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ABSTRACT 

Freeze nano 3D printing is a novel process that seamlessly 

integrates freeze casting and inkjet printing processes. It can 

fabricate flexible energy products with both macroscale and 

microscale features. These multi-scale features enable good 

mechanical and electrical properties with lightweight structures. 

However, the quality issues are among the biggest barriers that 

freeze nano printing, and other 3D printing processes, need to 

come through. In particular, the droplet solidification behavior 

is crucial for the product quality. The physical based heat 

transfer models are computationally inefficient for the online 

solidification time prediction during the printing process. In this 

paper, we integrate machine learning (i.e., tensor 

decomposition) methods and physical models to emulate the 

tensor responses of droplet solidification time from the physical 

based models. The tensor responses are factorized with joint 

tensor decomposition, and represented with low dimensional 

vectors. We then model these low dimensional vectors with 

Gaussian process models. We demonstrate the proposed 

framework for emulating the physical models of freeze nano 3D 

printing, which can help the future real-time process 

optimization.  

Keywords: 3D Printing, Energy 3D Printing, Freeze Nano 

Printing, Gaussian Process, Tensor Response  

INTRODUCTION 

The rapid development of smart devices, wearable sensors, 

and electric vehicle requires energy storage devices to be 

inexpensive, flexible, lightweight, and environmental friendly 

[1, 2]. There is also a great need for micro-devices with high 

energy density and high power density. However, as reported by 

U.S. defense logistics agency, the current energy storage 

materials and devices can have either high energy density or high 

1 Contact author: hongyues@buffalo.edu 

power density, but they do not have both properties [3]. 3D 

printing is a promising technique to increase the energy and 

power density within a small footprint by decreasing transport 

path of ions in the electrolyte [4]. 3D printing is able to fabricate 

parts layer by layer with fine resolution and has been widely 

used to produce customized products [5]. To date, various 3D 

printing techniques based on material extrusion (e.g., fused 

deposition modeling, FDM), material jetting (e.g., inkjet 

printing), powder bed fusion (e.g., selective laser melting, 

SLM), vat polymerization (stereolithography, SLA) are 

developed. Among these techniques, material extrusion and 

material jetting have been successfully demonstrated to print 

energy products, such as fuel cells and batteries, with good 

electrical properties [6-8].  
Recently, a novel 3D printing technique, freeze nano 

printing, was developed to have both macroscale and 

microscale feature printing capabilities. Figure 1 shows a 

schematic illustration of the freeze nano printing process, which 

seamlessly integrates freeze casting and inkjet printing [9]. The 

process starts with the suspension design, such as graphene 

oxide (GO) suspension (Step 1). The individual droplets of the 

support structure and the suspension are ejected to a cold 

substrate through a nozzle to form the printed layers (Steps 2-

3). In particular, the droplets are supplied by a piezoelectric that 

controls the demand of the aqueous solution. The water based 

GO suspension is frozen and the ice crystals are formed at an 

ambient temperature of -20°C. Once the part is 3D printed, it is 

immersed in liquid nitrogen at -190°C approximately (Step 4), 

freeze dried to remove water (Step 5), and finally it undergoes 

sintering or thermal annealing to obtain the ultralight 3D printed 

structure (Step 6) [9]. 

The freeze nano printing process has successfully printed 

supercapacitor with superior properties [10]. Similar to the 

previously demonstrated 3D printing examples, freeze nano 
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printing can efficiently print flexible products within limited 

space. Due to the porous structure after freeze drying, the energy 

density of the freeze nano printing products is higher [9]. 

Moreover, different from the continuous inkjet technique to print 

graphene structures by adjusting the rheological properties of 

Graphene Aerogel (GA) inks, freeze nano printing uses a low 

viscous Newtonian GO suspension that allows printing droplet 

by droplet until the layers are formed. As a result, it has an 

improved bonding strength among layers [9].  

The existing studies on 3D printing of energy products focus 

on proof-of-concept demonstration, but do not pay attention to 

the quality and repeatability of the printed products. Actually, the 

limited quality and high uncertainty are common challenges for 

3D printing processes [11]. In the freeze nano printing process, 

a critical quality-determining factor is the droplet solidification 

time. It will affect the determination of waiting time among 

layers and subsequently affect the part bonding strength and 

geometrical accuracy. The waiting time will also affect the 

printing productivity. It is therefore of great importance to study 

the solidification time for best waiting time determination. 

However, the droplet solidification study is a non-trivial 

problem since the complex thermal interactions among the 

droplets, substrate and ambient. In addition, the aqueous 

graphene suspension experiences phase change during the 

solidification, where the released latent heat prevents the 

deposited droplets to freeze and affects the macro- and micro-

structures. Furthermore, the solidification is also dependent on 

the process parameters (e.g., layer thickness) and material 

properties (e.g., heat transfer coefficient). It is impractical to 

study the droplet solidification and optimize the waiting time in 

a trial-and-error approach, since the graphene is a very 

expensive material ($300/g). To attack this problem, physical 

based thermal models are proposed to model the droplet thermal 

interactions and solidifications [12]. These models can be 

further used for the waiting time determination [12]. However, 

the physical based models can be computationally inefficient to 

be executed online for the droplet solidification study and 

waiting time determination.  

 

 
FIGURE 1. A SCHEMATIC REPRESENTATION OF THE FREEZE NANO 3D PRINTING PROCESS [9] 

 

The objective of this work is to propose an efficient and 

accurate emulator for the physical model results of high 

dimensional droplet solidification time, so that this emulator can 

be used for the future online adjustment of waiting time and 

process parameters. To achieve this goal, we integrate machine 

learning techniques and physical models (see details in the 

Proposed Method section). In particular, we factorize the tensor 

responses at various process parameters with joint tensor 

decomposition so that the high dimensional responses are 

represented with low dimensional vectors. We then model the 

independent individual entries in these low dimensional vectors 

with Gaussian Process (GP) models. From the case study, this 

emulator can yield good prediction result, and can have very fast 

solidification time prediction. Such a model is applicable to the 

tensor responses modeling from the physical models, and can be 

widely used for other 3D printing processes, such as the thermal 

simulation in SLM and droplet simulation in inkjet printing [13, 

14]. To the best of our knowledge, this is the first paper for the 

modeling of the matrix or tensor responses in the physical 

models for 3D printing processes. In the future, we will 

investigate the application of the emulator for process 

optimization, and will also perform the thermal measurement 

from the printing process to calibrate the emulator. 

The remainder of this paper is organized as follows. We 

review the related topics in the next section. After that, we 

provide a detailed description of the proposed method, and then 

elaborate the proposed method in a case study in the freeze nano 

printing process. Finally, we conclude the paper and discuss the 

future work.  
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STATE-OF-THE-ART 

In this section, we first review relevant literature on the 3D 

printing of energy products, and then summarize the existing 

works on quality control of the 3D printed parts, and finally 

discuss the tensor response modeling works in manufacturing. 

3D printing of anode, cathode and electrolyte, which are the 

main components in energy storage devices, has shown 

promising results towards increasing the performance of 

batteries and capacitors. Nevertheless, 3D printing of these 

components is not straightforward [9]. A Li-Ion microbattery 

architecture was developed in [15]. Interdigitated electrodes 

were integrated on a submillimeter scale, where Li4Ti5O12  

(LTO) and LiFePO4 (LFP) were used as anode and cathode 

electrodes respectively. The ink design was optimized for 

composition and rheological behaviors to ensure reliable drops 

flow through the nozzles. The authors claimed the device 

yielded the highest areal energy and power densities reported to 

date. In another example, graphene oxide-based electrode inks 

for Li-Ion batteries were 3D printed [6]. To develop printable 

inks, the authors rely on Graphene Oxide’s (GO) rheological 

properties, such as shear thinning behavior and high viscosity, 

as well as its exceptional electrical properties like high electrical 

conductivity, good structural stability and high surface area. 

Additionally, GO had shown potential to be used under this 

context due to its unique viscoelastic properties. Therefore, 

interdigitated GO-based electrode composite inks and solid-

state electrolyte inks were used to 3D print anode, cathode, and 

electrolyte. The high areal surface due to the porous GO 

structure will increase the energy storage capacity. See also 

other examples in [7, 8]. 

Even though there are a lot of work related to 3D printing 

for energy storage devices, these efforts are at the proof-of-

concept fabrication and the product integrity, quality and 

productivity have not been fully considered to the best of our 

knowledge.  

Various 3D printing product defects are investigated via 

data-driven, physical based, or hybrid modeling approaches. For 

instance, porosity is a defect that compromises the mechanical 

properties, tensile strength, ductility and fatigue properties of 

the parts. The part average porosity was studied in SLM printing 

by a GP model to predict the porosity in the metal parts at any 

given combination of process parameters [16]. However, the 

authors did not consider the spatial distribution of porosity in the 

part. For another example, geometrical shrinkage affected the 

final dimension of a 3D printed part. A systematic model to 

predict part shrinkage and an optimal shrinkage compensation 

plan to achieve dimensional accuracy were presented in [17]. 

The model was validated using 3D printed cylinders by SLA, 

and it showed a significant dimensional improvement. See 

another example of the data driven modeling in [18]. Another 

kind of  modeling is based on physical rules. For instance, the 

heat transfer in freeze nano printing was modeled in [12]. The 

heat transfer model was used to predict the temperature 

evolution of the printed droplets. The fluid dynamics was 

modeled for inkjet printing [19]. The model simulated the 

dispensing of polysiloxane via micro-syringe nozzle deposition, 

and could be used to solve the overfilling of materials at 

determined locations when trajectory change was present [19]. 

These models can be time consuming to be evaluated, and may 

also suffer from model uncertainty. To address these problems, 

the emulation/calibration models integrate the data-driven and 

physical rule based models. For instance, [20] used a functional 

GP model for the physical model calibration. See also [16]. 

However, the existing emulation/calibration models do not 

address the high dimensional matrix/tensor responses.  

Recently, much attention was drawn to the tensor responses 

modeling. For instance, a regularized tensor regression was 

proposed for the turning process optimization [21]. The 

proposed method was applied to establish a relationship 

between the dimensional accuracy and process parameters by 

using high dimensional point cloud measurement of cylinder 

parts. Additionally, a method to quickly classify part 

geometrical integrity with minimal point cloud data in FDM was 

proposed in [22]. More information on the tensor responses 

modeling in manufacturing can be found in [23].  

In this work, we integrate the joint tensor decomposition 

and GP model to handle the high dimensional responses from 

the physical models of freeze nano printing. 

PROPOSED METHOD 

To effectively represent and model the tensor outputs of 

droplet solidification time from the physical models, we propose 

to integrate joint tensor decomposition and physical models. Our 

ultimate goal is to build an efficient and accurate emulator for 

the prediction of droplet solidification time at new process 

settings, which can be used for the future online waiting time 

and process setting control. 

Figure 2 shows our proposed analysis procedures. To 

investigate the freeze nano printing process (Figure 2 (a)), 

physical models are developed to characterize the droplets’ 

thermal distributions [12]. Based on these physical models, we 

simulate the thermal distributions at the process settings 

specified by a computer design of experiment (details to be 

provided in the case study). We then summarize the droplet 

solidification time for each simulated process setting, as 

illustrated in an example in the bottom of Figure 2 (b). The 

solidification time at the droplets will form a tensor response. 

After that, as shown in the top of Figure 2 (c), the solidification 

time across different process settings are factorized by joint 

Candecomp/Parafac (CP) tensor decomposition. After the 

decomposition, the non-zero entries in the core tensors only 

reside on the diagonal (i.e., the core tensors are orthogonal, as 

shown in Figure 3). Therefore, we model each entry at a fixed 

coordinate of the core tensors from different process settings 

with a GP model. Since the core tensors are orthogonal, we can 

model each entry independently. Finally, after separately 

training the GP models, the droplet solidification time can be 

predicted by the reconstruction from the predicted core tensor 

entries and the factorization matrices. This reconstructed tensor 

will be compared with the droplet solidification time simulated 

from the physical models.   
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FIGURE 2. PROCEDURES IN THE PROPOSED FRAMEWORK 

 

In the above procedures, the simulation data generation 

from the physical models and the model training will be 

performed offline. After the model training, the prediction at a 

new process setting based on the trained models can be much 

faster than executing the physical models. This is beneficial to 

the real-time process optimization and control. In the following, 

we will explain the details of the proposed method. 

Joint Tensor Decomposition  

Tensor decomposition is a powerful dimensional reduction 

technique. The basic idea of tensor decomposition is to 

approximate the high dimensional tensor with the product of low 

dimensional matrices and vectors. In the freeze nano printing, 

the droplet solidification time of the part will be decomposed 

into the multiplication of factorization matrices and a core 

tensor. In general, a third order tensor 𝑇 ∈ 𝑅𝐼×𝐽×𝐾 can be 

factorized by CP decomposition [24] 𝑇 ≈ 𝑇̃ = ⟦𝝀; 𝑈, 𝑉, 𝑊⟧ =
∑ 𝜆𝑟𝑢𝑟 ∘ 𝑣𝑟 ∘ 𝑤𝑟𝑟 , where 𝑈 ∈ 𝑅𝐼×𝑅, 𝑉 ∈ 𝑅𝐽×𝑅, and 𝑊 ∈ 𝑅𝐾×𝑅 

are decomposition matrices, 𝝀 is a vector to specify the weight 

for each rank 𝑟, and the total rank is 𝑅 (i.e., 𝑟 = 1, ⋯ , 𝑅). ∘ is 

the outer product. The total rank 𝑅 can be determined so that the 

variation explained in the approximation tensor 𝑇̃ is larger than 

a threshold percentage of the variation in the raw tensor 𝑇. The 

total rank 𝑅 needed is usually a small number compared with 

the original dimensionality of the tensor. Such a selection 

approach is also widely used in determining the number of 

principal components in principal component analysis [25]. For 

our problem to model the droplet solidification time at various 

process settings, we want to use a compact representation of the 

raw tensor. Therefore, the decomposition matrices 𝑈, 𝑉 and 𝑊 

for 𝑇𝑖’s at various process settings are shared (see Figure 3 for 

an illustration). We can therefore characterize the tensors with 

𝝀𝑖 given the shared decomposition matrices 𝑈, 𝑉 and 𝑊 in the 

joint tensor decomposition [26]. In particular, the joint tensor 

decomposition can be solved via,  

 min 
1

𝑛
∑ ‖𝑇𝑖 − ⟦𝝀𝑖; 𝑈, 𝑉, 𝑊⟧‖𝐹𝑛  (1) 

where ‖∙‖𝐹 is the Frobenius norm, 𝑛 is the number of samples, 

and ⟦∙⟧ is the tensor product. The problem is solved with 

nonlinear least square (i.e., trust-region Quasi-Newton 

methods), where 𝑈, 𝑉 and 𝑊 are initialized with random 

matrices [27]. The rank 𝑅 is selected to make sure the variation 

explained in the decomposition is larger than 99.5% of the total 

variation. After the joint tensor decomposition, other than 

modeling the raw tensor responses directly, the emulation 

problem can be simplified to model each 𝜆𝑖,𝑟’s in 𝝀𝑖 with a GP 

model, 𝑟 = 1, ⋯ , 𝑅, respectively. This is because the non-zero 

entries in the core tensor only appear in the diagonal (Figure 3), 

and can be modeled independently. 

 

  
FIGURE 3. AN ILLUSTRATION OF THE JOINT TENSOR 

DECOMPOSITION 

 

Gaussian Process (GP) Emulation  

GP models can capture the nonlinear relationships in the 

data, and are widely used for physical model emulation and 

calibration [28]. For a certain rank 𝑟 of the core tensors after the 
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joint tensor decomposition, the 𝜆𝑖,𝑟 in 𝝀𝑖 at the 𝑖-th sample can 

be modeled as     

𝜆𝑖,𝑟(𝒙) = 𝑚𝑖,𝑟(𝒙) + 𝜔𝑖,𝑟(𝒙) + 𝜀𝑖,𝑟(𝒙), (2) 

where 𝒙 contains the physical model inputs, such as layer 

thickness, droplet frequency, and the detailed values of these 

inputs are provided in Table 1. 𝑚𝑖,𝑟(𝒙) = 𝒙 𝑇𝜷𝑖,𝑟 is the mean 

function capturing the mean effect of 𝒙 on 𝜆𝑖,𝑟, and 𝜷𝑖,𝑟 is the 

model parameters for the mean effect; 𝜔𝑖,𝑟(𝒙) follows a GP 

𝜔𝑖,𝑟(𝒙)~𝐺𝑃 (0, 𝐶𝑖,𝑟(𝒙, 𝒙′)), where 𝐶𝑖,𝑟(𝒙, 𝒙′) =

𝜎𝑖,𝑟
2 𝑒𝑥𝑝(− ∑ 𝜙𝑖,𝑟,𝑗𝑗 ‖𝑥𝑗 − 𝑥𝑗

′‖) is the covariance function 

capturing the spatial relationship of samples. 𝜙𝑖,𝑟,𝑗 is used to 

adjust the weight of each direction 𝑗 while calculating the 

distance, and 𝜎𝑖,𝑟
2  is a scaling parameter. For instance, based on 

the covariance function, the close by samples are highly 

correlated, whereas the far away samples tend to have lower 

correlation. 𝜀𝑖,𝑟(𝒙)~𝑁(0, 𝜏𝑖,𝑟
2 ) is the error term. 

The unknown parameters in the GP model are 𝜣𝑖,𝑟 =

{𝜷𝑖,𝑟 , 𝜎𝑖,𝑟
2 , 𝜙𝑖,𝑟,𝑗 , ∀𝑗}, and can be learned from the Markov Chain 

Monte Carlo (MCMC) sampling from the posterior distribution 

[28], 

𝑝 (𝜣𝑖,𝑟|𝜆𝑖,𝑟(𝒙)) ∝ 𝑝(𝜣𝑖,𝑟)𝑁(𝜆𝑖,𝑟(𝒙)|𝑚𝑖,𝑟(𝒙), 𝐶𝑖,𝑟(𝒙, 𝒙′)

+ 𝜏𝑖,𝑟
2 𝐼) 

(3) 

where 𝑝(𝜣𝑖,𝑟) is the prior distribution for the unknown 

parameters. The detailed specifications of 𝑝(𝜣𝑖,𝑟) will be 

provided in the Case Study section. After obtaining the posterior 

distribution, one can predict the 𝜆̂𝑛𝑒𝑤,𝑟(𝒙𝑛𝑒𝑤) at a new process 

setting 𝒙𝑛𝑒𝑤 [28]. 

Tensor Reconstruction and Comparison  

Up to this step, the tensor response of the droplet 

solidification time 𝑇𝑛𝑒𝑤 of a new process setting 𝒙𝑛𝑒𝑤 can be 

predicted via tensor reconstruction. In particular, 

𝜆̂𝑛𝑒𝑤,𝑟(𝒙𝑛𝑒𝑤), ∀𝑟 can be predicted from the individual GP 

models to form 𝝀̂𝑛𝑒𝑤 = (𝜆̂𝑛𝑒𝑤,1, 𝜆̂𝑛𝑒𝑤,2, ⋯ , 𝜆̂𝑛𝑒𝑤,𝑅) in the core 

tensor. We can then reconstruct 𝑇̂𝑛𝑒𝑤 ≈ ⟦𝝀̂𝑛𝑒𝑤; 𝑈, 𝑉, 𝑊⟧ based 

on the 𝑈, 𝑉 and 𝑊 learned from the joint tensor decomposition. 

The predicted 𝑇̂𝑛𝑒𝑤 will be compared with the simulated 𝑇𝑛𝑒𝑤 

from the physical model for the emulation model evaluation. 

CASE STUDY 

As mentioned in the introduction, the accurate and efficient 

assessment of solidification time will affect the determination of 

the waiting time among layers, and subsequently affect the 

printed part quality. For instance, Figure 4 (b)-(c) shows the 

parts with proper and improper waiting times for the designed 

part in Figure 4 (a). In this section, we demonstrate the proposed 

framework for the accurate and efficient prediction of droplet 

solidification time in freeze nano printing. 

 

 

 

 a) Part CAD Model   b) Proper Waiting  c) Improper Waiting 

FIGURE 4. A COMPARISON OF PROPER AND IMPROPER 

WAITING TIME AMONG LAYERS 
 

To demonstrate the proposed framework, we simulate a 

single layer freeze nano printing part with 10 by 10 droplets 

based on the physical models in [12]. Figure 5 shows the 

simulation setup. The deposited droplets have an initial 

temperature of 5 oC and are deposited based on the path 

specified in Figure 5 (c). After the ejection (Figure 5 (a)), the 

droplets solidify in a short time due to the heat conduction with 

the heat sink (at -20 oC) under build bed and heat convection 

with the ambient (Figure 5 (b)). The corresponding droplet 

solidification time (time required for a droplet to cool down 

from 5 oC to -19 oC in this case) is summarized as shown in 

Figure 5 (c). In the simulation, we vary six process parameters 

that will affect the thermal distribution. The names and ranges 

(lower and upper bounds) of these parameters are shown in 

Table 1. We generate 60 simulation runs from the physical 

model. In these simulation runs, the process settings are 

determined by a Latin hypercube sampling based space filling 

design [29]. 

 

 
FIGURE 5. SIMULATION SETUP (a) DROPLET EJECTION 

FROM FREEZE NANO PRINTING (b) INDIVIDUAL 

DROPLET THERMAL HISTORY (c) SUMMARIZED 

DROPLET SOLIDIFICATION TIME 
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TABLE 1. SIMULATION PARAMETERS AND RANGES 

IDs Parameters 
Lower 

Bounds 

Upper 

Bounds 

𝑿𝟏 Specific heat 𝐽/(𝑘𝑔 · 𝐾) 3350 3450 

𝑿𝟐 Frequency (Hz) 50 500 

𝑿𝟑 Density (kg/m^3) 1000 1300 

𝑿𝟒 Layer thickness (mm) 0.1 0.6 

𝑿𝟓 
Interface heat transfer 

coefficient (𝑊/𝑚2 · 𝐾) 
200 500 

𝑿𝟔 

Element heat transfer 

coefficient (𝑊/𝑚2 ·
𝐾) 

50 150 

We apply the proposed framework to the solidification time 

at all process settings. During the model training, the simulated 

samples are divided into five randomly generated and equally 

sized folds for cross validation (CV). In iterations, four out of 

the five folds are used for model training, and the remaining fold 

is used for model testing. And this training and testing iterations 

are repeated for five times. During the model training, the rank 

in the joint tensor decomposition varies from 10%, 20% up to 

90% of the total tensor dimension, and the final rank is selected 

to keep the proportion of explained variance not less than 99.5% 

of the total variance of the droplet solidification time in any 

process settings, i.e., max
𝑖

 ‖𝝀𝑖; 𝑈, 𝑉, 𝑊‖𝐹/‖𝑇𝑖‖𝐹 ≥ 99.5%. For 

the joint tensor decomposition in our case, the selected rank 𝑅 

is 3 or 4, depending on the training and testing CV folds. After 

the determination of tensor rank 𝑅 and the learning of the 

factorization matrices 𝑈, 𝑉 and 𝑊, these factorization matrices 

are applied to the samples in the left out CV fold to learn the 

core tensors. The corresponding core tensor entries will be used 

as the testing data for the GP model evaluation. 

 

 
FIGURE 6. Comparison of Solidification Time 

Simulated from Physical Models and Predicted from the 

Proposed Method 

 

For the GP model training in Eq. (2), we have each core 

tensor entries (e.g., the 𝑟-th entry 𝜆𝑖,𝑟 , ∀𝑖) in the training data as 

the outputs, and the corresponding process settings as inputs 𝒙. 

In Eq. (2), the prior distributions for 𝛽𝑖,𝑟,𝑗, 𝜏𝑖,𝑟 and 𝜎𝑖,𝑟  are set as 

Gaussian, and the prior distribution for 𝜙𝑖,𝑟,𝑗 is set as inverse 

gamma. During the MCMC estimation of these GP model 

parameters, we have in total 10,000 iterations. Among these 

10,000 iterations, 5,000 iterations are used for burn-in (i.e., the 

burn-in iterations will be discarded to make sure the posterior 

distribution is stable). After the burn-in, the MCMC mixed well, 

which indicates that the posterior distributions converge. We 

then use the last MCMC 5,000 iterations for the model 

prediction at a certain process setting. In particular, we calculate 

the mean of the predicted 𝜆̂𝑛𝑒𝑤,𝑟(𝒙𝑛𝑒𝑤)′𝑠 from 5,000 posterior 

draws. The above procedures are repeated for all 𝑟 = 1, ⋯ , 𝑅. 

We then organize the predicted 𝝀̂𝑛𝑒𝑤 =

(𝜆̂𝑛𝑒𝑤,1, 𝜆̂𝑛𝑒𝑤,2, ⋯ , 𝜆̂𝑛𝑒𝑤,𝑅), and perform the tensor 

reconstruction  introduced in the Proposed Method section.  

Figure 6 shows a comparison of the simulated, predicted 

and the prediction error for the solidification time at a random 

process setting (note that the color intensity shows the number 

of computation steps in the physical model, and the step size is 

0.001s). From the figures, the proposed framework can 

effectively predict the solidification time.  

To more systematically assess the modelling approach, we 

summarize the joint tensor decomposition rank 𝑅, the 

Normalized Root Mean Square Error (NRMSE) prediction 

error, and computation time in Table 2. The NRMSE is 

calculated via ∑ ‖𝑇𝑖 − 𝑇𝑖̂‖𝐹𝑖 / ∑ ‖𝑇𝑖‖𝐹𝑖 , where 𝑇𝑖  is the true 

simulated solidification time, and 𝑇𝑖̂ is the predicted 

solidification time. From Table 2, the proposed framework can 

capture the variations in the solidification time with a small 

number of rank, and the GP model can have a relatively small 

NRMSE. The model prediction for a new sample can be 

performed in around 2 seconds, which is much faster than 

running the physical models (which can take minutes to run even 

for a simple shape in this study), and can facilitate the real-time 

process optimization and control. 

 
TABLE 2. JOINT TENSOR DECOMPOSITION RANK, NRMSE 

AND COMPUTATIONAL TIME SUMMARY 

 
Sample Size 60 

Rank NRMSE Time (s) 

Fold 1 3 11.79% 295.49 

Fold 2 3 14.72% 256.09 

Fold 3 4 11.31% 334.01 

Fold 4 3   8.39% 264.01 

Fold 5 3 11.72% 252.42 

CONCLUSION AND DISCUSSION 

In energy 3D printing, the droplet solidification time is 

critical for the part integrity and property. The droplet 

solidification time is dependent on the process settings, and is 

impractical to be investigated from a trial-and-error approach 
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due to the high material cost in energy 3D printing. The physical 

model based simulation of droplet solidification time is an 

alternative to the problem. However, the computation of the 

physical model can take time, which prevents their utilization 

for the real-time prediction and process optimization. Therefore, 

we explore machine learning methods to address the prediction 

of the high dimensional solidification time for future real-time 

process optimization and control. In particular, we integrate 

joint tensor decomposition, Gaussian process models and the 

physical model outputs in our framework. The novelty of this 

paper is that the matrix or tensor responses can be effectively 

represented by low dimensional vectors and matrices, and the 

computation can be performed separately for the orthogonal 

core tensor based on GP models. It is shown that the proposed 

framework can build an efficient and accurate emulator for the 

prediction of the solidification time under new process settings.   

There are several areas of research that we want to explore 

following this work:  1) we will further increase the prediction 

accuracy. One strategy is to increase the simulation data sample 

size. However, this will significantly affect the model training 

speed since the complexity of GP model is 𝑂(𝑛3). We will 

explore accelerated models, such as nearest-neighbor Gaussian 

process for the tensor responses emulation. 2) We will consider 

a unified framework for the joint tensor decomposition and GP 

models, to avoid the potential sub-optimality when performing 

them separately. 3) We will compare the proposed approach with 

other models addressing the tensor responses, such as tensor 

regression. 4) Before implementing the proposed framework for 

the real-time process control and optimization, it is necessary to 

validate the model with the physical experiments. Therefore, we 

will take the thermal measurement from the freeze nano printing 

process and perform the model calibration. 5) We will ultimately 

use the calibrated model for the process optimization and 

control, so that we can adjust the waiting time and process 

parameters during the printing.  
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