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ABSTRACT

Freeze nano 3D printing is a novel process that seamlessly
integrates freeze casting and inkjet printing processes. It can
fabricate flexible energy products with both macroscale and
microscale features. These multi-scale features enable good
mechanical and electrical properties with lightweight structures.
However, the quality issues are among the biggest barriers that
freeze nano printing, and other 3D printing processes, need to
come through. In particular, the droplet solidification behavior
is crucial for the product quality. The physical based heat
transfer models are computationally inefficient for the online
solidification time prediction during the printing process. In this
paper, we integrate machine learning (i.e., tensor
decomposition) methods and physical models to emulate the
tensor responses of droplet solidification time from the physical
based models. The tensor responses are factorized with joint
tensor decomposition, and represented with low dimensional
vectors. We then model these low dimensional vectors with
Gaussian process models. We demonstrate the proposed
framework for emulating the physical models of freeze nano 3D
printing, which can help the future real-time process
optimization.

Keywords: 3D Printing, Energy 3D Printing, Freeze Nano
Printing, Gaussian Process, Tensor Response

INTRODUCTION

The rapid development of smart devices, wearable sensors,
and electric vehicle requires energy storage devices to be
inexpensive, flexible, lightweight, and environmental friendly
[1, 2]. There is also a great need for micro-devices with high
energy density and high power density. However, as reported by
U.S. defense logistics agency, the current energy storage
materials and devices can have either high energy density or high
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power density, but they do not have both properties [3]. 3D
printing is a promising technique to increase the energy and
power density within a small footprint by decreasing transport
path of ions in the electrolyte [4]. 3D printing is able to fabricate
parts layer by layer with fine resolution and has been widely
used to produce customized products [5]. To date, various 3D
printing techniques based on material extrusion (e.g., fused
deposition modeling, FDM), material jetting (e.g., inkjet
printing), powder bed fusion (e.g., selective laser melting,
SLM), vat polymerization (stereolithography, SLA) are
developed. Among these techniques, material extrusion and
material jetting have been successfully demonstrated to print
energy products, such as fuel cells and batteries, with good
electrical properties [6-8].

Recently, a novel 3D printing technique, freeze nano
printing, was developed to have both macroscale and
microscale feature printing capabilities. Figure 1 shows a
schematic illustration of the freeze nano printing process, which
seamlessly integrates freeze casting and inkjet printing [9]. The
process starts with the suspension design, such as graphene
oxide (GO) suspension (Step 1). The individual droplets of the
support structure and the suspension are ejected to a cold
substrate through a nozzle to form the printed layers (Steps 2-
3). In particular, the droplets are supplied by a piezoelectric that
controls the demand of the aqueous solution. The water based
GO suspension is frozen and the ice crystals are formed at an
ambient temperature of -20°C. Once the part is 3D printed, it is
immersed in liquid nitrogen at -190°C approximately (Step 4),
freeze dried to remove water (Step 5), and finally it undergoes
sintering or thermal annealing to obtain the ultralight 3D printed
structure (Step 6) [9].

The freeze nano printing process has successfully printed
supercapacitor with superior properties [10]. Similar to the
previously demonstrated 3D printing examples, freeze nano
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printing can efficiently print flexible products within limited
space. Due to the porous structure after freeze drying, the energy
density of the freeze nano printing products is higher [9].
Moreover, different from the continuous inkjet technique to print
graphene structures by adjusting the rheological properties of
Graphene Aerogel (GA) inks, freeze nano printing uses a low
viscous Newtonian GO suspension that allows printing droplet
by droplet until the layers are formed. As a result, it has an
improved bonding strength among layers [9].

The existing studies on 3D printing of energy products focus
on proof-of-concept demonstration, but do not pay attention to
the quality and repeatability of the printed products. Actually, the
limited quality and high uncertainty are common challenges for
3D printing processes [11]. In the freeze nano printing process,
a critical quality-determining factor is the droplet solidification
time. It will affect the determination of waiting time among
layers and subsequently affect the part bonding strength and
geometrical accuracy. The waiting time will also affect the
printing productivity. It is therefore of great importance to study
the solidification time for best waiting time determination.

However, the droplet solidification study is a non-trivial
problem since the complex thermal interactions among the
droplets, substrate and ambient. In addition, the aqueous
graphene suspension experiences phase change during the
solidification, where the released latent heat prevents the
deposited droplets to freeze and affects the macro- and micro-
structures. Furthermore, the solidification is also dependent on
the process parameters (e.g., layer thickness) and material
properties (e.g., heat transfer coefficient). It is impractical to
study the droplet solidification and optimize the waiting time in
a trial-and-error approach, since the graphene is a very
expensive material ($300/g). To attack this problem, physical
based thermal models are proposed to model the droplet thermal
interactions and solidifications [12]. These models can be
further used for the waiting time determination [12]. However,
the physical based models can be computationally inefficient to
be executed online for the droplet solidification study and
waiting time determination.
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FIGURE 1. A SCHEMATIC REPRESENTATION OF THE FREEZE NANO 3D PRINTING PROCESS [9]

The objective of this work is to propose an efficient and
accurate emulator for the physical model results of high
dimensional droplet solidification time, so that this emulator can
be used for the future online adjustment of waiting time and
process parameters. To achieve this goal, we integrate machine
learning techniques and physical models (see details in the
Proposed Method section). In particular, we factorize the tensor
responses at various process parameters with joint tensor
decomposition so that the high dimensional responses are
represented with low dimensional vectors. We then model the
independent individual entries in these low dimensional vectors
with Gaussian Process (GP) models. From the case study, this
emulator can yield good prediction result, and can have very fast
solidification time prediction. Such a model is applicable to the
tensor responses modeling from the physical models, and can be

widely used for other 3D printing processes, such as the thermal
simulation in SLM and droplet simulation in inkjet printing [ 13,
14]. To the best of our knowledge, this is the first paper for the
modeling of the matrix or tensor responses in the physical
models for 3D printing processes. In the future, we will
investigate the application of the emulator for process
optimization, and will also perform the thermal measurement
from the printing process to calibrate the emulator.

The remainder of this paper is organized as follows. We
review the related topics in the next section. After that, we
provide a detailed description of the proposed method, and then
elaborate the proposed method in a case study in the freeze nano
printing process. Finally, we conclude the paper and discuss the
future work.
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STATE-OF-THE-ART

In this section, we first review relevant literature on the 3D
printing of energy products, and then summarize the existing
works on quality control of the 3D printed parts, and finally
discuss the tensor response modeling works in manufacturing.

3D printing of anode, cathode and electrolyte, which are the
main components in energy storage devices, has shown
promising results towards increasing the performance of
batteries and capacitors. Nevertheless, 3D printing of these
components is not straightforward [9]. A Li-lon microbattery
architecture was developed in [15]. Interdigitated electrodes
were integrated on a submillimeter scale, where LisTisO1
(LTO) and LiFePO4 (LFP) were used as anode and cathode
electrodes respectively. The ink design was optimized for
composition and rheological behaviors to ensure reliable drops
flow through the nozzles. The authors claimed the device
yielded the highest areal energy and power densities reported to
date. In another example, graphene oxide-based electrode inks
for Li-Ion batteries were 3D printed [6]. To develop printable
inks, the authors rely on Graphene Oxide’s (GO) rheological
properties, such as shear thinning behavior and high viscosity,
as well as its exceptional electrical properties like high electrical
conductivity, good structural stability and high surface area.
Additionally, GO had shown potential to be used under this
context due to its unique viscoelastic properties. Therefore,
interdigitated GO-based electrode composite inks and solid-
state electrolyte inks were used to 3D print anode, cathode, and
electrolyte. The high areal surface due to the porous GO
structure will increase the energy storage capacity. See also
other examples in [7, 8].

Even though there are a lot of work related to 3D printing
for energy storage devices, these efforts are at the proof-of-
concept fabrication and the product integrity, quality and
productivity have not been fully considered to the best of our
knowledge.

Various 3D printing product defects are investigated via
data-driven, physical based, or hybrid modeling approaches. For
instance, porosity is a defect that compromises the mechanical
properties, tensile strength, ductility and fatigue properties of
the parts. The part average porosity was studied in SLM printing
by a GP model to predict the porosity in the metal parts at any
given combination of process parameters [16]. However, the
authors did not consider the spatial distribution of porosity in the
part. For another example, geometrical shrinkage affected the
final dimension of a 3D printed part. A systematic model to
predict part shrinkage and an optimal shrinkage compensation
plan to achieve dimensional accuracy were presented in [17].
The model was validated using 3D printed cylinders by SLA,
and it showed a significant dimensional improvement. See
another example of the data driven modeling in [18]. Another
kind of modeling is based on physical rules. For instance, the
heat transfer in freeze nano printing was modeled in [12]. The
heat transfer model was used to predict the temperature
evolution of the printed droplets. The fluid dynamics was
modeled for inkjet printing [19]. The model simulated the
dispensing of polysiloxane via micro-syringe nozzle deposition,

and could be used to solve the overfilling of materials at
determined locations when trajectory change was present [19].
These models can be time consuming to be evaluated, and may
also suffer from model uncertainty. To address these problems,
the emulation/calibration models integrate the data-driven and
physical rule based models. For instance, [20] used a functional
GP model for the physical model calibration. See also [16].
However, the existing emulation/calibration models do not
address the high dimensional matrix/tensor responses.

Recently, much attention was drawn to the tensor responses
modeling. For instance, a regularized tensor regression was
proposed for the turning process optimization [21]. The
proposed method was applied to establish a relationship
between the dimensional accuracy and process parameters by
using high dimensional point cloud measurement of cylinder
parts. Additionally, a method to quickly classify part
geometrical integrity with minimal point cloud data in FDM was
proposed in [22]. More information on the tensor responses
modeling in manufacturing can be found in [23].

In this work, we integrate the joint tensor decomposition
and GP model to handle the high dimensional responses from
the physical models of freeze nano printing.

PROPOSED METHOD

To effectively represent and model the tensor outputs of
droplet solidification time from the physical models, we propose
to integrate joint tensor decomposition and physical models. Our
ultimate goal is to build an efficient and accurate emulator for
the prediction of droplet solidification time at new process
settings, which can be used for the future online waiting time
and process setting control.

Figure 2 shows our proposed analysis procedures. To
investigate the freeze nano printing process (Figure 2 (a)),
physical models are developed to characterize the droplets’
thermal distributions [12]. Based on these physical models, we
simulate the thermal distributions at the process settings
specified by a computer design of experiment (details to be
provided in the case study). We then summarize the droplet
solidification time for each simulated process setting, as
illustrated in an example in the bottom of Figure 2 (b). The
solidification time at the droplets will form a tensor response.
After that, as shown in the top of Figure 2 (c), the solidification
time across different process settings are factorized by joint
Candecomp/Parafac (CP) tensor decomposition. After the
decomposition, the non-zero entries in the core tensors only
reside on the diagonal (i.e., the core tensors are orthogonal, as
shown in Figure 3). Therefore, we model each entry at a fixed
coordinate of the core tensors from different process settings
with a GP model. Since the core tensors are orthogonal, we can
model each entry independently. Finally, after separately
training the GP models, the droplet solidification time can be
predicted by the reconstruction from the predicted core tensor
entries and the factorization matrices. This reconstructed tensor
will be compared with the droplet solidification time simulated
from the physical models.
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FIGURE 2. PROCEDURES IN THE PROPOSED FRAMEWORK

In the above procedures, the simulation data generation
from the physical models and the model training will be
performed offline. After the model training, the prediction at a
new process setting based on the trained models can be much
faster than executing the physical models. This is beneficial to
the real-time process optimization and control. In the following,
we will explain the details of the proposed method.

Joint Tensor Decomposition

Tensor decomposition is a powerful dimensional reduction
technique. The basic idea of tensor decomposition is to
approximate the high dimensional tensor with the product of low
dimensional matrices and vectors. In the freeze nano printing,
the droplet solidification time of the part will be decomposed
into the multiplication of factorization matrices and a core
tensor. In general, a third order tensor T € R/*X can be
factorized by CP decomposition [24] T =~ T = [A4; U,V,W] =
Y AU, 0 v ow,, where U € R™*R V € R/*R and W € RK*R
are decomposition matrices, 4 is a vector to specify the weight
for each rank r, and the total rank is R (i.e., v =1,:-,R). o is
the outer product. The total rank R can be determined so that the
variation explained in the approximation tensor T is larger than
a threshold percentage of the variation in the raw tensor T. The
total rank R needed is usually a small number compared with
the original dimensionality of the tensor. Such a selection
approach is also widely used in determining the number of
principal components in principal component analysis [25]. For
our problem to model the droplet solidification time at various
process settings, we want to use a compact representation of the
raw tensor. Therefore, the decomposition matrices U,V and W
for T;’s at various process settings are shared (see Figure 3 for
an illustration). We can therefore characterize the tensors with
A; given the shared decomposition matrices U,V and W in the

joint tensor decomposition [26]. In particular, the joint tensor
decomposition can be solved via,

min =¥, [IT; = [4; U, V, W]l €y

where ||*|| is the Frobenius norm, n is the number of samples,
and [-] is the tensor product. The problem is solved with
nonlinear least square (i.e., trust-region Quasi-Newton
methods), where U, V and W are initialized with random
matrices [27]. The rank R is selected to make sure the variation
explained in the decomposition is larger than 99.5% of the total
variation. After the joint tensor decomposition, other than
modeling the raw tensor responses directly, the emulation
problem can be simplified to model each 4;,’s in 4; with a GP
model, r = 1, -+, R, respectively. This is because the non-zero
entries in the core tensor only appear in the diagonal (Figure 3),
and can be modeled independently.

Shared Factorization  Solidification
Matrices Time at Different

,. \ Process Settings

u @Q T;

Orthogonal Core Tensor with Non-
zero Entries in the Diagonal
FIGURE 3. AN ILLUSTRATION OF THE JOINT TENSOR
DECOMPOSITION

Gaussian Process (GP) Emulation

GP models can capture the nonlinear relationships in the
data, and are widely used for physical model emulation and
calibration [28]. For a certain rank r of the core tensors after the
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joint tensor decomposition, the A;,- in 4; at the i-th sample can
be modeled as
Ai,r(x) = mi,r(x) + wi,r (x) + Ei,r(x)’ (2)

where x contains the physical model inputs, such as layer
thickness, droplet frequency, and the detailed values of these
inputs are provided in Table 1. m;,(x) = x T B;, is the mean
function capturing the mean effect of x on 4;,, and B;, is the
model parameters for the mean effect; w;,(x) follows a GP
w; - (x)~GP (0, Cir(x, x’)), where Cir(x,x") =
Jfrexp(— X Pirj ||xj - xj’”) is the covariance function
capturing the spatial relationship of samples. ¢;,.; is used to
adjust the weight of each direction j while calculating the
distance, and g is a scaling parameter. For instance, based on
the covariance function, the close by samples are highly
correlated, whereas the far away samples tend to have lower
correlation. &; . (x)~N (0, 77,) is the error term.

The unknown parameters in the GP model are @;, =
{ﬁ ir afr, Dirjo Vj}, and can be learned from the Markov Chain
Monte Carlo (MCMC) sampling from the posterior distribution
(28],
P (8:r12,(2)) o p(:, )N (s ()| (2), €y (2,7

+120)

where p(@i,) is the prior distribution for the unknown

€)

parameters. The detailed specifications of p(@i,) will be
provided in the Case Study section. After obtaining the posterior
distribution, one can predict the jnew,r (X5ew) at a new process
setting X0, [28].
Tensor Reconstruction and Comparison

Up to this step, the tensor response of the droplet
solidification time T),,, of a new process setting X,.,, can be
predicted via tensor reconstruction. In particular,
inew,r (Xpew), V1 can be predicted from the individual GP
models to form 4,,,, = (inew,ll inew,z, ~~,inew_R) in the core
tensor. We can then reconstruct T,,,, ~ ﬂinew ; UV, W]] based
on the U, V and W learned from the joint tensor decomposition.
The predicted T,,,,, will be compared with the simulated T,,,,,
from the physical model for the emulation model evaluation.

CASE STUDY

As mentioned in the introduction, the accurate and efficient
assessment of solidification time will affect the determination of
the waiting time among layers, and subsequently affect the
printed part quality. For instance, Figure 4 (b)-(c) shows the
parts with proper and improper waiting times for the designed
part in Figure 4 (a). In this section, we demonstrate the proposed
framework for the accurate and efficient prediction of droplet
solidification time in freeze nano printing.

a) Part CAD Model b) Proper Waiting c) Improper Waiting
FIGURE 4. A COMPARISON OF PROPER AND IMPROPER
WAITING TIME AMONG LAYERS

To demonstrate the proposed framework, we simulate a
single layer freeze nano printing part with 10 by 10 droplets
based on the physical models in [12]. Figure 5 shows the
simulation setup. The deposited droplets have an initial
temperature of 5 °C and are deposited based on the path
specified in Figure 5 (c). After the ejection (Figure 5 (a)), the
droplets solidify in a short time due to the heat conduction with
the heat sink (at -20 °C) under build bed and heat convection
with the ambient (Figure 5 (b)). The corresponding droplet
solidification time (time required for a droplet to cool down
from 5 °C to -19 °C in this case) is summarized as shown in
Figure 5 (c). In the simulation, we vary six process parameters
that will affect the thermal distribution. The names and ranges
(lower and upper bounds) of these parameters are shown in
Table 1. We generate 60 simulation runs from the physical
model. In these simulation runs, the process settings are
determined by a Latin hypercube sampling based space filling
design [29].
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TABLE 1. SIMULATION PARAMETERS AND RANGES

Lower Upper
IDs Parameters Bounds Bounds
X, Specific heat J /(kg - K) 3350 3450
X, Frequency (Hz) 50 500
X3 Density (kg/m”3) 1000 1300
X, Layer thickness (mm) 0.1 0.6

Interface heat transfer
Xs coefficient (W /m? - K) 200 500
Element heat transfer

X, coefficient (W /m? - 50 150

K)

We apply the proposed framework to the solidification time
at all process settings. During the model training, the simulated
samples are divided into five randomly generated and equally
sized folds for cross validation (CV). In iterations, four out of
the five folds are used for model training, and the remaining fold
is used for model testing. And this training and testing iterations
are repeated for five times. During the model training, the rank
in the joint tensor decomposition varies from 10%, 20% up to
90% of the total tensor dimension, and the final rank is selected
to keep the proportion of explained variance not less than 99.5%
of the total variance of the droplet solidification time in any
process settings, i.e., miax A; UV, Wg/IIT:llg = 99.5%. For

the joint tensor decomposition in our case, the selected rank R
is 3 or 4, depending on the training and testing CV folds. After
the determination of tensor rank R and the learning of the
factorization matrices U, V and W, these factorization matrices
are applied to the samples in the left out CV fold to learn the
core tensors. The corresponding core tensor entries will be used
as the testing data for the GP model evaluation.
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FIGURE 6. Comparison of Solidification Time
Simulated from Physical Models and Predicted from the
Proposed Method

For the GP model training in Eq. (2), we have each core
tensor entries (e.g., the r-th entry A; ., Vi) in the training data as
the outputs, and the corresponding process settings as inputs X.
In Eq. (2), the prior distributions for §; .. ;, T; » and o, , are set as
Gaussian, and the prior distribution for ¢, ; is set as inverse
gamma. During the MCMC estimation of these GP model
parameters, we have in total 10,000 iterations. Among these
10,000 iterations, 5,000 iterations are used for burn-in (i.e., the
burn-in iterations will be discarded to make sure the posterior
distribution is stable). After the burn-in, the MCMC mixed well,
which indicates that the posterior distributions converge. We
then use the last MCMC 5,000 iterations for the model
prediction at a certain process setting. In particular, we calculate
the mean of the predicted 1,0, » (Xpew)'s from 5,000 posterior
draws. The above procedures are repeated for all r = 1,---,R.
We then organize the predicted Aew =
(inew,liinew,ZJ e, ineW,R), and perform the tensor
reconstruction introduced in the Proposed Method section.

Figure 6 shows a comparison of the simulated, predicted
and the prediction error for the solidification time at a random
process setting (note that the color intensity shows the number
of computation steps in the physical model, and the step size is
0.001s). From the figures, the proposed framework can
effectively predict the solidification time.

To more systematically assess the modelling approach, we
summarize the joint tensor decomposition rank R, the
Normalized Root Mean Square Error (NRMSE) prediction
error, and computation time in Table 2. The NRMSE is
calculated via Zi”T,- - T,”F / XillT;||p, where T; is the true

simulated solidification time, and 7T, is the predicted
solidification time. From Table 2, the proposed framework can
capture the variations in the solidification time with a small
number of rank, and the GP model can have a relatively small
NRMSE. The model prediction for a new sample can be
performed in around 2 seconds, which is much faster than
running the physical models (which can take minutes to run even
for a simple shape in this study), and can facilitate the real-time
process optimization and control.

TABLE 2. JOINT TENSOR DECOMPOSITION RANK, NRMSE
AND COMPUTATIONAL TIME SUMMARY

Sample Size 60

Rank NRMSE  Time (s)
Fold 1 3 11.79% 295.49
Fold 2 3 14.72% 256.09
Fold 3 4 11.31% 334.01
Fold 4 3 8.39% 264.01
Fold 5 3 11.72% 252.42

CONCLUSION AND DISCUSSION

In energy 3D printing, the droplet solidification time is
critical for the part integrity and property. The droplet
solidification time is dependent on the process settings, and is
impractical to be investigated from a trial-and-error approach
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due to the high material cost in energy 3D printing. The physical
model based simulation of droplet solidification time is an
alternative to the problem. However, the computation of the
physical model can take time, which prevents their utilization
for the real-time prediction and process optimization. Therefore,
we explore machine learning methods to address the prediction
of the high dimensional solidification time for future real-time
process optimization and control. In particular, we integrate
joint tensor decomposition, Gaussian process models and the
physical model outputs in our framework. The novelty of this
paper is that the matrix or tensor responses can be effectively
represented by low dimensional vectors and matrices, and the
computation can be performed separately for the orthogonal
core tensor based on GP models. It is shown that the proposed
framework can build an efficient and accurate emulator for the
prediction of the solidification time under new process settings.

There are several areas of research that we want to explore
following this work: 1) we will further increase the prediction
accuracy. One strategy is to increase the simulation data sample
size. However, this will significantly affect the model training
speed since the complexity of GP model is 0(n®). We will
explore accelerated models, such as nearest-neighbor Gaussian
process for the tensor responses emulation. 2) We will consider
a unified framework for the joint tensor decomposition and GP
models, to avoid the potential sub-optimality when performing
them separately. 3) We will compare the proposed approach with
other models addressing the tensor responses, such as tensor
regression. 4) Before implementing the proposed framework for
the real-time process control and optimization, it is necessary to
validate the model with the physical experiments. Therefore, we
will take the thermal measurement from the freeze nano printing
process and perform the model calibration. 5) We will ultimately
use the calibrated model for the process optimization and
control, so that we can adjust the waiting time and process
parameters during the printing.
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