, Visscher L. Toward a practical method for adaptive QM/MM simulations. *J Chem Theory Comput* 2009;5(9):2212–2221.

[149] Watanabe HC, Cui Q. Quantitative analysis of QM/MM boundary artifacts and correction in adaptive QM/MM simulations. *J Chem Theory Comput* 2019;.

[150] Tameh MS, Dearden AK, Huang C. Accuracy of Density Functional Theory for Predicting Kinetics of Methanol Synthesis from CO and CO₂ Hydrogenation on Copper. *J Phys Chem C* 2018;122(31):17942–17953.

[151] Lin H, Truhlar DG. QM/MM: what have we learned, where are we, and where do we go from here? *Theor Chem Acc* 2007;117(2):185.

[152] Tiwary P, Parrinello M. From metadynamics to dynamics. *Phys Rev Lett* 2013;111(23):230602.

[153] Barducci A, Bonomi M, Parrinello M. Metadynamics. *WIREs: Comput Mol Sci* 2011;1(5):826–843.

[154] Sutto L, Marsili S, Gervasio FL. New advances in metadynamics. *WIREs: Comput Mol Sci* 2012;2(5):771–779.

[155] Awasthi S, Nair NN. Exploring high-dimensional free energy landscapes of chemical reactions. *WIREs: Comput Mol Sci* 2019;9(3):e1398.

[156] Lai A, Parrinello M. Escaping free-energy minima. *Proc Nat Acad Sci* 2002;99(20):12562–12566.

[157] Lai A, Rodriguez-Fortea A, Gervasio FL, Ceccarelli M, Parrinello M. Assessing the accuracy of metadynamics. *J Phys Chem B* 2005;109(14):6714–6721.

[158] Urakawa A, Iannuzzi M, Hutter J, Baiker A. Towards a rational design of ruthenium CO_2 hydrogenation catalysts by ab initio metadynamics. *Chem Eur J* 2007;13(24):6828–6840.

[159] Ghoussoub M, Yadav S, Ghuman KK, Ozin GA, Singh CV. Metadynamics-biased ab initio molecular dynamics study of heterogeneous CO_2 reduction via surface frustrated Lewis pairs. *ACS Catal* 2016;6(10):7109–7117.

[160] Gallet GA, Pietrucci F, Andreoni W. Bridging static and dynamical descriptions of chemical reactions: An ab initio study of CO_2 interacting with water molecules. *J Chem Theory Comput* 2012;8(11):4029–4039.

[161] Stirling A. HCO_3^- formation from CO_2 at high pH: Ab initio molecular dynamics study. *J Phys Chem B* 2011;115(49):14683–14687.

[162] Galib M, Hanna G. The Role of hydrogen bonding in the decomposition of H_2CO_3 in water: mechanistic insights from ab initio metadynamics studies of aqueous clusters. *J Phys Chem B* 2014;118(22):5983–5993.

[163] Cheng T, Xiao H, Goddard III WA. Nature of the active sites for CO reduction on copper nanoparticles; suggestions for optimizing performance. *J Am Chem Soc* 2017;139(34):11642–11645.

[164] Lum Y, Cheng T, Goddard III WA, Ager JW. Electrochemical CO reduction builds solvent water into oxygenate products. *J Am Chem Soc* 2018;140(30):9337–9340.

[165] Cheng T, Xiao H, Goddard III WA. Reaction mechanisms for the electrochemical reduction of CO_2 to CO and formate on the Cu (100) surface at 298 K from quantum mechanics free energy calculations with explicit water. *J Am Chem Soc* 2016;138(42):13802–13805.

[166] Cheng T, Xiao H, Goddard III WA. Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K. *Proc Nat Acad Sci* 2017;114(8):1795–1800.

[167] Torrie GM, Valleau JP. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. *J Comput Phys* 1977;23(2):187–199.

[168] Kästner J. Umbrella sampling. *WIREs: Comput Mol Sci* 2011;1(6):932–942.

[169] Virnau P, Müller M. Calculation of free energy through successive umbrella sampling. *J Chem Phys* 2004;120(23):10925–10930.

[170] Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. *J Comput Chem* 1992;13(8):1011–1021.

[171] Souaille M, Roux B. Extension to the weighted histogram analysis method: combining umbrella sampling with free energy calculations. *Comput Phys Commun* 2001;135(1):40–57.

[172] Kästner J, Thiel W. Bridging the gap between thermodynamic integration and umbrella sampling provides a novel analysis method: “Umbrella integration”. *J Chem Phys* 2005;123(14):144104.

[173] Iskrenova-Tchoukova E, Kalinichev AG, Kirkpatrick RJ. Metal cation complexation with natural organic matter in aqueous solutions: molecular dynamics simulations and potentials of mean force. *Langmuir* 2010;26(20):15909–15919.

[174] Leung K, Nielsen IM, Sai N, Medforth C, Shelnutt JA. Cobalt-porphyrin catalyzed electrochemical reduction of carbon dioxide in water. 2. mechanism from first principles. *J Phys Chem A* 2010;114(37):10174–10184.

[175] Panhuis Mih, Patterson C, Lynden-Bell R. A molecular dynamics study of carbon dioxide in water: diffusion, structure and thermodynamics. *Mol Phys* 1998;94(6):963–972.

[176] Leung K, Nielsen IM, Kurtz I. Ab initio molecular dynamics study of carbon dioxide and bicarbonate hydration and the nucleophilic attack of hydroxide on CO_2 . *J Phys Chem B* 2007;111(17):4453–4459.

[177] Groenenboom MC, Keith JA. Quantum Chemical Analyses of BH_4^- and BH_3OH^- Hydride Transfers to CO_2 in Aqueous Solution with Potentials of Mean Force. *ChemPhysChem* 2017;18(22):3148–3152.

GRAPHICAL ABSTRACT

