
Automatic Method Change Suggestion to Complement
Multi-Entity Edits

Zijian Jianga, Ye Wanga, Hao Zhongb, Na Menga,∗

aVirginia Polytechnic Institute and State University, Blacksburg VA 24060, USA
bShanghai Jiao Tong University, Shanghai 200240, China

Abstract

When maintaining software, developers sometimes change multiple program

entities (i.e., classes, methods, and fields) to fulfill one maintenance task. We

call such complex changes multi-entity edits. Consistently and completely ap-

plying multi-entity edits can be challenging, because (1) the changes scatter in

different entities and (2) the incorrectly edited code may not trigger any com-

pilation or runtime error. This paper introduces CMSuggester, an approach to

suggest complementary changes for multi-entity edits. Given a multi-entity edit

that (i) adds a new field or method and (ii) modifies one or more methods to

access the field or invoke the method, CMSuggester suggests other methods to

co-change for the new field access or method invocation. The design of CM-

Suggester is motivated by our preliminary study, which reveals that co-changed

methods usually access existing fields or invoke existing methods in common.

Our evaluation shows that based on common field accesses, CMSuggester

recommended method changes in 463 of 685 tasks with 70% suggestion accu-

racy; based on common method invocations, CMSuggester handled 557 of 692

tasks with 70% accuracy. Compared with prior work ROSE, TARMAQ, and

Transitive Association Rules (TAR), CMSuggester recommended more method

changes with higher accuracy. Our research can help developers correctly apply

multi-entity edits.
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1. Introduction

Software maintenance is challenging and time-consuming. Christa et al. re-

cently revealed that almost 70% of developers’ time and resources were allocated

to maintenance activities [1]. When maintaining software, developers may ap-

ply complex program changes by editing several program entities (i.e., classes,5

methods, and fields) for one maintenance task (e.g., bug fix). For instance, a

study by Zhong and Su [2] shows that developers fixed around 80% of real bugs

by changing multiple program locations together. In this paper, we refer to

a program commit as a multi-entity edit if it simultaneously changes multiple

entities. Multi-entity edits can be difficult to apply consistently and completely.10

Park et al. once examined supplementary bug fixes—patches that were later ap-

plied to supplement or correct initial fix attempts [3]. These researchers found

that developers sometimes failed to edit all program locations as needed for one

bug, e.g., by inserting the value initialization of a newly added field to some but

not all relevant methods.15

Existing work is insufficient to help with such edit application [4, 5, 6, 7, 8, 9].

For example, ROSE mines software version history to identify change association

rules like “if method A is changed, method B should also be changed” [4]. Given

a program commit, ROSE checks the applied changes against identified rules

to reveal any missing change. However, the accuracy of identified rules is low20

for two reasons. First, the co-change relationship between entities does not

guarantee their syntactic or semantic relevance, so some rules identified in this

way are actually false alarms. Second, some syntactically or semantically related

entities were never changed together in history, so ROSE cannot reveal the entity

relationship, causing false negatives.25

LSDiff infers systematic structural change rules from a given program com-

mit, and detects anomalies from systematic changes as exceptions to the in-
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ferred rules [6]. For instance, one representative inferred rule is “All classes

implementing type A delete method B except class C.” LSDiff checks for con-

sistent additions and deletions of entities, but helps little for entity updates (or30

changes). To handle entity updates, LASE infers a general context-aware edit

script from two or more similarly changed methods, and exploits the inferred

script to (1) search for other methods to change, and (2) suggest customized

edits [7]. LASE can help apply similar edits to similar code; it does not help

when co-changed entities have dissimilar content and require for distinct edits.35

Our recent study on multi-entity edits reveals two frequently applied change

patterns: *CM→AF and *CM→AM [10]. AF means Added Field ; AM means

Added Method ; *CM represents one or more Changed Methods; and → denotes

that one entity references or syntactically depends on another entity. These

patterns show that when one field or method is added, developers usually change40

multiple methods together to access the field or invoke the method. As the co-

changed methods usually contain different program contexts and experience

divergent changes, developers may forget to change all relevant methods. This

paper introduces a novel approach—CMSuggester—that suggests methods to

co-change. Specifically, we first conducted a preliminary study (Section 3) to45

explore whether there is any syntactic or semantic relationship between the

co-changed entities in *CM→AF or *CM→AM edits. We found that the

co-changed methods usually involve common fields or methods before an edit

is applied. It indicates that there are clusters of methods that access

the same sets of fields or methods. If one or more methods in a cluster50

are changed to access a new field or method, the other methods from the same

cluster are likely to be co-changed for the new field access or method invocation.

Based on the preliminary study, we developed CMSuggester to recommend

complementary changes for *CM→AF and *CM→AM multi-entity edits (Sec-

tion 4). Specifically, given an added field (fn) and one or more changed methods,55

CMSuggester first extracts existing fields accessed by the changed methods. If

some of such fields (i) have the same naming pattern as fn, and (ii) are ac-

cessed in the same way as fn (i.e., purely read, purely written, or read-written),
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CMSuggester considers them to be the peer fields of fn, and locates any un-

changed method accessing the peer fields to suggest changes. Similarly, given60

an added method (mn) and one or more changed methods, CMSuggester ex-

tracts peer methods invoked by the changed methods. By identifying any un-

changed method that also invokes the peer methods, CMSuggester recommends

additional methods that need to be changed.

This paper makes the following contributions:65

• We conducted an empirical study on *CM→AF and *CM→AM edits,

and revealed that the co-changed methods for an added field or method

usually access existing fields or methods in common. Our findings shed

light on future research in automatic bug localization and program repair.

• We developed a novel approach CMSuggester that suggests complemen-70

tary changes for *CM→AF and *CM→AM edits. Given an AF (or

AM) and one or more CMs to access the field (or invoke the method),

CMSuggester extracts peer fields (or methods) from those changed meth-

ods, and relies on the extracted information to predict other methods for

change. Unlike existing tools, CMSuggester can recommend changes even75

if (1) there is no change history available and (2) the methods to co-change

have totally different content and should go through divergent changes.

• We compared CMSuggester with three state-of-the-art tools: ROSE [4],

TARMAQ [8], and Transitive Association Rules (TAR) [9]. We found

that CMSuggester usually provided more suggestions with higher accuracy80

than all existing tools. Our results imply that CMSuggester complements

these history-based mining tools when suggesting changes for *CM→AF

and *CM→AM edits.

We envision CMSuggester to be integrated into Integrated Development En-

vironments (IDE), code review systems, or version control systems. In this way,85

after developers make code changes, CMSuggester can help them detect and fix
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incorrectly applied multi-entity edits. Our programs and datasets are available

at https://data.mendeley.com/datasets/tmv2pp964r/3.

This paper is an extended and revised version of our previous

conference paper [11]. The main differences between this paper and our90

prior work are as follows:

• The original paper conducts a preliminary study for *CM→AF edits,

while this paper includes an additional study for *CM→AM edits.

• In the original paper, CMSuggester only has the capability of suggesting

changes for *CM→AF edits. For this paper, we extended the capability95

of CMSuggester such that it also suggests changes for *CM→AM edits.

• The original paper explores how sensitive CMSuggester is to different filter

settings when dealing with *CM→AF edits, while this paper further in-

vestigates how sensitive CMSuggester is to filter settings when processing

*CM→AM edits.100

• In the original paper, our evaluation data set includes the software version

history of four open-source projects. In this paper, the evaluation data

set involves six open-source projects.

• The original paper only compares CMSuggester with ROSE, while this pa-

per further compares CMSuggester with another two existing tools: TAR-105

MAQ, and TAR. To assess whether CMSuggester always works better than

existing tools, we also conducted statistical testing based on the empirical

measurements for individual change suggestion tasks.

• We expanded all sections to explain the additional work mentioned above.

In the Related Work section, we added more discussion to comprehensively110

compare CMSuggester with existing work.

2. A Motivating Example

Developers may incompletely apply multi-entity edits. Figure 1 shows a

simplified program revision to Derby [12]—a Java-based relational database.
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1.  public class SQLChar extends DataType implements 
2.      StringDataValue, StreamStorable {
3.    …
4. +  protected Clob _clobValue; 
5.    public int getLength() throws StandardException {
6. +    if (_clobValue != null) {
7. +      return getClobLength(); }
8.      if (rawLength !=  1)
9.        return rawLength;    
10.      if (stream != null) {
11.      …
12.   }
13.   public void restoreToNull() {
14.     value = null;
15.     stream = null;
16.     rawLength = -1;
17.     cKey = null;
18.   }}

Figure 1: A program revision requires 1 field addition and 13 method-level changes. However,

developers changed only 12 of the 13 methods, ignoring restoreToNull() for change [14].

In this revision, developers added a field clobValue (line 4) and modified 12115

methods in different ways to access the field (e.g., changing getLength() at lines

6-7). However, developers forgot to also change restoreToNull() (lines 13-18).

Consequently, the multi-entity edit is incomplete. The inadvertently “missed

change” remained in the software for more than two years, until developers

finally inserted a statement clobValue = null; to restoreToNull() [13]. It can be120

challenging for developers to examine or ensure the completeness of such edits.

This is because when developers forgot to change all methods for the new field

access, there is often no compilation error triggered, neither can existing bug

detectors reveal the problem.

We developed CMSuggester, a tool that identifies complementary changes125

and helps avoid incomplete multi-entity edits. For this example, given the

added field clobValue and the changed method getLength(), CMSuggester iden-

tifies two existing fields accessed by getLength(): rawLength and stream. Similar

to clobValue, these fields are purely read by the method, so CMSuggester con-

siders them to be peers of the new field. CMSuggester then searches for any130

unchanged method that also accesses the peer fields. In this way, CMSuggester

finds restoreToNull()—which accesses the peer fields in the same “pure write”

mode—and suggests the method for change. With CMSuggester, developers
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can identify the change locations that they may otherwise miss when applying

multi-entity edits.135

3. A Preliminary Characterization Study

In our prior study [10], we analyzed 2,854 bug fixes from 4 popular open

source projects to explore multi-entity edits, including Aries [15], Cassandra [16],

Derby [12], and Mahout [17]. Our study shows that recurring change patterns

commonly exist in all the projects. In particular, *CM→AF and *CM→AM140

are two of the most frequently applied patterns. Therefore, in this paper, we

randomly sampled five commits in each project for each pattern, and manually

analyzed the characteristics of co-changed methods.

Table 1 presents our inspection results for *CM→AF edits. For each added

field, there are 2-5 methods co-changed to access the field. We manually com-145

pared co-changed methods to identify any commonality between them. We

found that in 15 of the 20 examined revisions, the co-changed meth-

ods commonly access existing field(s) before the edits are applied.

Among the other five program commits, two commits have co-changed methods

to commonly invoke certain method(s), while the remaining ones share no com-150

monality. Our finding shows that when one or more methods in a cluster are

changed to access a new field, the other methods from the same cluster are likely

to be co-changed for the new field access. This finding is consistent with the

Object Oriented (OO) paradigm, since OO emphasizes to group related data in

the same structure to ease modification and understanding [18].155

Table 2 shows the inspection results of *CM→AM edits. For each added

method, there are 2-41 methods co-changed to invoke the method. We found

that in 16 of the 20 examined revisions, the co-changed methods com-

monly invoke existing method(s) before the edits are applied, whereas

the other 4 commits have co-changed methods to commonly access certain160

field(s). Our observation indicates that when one or more methods in a cluster

are changed to invoke a new method, the other methods from the same cluster

are likely to be co-changed for the new method invocation.
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Table 1: Commonality inspection of 20 *CM→AF multi-entity edits

Project Commits Added Field

# of

Changed

Methods

Commonality

Aries 3d072a4 monitor 2 Field access

50ca3da properties 2 Field access

5d334d7 BEAN 2
Method

invocation

95766a2 NS AUTHZ 2 None

9586d78 enlisted 3 Field access

Cas- 0792766 validBufferBytes 3 Field access

sandra 0963469 isStopped 2 Field access

0d1d3bc componentIndex 3 Field access

1c9c47d nextFlags 2 Field access

266e94f STREAMING SUBDIR 2
Method

invocation

Derby f578f070 stateHoldability 2 Field access

6eb5042 outputPrecision 2 Field access

2f41733 MAX OVERFLOW ONLY REC

SIZE

3 None

099e28f XML NAME 3 Field access

81b9853 activation 5 Field access

Ma- 0be2ea4 LOG 2 Field access

hout 0fe6a49 FLAG SPARSE ROW 2 Field access

22d7d31 namedVector 2 Field access

29af4d7 normalizer 2 Field access

2f7f0dc NUM GROUPS DEFAULT 2 None
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Table 2: Commonality inspection of 20 *CM→AM multi-entity edits

Project Commits Added Method

# of

Changed

Methods

Commonality

Aries 32aa11b unableToApply(...) 3 Method invocation

fc8fba6 selectMatchingConverter(...) 2 Method invocation

9586d78 getTransaction() 4 Method invocation

628523f safeEndCoordination(...) 2 Field access

50ca3da containsKey(...) 2 Method invocation

Cas- 1c9c47d nextIsRangeTombstone() 3 Method invocation

sandra 9170ea2 excise() 2 Field access

e863c2b getRpcAddress(...) 5 Method invocation

af9b768 pagingFinished(...) 2 Method invocation

8dfd75d atomicMoveWithFallback(...) 2 Method invocation

Derby 643861 isConnectedToMaster() 2 Method invocation

586052 privInitialDirContext(...) 2 Method invocation

583691 calculateSlotFieldSize(...) 2 Method invocation

329295 requiresTypeFromContext() 41 Method invocation

421717 getDriverModule() 6 Method invocation

Mahout d141c8e recommend(...) 2 Method invocation

c1d2cd1 inverse() 2 Field access

c0f3d94 parameters() 13 Method invocation

0833411 sparseVectorToString() 2 Method invocation

1e3f7ae invalidateCachedLength() 9 Field access
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Figure 2: Overview of CMSuggesterF

4. Approach

Section 3 shows that for some given methods, it is promising to suggest their165

co-changed methods based on the common field accesses/method calls. Therefore,

we developed CMSuggester to suggest method changes to complete *CM→AF

and *CM→AM edits. Because we observed different characteristics for the two

change patterns, the design of CMSuggester includes two parts: method change

suggestion for *CM→AF edits (Section 4.1), and method change suggestion for170

*CM→AM edits (Section 4.2).

4.1. CMSuggesterF : Complementary Change Suggestion for *CM→AF Edits

Figure 2 shows the overview of our approach. Given an edit that adds

a field and changes one or more methods to access the field, CMSuggesterF

extracts peer fields from the changed method(s) (Section 4.1.1), filters the fields175

based on naming patterns and access modes (Sections 4.1.2 and 4.1.3), and

searches for any unchanged method with the refined fields for change suggestion

(Section 4.1.4).

4.1.1. Peer Field Identification

Given a new field fn, we use peer fields to denote the existing fields that180

are (1) declared in the same class as fn, and (2) accessed by one or more

changed methods that also access fn. For our motivating example, the new field

is clobValue. Thus, in method getLength(), CMSuggesterF identifies rawLength

and stream as peer fields. In our implementation, CMSuggesterF traverses the

Abstract Syntax Tree (AST) of each changed method’s old version to locate all185

field accesses, creating a peer field set PF = {pf1, pf2, . . .}.

4.1.2. Name-Based Filtering

We noticed that peer fields may have diverse power to indicate the usage of

fn. To ensure CMSuggesterF ’s accuracy when suggesting methods for change,

we refine the peer fields PF with two intuitive filters. The first filter uses the190
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heuristic that similarly named fields are more likely to be used similarly than

other fields. This filter compares peer fields with fn, and removes any field whose

naming pattern is different from fn’s. We observed two naming patterns that

developers usually followed when defining fields.

• Pattern 1: The names of constant fields (e.g., static final) capitalize all195

involved letters, such as MAX OVERFLOW ONLY REC SIZE.

• Pattern 2: The names of variable fields use lowercase or a combination

of lowercase and uppercase letters, such as outputPrecision.

We rely on the naming patterns to classify fields as variables or constants. If

fn is a variable, it is likely to be similarly used to existing variable fields, so we200

filter out the constant peers in PF . Similarly, if fn is a constant, we can use

the constant peers to suggest fn’s usage, and remove variable peers from PF .

4.1.3. Access-Based Filtering

This filter implements another heuristic that similarly accessed fields are

more likely to have similar usage. For each method, we classify the accessed205

fields into three access modes: pure read, pure write, and read-write, de-

pending on how each field is accessed. For instance, if a method reads and

writes a field, we put the field into the “read-write” category of that method.

To implement the filter, CMSuggesterF scans the internal representation (IR)

of each CM’s old version created by WALA [19], and checks if an accessed field210

serves as a left or right value of each IR instruction. If the field serves as a right

value, it is read by an instruction; otherwise, it is written. When a field’s access

mode is distinct from that of fn, CMSuggesterF removes the field from PF .

4.1.4. Peer Field-Based Method Search

With the refined fields, CMSuggesterF searches for methods to co-change215

by identifying any unchanged method that accesses at least two refined fields.

In the search, CMSuggesterF scans a large portion of code, because a program

revision usually changes a small portion of code while keeping the majority of

code unchanged [2]. To improve the search efficiency, we rely on the access
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modifiers of fn to reduce search space. Specifically, if fn is a private field,220

only the methods declared by fn’s declaring class C are analyzed because fn

is invisible to any method outside C. Similarly, if fn is a protected field, only

the methods declared in C and C’s subclasses are analyzed. In the worst case,

when a field fn is a public field, we cannot reduce the search space, so we scan

all unchanged methods.225

4.2. CMSuggesterM : Complementary Change Suggestion for *CM→AM Edits

With the observation that common method invocations indicate meth-

ods’ co-change relations, we designed CMSuggesterM to recommend com-

plementary changes for *CM→AM edits. As shown in Figure 3, given an

edit that adds a method and changes one or more methods to invoke the230

method, CMSuggesterM mines peer methods from the changed method(s) (Sec-

tion 4.2.1), uses these peers to locate any unchanged method that should also

be changed (Section 4.2.2), and refines the located methods via type checking

(Section 4.2.3).

4.2.1. Peer Method Identification235

Similar to peer field identification (Section 4.1.1), given a new method mn,

we use peer methods to refer to the existing methods that are (1) declared in

the same class as mn, and (2) invoked by one or more changed methods which

also invoke mn. CMSuggesterM traverses the AST of each changed method’s

old version to extract the invoked existing methods, extracting a peer method240

set PM = {pm1, pm2, . . .}.

4.2.2. Peer Method-Based Search

Similar to peer field-based method search (Section 4.1.4), with identified

peer methods, CMSuggesterM searches for any unchanged method that invokes

at least one peer method. To improve efficiency, we also rely on the access245
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modifiers of mn to determine the search space. For instance, if mn is private,

the search scope is within the declaring class of mn; if mn is public, the search

scope is the whole codebase. We denote the identified candidate method set

with MC = {mc1,mc2, . . .}.

4.2.3. Type-Based Filtering250

Intuitively, if a method should be changed to invoke mn, this method is likely

to contain the related calling context, i.e., properly typed variables that (1) pass

values to mn as parameters or (2) accept values returned by mn. With this intu-

ition, we built a filter in CMSuggesterM to improve the tool’s change suggestion

accuracy. Specifically, for any candidate method mc identified based on peer255

method invocation (see Section 4.2.2), CMSuggesterM traverses the AST of mc

to extract the list of used types Ltype. Such type information is mined from the

type binding of any field or local variable used in mc. Suppose that mn has k

parameters. If Ltype has the return type of mn (except void) and at least (k−1)
of those parameter types, mc is kept in MC; otherwise, mc is removed.260

5. Evaluation

We conducted evaluations to explore the following four research questions:

• RQ1: What is CMSuggesterF ’s effectiveness to suggest complementary

changes for *CM→AF edits, and how does it compare with prior tools?

We constructed an evaluation data set from *CM→AF edits (Table 3)265

and applied CMSuggesterF , ROSE, TARMAQ, and TAR to the suggestion

tasks. Our results in Section 5.2 show that CMSuggesterF achieved the

highest coverage and accuracy. Our observations indicate that CMSug-

gester complements existing tools to recommend co-changes based on the

syntactic or semantic relations between methods other than the history.270

• RQ2: What is the effectiveness comparison between CMSuggesterM and

prior tools when suggesting co-changes for *CM→AM edits? We lever-

aged *CM→AM edits to create another evaluation data set (Table 4),

and compared the change suggestions by CMSuggesterM , ROSE, TAR-

MAQ, and TAR. The results in Section 5.3 show that CMSuggesterM275
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outperformed all three prior tools, especially in terms of coverage and

precision.

• RQ3: How does CMSuggesterF ’s effectiveness vary with the two used

filters? By disabling one or both filters defined in CMSuggesterF , we built

three variant approaches (Section 5.4). From the comparison between280

the variants and CMSuggesterF , we found that both filters improved the

accuracy while sacrificing coverage, and the name-based filter obtained a

better trade-off between accuracy and coverage than the other filter.

• RQ4: How sensitive is CMSuggesterM ’s effectiveness to the usage of its

single filter? We disabled the filter and created a variant approach (Sec-285

tion 5.5). Without the filter, CMSuggesterM achieved higher coverage

(95% vs. 82%) but lower accuracy (67% vs. 70%).

5.1. Setup

In this section, we introduce the data set (Section 5.1.1), our compared tools

(Section 5.1.2), and our metrics (Section 5.1.3).290

5.1.1. Data Set

In our study, we leveraged the multi-entity edits of six open-source projects:

• Aries [15] contains a set of pluggable Java components, which enable an

enterprise OSGi application programming model.

• Cassandra [16] is a NoSQL database management system. It is designed295

to handle large amounts of data across many commodity servers, providing

high availability with no single point of failure.

• Derby [12] is a relational database management system that can be em-

bedded in Java programs and used for online transaction processing.

• Mahout [17] is a project to produce free implementations of distributed or300

otherwise scalable machine learning algorithms focused primarily in the

areas of collective filtering, clustering, and classification.
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• ActiveMQ [20] is a message broker written in Java together with a full

Java Message Service (JMS) client. It provides “Enterprise Features”

which foster the communication from more than one client or server.305

• UIMA [21] is an unstructured information management application. The

software system analyzes large volumes of unstructured information to

discover knowledge that is relevant to an end user.

These Java projects are from the Apache software foundation, and built for

different application domains. All projects have well-maintained issue tracking310

systems and version control systems. Many commit messages in these software

repositories contain the corresponding issue IDs. In this paper, we mainly fo-

cus on the program commits that fix bugs. Therefore, given an issue labeled

as “Bug Fix”, we leveraged the issue ID to locate the corresponding program

commit. Apart from issue IDs, we also collected bug-fixing commits based on315

the keywords like “bug” and “fix” in commit messages. This is because some

applied bug fixes are not explicitly related to issues via the issue IDs.

Based on the collected data, we created two data sets to separately evaluate

CMSuggesterF and CMSuggesterM . To create the data set for CMSuggesterF ,

we searched for any *CM→AF edit that has (1) at least two methods co-320

changed for an added field, and (2) each changed method accessing at least two

curren fields. In this way, we found 10 commits, 45 commits, 42 commits, 9

commits, 55 commits, and 14 commits separately in the revision data of Aries,

Cassandra, Derby, Mahout, ActiveMQ, and UIMA. Each commit contains one

or more *CM→AF edits. Similarly, to build the data set for CMSuggesterM ,325

we searched for any *CM→AM edit that has (1) at least two methods co-

changed for an added method, and (2) each changed method accessing at least

one existing method declared in the same class of AM. We found 2 commits,

41 commits, 49 commits, 4 commits, 62 commits, and 26 commits from the 6

projects. Each commit has at least one *CM→AM edit.330

For each AF (or AM), we constructed suggestion tasks by (i) providing the

AF (or AM) and some of its co-applied CMs to CMSuggester as input, and
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Table 3: Evaluation data set for CMSuggesterF

Aries Cassandra Derby Mahout ActiveMQ UIMA
Total

#

# of program commits 10 45 42 9 55 14 175

# of 1AF1C suggestion tasks 39 172 151 46 197 80 685

# of 1AF2C suggestion tasks 9 237 168 12 181 63 670

# of 1AF3C suggestion tasks 4 379 366 8 252 32 1041

Table 4: Evaluation data set for CMSuggesterM

Aries Cassandra Derby Mahout ActiveMQ UIMA
Total

#

# of program commits 2 41 49 4 62 26 184

# of 1AM1C suggestion tasks 7 141 237 27 205 75 692

# of 1AM2C suggestion tasks 3 165 1634 93 175 52 2122

# of 1AM3C suggestion tasks 0 204 17295 306 332 30 18167

(ii) using the remaining part as the oracle to evaluate CMSuggester’s output.

For instance, suppose that a commit has an added field fn and two changed

methods M = {m1,m2}. In one task, we provide fn and m1 as input, and check335

whether CMSuggesterF suggests m2 for change. Alternatively, we can provide

fn and m2 as input, and check whether CMSuggesterF ’s output is m1. In this

way, if a *CM→AF edit has one AF and n CMs (n ≥ 2), we can create n

one-AF-one-CM (1AF1C) tasks based on the edit. In each task, only one

AF and one CM are provided as input, and all the other CM(s) is/are treated340

as the expected output. Similarly, we can create one-AF-two-CM (1AF2C)

and one-AF-three-CM (1AF3C) tasks. As the majority of AFs (or AMs) in

our data sets correspond to 2-4 CMs, our experiments focus on 1AF1C, 1AF2C,

1AF3C, 1AM1C, 1AM2C, and 1AM3C tasks, as shown in Table 3 and Table 4.

5.1.2. Compared Tools345

In our evaluation, we compared CMSuggester with the three state-of-the-

art co-change suggestion tools: ROSE [4], TARMAQ [8], and TAR [9]. We

chose these tools because (1) ROSE has been popularly used and (2) TARMAQ

and TAR were recently introduced. Although the three tools do not conduct
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so complicated analysis as CMSuggester, they all mine change patterns from350

revision histories, and we can align their inputs for the evaluation.

Specifically, ROSE mines the association rules between co-changed entities

from software version histories, as shown below:

{( Qdmodule.c, func,GrafObj getattr())} ⇒

{ (qdsupport.py, func, outputGetattrHook()). }
(1)

This rule means that whenever the function GrafObj getattr() in a file Qdmodule.c

is changed, the function outputGetattrHook() in another file qdsupport.py should355

also be changed. We configured ROSE with support = 1 and confidence = 0.1,

because the ROSE paper [4] mentioned this setting multiple times.

Similar to ROSE, TARMAQ also mines association rules in software version

history. However, given a query Q (i.e., a set of known changed entities), instead

of using Q as is to suggest co-changes, TARMAQ first locates one or more360

program commits T that have the largest number of overlapping changed entities

with Q. TARMAQ then treats the overlapping entities in each commit as a

refined query Q′ to suggest any co-change. Note that for 1AF1C and 1AM1C

tasks, since there is only one known changed method (together with an added

field or method), Q′ = Q = 1 and TARMAQ performed identically to ROSE.365

TAR is also similar to ROSE by suggesting co-changes based on software

version history. However, different from ROSE, with the mined rules E1⇒ E2

and E2 ⇒ E3, TAR leverages transitive inference to further derive E1 ⇒ E3.

Suppose that the confidence values of E1 ⇒ E2 and E2 ⇒ E3 are separately

c1 and c2, then the confidence value of E1 ⇒ E3 is c1 × c2. Same as ROSE,370

TARMAQ and TAR are also configured with support = 1 and confidence = 0.1.

To assess the capability of suggesting complementary changes, we used all

the tools to complete the tasks mentioned in Tables 3 and 4.

5.1.3. Metrics

We defined and used four metrics to measure a tool’s capability of suggesting375

methods for change: coverage, precision, recall, and F-score. We also defined

the weighted average to measure a tool’s overall effectiveness among all subject
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projects for each of the metrics mentioned above.

Coverage (C) measures the percentage of tasks for which a tool can provide

suggestion. Given a task, a tool may or may not suggest any change to com-

plement the already-applied edit, so this metric assesses a tool’s applicability.

C = # of tasks with a tool’s suggestion

Total # of tasks
× 100% (2)

Intuitively, if a tool always suggests something given a task, its coverage is 100%,

and thus the tool is widely applicable. All our later evaluations for precision,380

recall, and F-score are limited to the tasks covered by a tool. For instance,

suppose that given 100 tasks, a tool can suggest changes for 8 tasks. Then the

tool’s coverage is 8/100 = 8%, and the evaluations for other metrics are based

on these 8 tasks instead of the original 100 tasks.

Precision (P) measures among all methods suggested by a tool, how many

of them are correct:

P = # of correct suggestions

Total # of suggestions by a tool
× 100% (3)

This metric evaluates how precisely a tool suggests changes. If all suggestions385

by a tool are contained by the oracle or expected output, the precision is 100%.

Recall (R) measures among all the expected suggestions, how many of them

are actually reported:

R = # of correct suggestions by a tool

Total # of expected suggestions
× 100% (4)

This metric assesses how effectively a tool retrieves the expected outcome. In-

tuitively, if all expected suggestions are reported by a tool, the recall is 100%.

F-score (F) measures the accuracy of a tool’s suggestion:

F = 2 × P ×R
P +R × 100% (5)

F-score is the harmonic mean of precision and recall. Its value varies within

[0%, 100%]. Higher F-score values are desirable, as they demonstrate better390

trade-offs between the precision and recall rates.
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Table 5: CMSuggesterF vs. existing tools for 1AF1C tasks (%)

Project
CMSuggesterF ROSE TARMAQ TAR

C P R F C P R F C P R F C P R F

Aries 51 68 85 76 31 35 39 37 31 35 39 37 31 27 56 36

Cassandra 69 81 75 78 38 53 71 61 38 53 71 61 38 50 74 60

Derby 71 71 68 69 22 25 42 31 22 25 42 31 24 23 47 36

Mahout 72 72 68 70 13 5 33 9 13 5 33 9 14 6 34 10

ActiveMQ 63 64 61 63 58 33 63 43 58 33 63 43 59 24 68 36

UIMA 77 73 60 64 18 22 58 32 18 22 58 32 18 22 58 32

WA 68 72 68 70 42 37 61 47 42 37 61 47 45 31 66 43

Weighted Average (WA) measures a tool’s overall effectiveness among

all experimented data in terms of coverage, precision, recall, and F-score:

Γoverall = ∑
6
i=1 Γi × ni

∑6
i=1 ni

. (6)

In the formula, i varies from 1 to 6, representing Aries, Cassandra, Derby,

Mahout, ActiveMQ, and UIMA in sequence. In particular, ni represents the

number of tasks built from the ith project. Γi represents any measurement

value of the ith project for coverage, precision, recall, or F-score. By combining395

such measurement values of all projects in a weighted way, we are able to assess

a tool’s overall effectiveness Γoverall.

5.2. RQ1. The Comparison between CMSuggesterF and Prior Tools

Table 5 shows the results of CMSuggesterF , ROSE, TARMAQ, and TAR, for

1AF1C tasks. Overall, CMSuggesterF obtained the highest coverage, precision,400

and accuracy values for all projects; it obtained the highest weighted average val-

ues in terms of all metrics. Although TAR derived the second highest weighted

average value for coverage (i.e., 45%), its accuracy is the lowest (i.e., 43%) among

all tools. Particularly for Mahout, CMSuggesterF predicted changes for 72% of

the tasks, while the other three tools provided predictions for 13%-14% of the405

tasks. Among the generated suggestions for Mahout, CMSuggesterF achieved

72% precision, 68% recall, and 70% F-score; ROSE and TARMAQ obtained 5%

precision, 33% recall, and 9% F-score; while TAR acquired 6% precision, 34%

recall and 10% recall. For ActiveMQ, CMSuggesterF acquired the lowest recall

rate (61%), while the highest recall rate was acquired by TAR (68%).410
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To further explore whether CMSuggesterF worked significantly better than

other tools, we performed Mann-Whitney U test [22] and measured the Cliff’s

delta size [23]. The U test was applied to check whether two sample groups

(e.g., precision rates for individual tasks reported by CMSuggesterF and ROSE)

have the same distribution. If the mean values of two groups are different and415

p < 0.05, we consider the two groups to have significantly different distributions;

in such cases, the Cliff’s delta size measures the magnitude of differences.

Table 6: Statistical significance tests for 1AF1C tasks

CMSuggesterF vs. ROSE CMSuggesterF vs. TARMAQ CMSuggesterF vs. TAR

P R F P R F P R F

Mean

comparison

72%

vs. 37%

68%

vs. 61%

70%

vs. 47%

72%

vs. 37%

68%

vs. 61%

70%

vs. 47%

72%

vs. 31%

68%

vs. 66%

70%

vs. 43%

p-value < 2.2e-16 0.05 < 2.2e-16 < 2.2e-16 0.05 < 2.2e-16 < 2.2e-16 0.47 < 2.2e-16

Cliff’s ∆
0.46

(medium)
-

0.40

(medium)

0.46

(medium)
-

0.40

(medium)

0.52

(large)
-

0.47

(medium)

As with prior work [24], we interpreted the computed Cliff’s delta value v in the following way: (1) if v < 0.147, the effect

size is “negligible”; (2) if 0.147 ≤ v < 0.33, the effect size is “small’; (3) if 0.33 ≤ v < 0.474, the effect size is “medium”; (4)

otherwise, the effect size is “large”.

Table 6 presents our statistical testing results. Note that we performed such

testing for P, R, and F, but not for C. This is because the coverage formula

is an accumulative function, producing a single number for a given group of420

tasks; while the other metrics are per-task formulae, reporting separate values

for individual tasks. Therefore, with a group of values separately calculated

for P, R, and F, we could perform statistical testing. According to the ta-

ble, CMSuggesterF obtained significantly higher precision and accuracy rates

than other tools, with medium or large effect sizes. Although CMSuggesterF ’s425

mean recall is higher than that of other tools, the difference is not significant.

Overall, CMSuggesterF significantly outperformed existing tools by predicting

co-changes with higher accuracy.

Two major reasons can explain why CMSuggesterF worked better. First, the

three existing tools we evaluated all leverage the co-changed entities in version430

history to predict likely changes. When the history data is incomplete or some

entities were never co-changed before, existing tools lack the evidence to predict
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some co-changes, obtaining lower coverage and recall rates in general. Second,

the three experimented tools exploit no syntactic or semantic relationship be-

tween the co-changed entities. They can infer incorrect rules from co-changed435

but unrelated entities, deriving lower precision.

AF
namedVector

CM
reduce(…)

CMSuggesterF

ROSE

Input Suggested methods 
to change

Φ (No prediction)

setup(…)
Peer fields: dimension, 
sequentialAccess, normPower

Figure 4: A task for which CMSuggesterF outperformed ROSE

Figure 4 presents a task for which CMSuggesterF outperformed ROSE. This

task is extracted from the commit 22d7d31 [25] of Mahout. In the task, there

is one AF PartialVectorMergeReducer.namedVector and one CM PartialVectorMerge-

Reducer.reduce(...) provided as input, and another CM provided as the expected440

output. CMSuggesterF successfully predicted PartialVectorMergeReducer.setup(...)

based on three peer fields extracted from the given CM. However, ROSE could

not predict any method, because the version history did not manifest any asso-

ciation rule between reduce(...) and setup(...).

Figure 5 shows a task for which ROSE worked better than CMSuggesterF .445

This task is from the commit f06e1d6 [26] of Cassandra. It provides one AF

Session.compactionStrategy and one CM Session.Session(...) as input, and in-

cludes another CM as the oracle. CMSuggesterF predicted nothing, because the

identified peer fields in Session(...) are not commonly used by any unchanged

method. However, ROSE correctly suggested one method Session.createKeySpaces().450

Our results show that CMSuggesterF can complement ROSE by suggesting co-

changes in a different way.

AF
compactionStrategy 

CM
Session(…)

Input Suggested methods 
to change

Φ (No prediction)

createKeySpaces() 

CMSuggesterF

ROSE

Figure 5: A task for which ROSE outperformed CMSuggesterF
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Table 7: CMSuggesterF vs. existing tools for 1AF2C tasks (%)

Project
CMSuggesterF ROSE TARMAQ TAR

C P R F C P R F C P R F C P R F

Aries 89 35 50 41 0 - - - 56 42 40 41 67 17 45 25

Cassandra 76 65 66 65 31 63 69 66 51 59 72 65 51 46 74 57

Derby 96 65 55 60 3 7 15 10 8 50 69 58 8 48 69 58

Mahout 100 35 39 37 0 - - - 25 0 0 - 25 0 0 -

ActiveMQ 86 49 63 55 24 42 49 45 79 39 50 41 82 22 52 31

UIMA 99 43 58 49 5 34 50 40 20 21 38 27 20 18 40 25

WA 87 58 61 60 14 53 60 57 62 47 57 52 62 33 61 43

Finding 1: CMSuggesterF significantly outperformed ROSE, TAR-

MAQ, and TAR for 1AF1C tasks. This means that CMSuggesterF com-

plements these history-based tools by inferring co-changes from methods’

common field accesses instead of from the history.

In addition to 1AF1C tasks, we also compared CMSuggesterF with the three

tools for 1AF2C and 1AF3C tasks (see Tables 7 and 8), and observed similar455

phenomena in both tables. In particular, for 1AF2C tasks, CMSuggesterF ob-

tained the highest weighted average of F-score (60%); while ROSE, TARMAQ,

and TAR separately obtained 57%, 52%, and 43%. This comparison implies

that CMSuggesterF achieved the best trade-off between precision and recall.

More importantly, CMSuggesterF acquired much higher coverage rates than460

other tools. In Table 7, for Aries and Mahout, CMSuggesterF ’s coverage val-

ues are 89% and 100%, while the values by ROSE is 0%. Among the three

history-based tools, ROSE acquired the lowest weighted average of coverage

(14%), but highest weighted average of accuracy (57%). It indicates that ROSE

is less applicable than TARMAQ and TAR, but manages to predict changes465

more accurately. One possible reason to explain this phenomenon is that both

TARMAQ and TAR are based on ROSE, attempting to infer more rules from

history and thus widen the application scope; nevertheless, such expansion of

rule inference can also compromise the quality of change suggestion.
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Table 8: CMSuggesterF vs. existing tools for 1AF3C tasks (%)

Project
CMSuggesterF ROSE TARMAQ TAR

C P R F C P R F C P R F C P R F

Aries 100 12 25 16 0 - - - 50 30 100 46 100 9 50 16

Cassandra 75 56 62 59 33 57 64 60 59 45 81 58 60 41 82 55

Derby 100 66 61 63 0 0 0 - 3 13 56 22 3 7 80 13

Mahout 100 21 25 23 0 - - - 0 - - - 0 - - -

ActiveMQ 86 46 68 55 9 38 58 46 88 36 40 38 95 17 56 26

UIMA 100 37 64 47 1 0 0 - 32 10 30 15 32 6 30 10

WA 88 57 63 60 16 54 62 58 71 40 60 48 77 28 69 40

We made similar observations in Table 8. For 1AF3C tasks, CMSuggesterF470

outperformed existing tools by covering more tasks and acquiring higher accu-

racy. Furthermore, by comparing the coverage among Tables 5, 7, and 8, we

found that (1) ROSE always covered fewer tasks than the other three tools, and

(2) when more CMs are provided, the gap between ROSE’s coverage and that

of other tools becomes larger. This finding can be explained with the internal475

mechanisms of different tools. Suppose that given an 1AF2C task, each tool can

separately predict changes M1 = {m1a,m1b, . . .} based on one changed method

CM1, and predict changes M2 = {m2a,m2b, . . .} based on the other changed

method CM2. To improve the prediction precision, ROSE intersects the pre-

diction sets of individual CMs and suggests Mr = M1⋂M2 for co-changes. In480

comparison, CMSuggesterF , TARMAQ, and TAR predict changes based on the

set union, i.e., M =M1⋃M2. Consequently, ROSE is more conservative when

predicting changes given multiple changed methods, while other tools are more

likely to suggest changes in the same scenarios.

Finding 2: For 1AF2C and 1AF3C tasks, when multiple CMs were

provided as inputs, CMSuggesterF outperformed existing tools by achiev-

ing better coverage and accuracy.
485

5.3. RQ2. The Comparison between CMSuggesterM and Prior Tools

The above evaluation shows that CMSuggesterF outperformed ROSE, TAR-

MAQ, and TAR, when suggesting complementary changes for *CM→AF edits.
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Table 9: CMSuggesterM vs. existing tools for 1AM1C tasks (%)

Project
CMSuggesterM ROSE TARMAQ TAR

C P R F C P R F C P R F C P R F

Aries 71 100 100 100 0 - - - 0 - - - 0 - - -

Cassandra 82 69 67 68 37 27 57 37 37 27 57 37 38 25 61 36

Derby 87 74 67 70 22 27 58 37 22 27 58 37 22 25 61 36

Mahout 85 88 91 90 0 - - - 0 - - - 0 - - -

ActiveMQ 75 66 68 67 44 17 52 26 44 17 52 26 44 15 57 24

UIMA 76 68 64 66 24 22 55 32 24 22 55 32 24 22 55 32

WA 82 71 69 70 36 23 55 32 36 23 55 32 36 21 60 32

We were also curious how CMSuggesterM compares with these tools when rec-

ommending changes for *CM→AM edits. Thus, we also applied CMSuggesterM490

and the three tools to the data set shown in Table 4.

Table 9 presents the experimental results of CMSuggesterM , ROSE, TAR-

MAQ, and TAR, for 1AM1C tasks. Similar to what we observed in Section 5.2,

CMSuggesterM outperformed all the three tools in terms of all metrics. Specif-

ically, CMSuggesterM suggested changes for 82% of the tasks, while the other495

tools provided suggestions for 36% of those tasks. Among the provided sugges-

tions, CMSuggesterM achieved 71% precision, 69% recall, and 70% accuracy;

ROSE and TARMAQ acquired 23% precision, 55% recall, and 32% accuracy;

while TAR achieved 21% precision, 60% recall, and 32% accuracy.

Table 10: Statistical significance tests for 1AM1C tasks

CMSuggesterM vs. ROSE CMSuggesterM vs. TARMAQ CMSuggesterM vs. TAR

P R F P R F P R F

Mean

comparison

71%

vs. 23%

69%

vs. 55%

70%

vs. 32%

71%

vs. 23%

69%

vs. 55%

70%

vs. 32%

71%

vs. 21%

69%

vs. 60%

70%

vs. 32%

p-value < 2.2e-16 0.004 < 2.2e-16 < 2.2e-16 0.004 < 2.2e-16 < 2.2e-16 0.016 < 2.2e-16

Cliff’s ∆
0.58

(large)

0.15

(small)

0.50

(large)

0.58

(large)

0.15

(small)

0.50

(large)

0.59

(large)
-

0.51

(large)

We further conducted statistical testing to decide whether CMSuggesterM500

worked significantly better than the three existing tools for 1AM1C tasks. As

shown in Table 10, the p-values of P and F are less than 2.2e−16, while the cor-

responding Cliff’s delta values are at least 0.5. This means that CMSuggesterM

outperformed other tools by obtaining significantly higher precision and ac-
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Table 11: CMSuggesterM vs. existing tools for 1AM2C tasks (%)

Project
CMSuggesterM ROSE TARMAQ TAR

C P R F C P R F C P R F C P R F

Aries 100 33 100 50 0 - - - 0 - - - 0 - - -

Cassandra 94 58 85 69 26 38 88 53 36 33 80 47 35 26 80 39

Derby 99 84 77 80 3 36 80 50 11 21 34 26 6 41 52 46

Mahout 100 68 95 79 0 - - - 0 - - - 0 - - -

ActiveMQ 90 63 66 64 6 15 30 20 38 9 17 12 38 13 32 19

UIMA 83 43 59 50 12 2 17 4 45 12 48 18 45 12 48 18

WA 98 81 77 79 14 34 75 47 24 21 40 28 26 27 53 35

Table 12: CMSuggesterM vs. existing tools for 1AM3C tasks (%)

Project
CMSuggesterM ROSE TARMAQ TAR

C P R F C P R F C P R F C P R F

Aries 0 - - - 0 - - - 0 - - - 0 - - -

Cassandra 100 57 94 71 18 32 89 47 24 32 92 48 24 42 92 58

Derby 100 84 86 85 0 40 83 54 2 24 49 32 2 25 53 34

Mahout 100 62 98 76 0 - - - 0 - - - 0 - - -

ActiveMQ 94 64 72 68 0 - - - 29 6 10 7 29 15 21 17

UIMA 87 24 54 33 0 - - - 57 3 36 5 57 7 59 13

WA 99 82 85 84 8 37 85 51 24 20 45 28 24 24 51 33

curacy. Additionally, CMSuggesterM achieved significantly higher recall than505

ROSE and TARMAQ, with small Cliff’s delta sizes; however, its recall is not

significantly better than that of TAR.

In addition to 1AM1C tasks, we also compared CMSuggesterM with the

three tools for 1AM2C and 1AM3C tasks (see Tables 11 and 12). Similar to what

we observed in Table 9, CMSuggesterM obtained the highest values in terms of510

all metrics. Among the three existing tools, TARMAQ and TAR achieved higher

coverage than ROSE, at the cost of sacrificing accuracy. According to the three

tables (Table 9, 11, and 12), we observed that as the number of provided CMs

increases, the gap between ROSE’s coverage and that of other tools increases.

For instance, given 1AM1C tasks, CMSuggesterM obtained 82% coverage, while515

ROSE and the other tools obtained 36% coverage. Nevertheless, given 1AM3C

tasks, ROSE’s coverage became 8%, CMSuggesterM ’s coverage was 99%, while

TARMAQ and TAR achieved 24%. Such divergent trends are due to the tools’

differences when handling tasks with multiple CMs provided. As mentioned

in Section 5.2, if multiple CMs are provided, ROSE intersects the methods520
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predicted based on individual CMs, while the other tools take the union of

those predictions.

Finding 3: Compared with ROSE, TARMAQ, and TAR,

CMSuggesterM obtained higher coverage and better accuracy, demon-

strating better effectiveness when suggesting changes to complete

*CM→AM edits.

5.4. RQ3. CMSuggesterF ’s Sensitivity to Filter Setting

In the design of CMSuggesterF , there are two filters defined: name-based fil-525

ter and access-based filter. To understand how each filter affects CMSuggesterF ’s

effectiveness, we built three variant approaches:

• VFo: We disabled both filters, and used all detected peer fields in the

input CM(s) to predict changes.

• VFn: We only used the name-based filter to refine peer fields but disabled530

the access-based filter.

• VFa: We refined peer fields only with the access-based filter while turning

off the name-based filter.

Table 13: CMSuggesterF vs. its three variant approaches with filters enabled or disabled (%)

Project
CMSuggesterF VFo VFn VFa

C P R F C P R F C P R F C P R F

Aries 51 68 85 76 77 70 83 76 72 70 86 77 56 67 86 75

Cassandra 69 81 75 78 88 78 76 77 80 81 74 77 75 79 76 77

Derby 71 71 68 69 97 63 60 61 94 66 63 64 73 67 64 65

Mahout 72 72 68 70 96 6 57 56 74 72 68 70 93 56 57 56

ActiveMQ 63 64 61 63 97 64 59 61 87 63 58 60 76 63 61 62

UIMA 77 73 60 64 97 73 53 62 90 75 56 64 79 70 54 61

WA 68 72 68 70 94 68 64 66 86 71 66 68 76 69 66 67

Table 13 presents the effectiveness comparison between CMSuggesterF and

the variants. According to this table, CMSuggesterF obtained the lowest overall535

26



coverage (68%), but the highest overall precision (72%), recall (68%), and F-

score (70%). This is as expected, because CMSuggesterF applied two filters to

refine the detected fields as much as possible. As a result, fewer fields passed

both filters and suggested fewer but more accurate changes. VFo achieved the

highest coverage (94%) but lowest F-score (66%). Since it did not refine peer540

fields before predicting changes, some of the included peer fields are used less

similarly to the newly added fields, causing incorrect suggestions.

Compared with VFa, VFn obtained better coverage (86% vs. 76%), bet-

ter precision (71% vs. 69%), equal recall (both 66%), and better F-score (68%

vs. 67%). This is out of our expectation. Although the name-based filter seems545

more intuitive and is easier to implement than the access-based filter, it ob-

tained a better trade-off among coverage, precision, recall, and accuracy. This

may indicate that developers usually name fields in meaningful ways. Thus, the

similarity in fields’ names can more effectively indicate methods’ co-change re-

lationship than the similarity in access modes. In many cases, when some fields550

are named similarly, even though they are accessed divergently by one or more

CMs, the fields’ co-occurrence can still effectively predict methods for change.

Finding 4: Both filters effected to improve CMSuggesterF ’s accuracy at

the cost of coverage. Especially, the name-based filter achieved a better

trade-off between accuracy and coverage than the access-based filter.

5.5. RQ4. CMSuggesterM ’s Sensitivity to Filter Setting

In our design of CMSuggesterM , there is a type-based filter to refine candi-555

date methods via type checking. We were curious how sensitive CMSuggesterM

is to this filter, so we created a variant approach—VMo—by disabling the filter

in CMSuggesterM . We also applied VMo to the 1AM1C tasks. Table 14 shows

the effectiveness comparison between CMSuggesterM and VMo. Compared with

CMSuggesterM , VMo obtained higher coverage (i.e., 95% vs. 82%), lower pre-560

cision (i.e., 66% vs. 71%), lower recall (i.e., 68% vs. 69%), and lower F-score

(i.e., 67% vs. 70%). This is understandable because without type checking,
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Table 14: CMSuggesterM vs. VMo for 1AM1C tasks (%)

Project
CMSuggesterM VMo

C P R F C P R F

Aries 71 100 100 100 100 100 100 100

Cassandra 82 69 67 68 94 63 63 63

Derby 87 74 67 70 95 70 66 68

Mahout 85 88 91 90 96 71 97 82

ActiveMQ 75 66 68 67 93 59 68 63

UIMA 76 68 64 66 96 66 70 68

WA 82 71 69 70 95 66 68 67

CMSuggesterM suggests changes purely based on the invocation of peer meth-

ods, even if some candidate methods do not contain the necessary program

context (e.g., variables with matching types) for invoking any new method.565

By default, we set CMSuggesterM to include the type-based filter even if this

filter can reduce the tool’s coverage and compromise its applicability. The reason

is that we want to achieve higher accuracy of CMSuggesterM ’s predictions.

Users of CMSuggesterM can always disable this filter as they like.

Finding 5: The type-based filter in CMSuggesterM worked to improve

F-score accuracy while reducing the coverage. VMo obtained 95% cover-

age and 67% accuracy for 1AM1C tasks.
570

6. Threats to Validity

(a) Threats to External Validity: Our evaluation shows that CMSug-

gester outperformed existing tools when recommending co-changes for both

*CM→AF and *CM→AM edits. This experimental conclusion may not hold

when we apply these tools in other scenarios, where edits do not add any field575

or method. To overcome this limitation, we will revisit the frequently applied

change patterns revealed by our prior work [10], and extend CMSuggester to

recommend changes even though no new entity is inserted. Additionally, our

experiment results can be different if all tools were applied to another set of

open source projects or to a set of closed source software. In the future, we580

will evaluate these tools on program data from more software repositories. We

also plan to develop a hybrid approach of CMSuggester, ROSE, TARMAQ, and
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TAR. By relating methods based on common field accesses, common method

invocations, and historical co-change relationship, the hybrid approach is guar-

anteed to suggest changes when either tool predicts something, and may provide585

more precise suggestions if tools’ outputs can cross-validate each other.

(b) Threats to Construct Validity: When we prepared the golden standards,

we constructed suggestion tasks from manual fixes. Yin et al. [27] show that a

bug fix may be partially correct, which can lose useful co-changes. It is possible

that developers made mistakes when making some multi-entity edits. Therefore,590

the imperfect evaluation data set based on developers’ edits may affect our

assessment for both CMSuggester and existing tools. We share this limitation

with prior work [4, 8, 9, 7, 28]. In the future, we plan to mitigate the problem by

conducting user studies with developers. By carefully going through the edits

made by developers and the complementary changes suggested by tools, we can595

further evaluate the usefulness of different tools’ suggestions.

7. Related Work

Our research is related to co-change mining, change recommendation, and

automatic program repair.

Co-Change Mining. Tools were built to mine version histories for co-600

change patterns [29, 30, 31, 4, 5, 8, 9, 32, 33, 34, 35, 36, 37]. Specifically, Gall

et al. mined release data for the co-change relationship between subsystems [29]

and classes [30]. Shirabad et al. trained a machine-learning model to predict

whether two given files should be changed together [31]. Several other research

groups developed tools (e.g., ROSE) to mine the association rules between co-605

changed entities and suggest possible changes accordingly [4, 5, 8, 9, 32, 36, 37].

Recently, some hybrid approaches are built with information retrieval (IR)-

based techniques and association rule mining [33, 34, 35]. Specifically given a

software entity E, these approaches leverage IR-based techniques to (1) extract

terms from E and any other entity and (2) rank those entities based on their610

term overlapping with E. Meanwhile, these tools also apply association rule

mining to commit history to rank entities based on the co-change frequency.
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Given a new commit, these tools combine the two ranked lists in various ways

to reveal any missing change. However, none of the approaches mentioned above

analyze any syntactic or semantic relationship between co-changed modules.615

Hassan et al. created a framework to predict change propagation based on

the historical co-changes, caller-callee relationship of methods, def-use relation-

ship of fields, and/or entities’ co-occurrence in the same file [38]. They found

that the historical co-changes had better prediction capability than other types

of information. Instead of mining software repositories, CMSuggester identifies620

co-changed methods based on the commonly accessed fields or invoked meth-

ods, and complemented above-mentioned approaches when the revision history

is limited or unavailable. Yamauchi et al. and Kreutzer et al. separately clus-

tered similar code changes based on either string similarity or common usage of

identifier names [39, 40]. In particular, Yamauchi et al. relied on the commonly625

used identifiers to summarize semantics of program changes [39]. CMSuggester

does not cluster similar changes, neither does it summarize program semantics.

However, CMSuggester (1) relies on the def-use relationship between program

entities to infer the syntactic relevance and (2) leverages the commonly accessed

fields or methods to infer the semantic relevance.630

Change Recommendation Systems. Researchers built tools to recom-

mend various code changes [41, 6, 42, 7, 43]. For instance, PR-Miner was created

to mine the implicit API invocation rules (e.g., lock() and unlock() should be

called together), to detect any code violating the rules, and to suggest changes

that complement existing API invocations [41]. Clever is a tool tracking all635

clone groups in software and monitoring for edits on clones [42]. If one clone

is detected to be updated, Clever lists all its clone peers, and recommends

relevant changes. These approaches recommend changes based on either the

co-occurrence of APIs or code similarity. In comparison, CMSuggester rec-

ommends changes based on the common field accesses or method invocations640

between methods. In Model-Driven Engineering, ReVision repairs incorrectly

updated models by (1) extracting change patterns from version history, and (2)

matching the incorrect updates against those patterns to suggest repair opera-
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tions [43]. CMSuggester shares similar methodology with ReVision, but focuses

on code changes instead of model changes.645

Automatic Program Repair (APR). There are tools proposed to gen-

erate candidate patches for certain bugs, and automatically check patch cor-

rectness using compilation and testing [44, 45, 46, 47, 48]. For example, Gen-

Prog [44] generates candidate patches by replicating, mutating, or deleting code

randomly from the existing programs. Genesis trains a machine-learning model650

by extracting features from existing bug fixes, and suggesting candidate patches

accordingly [47]. CMSuggester is different from APR in two aspects. First,

CMSuggester focuses on multi-entity changes by suggesting method changes

to complement already-applied edits. However, APR focuses on single-entity

changes by creating single-method updates from scratch. Second, CMSuggester655

locates methods to change, while APR approaches generate concrete and appli-

cable statement-level changes as a candidate fix. We believe that CMSuggester

is valuable because it is challenging to locate places for change in large codebases,

and such places need to be located before APR tools can generate changes.

8. Conclusion660

It is challenging for developers to completely apply multi-entity edits, be-

cause some missing changes may not trigger any compilation error or fail any

test case. Particularly for *CM→AF and *CM→AM edits, after adding a

field or method, developers may forget to change all related methods to access

the added entity. In this paper, we introduced CMSuggester, an approach to665

recommend complementary changes for multi-entity edits. Compared with prior

work that recognizes missing changes based on the historical co-change relation-

ship between entities or program content similarity, CMSuggester recommends

complementary method changes if any unchanged method shares common field

accesses or method invocations with the already-changed method(s).670

There are two parts of CMSuggester: (1) CMSuggesterF that helps with

*CM→AF edits and (2) CMSuggesterM which facilitates *CM→AM edits.

We conducted a comprehensive evaluation for both parts by (i) applying them
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to different sets of suggestion tasks, (ii) comparing them with ROSE, TAR-

MAQ, and TAR, and (iii) varying the filtering configurations. Our evaluation675

shows that both CMSuggesterF and CMSuggesterM outperformed the three ex-

isting tools, providing better suggestions in more scenarios. All filters used in

CMSuggester effectively helped improve the accuracy of change suggestion. In

the future, we plan to investigate ways to integrate CMSuggester with existing

tools, so that more high-quality code change suggestions can be provided to680

complete more multi-entity edits.
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