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We provide a critical overview of progress and challenges in

computationally modelingmultistep reactionmechanisms

relevant for catalysis and electrocatalysis. We first discuss

how the chemical and materials space of energetically ef-

ficient catalysis can be exploredwith computational chem-

istry. Since reactions for renewable energy catalysis can

involve acid-base chemistry and/or ions under aqueous con-

ditions, we then summarize how solvation can bemodeled

with quantum chemistry schemes using implicit, mixed im-

plicit/explicit, and fully explicit solvationmodeling. Wewill

discuss the insights (and limitations) of these solvationmod-

els primarily through the scope of understandingCO2 reduc-

tion reactionmechanisms, but these will also be applicable

for future work elucidating other reaction mechanisms of

critical importance for human sustainability such as H2O

oxidation andN2 reduction.
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1 | INTRODUCTION

Developing sources of renewable energy is paramount to long-term human sustainability. 1–3 For instance, CO2 emis-

sions correlate with severe weather patterns4 and global climate change, 5 but more than 78% of the world’s energy

consumption through the year 2040 is expected to come from fossil fuels. 6 Thus, many are interested in recycling

anthropogenic CO2 into fuels and chemicals7–11 as well as sustainably producing ammonia12,13 and/or hydrogen. 14,15

Unfortunately, most of these are currently unfeasible on large scales due to low conversion efficiency and/or high

electrochemical overpotentials. For CO2 electroreductions into fuels and chemicals, selectivity and energy efficiency

remain as major challenges for proton and electron transfers. 16 These challenges are also present in other fundamental

transformations such as N2 reduction for ammonia synthesis17 andH2O oxidation for H2 generation.
18

Computational quantum chemistry modeling can help interpret and guide experimental work in this area by provid-

ing insights into chemical reactionmechanisms. Advances in algorithms and hardwaremake it easier to computationally

model larger scale systemswith higher accuracy, but the central challenges of understandingwhat processes tomodel

and how to physically model them in a reliable way still remain. Indeed, many chemical reactions have intermedi-

ate states that are stabilized by different degrees of solvating environments, and neglecting or incorrectly modeling

these environments can significantly impact the quality of predictions from computational modeling. We begin this

mini-review by summarizing how one can use computational modeling to explore the chemical and materials space

of renewable energy catalysis through the lens of identifying energetically efficient hydrogenation pathways for CO2

reduction catalysis. Wewill then summarize different approaches tomodel solvating environments in reactionmecha-

nism studies while also reviewing knowns and unknowns from recent literature to offer perspective for future efforts in

this and related fields.

2 | THE CHEMICAL SPACE OF (DE)HYDROGENATION REACTIONS
MECHANISMS

At a fundamental level, any hydrogenation (or dehydrogenation) process for any reactionmight occur as:

1. One ormore covalent hydrogen atom (H·) transfers (e.g. with thermal heterogeneous catalytic processes). 19

2. Stepwise or coupled proton and electron transfers that originate from different sites within the system (e.g. with

electrochemical processes). 20

3. Formal hydride (H�) transfers that may also be coupled with a proton transfer (e.g. with biomimetic processes). 21

Analogous classifications have been used bymany others to distinguish different modes for hydrogenation, 22–28 and

each class has been studied in different contexts of homogeneous, 29 heterogeneous, 30 or biological catalysis. 31 Clearly,

the local chemical environment (especially a solvating environment) will play a role in determining the nature of the

hydrogenationmechanism.

To understand how environmental conditions can influencemultistep processes, we can start by defining amap

of elementary electrochemical processes using a ‘square-scheme’ or ‘schemes of squares’ 32 and draw analogies to

moves on a chessboard (see Figure 1). Here, a generic molecule A can undergo elementary steps to form a new reduced,

hydrogenated state (AHn ). Individual proton transfer steps are normally represented as vertical steps, individual

electron transfer steps are then represented as horizontal steps, and proton-coupled electron transfer steps are

diagonal steps, i.e. all possible moves that a king piece is allowed tomake in a chess game. Alternatively, an elementary
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F IGURE 1 A “square-scheme” diagram of hypothetical pathways for amultistep (de)hydrogenation process.

hydride transfer would be an ‘L’-shaped step that involves two electron transfers and one proton transfer, i.e. a possible

move that a knight piece canmake. Before going too far, some aspects warrant mention. First, it is usually rare to find a

reaction intermediate having a charge with an absolutemagnitude of two ormore unless there is a polarizing solvent

and/or counterions nearby. 33 Thus, it is usually not likely (though not impossible) to move two or more steps away

from the diagonal line depicting neutral intermediate states. Second, this square-scheme shows that several different

pathways may exist for any multistep process, just like there are multiple paths a chess piece might move from one

corner of a board to another. To actually distinguish the different pathways requires confirmations from experiment and

reliable computational modeling to assess which pathways are relevant under specific conditions. Wewill now describe

how computational quantum chemistry can be leveraged to accelerate the discovery of energetically efficient reaction

steps.

2.1 | Theoretical Phase Diagrams

If hypothetical reaction intermediates can be identified, one can then use computational quantum chemistry to cal-

culate the absolute free energies of each species using the standard ideal gas, rigid rotor, and harmonic oscillator

approximations. From these data, one can thenmake phase diagrams that are functions of parameters (e.g. solution

pH, an electrode potential, and/or partial pressures of molecular species) that can be used to navigate chemical and/or

materials space. 34 For instance, one can define a generic reaction that refers to intermediates from Figure 1 using

Equation 1:

A +
n

2
H2 ! AHn (1)

The corresponding free energy for this reaction at an arbitrary standard state (�) is simply the difference of the free
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energies of the individual products and reactants:

�G�rxn = G�AHn
�G�A �

n

2
G�H2

(2)

Note that the free energy of H2 is also related to the definition for the standard hydrogen electrode (SHE) potential,

H+ + e� ⌦
1

2
H2 E = 0V vs. SHE (3)

while the free energy for protons, electrons, or other species such as A or AHn can be expressed as linear functions of a

local environmental parameters such as pH, applied potential�, or the relative difference in chemical potential from

its standard state �µX , respectively. Note that SHE is a commonly used reference electrode which is a hypothetical

electrode immersed in a 1M aqueous solution of protonwith unit activity and no ionic interactions. Other reference

electrode systems (SCE, NHE, RHE, etc.) can be computationally modeled as well, and some discussion is found the

perspective paper byMarenich et al. 35 Using the SHE reference electrodemodel, one could define the reaction free

energy from Equation 2 in an expanded form of several different species, each having a corresponding parameter (all

expressed in eV units):

�Grxn =
⇣
G�AHn

+ �µAHn

⌘
�
�
G�A + �µA

�
�
⇣
G�
H+ � 0.059 pH

⌘
�
⇣
G�e� � eUSHE

⌘
(4)

Note that values such asG�AHn
andG�A can be straightforwardly calculated using quantum chemistry codes. G�

H+ and

G�
e� correspond to absolute free energies of a proton and electron in some environment and can be referenced from the

literature. 35 The remaining�µX terms are treated as linear variables that describe environmental factors, e.g. partial

pressure of a specific species, a solution pH, or an applied potential.

Considering large numbers of hypothetical reactions and determining themost favorable state at any given set of

environmental conditions in this general framework begets “ab initio” atomistic thermodynamics phase diagrams that

would showany�G for any hypothetical reaction at a specified set of conditions. For instance, if pH (x-axis) and� (y-axis)

were used as parameters, onewould create a Pourbaix diagram, i.e. a phase diagram that depicts the thermodynamically

most stable state for a system at a given pH and�. 36 A representative set of Pourbaix diagrams is given in Figure 2.

While Pourbaix diagrams only provide insights into the thermodynamics of different intermediate states, they are

still quite useful. First, they are a convenient representation of pKas, pH-independent standard redox potentials, and

pH-dependent proton-coupled electron transfer steps by separating the regions of the Pourbaix diagramwith vertical,

horizontal, and diagonal boundary lines, respectively. These properties can be useful thermodynamic descriptors for

catalysis. Second, the boundaries between different regions of a Pourbaix diagram define theoretical electrochemical

conditions where free energies of reaction for a (de)hydrogenation step are zero, and thus at those electrochemical

conditions the process should be highly reversible and thus energetically efficient. Pourbaix diagram boundary lines

therefore show theoretical electrochemical conditions that a species would facilitate energetically efficient shuttling of protons

and electrons. One step further, if one considers a Pourbaix diagram for a reactant such as CO2 (Figure 2a) and another

Pourbaix diagram for a hypothetical catalyst (Figure 2b), one could then overlay the two on top of the other (Figure 2c).

Regions where boundaries of the two Pourbaix diagrams overlap signify electrochemical conditions where one species

(i.e. a hypothetical catalyst) would facilitate shuttling of protons and electrons to another species (i.e. a reactant). This

can be thought as an extension to the Sabatier principle of catalysis, where optimal catalyst activity is achievedwhen

the substrate binds strongly enough to be activated but also weakly enough that it can still be removed and not poison

the catalyst. Thus, Pourbaix diagram analyses allow one to search for the catalyst state under specific electrochemical
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F IGURE 2 a) Pourbaix diagram showing stable states of the reactant, CO2; b) Pourbaix diagram showing stable
states of a hypothetical molecular catalyst, 1,10-phenanthroline; c) overlaid Pourbaix diagrams from a) and b) showing
similar boundaries for hydrogen shuttling and CO2 reduction. Vertical lines represent pKas, the horizontal lines
represent the pH-independent standard redox potentials and the diagonal lines represent the pH-dependent
proton-coupled electron transfer steps.

environments that would provide the lowest hypothetical overpotential.

Our group has used Pourbaix diagram analyses to study a variety of homogeneous and heterogeneous catalysis

systems for CO2 reduction. Interestingly, we have predicted that reaction conditions for several CO2 electroreduction

processes ranging from homogeneous pyridinium37,38 and homogeneous ruthenium39-complexes as well as heteroge-

neous N-doped nanocarbons40 and partially reduced SnO2 oxides
41 all coincidentally share a similar characteristic –

all have Pourbaix boundary lines showing the formation of a new intermediate state near the conditions where CO2

electrocatalysis has been reported. Experimentally validating these computational predictions has been difficult, in

part due to difficulties reproducing experimental data that has been reported in the literature. 42,43 However, other

experimental studies have implicated transiently formed hydride-containing species in CO2 reduction that are inter-

mediates predicted to be thermodynamically stable by Pourbaix diagram analyses. 44,45 From our perspective, we see

opportunities to use computational modeling to discover new catalysts in chemical andmaterials space and synergis-

tically guide experimental designwith high-throughput screening. However, though numerous hurdles pertaining to

modeling reactionmechanism under solvating reaction conditionsmust be overcome first.

2.2 | Challenges ofModeling Electrochemical ReactionMechanisms

As stated earlier, Pourbaix analyses require that all the salient reaction intermediate states be correctly identified.

Whenmodeling catalytic reactions on surfaces, especially gas phase reactions on conducting surfaces, standard Kohn-

Sham density functional theory (DFT) is normally suitable for reliably modeling charge neutral reaction intermediates.

Additionally, modeling electrochemical reactions using the computational hydrogen electrodemodel46 (i.e. modeling

electrochemical proton and electron transfers as a 1/2 H2 transfer coupled to a linear potential correction) can bring

helpful and testable insights into electrocatalysis. However, as illustrated by Exner and Over47 as well as Janik and

Asthagiri, 48 modeling reactionmechanismswithout accounting for barriers provides an incomplete picture and can

result in qualitatively different outcomes that might be wrong and/or misguide future research efforts.

Carrying out thorough computational investigations is easier said than done. Calculating barrier heights requires

substantial computational effort, and these efforts would all be for nothing if an unphysical model systemwere used.
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First, simplistic models are never guaranteed to represent the actual atomistic environment, though understanding

model systems can provide useful insight into which pathways are feasible andwhich are unlikely. Adding to this com-

plexity, it is well known that commonly usedDFT approaches have self-interaction errors that make them sometimes

unphysically model charged intermediate states and/or highly correlated systems, 49–51 and so higher-level theories

are required. Today, we seemost development and applications in this area are usingmodels that 1) enable enhanced

sampling of reactionmechanisms to identify meaningful reaction pathways; 52–54 2) enable physical modeling of elec-

trochemical (i.e. potential dependent) reactionmechanisms;55–62 and 3) improve the quality of continuum solvation

energies of static systems. 63–66 There is a growing understanding that solvation is important not just in homogeneous

catalysis but also heterogeneous catalysis. 67 Also, solvationmodeling treatments are sometimes revealed to not be

as reliable as generally believed. 68 While some computational studies are starting to explicitly account for potential-

dependent reactionmechanisms in different forms, there has been little consensus of the best practices for doing so. All

of these challenges are important, and the pathway to addressing themwill likely be coupled. To better understand

these challenges through the lens of solvation, we briefly summarize and provide our perspective on different solvation

modeling techniques. Table 1 summarizes all the different solvation treatments that will be discussed in the next

sections. It serves as a quick guide for the remainder of this minireview.

3 | IMPLICIT SOLVATION

Continuum solvationmodels have been used for many decades and there aremany detailed reviews in the literature

explaining the theory and the applications. 69–74 We only briefly overview how continuum solvationmodels work and

how they are used to describe renewable energy catalysis. Figure 3 shows a cartoonmodel representation of implicit

solvation of amethanol molecule with cluster and surface calculations.

F IGURE 3 a) Illustration of amethanol molecule modeled within a cavity of a non-periodic continuum solvation
model. b) Illustration of amethanol molecule modeled at a surface within a cavity of a periodic continuum solvation
model.

Continuum solvationmodels were first developed for non-periodic systems of small and neutral molecules, and

most treat the solvent as a structure-less, homogeneousmedium using a polarizable dielectric described by a dielectric

constant ". In the most commonly usedmethods, a solute cavity is created around a solute to represent a boundary

surface that allows a semiempirical calculation of a solvation energy based on the electronic structure of the system
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TABLE 1 Overview of material reviewed of all solvationmethods that will be discussed in the upcoming sections.

Models Overview Key findings

Implicit •Are relatively computationally efficient

•Are based on different mathematical for-

mulations thatmay ormay not yield similar

results for the samemodeled system

•Can be used in either cluster or periodic
systems

• Omit explicit interactions with solvent

molecules that may be important

•Calculations using periodic slabs or cluster models

will result in very different solvated adsorbate bind-

ing energies, but relative energetics from the same

model can be similar

• Solvation energies are sensitive to cavity definitions
• Implicit models can stabilize metastable zwitterion

intermediates (e.g. M-(CO2)� complexes) not observ-

able in gas phase calculations

•More developments are needed to model solvent

mixtures

Mixed •Explicit interactions are includedby intro-
ducing solvent molecules into the system

• There is no simple way of knowing pre-

cisely howmany solvent molecules should

be included andwhere they should go

•A complete first (or second) solvation shell should

be treated whenever possible

•Thermodynamic descriptors (e.g. pKas and standard

redox potentials) and reaction pathways can be cal-

culatedmore accurately usingmixed implicit/explicit

models

• Recent schemes have been found to yield similar

results as fully explicit simulations

Explicit •Computational cost is often substantially

higher than for continuum solvationmod-

els

•Classical molecular dynamics treatments

require existing force field parameters

•Born-Oppenheimermolecular dynamics

(BOMD) simulations with quantum chem-

istry can be prohibitively expensive

• Solution phase nudged elastic band calculations can

be useful as collective variables for umbrella sampling

simulations

• 0 K nudged elastic band and 298 K potentials of

mean force calculations show interesting similarities

and differences

of interest. The subtle differences in defining the cavity, the theoretical foundations, and the boundary conditions

are what gives rise to the various implicit solvationmodels. 75–83 For instance, one of the first andmost widely used

continuum solvationmodels is the conductor-like screeningmodel (COSMO), 84 which differs from othermodels by

employing a scaled conductor instead of exact dielectric boundary condition, and this approximation considerably

simplifies themathematics. Also, COSMOuses a Green’s function as the dielectric operator, and that enabled it to be

the first continuum solvationmodel that was implementedwith analytical gradients and used a real cavity shape. 85

Expanding the applicability of implicit models to periodic systems requires treatment of the ionic response of

charged species and interfaces. 86 Fattebert and Gygi were the first tomake an isodensity continuummodel adaptable

to periodic systems that would be appropriate for modeling solvation on surfaces. 87 The simplest way to treat the

ionic response is by using Poisson-Boltzmann (PB) theory which considers ions as point particles with mean-field

interactions. 86 There aremany other ways to treat a solvent implicitly on surfaces and still account for ionic responses.
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For example, joint DFTwas developed to combine typical electronic DFTwith a classical DFT description of the liquid

environment in order to reduce computational costs of large periodic systems. 88 This was first described by amodified

polarizable continuum model (PCM) that has a linear dielectric response for the solvent (linearPCM). 89 The linear

dielectric response approximation tends to fail with systems containing strong electric fields like ionic surfaces and

electrochemical systems, so Gunceler et al. developed an improved model by using a nonlinear dielectric response

(nonlinearPCM). 89 Alternatively, the self-consistent continuum solvation (SCCS) was developed to extend the utility

of implicit solvation to plane–wave codes with improved robustness. 90–92 More recently, the CANDLEmethodwas

explicitly developed to handle charged species because it takes into account the charge asymmetry in the solvation

structure. In this method the cavity is defined by a nonlocal functional of the solute electron density and potential that

enables modeling the system’s asymmetric solvent charge. 93 Additionally, separate field–aware approaches are being

developed for cavity descriptions that can account for charged species without the need of continuedmodulation of

cavity definitions to improve experimental fitting. 94

There are several open challenges associated with applying implicit solvation models for periodic systems. In

particular, it remains challenging to reliably determine electrochemical interfacial structures as well as reaction en-

ergetics. For example, somemodels cannot capture the local field variations from cations and in some cases default

parametrization can place the ionic countercharge unphysically close to the surface. 95 Recently, there has been a

number of exciting developments in implicit solvent modeling by improving numerical stability and reducing unphysical

artifacts of cavities to better describe the electrochemical environments. For example, Fisicaro et al. used a continuous

permittivity tomodel complex dielectric environments or electrolytes that should be accurate for neutral and charged

systems. 96 Also, Andreussi et al. have developed an improved continuum solvationmodel that eliminated unphysical

cavity “pockets” by smoothly varying solute cavities. 97

Overall, one of themain purposes for an implicit solvationmodel is to avoid the complexity and computational cost

of explicitly modeling solvent molecules. The computational expense for these systems is low and thus thesemethods

are among the most used in applied studies of reaction mechanisms. Continuum solvation models such as COSMO,

PCM, and the more recent solvation model based on density (SMD)83 are highly cited because they are often used

in diverse applications including reactionmechanism studies. We nowwill discuss a few applied studies in detail, but

mention several others studies that have employed implicit solvationmodels to study aqueous CO2 reduction.
98–107

Note that modeling extended surfaces aremore physically representative of an actual surface, but being able to

model surfaces as clusters can sometimesmake it easier to introduce high level theory. However, finite clusters can

also have complicated spin states that need to be accounted for (e.g. Ref. 108) while periodic analogs to these systems

may not have significant spin polarization. To understand the extent that continuum solvationmodels can and should

be used in applications of surface cluster models, Gray and co-workers computationally modeled adsorbate binding

energies under the presence of continuum solvation on both periodic slab and large cluster models. 109 Theymodeled

the Pt(111) surface with a variety of adsorbates: H*, O*, andOH* at different binding sites. It was found that sufficiently

large model clusters captured similar gas phase binding energies as those obtained using periodic calculations and

having relatively low surface coverages. It was found that the two fundamentally different models gave similar gas

phase binding energies and thus showed promise for future workmodeling heterogeneous catalyst sites usingmodern

QM-in-QMembeddingmodels. 110,111

Once the gas phase energies were benchmarked for these systems, the energy contributions from continuum

solvent methods could then be accounted for. Interestingly, using the COSMOmodel on the finite cluster resulted

in a calculated solvation energies ranging from about �0.6 to �0.9 eV, and these were quite different in magnitude

compared to the VASPsol energy contributions using the periodic systems that ranged from +0.1 to �0.35 eV. This

should not be surprising since the surface cluster model had unphysical corners and edges that were being solvated
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while the periodic slab model had no unphysical corners or edges. The net effect of this was significantly different

solvated adsorbate binding energies even though the gas phase adsorbate binding energies between the twomodels

had been found to be similar. However, we also found that the relative solvated adsorbate binding energies were similar

across different sites for both the surface cluster and periodic slabmodels. Since the relative energetics were similar, we

concluded that reactionmechanism studies using continuum solvated surface cluster models probably will give similar

insights as studies using continuum solvated periodic slabmodels. The salient point is that if reactionmechanism studies

necessitate the use of solvated surface cluster models, it will likely be the case that continuum solvation energies will be

less physically relevant, but error cancellations can be leveraged to give useful insights. However, when an intermediate

state is beingmodeled that is different from the rest, the results from a continuum solvationmodel should be considered

withmore suspicion and thus warrant additional care to ensure that the solvationmodel is appropriate for that case.

Another important aspect with continuum solvationmodels is their cavity definitions. Programs such as GAUSSIAN

allow the user to select different cavities based on different empirical radii, and Yang compared some of thesemodels

on homogeneousmetal complexes for CO2 hydrogenation.
112 Yangmodeled PNP-ligatedmetal pincer complexes for

formation of formic acid from CO2 and H2. To model solvation effects the integral equation formalism polarizable

continuummodel (IEFPCM) was used with van derWaals (i.e. Bondi radii 113) atomic radii–for geometric optimizations–

and United Atom Topological Model applied on radii (UAKS)–for electronic energy corrections–to describe the cavity.

UAKS is based on amodel where hydrogen atoms are always envelopedwithin themolecular cavity while hydrogen

atoms fromBondi radii cavities will appear in the cavity surface. Yang compared solvation energies of small ions and

found that solvation energies using the UAKS radii were more accurate than energies using Bondi atomic radii. For

the test case of CO2 + H2 + OH– ���! HCOO– + H2O it was found that UAKS cavity data were within 5 kcal/mol

of experimental data while Bondi radii cavity data had an error of 16 kcal/mol. While UAKS radii have been shown

to be useful in many applications, for instance when predicting pKa values,
114 most benchmarking has been done for

assessments of thermodynamic properties and reaction energies, but much less work has been done in understanding

their applicability for determining kinetic barriers. In the cases of modeling (de)hydrogenation processes, it is not

yet understoodwhether one should use a solventmodel that explicitly accounts for hydrogen atoms or not. What is

understood is that highly parameterized continuum solvationmodels are clearly very sensitive to cavity definitions, and

tuning any specific radii for any specific application should be avoided.

Koper has also studied numerousmechanisms forCO2 andN2 reduction.
115–119 For example, his group has studied

CO2 reductionmechanisms involving cobalt porphyrins, 120 and they identified CO as being themain product from this

reactionmechanism and CO –
2 as the key intermediate. Co(P) guided the formation of CO through decoupled proton

and electron transfers; however, additional concerted proton–coupled electron transfers involving CO resulted in

minor CH4 formation. This work wasmade possible using the COSMO implicit solvationmodel to account for solvation

effects. One complexmodeled to form during the reaction, [Co(P)—(CO2)]
– , was only stable when solvation treatments

were included; however, another complex was still not stable when implicit solvation was included in the calculations

([Co(P)—(CO2)]
0). An analogous observation was also seen in work by Carter, 33 who modeled an anionic complex,

[Re(bpy)(CO)3-(CO2)]� , and found it was only stable with an explicit counter ion or under the presence of a continuum

solvent method. Thus, continuum solvationmodels have been andwill likely continue to be used to assess metastable

(and potentially zwitterionic) reaction intermediates in homogeneous reactionmechanisms.

With the success of implicit models in previous studies, many researchers are attempting to apply these techniques

to reactions involving solvent mixtures. Garza et al. studied a tetraaz [CoIIN4H]2+ catalyst to understand the selective

reduction of CO2 to CO.121 Those authors used PCM to include the solvent effects. They used pure acetonitrile in their

calculations although the experimental contributions used a wet (10Mwater) acetonitrile environment. Mixed solvents

present a challenge for computational modeling since only a few models such as COSMO-RS can be used to model
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mixed solvents, and this model has not yet been as extensively used for mechanistic investigations as the conventional

COSMOapproach. 122 Garza et al. modeled both pure H2O and acetonitrile systems and noted that their calculated

reaction energies do not differ significantly between these two solvents, andwe have observed similar results as well.

Those authors then inferred thatmixed solvents would also not be significantly different even though experimental data

has shown that mixed solvents can bring peculiar and non-intuitive solvation energies depending on the solute and the

mixed solvent composition. 123,124 From our perspective, since continuum solvationmodels generally cannot be trusted

to recognize the significance of an explicitly bonded solvent molecule, they should not be assumed to be a physical

model for any mixed solvent in an arbitrary solvent composition. It is true, however that any errors arising from an

insufficient solvation treatment of any one intermediate might cancel out with errors from a different intermediate, and

thus the relative energy difference between the twowould be reasonably accurate due to fortuitous error cancellation.

Another study by Cao et al. considered Ir(III) pincer dihydrides as electrocatalysts for CO2 reduction to formate

(or formic acid) in acetonitrile/H2Omixtures. 125 They used IEFPCMwith UAKS radii and cavity-dispersion-solvent-

structure terms from the SMD solvationmodel to describe the solvation effects using theGAUSSIAN code. Experiments

show that the reaction does not happen in anhydrous acetonitrile and that a water concentration of 5% or more is

needed. As with the study by Garza et al, these authors used continuum solvationmodels to gain insights into chemical

reactivity in pure H2O and acetonitrile solvents. Theymainly discuss reaction pathways under acetonitrile because

the experimental conditions had a higher percentage of acetonitrile; however, almost all of the calculated barriers are

very similar in magnitude compared to calculated barriers in pure H2O. The barrier for formation of the formate anion

appears to have lower energywhen it is modeled inwater, which indicates that water explicitly plays an important effect

in this reactionmechanism by forming hydrogen bonds with the formate.

To summarize this section, we note that continuum solvation models are very useful, but they are sometimes

unreliable and thus should be used cautiously when making predictions. Users should be aware that modeling and

comparing different solvents, such as water and acetonitrile, generally only involve a slightly different cavity definition

and dielectric constant that may result in a relatively small solvation energy difference. As a result, it should not be

surprising when a continuum solvationmodel gives similar solvation energies for different solvent systems. However,

mixed solvent systems are known to exhibit non-linear effects as a function of solvent composition, and standard

continuum solvationmodels have not yet reproduced this behavior. 123,124

4 | MIXED IMPLICIT/EXPLICIT SOLVATION

One technique to improve the performance of continuum solvationmodels is with so-calledmixed implicit/explicit or

cluster–continuum solvationmodeling, which has been used in practice in an ad hocmanner for decades. 126 Instead of

a lone solute being considered, some number of explicit solvent molecules are added to the system, and the resulting

cluster of molecules is placed into the dielectric medium. In periodic systems of face-centered cubic metals, explicit

solvent molecules are generally added as one or more layers of solvent molecules and then an implicit solvationmodel

can be used on top of that. On other surfaces one or more solvent molecules need to be added to the system in an

ad hoc manner to build up an interfacial solvation structure. Mixed implicit/explicit solvation approaches usually

used calculations using an implicit solvationmodel is not sufficient tomodel a system of interest. For instance, mixed

implicit/explicit solvation is used to predict energy calculations of ions and/or small molecules, 127,128 though it is also

used for studying reactionmechanisms that involve the participation of the solvent molecule. Amodel cluster is shown

in Figure 4with three explicit solvent molecules and implicit solvent.

The main challenge of mixed implicit/explicit solvation modeling is to know how many solvent molecules are



BASDOGAN,MALDONADO, AND KEITH 11

required to capture the crucial solvation effects andwhere to place those solvent molecules in ameaningful way. The

most commonly used way to overcome this challenge is to place solvent molecules according to chemical intuition

and/or with trial and error attempts. This requires a priori knowledge of the reactionmechanism and the active sites

that need to be stabilized. Even if one can place the solvent molecules with chemical intuition, there is still the open

question of howmany solventmolecules are needed. Furthermore, one should keep inmind that an entropic penalty

would be expected to form solvent clusters, and that might play an important role in interpreting calculated energies.

Different research groups show different preferences about determining howmany solvent molecules are needed

for an accurate calculation. Somewill only add a single solvent molecule at the site of interest while others may add

more solventmolecules until a desired result is achieved. Ahlquist studied CO2 hydrogenationwith a homogeneous

iridium catalyst using two explicit water molecules together with Poisson-Boltzmann self-consistent reaction field as

defined in the Jaguar simulation package. 129 Ahlquist reported agreementwith the experimental values onlywhen both

implicit solvation and twowatermolecules are present in the system. Groenenboom et al. modeled thermodynamic

descriptors for a large set of aromatic N-heterocycle molecular catalysts for electrochemical CO2 reduction.
38 Across

27 differentmolecular catalysts, using one explicit watermolecule located at the relevant hydrogen bonding site for

eachmolecule improved direct pKa calculations to reasonably low errors of about 1 pKa unit.

For reactionmechanisms, including explicit solvent molecules plays an important role as well. Lim et al. studied

hydride transfer pathways from dihydropyridine to CO2 by including one or two explicit water molecules together with

CPCMmodel in their system.130 Those authors found that this was an adequate treatment of the solvent because the

resulting polar transition state structure was substantially stabilized by explicit solvent molecules that also facilitated

a proton shuttle mechanism. Those authors also looked at a similar system where they used pyridine to catalyze

CO2 reduction by using different degrees of solvation. In this study they considered up to three solventmolecules as

participating in their reactionmechanism as well as up to tenmore solvent molecules to further solvate the reaction-

relevant molecules, and then the entire cluster was then embedded in CPCM implicit solvation model. The authors

reported good agreement with experimental values when they used three solvent molecules in the active reaction

mechanism and ten solvent molecules to solvate the core structure (calculated: 13.6 kcal/mol; experimental: 16.5

kcal/mol), and thus it is not clear if the experimental barrier relates to what wasmodeled or to a different process such

as hydrogen evolution. 42,43 While the computational results may or may not reflect the actual mechanism, they do

highlight the important role of proton shuttling networks that standard continuum solvent models (as well as explicit

solvent molecule using classical force fields) would not be able to physically model. 131

F IGURE 4 Amodel cluster with three explicit solvent molecules and implicit solvation.
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Limet al. also revisited the pteridinemolecule132 that hadbeenproposed as a potential CO2 reduction catalystwith

some controversy. 42,133 The authors’ model system included sevenwatermolecules and the entire cluster embedded in

the CPCMmodel. They then benchmarked results from this implicit/explicit solvationmodeling treatment to QM/MM

simulations (vida infra) where the seven water molecules were kept in a QM region and the rest of this cluster was

explicitly solvated with 200 water molecules treated using a classical force field. The authors found that the two

solvation treatments resulted in very similar energies, and they also found that the reaction barrier was consistently

too high to be valid for a reaction that would be expected to occur at room temperature (QM/MM: 29.7 kcal/mol, QM:

30.9 kcal/mol). Savéant has commented that QM calculations were not necessary to rule out some pathways, 42 but

Lim et al.’s work is is nevertheless useful because it demonstrates that simpler cluster continuummodels can provide

similar results as far more computationally intensive QM/MM simulations and thus suggesting other means forward for

modeling these systems besides computationally costly QM/MM simulations. The important role of solvent molecules

in reaction mechanisms is not only limited to just H2O. Rohmann et al. studied CO2 reduction to formate with a

homogeneous ruthenium complex. Theymodeled their system inDMSO solvent using 10 explicit solventmolecules

together with SMD solvationmodel. They showDMSO solvent molecules are vital for themechanistic study because

the hydrogen bonding between the formate (the end product) and the solvent results with a thermodynamic driving

factor for desirable concentrations of the products. 134

There are far fewer studies on mixed implicit/explicit solvation on periodic surfaces. Carter has studied CO2

reduction on GaP (110) surface bymodeling it as a cluster that can be straightforwardly solvatedwith a non-periodic

solvationmodel, 135 similar to thework by Gray et al. mentioned previously. Their treatment used structures arising

from a full monolayer of half-dissociated water molecules together with the SMD solvation model. They identified

2-pyridinide as an active intermediate in Py-cocatalyzed CO2 reduction at p-GaP photoelectrodes.

As stated before, there is no easy way to determine howmany solvent molecules are needed for an accurate and

reliable treatment of mixed implicit/explicit solvation. As a test to deconvolute the relative energy contributions of

electronic correlation, explicit solvation, as well as the presence of a counter ion in a reactionmechanism, Groenenboom

and Keith followedwork by Johnson136 who studied borohydride hydrolysis using a procedure involving high tempera-

ture Born–Oppenheimermolecular dynamics (BOMD) simulations to observe an elementary hydrogenation process

and then characterized that pathway using nudged elastic bandmethods. 137 Groenenboom and Keith used a similar

procedure tomodel CO2 reduction by NaBH4 andNaBH3OH. Molecular clusters from the NEB calculations were then

usedwith different analyses using high-level single point energy calculations and implicit solvation. In general, it was

found that the full first solvation shell along with COSMO solvation resulted in an energy profile almost identical to

the fully explicit solvated case. Somewhat surprisingly, a range of different levels of theories found calculated barriers

differing by only 0.1 eVwhile using a continuum solvationmodel without the first solvation shell resulted in differences

as large as 1 eV. This study points out the importance of the solvation treatment however using BOMD simulations

together with NEB calculations can become very computationally expensive. It would be especially interesting if there

were ameans to sufficiently solvate reaction intermediates without the need for dynamics or even fully explicit solva-

tionmodels. Recently Basdogan and Keith have demonstrated a generalizable modeling scheme that facilitates mixed

implicit/explicit solvation treatments for reactionmechanisms, i.e. systems where where implicit models are known to

sometimes fail. The calculation scheme involves generatingmicrosolvated clusters using a global optimization code

called ABCluster, 138 and after identifying globally optimized clusters they used single-ended GSM calculations139–141

to explore reaction pathways systematically.
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5 | EXPLICIT SOLVATION

Many research groups explicitly solvate their systems to gain detailed information not available from implicit methods.

Studies typically useMonte Carlo (MC) or molecular dynamics (MD) to treat the entire solvent box as shown in Figure

5. Still, complications could arise when studying polarizing systems or significant electron density changes. Born-

Oppenheimermolecular dynamics (BOMD) and its variant Car-ParrinelloMolecular Dynamics (CPMD)142 have been

critical in broadening the scope of systemswe could study explicitly. Both use real-time electronic structure calculations

to describe the system’s behavior instead of parameterized force fields or potentials; however, they are only meaningful

if the run time is long enough for the system to visit all energetically relevant configurations. For complicated systems,

large energy barriers could separate chemically relevant configurations and severely limit sampling.

Currently there are a couple of ways to avoid the high computational costs of BOMD. First, is to use simulation

schemes that are computationally faster. These methods often depend on reducing the frequency of full electronic

structure calculations or simply reducing the region being treated quantummechanically and employing a classical

treatment for the remaining system. The latter solution is referred to as quantummechanics/molecular mechanics

(QM/MM)which is a hybridmethod that combinesQMandMM frameworks tomake simulations faster than BOMDand

more accurate thanMM. In QM/MM simulations, the system is divided into primary and secondary subsystems. 143 The

primary system is theQM regionwhich contains the reaction-relevant molecules under investigation. The secondary

subsystem is the environmental zonewhere the other solvent molecules aremodeledwith forcefields to capture the

bulk solvation effects.

It is common practice to include solventmolecules from the first solvation shell in theQM region to capture the

crucial solvation effects using a higher level of theory. Although difficulties can arise when trying to keep the simulation

as physically realistic as possible. Solventmolecules, in real solutions, will migrate towards and away from solute regions.

This poses a problem in garnering expensive and highly accurate data on short-ranged solvation effects when a solvent

molecule drifts away. Researchers sometimes employ constrainedQM/MM; in which a bias is applied to keep solvent

molecules from leaving the predefinedQM region. 144–146 While this provides reasonable accuracy, the fundamental

issue with this type of modeling is its unphysical treatment of an essentially frozen solvent shell. Alternatively, a method

of switching the subsystem designation (QMorMM) of solvent molecules based on the proximity to the solute in real

time can be used and is common practice today. 143,147,148 This adaptive QM/MM scheme is very useful, but it could still

benefit from a reduction of spatial artifacts that affect multiscalemodeling. 149 We expect to see substantially more

F IGURE 5 Amethanol molecule being explicitly solvated bywater.
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F IGURE 6 Amodel metadynamics simulation profile. Gaussian functions are placed on the free energy surface to
flatten the energy wells over time during the simulation (lighter to darker curves). This is used to reduce oversampling
of the local minima and pushes the system away from it.

applications of thesemethods in the coming years as they can allow higher levels of QM theory for improved insights

into catalytic reactions. 150,151

5.1 | Sampling Techniques

QM/MM free energy simulations are commonly used to sample free energy surfaces. In renewable energy catalysis

a reaction often needs to be modeled by bond breaking or forming. In order to model such catalysis one needs to

treat the systemwith quantum chemistry. However, the calculations will become very expensive if the entire system is

treatedwith quantum chemistry, i.e. using some variant of BOMD. To overcome this challenge, algorithms are applied to

enhance the sampling of reaction-relevant areas of free energy surfaces. These algorithms can vaguely be distinguished

into two categories as methods that either introduce additional degrees of freedom along which the free energy is

calculated (metadynamics) or methods that sample the system in equilibrium (umbrella sampling). In the following

sections wewill broadly introduce one technique from each category.

5.1.1 | Metadynamics

Metadynamics is a sampling technique that is based on adding an additional bias potential that acts on a selected

number of collective variables (CV). For reactive systems, bond breaking or bond forming are two examples of widely

used collective variables. 152–156 To accomplish this, Gaussian potentials are placed on the free energy surface in order

to flatten the energy wells and reduce oversampling of local minima. A very simplified representation is shown in Figure

6. It is an accelerated sampling technique of rare events that is based on pushing the system away from the local minima.

Metadynamics is generally used to explore new reaction pathwayswithout a priori knowledge of the free energy surface.

However, onemust be careful to identify a set of CVs appropriate for describing complex processes. 157 CVs should be a

function of themicroscopic coordinates of the system and should distinguish between the initial and final states while

also describing relevant intermediates. If one can come upwith CVs that meet all the requirements thenmetadynamics

should work effectively tomodel free energy surfaces. 153

There are handful of examples where ab initio metadynamics is used to study CO2 reduction or any reaction
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mechanism. Urakawa et al. was exploring a ruthenium dihydride catalyst and its ability to hydrogenate CO2.
158 Their

work demonstrated that a trans isomer route wasmore energetically favorable (higher stability intermediates) while the

rate-limiting step was the insertion of H2 into formate, but there were no explicit solvent molecules included in this

study that would account for their role in the reactionmechanism. Ghoussoub et al. studied the effect of temperature

on frustrated Lewis pairs on nanoparticles for heterogeneous catalytic reduction of CO2.
159 They concluded that at

higher temperatures, CO2 adsorbedmore easily on the surface which suggests an adsorptive reactionmechanismmay

be relevant. This study also did not consider how solvation can affect the reactionmechanism, but they investigated

H2O adsorption on the surface at different temperatures. Gallet et al. usedmetadynamics to simulate the reaction of

CO2 with one, two, or three explicit solvent molecules in the gas phase. 160 This work provides a useful and thorough

protocol to study relatively small systems. Future advances of computation resources will continue to allow more

extensive studies to be carried out.

There are few studies on CO2 chemistry that used metadynamics with fully explicit solvation models. Stirling

studied the free energy barriers of reversible bicarbonate formation in water at high pH.161 It was determined that the

free energy barrier of CO2 +OH– ���! HCO –
3 was 13.8 kcal/mol, which coincideswith the 11.5 kcal/mol experimental

value. Interestingly, the forward reaction free energy barrier wasmostly entropic while the reverse barrier wasmostly

enthalpic. This conclusion was only possible because extensivemetadynamics simulations had been performedwith

explicit solvent. This study outlines an accurate way to calculate free energy barriers of other processes in solvated

systems as well; however, the number of reacting atoms that need to be consideredwill be a limiting factor. Galib et

al. also examined the mechanistic and energetic effects of solvent cluster size on the decomposition of H2CO3.
162

They selected atoms to form two small (6 and 9) and large (20 and 45) water clusters around a H2CO3 molecule in

a Car–Parrinello molecular dynamics simulation. Metadynamics then allowed sufficient sampling to demonstrate

that the small and large clusters led to a concerted and stepwise mechanism, respectively. Thus, H2CO3 decompo-

sition likely follows a stepwise mechanism in bulk-like water, but it might be different in other environments like an

air/water interface. Goddard and co-workers have investigatedmultiple aspects of CO reduction on copper surfaces

and copper nanoparticles with explicit water layers at different pH levels. 57,163–166 Their studies of solvated systems

were carried out using reactive force fields which significantly decrease the computational time required. However,

evenwell-parameterized reactive potentials should be assumed to be less accurate than theQM calculation, and thus

interpretations based on predictions from thesemodel warrant more caution than all-QMmethodologies.

5.1.2 | Umbrella Sampling

Umbrella sampling is another technique to calculate the free energy profile of reactionmechanisms. 167 Themain idea

behind umbrella sampling relies heavily on splitting the reaction pathway into windows and sampling each window

individually. However sampling a full momentum space is difficult, and that is why a bias potential is introduced as an

additional term to the energy expression as shown in Equation 5.

Eb (r ) = Eu (r ) + !i (⇠) (5)

This additional term ensures efficient sampling along the reaction pathway by allowing the reaction variable to vary

along a biased potential (restrain) and not limiting the variable to a constant value (constrain). Themost commonly used

biased potential is the harmonic potential as shown in Equation 6.

!i (⇠) = K /2 ⇤ (⇠ � ⇠r efi )2 (6)
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Harmonic potentials are appealing because they contain only few parameters: K (spring constant), the number of

images (i ), and a reference point of the respective window i (⇠r efi ). One needs to decide on the K value before starting

the simulations, andmake sure it is large enough to drive the system over the energy barrier. 168,169 This is important

because if K is too large there will be too narrow sampling and thus sufficient overlap between the windowswill not be

achieved. A good example of overlapping windows is shown in Figure 7. Having adequate overlap is required to analyze

umbrella sampling with weighted histogram analysis (WHAM) or umbrella integration which depends less on overlap

but is still advantageous. 170–172

Umbrella sampling is widely used for physical transformations from ion solvation to protein folding with force

fields; 173 however, modeling chemical reactions is more computationally extensive since it generally requires BOMD

simulations. Leung et al. computationally examined a cobalt porphyrin catalyst for CO2 reduction to CO inwater. 174

First they usedDFT calculations with implicit solvation and then validated their results with BOMD simulations with

an explicit aqueous environment. These simulations demonstrated that the water molecules stabilized the reaction

intermediates from the CO2–cobalt complex. With the use of potential of mean force (PMF) calculations they were

able to identify the rate limiting step as the transfer of electrons between the polymerized catalyst and gas diffusion

electrode. This study is a good example of how to use umbrella sampling to calculate free energy barriers and identify

transition state structures, however one must keep in mind that it is very computationally expensive and limits the

number of reactions that can be studied.

Several studies have been dedicated to understanding the hydrophobicity of aqueous CO2; however, many employ

classical force field methods which demonstrate sensitivity to Lennard-Jones parameters. 175 To reduce parameter

dependence, Leung et al. performed BOMD simulations to investigate the solvation shell of CO2 and other dissolution

species in water. 176 Ultimately their computations supported the previously observed hydrophobic nature of CO2 in

water. Furthermore, they calculated the free energy change of bicarbonate formation fromCO2 andH2O to be -9.8

kcal/mol which agrees with the -9.4 kcal/mol experimental value.

In work related to the previouslymentioned CO2 reductionwith sodium borohydride, Groenenboom and Keith

used calculated reaction energy barriers from NEB calculations at 0 K and compared them to free energy barriers

obtained at 300 K using PMF calculations from umbrella sampling. They show two different free energy barriers with

NEB and PMF calculations which suggests both temperature effects and solvent molecules would play an important

role in this reactionmechanism. The NEB pathway obtained at 0 K only slightly differed from the pathway used for the

PMF calculation, but energies along the two pathways were found to vary by asmuch as 0.25 eV. The overall barrier

F IGURE 7 Simplistic view of umbrella sampling along a hypothetical constrained variable.
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heights from the 0 KNEB calculations and the 298 K PMF calculations for three different elementary steps were quite

similar as well. However, the overall reaction energies from the NEB and PMF calculations differed by as much as 0.6 eV

when the NEB pathwaywas based on local minima and the PMF calculations sampled lower energy states. 177 Thus,

PMF calculations based on umbrella sampling appear to bemore reliable for insights than NEB calculations alone, but

PMF calculations are also far more costly.

6 | CONCLUSION

Wehave given a review of recent and legacy approaches that are used tomodel reactionmechanisms under solvating

environments. We introduced our perspective of where computational catalysis is heading. It will be critical to integrate

solvation energy contributions and other environmental parameters into future high-throughput screening approaches,

and so we give an overview of implicit, mixed implicit/explicit, and explicit solvationmodeling that would be needed

to do so. Though already widely used, continuum solvation models still have room for improvement. Notably, few if

any can reliably treat explicit solute-solvent bonding or solvation effects that can arise, and they should not be used to

glean insights into systems involving solvent mixtures. There is are still paths forward for computational modeling using

more robust (though computationally cumbersome) techniques that incorporate explicit solvation at least in part. In the

absence of accurate forcefield parameters and/or computational resources to run lengthy BOMD simulations, mixed

implicit/explicit procedures are a promising route for studying reactionmechanisms in complex environments. Future

directions continue to point towardmoremixed implicit/explicit modeling as well as the developmentmore accurate

and physical continuum solvationmodels and explicit solvationmodels. These advances will help improve the quality of

computational predictions that would guide the development of technologies for renewable fuels and chemicals.
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