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Abstract

When maintaining software, developers sometimes change multiple program
entities (i.e., classes, methods, and fields) to fulfill one maintenance task. We
call such complex changes multi-entity edits. Consistently and completely ap-
plying multi-entity edits can be challenging, because (1) the changes scatter in
different entities and (2) the incorrectly edited code may not trigger any com-
pilation or runtime error. This paper introduces CMSuggester, an approach to
suggest complementary changes for multi-entity edits. Given a multi-entity edit
that (i) adds a new field or method and (ii) modifies one or more methods to
access the field or invoke the method, CMSuggester suggests other methods to
co-change for the new field access or method invocation. The design of CM-
Suggester is motivated by our preliminary study, which reveals that co-changed
methods usually access existing fields or invoke existing methods in common.

Our evaluation shows that based on common field accesses, CMSuggester
recommended method changes in 463 of 685 tasks with 70% suggestion accu-
racy; based on common method invocations, CMSuggester handled 557 of 692
tasks with 70% accuracy. Compared with prior work ROSE, TARMAQ, and
Transitive Association Rules (TAR), CMSuggester recommended more method
changes with higher accuracy. Our research can help developers correctly apply

multi-entity edits.

*Corresponding author
Email address: nm8247@vt.edu (Na Meng)

Preprint submitted to Journal of System and Software October 18, 2019



20

25

Keywords: Multi-entity edit; common field access; common method

invocation; change suggestion

1. Introduction

Software maintenance is challenging and time-consuming. Christa et al. re-
cently revealed that almost 70% of developers’ time and resources were allocated
to maintenance activities [I]. When maintaining software, developers may ap-
ply complex program changes by editing several program entities (i.e., classes,
methods, and fields) for one maintenance task (e.g., bug fix). For instance, a
study by Zhong and Su [2] shows that developers fixed around 80% of real bugs
by changing multiple program locations together. In this paper, we refer to
a program commit as a multi-entity edit if it simultaneously changes multiple
entities. Multi-entity edits can be difficult to apply consistently and completely.
Park et al. once examined supplementary bug fixes—patches that were later ap-
plied to supplement or correct initial fix attempts [3]. These researchers found
that developers sometimes failed to edit all program locations as needed for one
bug, e.g., by inserting the value initialization of a newly added field to some but
not all relevant methods.

Existing work is insufficient to help with such edit application [4} 5] @], [7, 8, @].
For example, ROSE mines software version history to identify change association
rules like “if method A is changed, method B should also be changed” [4]. Given
a program commit, ROSE checks the applied changes against identified rules
to reveal any missing change. However, the accuracy of identified rules is low
for two reasons. First, the co-change relationship between entities does not
guarantee their syntactic or semantic relevance, so some rules identified in this
way are actually false alarms. Second, some syntactically or semantically related
entities were never changed together in history, so ROSE cannot reveal the entity
relationship, causing false negatives.

LSDiff infers systematic structural change rules from a given program com-

mit, and detects anomalies from systematic changes as exceptions to the in-
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ferred rules [6]. For instance, one representative inferred rule is “All classes
implementing type A delete method B except class C.” LSDiff checks for con-
sistent additions and deletions of entities, but helps little for entity updates (or
changes). To handle entity updates, LASE infers a general context-aware edit
script from two or more similarly changed methods, and exploits the inferred
script to (1) search for other methods to change, and (2) suggest customized
edits [7]. LASE can help apply similar edits to similar code; it does not help
when co-changed entities have dissimilar content and require for distinct edits.

Our recent study on multi-entity edits reveals two frequently applied change
patterns: *CM—AF and *CM—AM [I0]. AF means Added Field; AM means
Added Method; *CM represents one or more Changed Methods; and — denotes
that one entity references or syntactically depends on another entity. These
patterns show that when one field or method is added, developers usually change
multiple methods together to access the field or invoke the method. As the co-
changed methods usually contain different program contexts and experience
divergent changes, developers may forget to change all relevant methods. This
paper introduces a novel approach—CMSuggester—that suggests methods to
co-change. Specifically, we first conducted a preliminary study (Section [3]) to
explore whether there is any syntactic or semantic relationship between the
co-changed entities in *CM—AF or *CM—AM edits. We found that the
co-changed methods usually involve common fields or methods before an edit
is applied. It indicates that there are clusters of methods that access
the same sets of fields or methods. If one or more methods in a cluster
are changed to access a new field or method, the other methods from the same
cluster are likely to be co-changed for the new field access or method invocation.

Based on the preliminary study, we developed CMSuggester to recommend
complementary changes for *CM—AF and *CM—AM multi-entity edits (Sec-
tion. Specifically, given an added field (f,,) and one or more changed methods,
CMSuggester first extracts existing fields accessed by the changed methods. If
some of such fields (i) have the same naming pattern as f,, and (ii) are ac-

cessed in the same way as f,, (i.e., purely read, purely written, or read-written),
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CMSuggester considers them to be the peer fields of f,, and locates any un-
changed method accessing the peer fields to suggest changes. Similarly, given
an added method (m,,) and one or more changed methods, CMSuggester ex-
tracts peer methods invoked by the changed methods. By identifying any un-
changed method that also invokes the peer methods, CMSuggester recommends
additional methods that need to be changed.

This paper makes the following contributions:

e We conducted an empirical study on *CM—AF and *CM-AM edits,
and revealed that the co-changed methods for an added field or method
usually access existing fields or methods in common. Our findings shed

light on future research in automatic bug localization and program repair.

e We developed a novel approach CMSuggester that suggests complemen-
tary changes for *CM—AF and *CM—AM edits. Given an AF (or
AM) and one or more CMs to access the field (or invoke the method),
CMSuggester extracts peer fields (or methods) from those changed meth-
ods, and relies on the extracted information to predict other methods for
change. Unlike existing tools, CMSuggester can recommend changes even
if (1) there is no change history available and (2) the methods to co-change
have totally different content and should go through divergent changes.

e We compared CMSuggester with three state-of-the-art tools: ROSE [4],
TARMAQ [§], and Transitive Association Rules (TAR) [9]. We found
that CMSuggester usually provided more suggestions with higher accuracy
than all existing tools. Our results imply that CMSuggester complements
these history-based mining tools when suggesting changes for *CM—AF
and *CM—AM edits.

We envision CMSuggester to be integrated into Integrated Development En-
vironments (IDE), code review systems, or version control systems. In this way,

after developers make code changes, CMSuggester can help them detect and fix
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incorrectly applied multi-entity edits. Our programs and datasets are available

at https://data.mendeley.com/datasets/tmv2pp964r/3.

This paper is an extended and revised version of our previous

conference paper [I1]. The main differences between this paper and our

prior work are as follows:

2.

e The original paper conducts a preliminary study for *CM—AF edits,

while this paper includes an additional study for *CM—AM edits.

In the original paper, CMSuggester only has the capability of suggesting
changes for *CM—AF edits. For this paper, we extended the capability
of CMSuggester such that it also suggests changes for *CM—AM edits.

The original paper explores how sensitive CMSuggester is to different filter
settings when dealing with *CM—AF edits, while this paper further in-
vestigates how sensitive CMSuggester is to filter settings when processing

*CM—-AM edits.

In the original paper, our evaluation data set includes the software version
history of four open-source projects. In this paper, the evaluation data

set involves six open-source projects.

The original paper only compares CMSuggester with ROSE, while this pa-
per further compares CMSuggester with another two existing tools: TAR-
MAQ), and TAR. To assess whether CMSuggester always works better than
existing tools, we also conducted statistical testing based on the empirical

measurements for individual change suggestion tasks.

We expanded all sections to explain the additional work mentioned above.
In the Related Work section, we added more discussion to comprehensively

compare CMSuggester with existing work.

A Motivating Example

Developers may incompletely apply multi-entity edits. Figure |1f shows a

simplified program revision to Derby [12]—a Java-based relational database.
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public class SQLChar extends DataType implements
StringDataValue, StreamStorable {

1.

2.

3. -

4.+ protected Clob _clobValue;

5 public int getLength() throws StandardException {
6
7
8

.+ if (_clobvValue != null) {
.+ return getClobLength(); }
. if (rawLength != 1)

9. return rawLength;

10. if (stream != null) {

11.

12. }

13. public void restoreToNull() {

14. value = null;

15. stream = null;

16. rawLength = -1;

17. cKey = null;

18. }}

Figure 1: A program revision requires 1 field addition and 13 method-level changes. However,

developers changed only 12 of the 13 methods, ignoring restoreToNull() for change [14].

In this revision, developers added a field _clobvalue (line 4) and modified 12
methods in different ways to access the field (e.g., changing getLength() at lines
6-7). However, developers forgot to also change restoreTonu11() (lines 13-18).
Consequently, the multi-entity edit is incomplete. The inadvertently “missed
change” remained in the software for more than two years, until developers
finally inserted a statement _clobValue = null; to restoreToNull() [I3]. It can be
challenging for developers to examine or ensure the completeness of such edits.
This is because when developers forgot to change all methods for the new field
access, there is often no compilation error triggered, neither can existing bug
detectors reveal the problem.

We developed CMSuggester, a tool that identifies complementary changes
and helps avoid incomplete multi-entity edits. For this example, given the
added field _ciobvalue and the changed method getLength(), CMSuggester iden-
tifies two existing fields accessed by getLength(): rawLength and stream. Similar
to _clobValue, these fields are purely read by the method, so CMSuggester con-
siders them to be peers of the new field. CMSuggester then searches for any
unchanged method that also accesses the peer fields. In this way, CMSuggester
finds restoreToNull()—which accesses the peer fields in the same “pure write”

mode—and suggests the method for change. With CMSuggester, developers
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can identify the change locations that they may otherwise miss when applying

multi-entity edits.

3. A Preliminary Characterization Study

In our prior study [I0], we analyzed 2,854 bug fixes from 4 popular open
source projects to explore multi-entity edits, including Aries [15], Cassandra [16],
Derby [12], and Mahout [I7]. Our study shows that recurring change patterns
commonly exist in all the projects. In particular, *CM—AF and *CM—-AM
are two of the most frequently applied patterns. Therefore, in this paper, we
randomly sampled five commits in each project for each pattern, and manually
analyzed the characteristics of co-changed methods.

Table [I| presents our inspection results for *CM—AF edits. For each added
field, there are 2-5 methods co-changed to access the field. We manually com-
pared co-changed methods to identify any commonality between them. We
found that in 15 of the 20 examined revisions, the co-changed meth-
ods commonly access existing field(s) before the edits are applied.
Among the other five program commits, two commits have co-changed methods
to commonly invoke certain method(s), while the remaining ones share no com-
monality. Our finding shows that when one or more methods in a cluster are
changed to access a new field, the other methods from the same cluster are likely
to be co-changed for the new field access. This finding is consistent with the
Object Oriented (OO) paradigm, since OO emphasizes to group related data in
the same structure to ease modification and understanding [18].

Table |2 shows the inspection results of *CM—AM edits. For each added
method, there are 2-41 methods co-changed to invoke the method. We found
that in 16 of the 20 examined revisions, the co-changed methods com-
monly invoke existing method(s) before the edits are applied, whereas
the other 4 commits have co-changed methods to commonly access certain
field(s). Our observation indicates that when one or more methods in a cluster
are changed to invoke a new method, the other methods from the same cluster

are likely to be co-changed for the new method invocation.



Table 1: Commonality inspection of 20 *CM—AF multi-entity edits

# of
Project Commits Added Field Changed Commonality
Methods
Aries 3d072a4 monitor 2 Field access
50ca3da properties 2 Field access
5d334d7  BEAN 2 MethOd.
invocation
95766a2 NS_AUTHZ 2 None
9586d78 enlisted 3 Field access
Cas- 0792766 validBufferBytes 3 Field access
sandra 0963469 isStopped 2 Field access
0d1d3bc componentIndex 3 Field access
1c9c47d nextFlags 2 Field access
266e94f  STREAMING_SUBDIR 2 MethOd_
invocation
Derby 578070 stateHoldability 2 Field access
6eb5042 outputPrecision 2 Field access
2f41733 MAX_OVERFLOW_ONLY_REC 3  None
_SIZE
099e28f XML_NAME 3 Field access
81b9853 activation 5 Field access
Ma- Obe2ea4d LOG 2 Field access
hout 0fe6a49 FLAG_SPARSE_ROW 2 Field access
22d7d31 named Vector 2 Field access
29af4d7 normalizer 2 Field access
2f7f0dc NUM_GROUPS_DEFAULT 2 None




Table 2: Commonality inspection of 20 *CM—AM multi-entity edits

# of
Project Commits Added Method Changed Commonality
Methods

Aries 32aallb unableToApply(...) 3 Method invocation
fc8fbab selectMatchingConverter(...) 2  Method invocation
9586d78 getTransaction() 4  Method invocation
628523f safeEndCoordination(...) 2 Field access
50ca3da containsKey(...) 2  Method invocation

Cas- 1c9c47d nextIsRangeTombstone() 3 Method invocation

sandra 9170ea2 excise() 2 Field access
e863c2b getRpcAddress(...) 5  Method invocation
af9b768 pagingFinished(...) 2  Method invocation
8dfd75d atomicMoveWithFallback(...) 2 Method invocation

Derby 643861 isConnected ToMaster() 2  Method invocation
586052 privInitialDirContext(...) 2 Method invocation
583691 calculateSlotFieldSize(...) 2  Method invocation
329295 requiresTypeFromContext/() 41  Method invocation
421717 getDriverModule() 6 Method invocation

Mahout d141c8e recommend(...) 2  Method invocation
cld2cdl inverse() 2 Field access
c0f3d94 parameters() 13 Method invocation
0833411 sparseVectorToString() 2  Method invocation
le3f7ae invalidateCachedLength() 9 Field access
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Figure 2: Overview of CMSuggester

4. Approach

Section [3|shows that for some given methods, it is promising to suggest their
co-changed methods based on the common field accesses/method calls. Therefore,
we developed CMSuggester to suggest method changes to complete *CM—AF
and *CM—AM edits. Because we observed different characteristics for the two
change patterns, the design of CMSuggester includes two parts: method change
suggestion for *CM—AF edits (Section, and method change suggestion for
*CM-AM edits (Section [£.2)).

4.1. CMSuggesterp: Complementary Change Suggestion for *CM—AF Edits

Figure [2| shows the overview of our approach. Given an edit that adds
a field and changes one or more methods to access the field, CMSuggester
extracts peer fields from the changed method(s) (Section [{.1.)), filters the fields
based on naming patterns and access modes (Sections and , and

searches for any unchanged method with the refined fields for change suggestion
(Section [4.1.4)).

4.1.1. Peer Field Identification

Given a new field f,,, we use peer fields to denote the existing fields that
are (1) declared in the same class as f,, and (2) accessed by one or more
changed methods that also access f,,. For our motivating example, the new field
is _clobValue. Thus, in method getLength(), CMSuggestery identifies rawLength
and stream as peer fields. In our implementation, CMSuggesterp traverses the
Abstract Syntax Tree (AST) of each changed method’s old version to locate all
field accesses, creating a peer field set PF = {pf1,pf2,. ..}
4.1.2. Name-Based Filtering

We noticed that peer fields may have diverse power to indicate the usage of
fn- To ensure CMSuggesterr’s accuracy when suggesting methods for change,

we refine the peer fields PF with two intuitive filters. The first filter uses the

10
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heuristic that similarly named fields are more likely to be used similarly than
other fields. This filter compares peer fields with f,,, and removes any field whose
naming pattern is different from f,,’s. We observed two naming patterns that

developers usually followed when defining fields.

e Pattern 1: The names of constant fields (e.g., static final) capitalize all

involved letters, such as MAX_OVERFLOW_ONLY_REC_SIZE.

e Pattern 2: The names of variable fields use lowercase or a combination

of lowercase and uppercase letters, such as outputPrecision.

We rely on the naming patterns to classify fields as variables or constants. If
fn is a variable, it is likely to be similarly used to existing variable fields, so we
filter out the constant peers in PF. Similarly, if f,, is a constant, we can use

the constant peers to suggest f,’s usage, and remove variable peers from PF.

4.1.8. Access-Based Filtering

This filter implements another heuristic that similarly accessed fields are
more likely to have similar usage. For each method, we classify the accessed
fields into three access modes: pure read, pure write, and read-write, de-
pending on how each field is accessed. For instance, if a method reads and
writes a field, we put the field into the “read-write” category of that method.
To implement the filter, CMSuggesterp scans the internal representation (IR)
of each CM’s old version created by WALA [19], and checks if an accessed field
serves as a left or right value of each IR instruction. If the field serves as a right
value, it is read by an instruction; otherwise, it is written. When a field’s access

mode is distinct from that of f,,, CMSuggesterp removes the field from PF.

4.1.4. Peer Field-Based Method Search

With the refined fields, CMSuggestery searches for methods to co-change
by identifying any unchanged method that accesses at least two refined fields.
In the search, CMSuggesterp scans a large portion of code, because a program
revision usually changes a small portion of code while keeping the majority of

code unchanged [2]. To improve the search efficiency, we rely on the access

11
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modifiers of f,, to reduce search space. Specifically, if f, is a private field,
only the methods declared by f,’s declaring class C' are analyzed because f,
is invisible to any method outside C. Similarly, if f,, is a protected field, only
the methods declared in C' and C’s subclasses are analyzed. In the worst case,
when a field f,, is a public field, we cannot reduce the search space, so we scan

all unchanged methods.

4.2. CMSuggestery;: Complementary Change Suggestion for *CM—AM Edits

With the observation that common method invocations indicate meth-
ods’ co-change relations, we designed CMSuggester,; to recommend com-
plementary changes for *CM—AM edits. As shown in Figure given an
edit that adds a method and changes one or more methods to invoke the
method, CMSuggester,; mines peer methods from the changed method(s) (Sec-
tion , uses these peers to locate any unchanged method that should also
be changed (Section , and refines the located methods via type checking

(Section [4.2.3)).

4.2.1. Peer Method Identification

Similar to peer field identification (Section , given a new method m,,,
we use peer methods to refer to the existing methods that are (1) declared in
the same class as m,,, and (2) invoked by one or more changed methods which
also invoke m,,. CMSuggester,s traverses the AST of each changed method’s
old version to extract the invoked existing methods, extracting a peer method

set PM = {pmy,pma,...}.

4.2.2. Peer Method-Based Search
Similar to peer field-based method search (Section [4.1.4]), with identified

peer methods, CMSuggester,; searches for any unchanged method that invokes

at least one peer method. To improve efficiency, we also rely on the access

12
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modifiers of m,, to determine the search space. For instance, if m,, is private,
the search scope is within the declaring class of m,,; if m,, is public, the search
scope is the whole codebase. We denote the identified candidate method set
with MC = {mc1,mez,...}.

4.2.8. Type-Based Filtering

Intuitively, if a method should be changed to invoke m.,, this method is likely
to contain the related calling context, i.e., properly typed variables that (1) pass
values to my, as parameters or (2) accept values returned by m,,. With this intu-
ition, we built a filter in CMSuggesterj; to improve the tool’s change suggestion
accuracy. Specifically, for any candidate method mc identified based on peer
method invocation (see Section , CMSuggester,; traverses the AST of mc
to extract the list of used types Lype. Such type information is mined from the
type binding of any field or local variable used in mc. Suppose that m,, has k
parameters. If Lyy,. has the return type of m,, (except void) and at least (k—1)
of those parameter types, mc is kept in M C'; otherwise, mc is removed.

5. Evaluation

We conducted evaluations to explore the following four research questions:

e RQ1: What is CMSuggesterr’s effectiveness to suggest complementary
changes for *CM— AF edits, and how does it compare with prior tools?
We constructed an evaluation data set from *CM—AF edits (Table [3)
and applied CMSuggester , ROSE, TARMAQ), and TAR to the suggestion
tasks. Our results in Section show that CMSuggesterp achieved the
highest coverage and accuracy. Our observations indicate that CMSug-
gester complements existing tools to recommend co-changes based on the

syntactic or semantic relations between methods other than the history.

e RQ2: What is the effectiveness comparison between CMSuggestery; and
prior tools when suggesting co-changes for *CM—-AM edits? We lever-
aged *CM—>AM edits to create another evaluation data set (Table ,
and compared the change suggestions by CMSuggestery;, ROSE, TAR-
MAQ, and TAR. The results in Section show that CMSuggester ,,

13
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outperformed all three prior tools, especially in terms of coverage and

precision.

e RQ3: How does CMSuggesterr’s effectiveness vary with the two used
filters? By disabling one or both filters defined in CMSuggester g, we built
three variant approaches (Section . From the comparison between
the variants and CMSuggesterr, we found that both filters improved the
accuracy while sacrificing coverage, and the name-based filter obtained a

better trade-off between accuracy and coverage than the other filter.

e RQ4: How sensitive is CMSuggestery;’s effectiveness to the usage of its
single filter? We disabled the filter and created a variant approach (Sec-
tion . Without the filter, CMSuggestery; achieved higher coverage
(95% vs. 82%) but lower accuracy (67% vs. 70%).

5.1. Setup

In this section, we introduce the data set (Section [5.1.1)), our compared tools

(Section [5.1.2)), and our metrics (Section [5.1.3)).

5.1.1. Data Set

In our study, we leveraged the multi-entity edits of six open-source projects:

o Aries [15] contains a set of pluggable Java components, which enable an

enterprise OSGi application programming model.

e Cassandra [16] is a NoSQL database management system. It is designed
to handle large amounts of data across many commodity servers, providing

high availability with no single point of failure.

e Derby [17] is a relational database management system that can be em-

bedded in Java programs and used for online transaction processing.

e Mahout [T7] is a project to produce free implementations of distributed or
otherwise scalable machine learning algorithms focused primarily in the

areas of collective filtering, clustering, and classification.

14
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o ActiveMQ [20] is a message broker written in Java together with a full
Java Message Service (JMS) client. It provides “Enterprise Features”

which foster the communication from more than one client or server.

e UIMA [2]] is an unstructured information management application. The
software system analyzes large volumes of unstructured information to

discover knowledge that is relevant to an end user.

These Java projects are from the Apache software foundation, and built for
different application domains. All projects have well-maintained issue tracking
systems and version control systems. Many commit messages in these software
repositories contain the corresponding issue IDs. In this paper, we mainly fo-
cus on the program commits that fix bugs. Therefore, given an issue labeled
as “Bug Fix”, we leveraged the issue ID to locate the corresponding program
commit. Apart from issue IDs, we also collected bug-fixing commits based on
the keywords like “bug” and “fix” in commit messages. This is because some
applied bug fixes are not explicitly related to issues via the issue IDs.

Based on the collected data, we created two data sets to separately evaluate
CMSuggesterp and CMSuggestery,;. To create the data set for CMSuggesterg,
we searched for any *CM—AF edit that has (1) at least two methods co-
changed for an added field, and (2) each changed method accessing at least two
curren fields. In this way, we found 10 commits, 45 commits, 42 commits, 9
commits, 55 commits, and 14 commits separately in the revision data of Aries,
Cassandra, Derby, Mahout, ActiveMQ, and UIMA. Each commit contains one
or more *CM—AF edits. Similarly, to build the data set for CMSuggestery,
we searched for any *CM—AM edit that has (1) at least two methods co-
changed for an added method, and (2) each changed method accessing at least
one existing method declared in the same class of AM. We found 2 commits,
41 commits, 49 commits, 4 commits, 62 commits, and 26 commits from the 6
projects. Each commit has at least one *CM—AM edit.

For each AF (or AM), we constructed suggestion tasks by (i) providing the
AF (or AM) and some of its co-applied CMs to CMSuggester as input, and

15
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Table 3: Evaluation data set for CMSuggester p

Total

Aries Cassandra Derby Mahout ActiveMQ UIMA “

# of program commits ‘ 10 45 42 9 55 14 ‘ 175
# of 1AF1C suggestion tasks ‘ 39 172 151 46 197 80 ‘ 685
# of 1AF2C suggestion tasks ‘ 9 237 168 12 181 63 ‘ 670
# of 1AF3C suggestion tasks ‘ 4 379 366 8 252 32 ‘ 1041

Table 4: Evaluation data set for CMSuggester s

Total

Aries Cassandra Derby Mahout ActiveMQ UIMA “

# of program commits ‘ 2 41 49 4 62 26 ‘ 184
# of 1AM1C suggestion tasks ‘ 7 141 237 27 205 75 ‘ 692
# of 1AM2C suggestion tasks ‘ 3 165 1634 93 175 52 ‘ 2122
# of 1AM3C suggestion tasks ‘ 0 204 17295 306 332 30 ‘ 18167

(ii) using the remaining part as the oracle to evaluate CMSuggester’s output.
For instance, suppose that a commit has an added field f,, and two changed
methods M = {m1,ms}. In one task, we provide f,, and m; as input, and check
whether CMSuggesterp suggests mso for change. Alternatively, we can provide
fn and mo as input, and check whether CMSuggesterg’s output is mq. In this
way, if a *CM—AF edit has one AF and n CMs (n > 2), we can create n
one-AF-one-CM (1AF1C) tasks based on the edit. In each task, only one
AF and one CM are provided as input, and all the other CM(s) is/are treated
as the expected output. Similarly, we can create one-AF-two-CM (1AF2C)
and one-A F-three-CM (1AF3C) tasks. As the majority of AFs (or AMs) in
our data sets correspond to 2-4 CMs, our experiments focus on 1AF1C, 1AF2C,
1AF3C, 1AM1C, 1AM2C, and 1AM3C tasks, as shown in Table [3] and Table

5.1.2. Compared Tools

In our evaluation, we compared CMSuggester with the three state-of-the-
art co-change suggestion tools: ROSE [4], TARMAQ [8], and TAR [9]. We
chose these tools because (1) ROSE has been popularly used and (2) TARMAQ
and TAR were recently introduced. Although the three tools do not conduct

16
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so complicated analysis as CMSuggester, they all mine change patterns from
revision histories, and we can align their inputs for the evaluation.
Specifically, ROSE mines the association rules between co-changed entities

from software version histories, as shown below:

{(-Qdmodule.c, func, GrafObj_getattr())} =

{ (qdsupport.py, func, outputGetattr Hook()). } M
This rule means that whenever the function Grafobj_getattr () in a file _Qdmodule.c
is changed, the function outputGetattrHook() in another file qdsupport.py should
also be changed. We configured ROSE with support = 1 and con fidence = 0.1,
because the ROSE paper [4] mentioned this setting multiple times.

Similar to ROSE, TARMAQ also mines association rules in software version
history. However, given a query @ (i.e., a set of known changed entities), instead
of using @ as is to suggest co-changes, TARMAQ first locates one or more
program commits 7" that have the largest number of overlapping changed entities
with Q. TARMAQ then treats the overlapping entities in each commit as a
refined query Q' to suggest any co-change. Note that for 1AF1C and 1AM1C
tasks, since there is only one known changed method (together with an added
field or method), @' = @Q =1 and TARMAQ performed identically to ROSE.

TAR is also similar to ROSE by suggesting co-changes based on software
version history. However, different from ROSE, with the mined rules EF1 = E2
and E2 = E3, TAR leverages transitive inference to further derive F1 = E3.
Suppose that the confidence values of F1 = E2 and E2 = E3 are separately
cl and c¢2, then the confidence value of E1 = E3 is cl x ¢2. Same as ROSE,
TARMAQ and TAR are also configured with support =1 and confidence = 0.1.

To assess the capability of suggesting complementary changes, we used all

the tools to complete the tasks mentioned in Tables [3] and [

5.1.3. Metrics
We defined and used four metrics to measure a tool’s capability of suggesting

methods for change: coverage, precision, recall, and F-score. We also defined

the weighted average to measure a tool’s overall effectiveness among all subject
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projects for each of the metrics mentioned above.
Coverage (C) measures the percentage of tasks for which a tool can provide
suggestion. Given a task, a tool may or may not suggest any change to com-

plement the already-applied edit, so this metric assesses a tool’s applicability.

_ # of tasks with a tool’s suggestion

¢ Total # of tasks

x 100% (2)

Intuitively, if a tool always suggests something given a task, its coverage is 100%,
and thus the tool is widely applicable. All our later evaluations for precision,
recall, and F-score are limited to the tasks covered by a tool. For instance,
suppose that given 100 tasks, a tool can suggest changes for 8 tasks. Then the
tool’s coverage is 8/100 = 8%, and the evaluations for other metrics are based
on these 8 tasks instead of the original 100 tasks.

Precision (P) measures among all methods suggested by a tool, how many
of them are correct:

B # of correct suggestions
" Total # of suggestions by a tool

x 100% (3)

This metric evaluates how precisely a tool suggests changes. If all suggestions

by a tool are contained by the oracle or expected output, the precision is 100%.
Recall (R) measures among all the expected suggestions, how many of them
are actually reported:

_ # of correct suggestions by a tool
"~ Total # of expected suggestions

x 100% (4)

This metric assesses how effectively a tool retrieves the expected outcome. In-

tuitively, if all expected suggestions are reported by a tool, the recall is 100%.
F-score (F) measures the accuracy of a tool’s suggestion:

2x Px R
Ffﬁxloo% (5)

F-score is the harmonic mean of precision and recall. Its value varies within
[0%, 100%)]. Higher F-score values are desirable, as they demonstrate better

trade-offs between the precision and recall rates.
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Table 5: CMSuggesterp vs. existing tools for 1AF1C tasks (%)

CMSuggesterp ROSE TARMAQ TAR
Project
C P R F C P R F C P R F C P R F
Aries 51 68 85 76 31 35 39 37 31 35 39 37 31 27 56 36

Cassandra 69 81 75 78 38 53 71 61 38 53 71 61 38 50 74 60

Derby 71 71 68 69 22 25 42 31 22 25 42 31 24 23 47 36
Mahout 72 72 68 70 13 5 33 9 13 5 33 9 14 6 34 10
ActiveMQ 63 64 61 63 58 33 63 43 58 33 63 43 59 24 68 36
UIMA " 73 60 64 18 22 58 32 18 22 58 32 18 22 58 32
WA 68 72 68 70 42 37 61 47 42 37 61 47 45 31 66 43

Weighted Average (WA) measures a tool’s overall effectiveness among
all experimented data in terms of coverage, precision, recall, and F-score:
Yo Tixn

Z?:l ng -

In the formula, 7 varies from 1 to 6, representing Aries, Cassandra, Derby,

Foverall = (6)
Mahout, ActiveMQ, and UIMA in sequence. In particular, n; represents the
number of tasks built from the i*” project. I'; represents any measurement
value of the i*" project for coverage, precision, recall, or F-score. By combining
such measurement values of all projects in a weighted way, we are able to assess

a tool’s overall effectiveness I'yyeraii-

5.2. RQ1. The Comparison between CMSuggesterp and Prior Tools

Table 5] shows the results of CMSuggester r, ROSE, TARMAQ, and TAR, for
1AF1C tasks. Overall, CMSuggesterr obtained the highest coverage, precision,
and accuracy values for all projects; it obtained the highest weighted average val-
ues in terms of all metrics. Although TAR derived the second highest weighted
average value for coverage (i.e., 45%), its accuracy is the lowest (i.e., 43%) among
all tools. Particularly for Mahout, CMSuggester p predicted changes for 72% of
the tasks, while the other three tools provided predictions for 13%-14% of the
tasks. Among the generated suggestions for Mahout, CMSuggestery achieved
72% precision, 68% recall, and 70% F-score; ROSE and TARMAQ obtained 5%
precision, 33% recall, and 9% F-score; while TAR acquired 6% precision, 34%
recall and 10% recall. For ActiveMQ, CMSuggester acquired the lowest recall
rate (61%), while the highest recall rate was acquired by TAR (68%).
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To further explore whether CMSuggester worked significantly better than
other tools, we performed Mann-Whitney U test [22] and measured the Cliff’s
delta size [23]. The U test was applied to check whether two sample groups
(e.g., precision rates for individual tasks reported by CMSuggesterr and ROSE)
have the same distribution. If the mean values of two groups are different and
p < 0.05, we consider the two groups to have significantly different distributions;

in such cases, the Cliff’s delta size measures the magnitude of differences.

Table 6: Statistical significance tests for 1AF1C tasks

CMSuggesterp vs. ROSE CMSuggesterr vs. TARMAQ CMSuggesterp vs. TAR

P R F P R F P R F
Mean 72% 68% 70% 72% 68% 70% 72% 68% 70%
comparison vs. 37% vs. 61% vs. 47% vs. 37% vs. 61% vs. 47% vs. 31% vs. 66% vs. 43%
p-value < 2.2e-16 0.05 < 2.2e-16 < 2.2e-16 0.05 < 2.2e-16 < 2.2e-16 0.47 < 2.2e-16
0.46 0.40 0.46 0.40 0.52 0.47

Cliff’s A - - -
(medium) (medium) | (medium) (medium) (large) (medium)

As with prior work [24], we interpreted the computed Cliff’s delta value v in the following way: (1) if v <0.147, the effect
size is “negligible”; (2) if 0.147 < v < 0.33, the effect size is “small’; (3) if 0.33 < v < 0.474, the effect size is “medium”; (4)

otherwise, the effect size is “large”.

Table [6] presents our statistical testing results. Note that we performed such
testing for P, R, and F, but not for C. This is because the coverage formula
is an accumulative function, producing a single number for a given group of
tasks; while the other metrics are per-task formulae, reporting separate values
for individual tasks. Therefore, with a group of values separately calculated
for P, R, and F, we could perform statistical testing. According to the ta-
ble, CMSuggestery obtained significantly higher precision and accuracy rates
than other tools, with medium or large effect sizes. Although CMSuggesterg’s
mean recall is higher than that of other tools, the difference is not significant.
Overall, CMSuggesterp significantly outperformed existing tools by predicting
co-changes with higher accuracy.

Two major reasons can explain why CMSuggester p worked better. First, the
three existing tools we evaluated all leverage the co-changed entities in version
history to predict likely changes. When the history data is incomplete or some

entities were never co-changed before, existing tools lack the evidence to predict
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some co-changes, obtaining lower coverage and recall rates in general. Second,
the three experimented tools exploit no syntactic or semantic relationship be-
tween the co-changed entities. They can infer incorrect rules from co-changed

but unrelated entities, deriving lower precision.

Input H | Suggested methods
| ' to change
AF ' !
oy 14 CMSuggester;
namedvector 4 : Peer fields: dimension,
! : sequentialAccess, normPower
r 1
Sl H 1 @ (No prediction)
reduce(...) I '

Figure 4: A task for which CMSuggesterp outperformed ROSE

Figure [d] presents a task for which CMSuggester s outperformed ROSE. This
task is extracted from the commit 22d7d31 [25] of Mahout. In the task, there
is one AF PartialVectorMergeReducer.namedVector and one CM PartialVectorMerge-
Reducer.reduce(...) provided as input, and another CM provided as the expected
output. CMSuggesterp successfully predicted PartialVectorMergeReducer.setup(. . .)
based on three peer fields extracted from the given CM. However, ROSE could
not predict any method, because the version history did not manifest any asso-
ciation rule between reduce(...) and setup(...).

Figure [5| shows a task for which ROSE worked better than CMSuggesterp.
This task is from the commit f06e1d6 [26] of Cassandra. It provides one AF
Session.compactionStrategy and one CM Session.Session(...) as input, and in-
cludes another CM as the oracle. CMSuggesterr predicted nothing, because the
identified peer fields in Session(...) are not commonly used by any unchanged
method. However, ROSE correctly suggested one method Session. createKeySpaces ().
Our results show that CMSuggesterr can complement ROSE by suggesting co-

changes in a different way.

| Suggested methods
to change

@ (No prediction)

Input

AF
compactionStrategy|

CMSuggester

™M
Session(...)

createKeySpaces()

Figure 5: A task for which ROSE outperformed CMSuggester p
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Table 7: CMSuggesterp vs. existing tools for 1AF2C tasks (%)

CMSuggesterp ROSE TARMAQ TAR
Project

C P R F C P R F C P R F C P R F
Aries 89 35 50 41 0 - - - 56 42 40 41 67 17 45 25
Cassandra 76 65 66 65 31 63 69 66 51 59 72 65 51 46 74 57
Derby 96 65 55 60 3 7 15 10 8 50 69 58 8 48 69 58

Mahout 100 35 39 37 0 - - - 25 0 0 - 25 0 0
ActiveMQ 86 49 63 55 24 42 49 45 79 39 50 41 82 22 52 31
UIMA 99 43 58 49 5 34 50 40 20 21 38 27 20 18 40 25
WA 87 58 61 60 14 53 60 57 62 47 57 52 62 33 61 43

Finding 1: CMSuggestery significantly outperformed ROSE, TAR-
MAQ, and TAR for 1AF1C tasks. This means that CMSuggesterp com-

plements these history-based tools by inferring co-changes from methods

common field accesses instead of from the history.

. J

In addition to 1AF1C tasks, we also compared CMSuggesterp with the three
tools for 1AF2C and 1AF3C tasks (see Tables m and , and observed similar
phenomena in both tables. In particular, for 1AF2C tasks, CMSuggesterg ob-
tained the highest weighted average of F-score (60%); while ROSE, TARMAQ),
and TAR separately obtained 57%, 52%, and 43%. This comparison implies
that CMSuggestery achieved the best trade-off between precision and recall.
More importantly, CMSuggesterr acquired much higher coverage rates than
other tools. In Table [7] for Aries and Mahout, CMSuggesterp’s coverage val-
ues are 89% and 100%, while the values by ROSE is 0%. Among the three
history-based tools, ROSE acquired the lowest weighted average of coverage
(14%), but highest weighted average of accuracy (57%). It indicates that ROSE
is less applicable than TARMAQ and TAR, but manages to predict changes
more accurately. One possible reason to explain this phenomenon is that both
TARMAQ and TAR are based on ROSE, attempting to infer more rules from
history and thus widen the application scope; nevertheless, such expansion of

rule inference can also compromise the quality of change suggestion.
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Table 8: CMSuggesterp vs. existing tools for 1AF3C tasks (%)

CMSuggesterp ROSE TARMAQ TAR
Project
C P R F C P R F C P R F C P R F
Aries 100 12 25 16 0 - - - 50 30 100 46 | 100 9 50 16

Cassandra 75 56 62 59 33 57 64 60 59 45 81 58 60 41 82 55

Derby 100 66 61 63 0 0 0 - 3 13 56 22 3 7 80 13
Mahout 100 21 25 23 0 - - - 0 - - - 0
ActiveMQ 86 46 68 55 9 38 58 46 88 36 40 38 95 17 56 26
UIMA 100 37 64 a7 1 0 0 32 10 30 15 32 6 30 10
WA 88 57 63 60 16 54 62 58 71 40 60 48 7 28 69 40

We made similar observations in Table 8] For 1AF3C tasks, CMSuggesterp
outperformed existing tools by covering more tasks and acquiring higher accu-
racy. Furthermore, by comparing the coverage among Tables and (8] we
found that (1) ROSE always covered fewer tasks than the other three tools, and
(2) when more CMs are provided, the gap between ROSE’s coverage and that
of other tools becomes larger. This finding can be explained with the internal
mechanisms of different tools. Suppose that given an 1AF2C task, each tool can
separately predict changes My = {m14, m1p, ...} based on one changed method
CM1, and predict changes Ms = {mag,mayp, ...} based on the other changed
method CM2. To improve the prediction precision, ROSE intersects the pre-
diction sets of individual CMs and suggests M, = M; (N M; for co-changes. In
comparison, CMSuggesterp, TARMAQ), and TAR predict changes based on the
set union, i.e., M = M7 U M. Consequently, ROSE is more conservative when
predicting changes given multiple changed methods, while other tools are more

likely to suggest changes in the same scenarios.

Finding 2: For 1AF2C and 1AF3C tasks, when multiple CMs were
provided as inputs, CMSuggesterp outperformed existing tools by achiev-

ing better coverage and accuracy.

5.8. RQ2. The Comparison between CMSuggestera; and Prior Tools
The above evaluation shows that CMSuggester g outperformed ROSE, TAR-
MAQ, and TAR, when suggesting complementary changes for *CM—AF edits.
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Table 9: CMSuggester; vs. existing tools for 1AM1C tasks (%)

CMSuggester s ROSE TARMAQ TAR

Project
C P R F C P R F C P R F C P R F
Aries 71 100 100 100 0 - - - 0 - - - 0 - - -
Cassandra 82 69 67 68 37 27 57 37 37 27 57 37 38 25 61 36
Derby 87 74 67 70 22 27 58 37 22 27 58 37 22 25 61 36
Mahout 85 88 91 90 0 - - - 0 - - - 0 - - -
ActiveMQ 75 66 68 67 44 17 52 26 44 17 52 26 44 15 57 24
UIMA 76 68 64 66 24 22 55 32 24 22 55 32 24 22 55 32
WA ‘ 82 71 69 70 ‘ 36 23 55 32 ‘ 36 23 55 32 ‘ 36 21 60 32

We were also curious how CMSuggester,; compares with these tools when rec-
ommending changes for *CM—AM edits. Thus, we also applied CMSuggester s
and the three tools to the data set shown in Table [4l

Table [J] presents the experimental results of CMSuggester,;, ROSE, TAR-
MAQ, and TAR, for IAM1C tasks. Similar to what we observed in Section [5.2]
CMSuggestery, outperformed all the three tools in terms of all metrics. Specif-
ically, CMSuggester; suggested changes for 82% of the tasks, while the other
tools provided suggestions for 36% of those tasks. Among the provided sugges-
tions, CMSuggester,; achieved 71% precision, 69% recall, and 70% accuracy;
ROSE and TARMAQ acquired 23% precision, 55% recall, and 32% accuracy;
while TAR achieved 21% precision, 60% recall, and 32% accuracy.

Table 10: Statistical significance tests for 1IAM1C tasks

CMSuggester); vs. ROSE CMSuggester); vs. TARMAQ CMSuggester); vs. TAR
P R F P R F P R F
Mean 1% 69% 70% 1% 69% 70% 1% 69% 70%
comparison vs. 23% vs. 55% vs. 32% vs. 23% vs. 55% vs. 32% vs. 21% vs. 60% vs. 32%
p-value < 2.2e-16 0.004 < 2.2e-16 | <2.2e-16 0.004 < 2.2e-16 < 2.2e-16 0.016 < 2.2e-16
0.58 0.15 0.50 0.58 0.15 0.50 0.59 0.51

Cliff’s A -

(large) (small) (large) (large) (small) (large) (large) (large)

We further conducted statistical testing to decide whether CMSuggester,
worked significantly better than the three existing tools for IAM1C tasks. As
shown in Table[I0] the p-values of P and F are less than 2.2e-16, while the cor-
responding Cliff’s delta values are at least 0.5. This means that CMSuggester,

outperformed other tools by obtaining significantly higher precision and ac-
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Table 11: CMSuggesters vs. existing tools for IAM2C tasks (%)

CMSuggester r ROSE TARMAQ TAR
Project
C P R F C P R F C P R F C P R F
Aries 100 33 100 50 0 - - - 0 0
Cassandra | 94 58 8 69 | 26 38 88 53| 36 33 80 47 | 35 26 80 39
Derby 9 84 77T 80 3 3 8 50| 11 21 34 26 6 41 52 46
Mahout 100 68 95 79 0 - - - 0 0
ActiveMQ | 90 63 66 64 6 15 30 20| 38 9 17 12| 38 13 32 19
UIMA 83 43 59 50 | 12 2 17 4| 45 12 48 18| 45 12 48 18
WA 98 81 77 79| 14 34 75 47| 24 21 40 28 ‘ 26 27 53 35
Table 12: CMSuggester); vs. existing tools for IAM3C tasks (%)
CMSuggester ROSE TARMAQ TAR
Project
C P R F C P R F C P R F C P R F
Aries 0 - - - 0 - - - 0 - - - 0
Cassandra | 100 57 94 71| 18 32 89 47 | 24 32 92 48 | 24 42 92 58

Derby 100 84 86 85 0 40 83 54 2 24 49 32 2 25 53 34

Mahout 100 62 98 76 0

ActiveMQ 94 64 72 68 0 - - - 29 6 10 7 29 15 21 17
0

UIMA 87 24 54 33 57 3 36 5 57 7 59 13

WA 99 82 85 84 8 37 85 51 24 20 45 28 24 24 51 33

curacy. Additionally, CMSuggester,; achieved significantly higher recall than
ROSE and TARMAQ), with small Cliff’s delta sizes; however, its recall is not
significantly better than that of TAR.

In addition to TAMI1C tasks, we also compared CMSuggestery; with the
three tools for IAM2C and 1AM3C tasks (see Tables[11]and[I2). Similar to what
we observed in Table[0] CMSuggester); obtained the highest values in terms of
all metrics. Among the three existing tools, TARMAQ and TAR achieved higher
coverage than ROSE, at the cost of sacrificing accuracy. According to the three
tables (Table |§|, and , we observed that as the number of provided CMs
increases, the gap between ROSE’s coverage and that of other tools increases.
For instance, given 1AM1C tasks, CMSuggester; obtained 82% coverage, while
ROSE and the other tools obtained 36% coverage. Nevertheless, given 1AM3C
tasks, ROSE’s coverage became 8%, CMSuggester,,’s coverage was 99%, while
TARMAQ and TAR achieved 24%. Such divergent trends are due to the tools’
differences when handling tasks with multiple CMs provided. As mentioned

in Section if multiple CMs are provided, ROSE intersects the methods
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predicted based on individual CMs, while the other tools take the union of

those predictions.

Finding 3: Compared with ROSE, TARMAQ, and TAR,
CMSuggestery; obtained higher coverage and better accuracy, demon-
strating better effectiveness when suggesting changes to complete

*CM-AM edits.

5.4. RQ3. CMSuggesterp’s Sensitivity to Filter Setting
525 In the design of CMSuggester g, there are two filters defined: name-based fil-
ter and access-based filter. To understand how each filter affects CMSuggesterz’s

effectiveness, we built three variant approaches:

e VF,: We disabled both filters, and used all detected peer fields in the
input CM(s) to predict changes.

530 e VF,: We only used the name-based filter to refine peer fields but disabled

the access-based filter.

e VF,: We refined peer fields only with the access-based filter while turning
off the name-based filter.

Table 13: CMSuggesterg vs. its three variant approaches with filters enabled or disabled (%)

CMSuggester g VF, VF,, VF,
Project
C P R F C P R F C P R F C P R F
Aries 51 68 85 76 7 70 83 76 72 70 86 7 56 67 86 75

Cassandra 69 81 75 78 88 78 76 ks 80 81 74 7 75 79 76 ks

Derby 71 71 68 69 97 63 60 61 94 66 63 64 73 67 64 65

Mahout 72 72 68 70 96 6 57 56 74 72 68 70 93 56 57 56

ActiveMQ 63 64 61 63 97 64 59 61 87 63 58 60 76 63 61 62

UIMA 7 73 60 64 97 73 53 62 90 75 56 64 79 70 54 61

WA ‘ 68 72 68 70 ‘ 94 68 64 66 ‘ 86 71 66 68 ‘ 76 69 66 67

Table [L3] presents the effectiveness comparison between CMSuggestery and

s35 the variants. According to this table, CMSuggester  obtained the lowest overall
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coverage (68%), but the highest overall precision (72%), recall (68%), and F-
score (70%). This is as expected, because CMSuggester g applied two filters to
refine the detected fields as much as possible. As a result, fewer fields passed
both filters and suggested fewer but more accurate changes. VF, achieved the
highest coverage (94%) but lowest F-score (66%). Since it did not refine peer
fields before predicting changes, some of the included peer fields are used less
similarly to the newly added fields, causing incorrect suggestions.

Compared with VF,, VF,, obtained better coverage (86% vs. 76%), bet-
ter precision (71% vs. 69%), equal recall (both 66%), and better F-score (68%
vs. 67%). This is out of our expectation. Although the name-based filter seems
more intuitive and is easier to implement than the access-based filter, it ob-
tained a better trade-off among coverage, precision, recall, and accuracy. This
may indicate that developers usually name fields in meaningful ways. Thus, the
similarity in fields’ names can more effectively indicate methods’ co-change re-
lationship than the similarity in access modes. In many cases, when some fields
are named similarly, even though they are accessed divergently by one or more

CMs, the fields’ co-occurrence can still effectively predict methods for change.

Finding 4: Both filters effected to improve CMSuggesterr’s accuracy at
the cost of coverage. Especially, the name-based filter achieved a better

trade-off between accuracy and coverage than the access-based filter.

5.5. RQ4. CMSuggestery;’s Sensitivity to Filter Setting

In our design of CMSuggestery,, there is a type-based filter to refine candi-
date methods via type checking. We were curious how sensitive CMSuggester ;s
is to this filter, so we created a variant approach—VM,—Dby disabling the filter
in CMSuggestery;. We also applied VM, to the IAM1C tasks. Table [I4] shows
the effectiveness comparison between CMSuggestery; and VM,. Compared with
CMSuggesterys, VM, obtained higher coverage (i.e., 95% vs. 82%), lower pre-
cision (i.e., 66% vs. 7T1%), lower recall (i.e., 68% vs. 69%), and lower F-score

(i.e., 67% vs. 70%). This is understandable because without type checking,
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Table 14: CMSuggester; vs. VM, for 1AM1C tasks (%)

CMSuggester s VM,

Project
C P R F C P R F
Aries 71 100 100 100 100 100 100 100
Cassandra 82 69 67 68 94 63 63 63
Derby 87 74 67 70 95 70 66 68
Mahout 85 88 91 90 96 71 97 82
ActiveMQ 75 66 68 67 93 59 68 63
UIMA 76 68 64 66 96 66 70 68
WA ‘ 82 71 69 70 ‘ 95 66 68 67

CMSuggester); suggests changes purely based on the invocation of peer meth-
ods, even if some candidate methods do not contain the necessary program
context (e.g., variables with matching types) for invoking any new method.

By default, we set CMSuggester), to include the type-based filter even if this
filter can reduce the tool’s coverage and compromise its applicability. The reason
is that we want to achieve higher accuracy of CMSuggester,;’s predictions.

Users of CMSuggestery, can always disable this filter as they like.

Finding 5: The type-based filter in CMSuggestery; worked to improve
F-score accuracy while reducing the coverage. VM, obtained 95% cover-

age and 67% accuracy for 1AM1C tasks.

6. Threats to Validity

(a) Threats to External Validity: ~ Our evaluation shows that CMSug-
gester outperformed existing tools when recommending co-changes for both
*CM—AF and *CM—AM edits. This experimental conclusion may not hold
when we apply these tools in other scenarios, where edits do not add any field
or method. To overcome this limitation, we will revisit the frequently applied
change patterns revealed by our prior work [10], and extend CMSuggester to
recommend changes even though no new entity is inserted. Additionally, our
experiment results can be different if all tools were applied to another set of
open source projects or to a set of closed source software. In the future, we
will evaluate these tools on program data from more software repositories. We

also plan to develop a hybrid approach of CMSuggester, ROSE, TARMAQ), and
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TAR. By relating methods based on common field accesses, common method
invocations, and historical co-change relationship, the hybrid approach is guar-
anteed to suggest changes when either tool predicts something, and may provide
more precise suggestions if tools’ outputs can cross-validate each other.

(b) Threats to Construct Validity: When we prepared the golden standards,
we constructed suggestion tasks from manual fixes. Yin et al. [27] show that a
bug fix may be partially correct, which can lose useful co-changes. It is possible
that developers made mistakes when making some multi-entity edits. Therefore,
the imperfect evaluation data set based on developers’ edits may affect our
assessment for both CMSuggester and existing tools. We share this limitation
with prior work [4,[8 9, [7, 28]. In the future, we plan to mitigate the problem by
conducting user studies with developers. By carefully going through the edits
made by developers and the complementary changes suggested by tools, we can

further evaluate the usefulness of different tools’ suggestions.

7. Related Work

Our research is related to co-change mining, change recommendation, and
automatic program repair.

Co-Change Mining. Tools were built to mine version histories for co-
change patterns [29] B0} B11, 4, [5l, 8 @, 32, B3], B4}, B8] [36, 37]. Specifically, Gall
et al. mined release data for the co-change relationship between subsystems [29]
and classes [30]. Shirabad et al. trained a machine-learning model to predict
whether two given files should be changed together [3T]. Several other research
groups developed tools (e.g., ROSE) to mine the association rules between co-
changed entities and suggest possible changes accordingly [4} 5l [8], [, 32, 36, B37].
Recently, some hybrid approaches are built with information retrieval (IR)-
based techniques and association rule mining [33], 34} [35]. Specifically given a
software entity F, these approaches leverage IR-based techniques to (1) extract
terms from E and any other entity and (2) rank those entities based on their
term overlapping with E. Meanwhile, these tools also apply association rule

mining to commit history to rank entities based on the co-change frequency.
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Given a new commit, these tools combine the two ranked lists in various ways
to reveal any missing change. However, none of the approaches mentioned above
analyze any syntactic or semantic relationship between co-changed modules.

Hassan et al. created a framework to predict change propagation based on
the historical co-changes, caller-callee relationship of methods, def-use relation-
ship of fields, and/or entities’ co-occurrence in the same file [3§]. They found
that the historical co-changes had better prediction capability than other types
of information. Instead of mining software repositories, CMSuggester identifies
co-changed methods based on the commonly accessed fields or invoked meth-
ods, and complemented above-mentioned approaches when the revision history
is limited or unavailable. Yamauchi et al. and Kreutzer et al. separately clus-
tered similar code changes based on either string similarity or common usage of
identifier names [39] [40]. In particular, Yamauchi et al. relied on the commonly
used identifiers to summarize semantics of program changes [39]. CMSuggester
does not cluster similar changes, neither does it summarize program semantics.
However, CMSuggester (1) relies on the def-use relationship between program
entities to infer the syntactic relevance and (2) leverages the commonly accessed
fields or methods to infer the semantic relevance.

Change Recommendation Systems. Researchers built tools to recom-
mend various code changes [411 [6] 42} [7, [43]. For instance, PR-Miner was created
to mine the implicit API invocation rules (e.g., lock() and unlock() should be
called together), to detect any code violating the rules, and to suggest changes
that complement existing API invocations [41]. Clever is a tool tracking all
clone groups in software and monitoring for edits on clones [42]. If one clone
is detected to be updated, Clever lists all its clone peers, and recommends
relevant changes. These approaches recommend changes based on either the
co-occurrence of APIs or code similarity. In comparison, CMSuggester rec-
ommends changes based on the common field accesses or method invocations
between methods. In Model-Driven Engineering, ReVision repairs incorrectly
updated models by (1) extracting change patterns from version history, and (2)

matching the incorrect updates against those patterns to suggest repair opera-
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tions [43]. CMSuggester shares similar methodology with ReVision, but focuses
on code changes instead of model changes.

Automatic Program Repair (APR). There are tools proposed to gen-
erate candidate patches for certain bugs, and automatically check patch cor-
rectness using compilation and testing [44] [45] [406], [47) [48]. For example, Gen-
Prog [44] generates candidate patches by replicating, mutating, or deleting code
randomly from the existing programs. Genesis trains a machine-learning model
by extracting features from existing bug fixes, and suggesting candidate patches
accordingly [47]. CMSuggester is different from APR in two aspects. First,
CMSuggester focuses on multi-entity changes by suggesting method changes
to complement already-applied edits. However, APR focuses on single-entity
changes by creating single-method updates from scratch. Second, CMSuggester
locates methods to change, while APR approaches generate concrete and appli-
cable statement-level changes as a candidate fix. We believe that CMSuggester
is valuable because it is challenging to locate places for change in large codebases,

and such places need to be located before APR tools can generate changes.

8. Conclusion

It is challenging for developers to completely apply multi-entity edits, be-
cause some missing changes may not trigger any compilation error or fail any
test case. Particularly for *CM—AF and *CM—AM edits, after adding a
field or method, developers may forget to change all related methods to access
the added entity. In this paper, we introduced CMSuggester, an approach to
recommend complementary changes for multi-entity edits. Compared with prior
work that recognizes missing changes based on the historical co-change relation-
ship between entities or program content similarity, CMSuggester recommends
complementary method changes if any unchanged method shares common field
accesses or method invocations with the already-changed method(s).

There are two parts of CMSuggester: (1) CMSuggestery that helps with
*CM-AF edits and (2) CMSuggestery, which facilitates *CM—AM edits.

We conducted a comprehensive evaluation for both parts by (i) applying them
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to different sets of suggestion tasks, (ii) comparing them with ROSE, TAR-
MAQ, and TAR, and (iii) varying the filtering configurations. Our evaluation
shows that both CMSuggesterr and CMSuggester ;s outperformed the three ex-
isting tools, providing better suggestions in more scenarios. All filters used in
CMSuggester effectively helped improve the accuracy of change suggestion. In
the future, we plan to investigate ways to integrate CMSuggester with existing
tools, so that more high-quality code change suggestions can be provided to

complete more multi-entity edits.
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