Journal of Materials Chemistry A

COMMUNICATION

View Article Online

Cite this: J. Mater. Chem. A, 2020, 8, 1059

Received 20th November 2019 Accepted 21st December 2019

DOI: 10.1039/c9ta12743g

rsc.li/materials-a

Promoting nitrogen photofixation over a periodic WS₂@TiO₂ nanoporous film†

Li Shi,‡^a Zhao Li,‡^{ab} Licheng Ju,^{ab} Alejandro Carrasco-Pena,^c Nina Orlovskaya,^{cf} Haiqing Zhou ^b de and Yang Yang ^b*abf

Atmospheric nitrogen fixation using a photocatalytic system is a promising approach to produce ammonia. However, most of the recently explored photocatalysts for N2 fixation are in the powder form, suffering from agglomeration and difficulty in the collection and leading to unsatisfactory conversion efficiency. Developing efficient film catalysts for N₂ photofixation under ambient conditions remains challenging. Herein, we report the efficient photofixation of N₂ over a periodic WS2@TiO2 nanoporous film, which is fabricated through a facile method that combines anodization, E-beam evaporation, and chemical vapor deposition (CVD). Oxygen vacancies are introduced into TiO₂ nanoporous films through Ar annealing treatment, which plays a vital role in N2 adsorption and activation. The periodic WS2@TiO2 nanoporous film with an optimized WS2 content shows highly efficient photocatalytic performance for N₂ fixation with an NH₃ evolution rate of 1.39 mmol g⁻¹ h⁻¹, representing one of the state-ofthe-art catalysts.

Introduction

Ammonia (NH₃) has received great attention because it serves as a hydrogen carrier and fuel in industry.1 Furthermore, it is also the chemical molecule that plays a vital role in biological processes and sustains all living organisms by serving as building blocks for proteins.1 Currently, the commercialized method for NH₃ synthesis is usually based on the Haber-Bosch process, which is performed under drastic conditions (20-40 MPa, 400-600 °C), consuming over 1% of the world's total energy supply, and simultaneously induces a large amount of CO₂ emission via fossil fuel reforming.² Converting solar energy into NH3 using artificial photosynthesis systems has been regarded as a promising option to overcome the aforementioned problems by utilizing clean solar energy.3

Unfortunately, the obtained efficiency of photocatalytic nitrogen (N_2) fixation is far from satisfactory, which is severely limited by the poor absorption of N₂ on the photocatalysts and the high energy potential of intermediate products involved in the reactions.⁴ The cleavage of the N≡N bond is very challenging because of its extremely high bonding energy (\sim 941 kJ mol⁻¹), which is hard to be fully cleaved by the photogenerated electrons from the conduction band of photocatalysts.5 The creation of oxygen vacancies on the photocatalysts has been demonstrated as an effective way to improve the photocatalytic N2 fixation efficiency, as the oxygen vacancies can act as an electron trap center to capture and activate N_2 molecules, efficiently promoting the $N \equiv N$ bond cleavage.6 Recently, Li and co-workers have illustrated that the oxygen vacancies in BiOBr are capable of activating the adsorbed N2 for NH3 formation.6 Likewise, the oxygen vacancies in TiO2 have also been demonstrated for N2 photoreduction.7 Traditionally, the photocatalysts used for N2 fixation are mostly made in the form of nanopowders, which may suffer from poor recyclability due to the catalyst aggregation and deactivation. The nanostructured film materials should have the inherent advantages over the powdered photocatalysts in terms of easy transportation and collection for recycling.8 Moreover, the nanostructured films with periodic morphologies are beneficial for reducing the diffusion length and transport pathway of the photogenerated charge carriers.9

^aNanoScience Technology Center, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida, 32816, USA. E-mail: Yang.Yang@ucf.edu

^bDepartment of Materials Science and Engineering, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida, 32816, USA

Department of Mechanical and Aerospace Engineering, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida, 32816, USA

^dKey Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha 410081, China

eKey Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha 410081, China

^fEnergy Conversion and Propulsion Cluster, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida, 32816, USA

DOI: † Electronic supplementary information (ESI) available. See 10.1039/c9ta12743g

[‡] These authors contributed equally to this work.

 ${\rm TiO_2}$ is the most investigated semiconductor photocatalyst due to its good activity and stability; however, it can hardly achieve the favorable charge-carrier separation because of its exciton binding energy barrier.10 Thus, the rational design of TiO₂-based heterostructures has been intensively pursued to facilitate the charge separation of TiO2 by separately transferring photogenerated electron-hole pairs to opposite sites of the heterojunction.11 Semiconducting 2H-phase tungsten disulfide (WS₂) has achieved particular attention as it possesses suitable electronic band positions as compared to TiO2, which enables TiO₂/WS₂ to form a type-II heterojunction with merits of improved separation efficiency of photogenerated charge carriers for the enhanced photocatalytic activity.12 2H-WS2 has also been demonstrated as an effective photosensitizer for TiO2 to achieve visible light photocatalysis due to its narrow bandgap. 13 However, similar to other powdered photocatalysts, the synthesis of the TiO₂/WS₂ composite is based on a solutionprocessed method, which would lead to materials agglomeration due to high surface energy. Therefore, exploring the synthetic method of the nanostructured WS₂/TiO₂ film catalysts with properly controlled geometry, size and distribution is in high demand.

Herein, we illustrate a rationally designed route to fabricate periodic $WS_2@TiO_2$ nanoporous films (NFs) by a facile method that combines anodization, E-beam evaporation, and chemical vapor deposition (CVD). As a consequence, nanoscale few-layer WS_2 flakes were individually deposited inside the nanopores of the periodic TiO_2 film. Oxygen vacancies were also intentionally introduced into the heterostructured $WS_2@TiO_2$ NFs to improve the photocatalytic conversion of N_2 to NH_3 , which is

due to efficient N_2 activation on the defective surfaces. The periodic $WS_2@TiO_2$ NFs with an optimized WS_2 content exhibit a significantly improved photocatalytic N_2 fixation performance with an NH_3 evolution rate of 1.39 mmol g^{-1} h^{-1} , due to the enhanced separation efficiency and prolonged lifetime of charge carriers.

Results and discussion

The schematic illustration of a synthetic procedure for the periodic WS₂@TiO₂ NFs is shown in Fig. 1a. First of all, the periodic TiO2 NFs were fabricated by Ti anodization,14 followed by thermal annealing under an Ar atmosphere. The morphology of the as-prepared TiO2 NFs was investigated by scanning electron microscopy (SEM), showing honeycomb-like shape with an average pore size of 60 nm and thickness of 110 nm (Fig. 1b and c). Then, the W metal layers with different thicknesses of 10 nm, 20 nm, and 30 nm were deposited on the asprepared TiO2 NFs by E-beam evaporation. The SEM observation shows that the W layers have been conformally coated on the TiO₂ NFs as observed from the obvious wall thickening (increased from 10 nm to 20 nm, 30 nm, and 40 nm, respectively, after the W deposition, Fig. 1d, e, and S1†). The conformal W layer coating is also confirmed by the inner wall thickening of W@TiO2 NFs as compared to the pristine TiO2 NFs (Fig. 1e and S1†). Finally, chemical vapor deposition (CVD) was employed to convert W to WS2 using a Na2S and S mixture as an S-source, forming the periodic WS2@TiO2 NFs (abbreviated as nWS_2 @TiO₂, n represents the W layer thickness, which is 10 nm, 20 nm, and 30 nm, respectively).

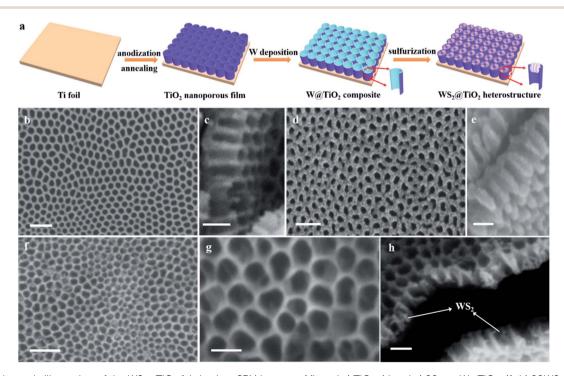


Fig. 1 (a) Schematic illustration of the $WS_2@TiO_2$ fabrication. SEM images of (b and c) TiO_2 ; (d and e) 20 nm $W@TiO_2$; (f-h) $20WS_2@TiO_2$. Scale bars: (b) 200 nm, (c) 100 nm, (d) 200 nm, (e) 100 nm, (f) 200 nm, and (g and h) 100 nm.

The top-view SEM images of 20WS₂@TiO₂ (Fig. 1f and g) show that the periodic TiO₂ nanopores are filled with WS₂ nanoflakes after CVD sulfurization treatment. The cross-sectional SEM image of 20WS₂@TiO₂ (Fig. 1h) further confirms the formation of WS₂ nanoflakes inside the TiO₂ nanopores. Moreover, the WS₂ nanoflakes contact well with the inner wall of TiO₂ nanopores, resulting in the formation of the Schottky junction to facilitate the charge carrier transfer and separation. In addition, 10WS2@TiO2 and 30WS2@TiO2 show a similar morphology to 20WS2@TiO2. The amount of WS2 formed inside the TiO2 nanopores increases with Mo thickness (Fig. S2†).

The transmission electron microscopy (TEM) image of 20WS₂@TiO₂ (Fig. 2a) reveals that the WS₂ nanoflakes are grown inside the TiO₂ nanopores with a 3D laminated structure, which is consistent with the SEM observation. The high-resolution TEM (HR-TEM) image (Fig. 2b) exhibits lattice fringes of 0.35 nm and 0.62 nm, well in line with the (101) anatase TiO₂ and (002) WS₂ crystallographic planes, respectively.15 The cross-sectional TEM and high angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) images of 20WS₂@TiO₂ (Fig. 2c and d) further confirm that 3D laminated WS2 is grown inside the TiO₂ nanopores, consistent with the SEM observation. During the CVD sulfurization process, the S stream derived from the Na₂S and S mixture reaches the surface of the TiO₂ NFs followed by diffusing gradually into the TiO2 nanopores. The conversion from W to WS2 occurs almost simultaneously upon S reaching the W surface. The TiO₂ nanopores provide the spaceconfined reaction vessel for W and S, and eventually, nanoscale laminated WS2 is grown inside the TiO2 nanopores. In sharp contrast, when using a flat TiO2 film as a substrate to deposit WS2, much larger WS2 flakes with an aggregated architecture were obtained, confirming the significant contribution made by using the periodic TiO₂ NFs to suppress the overgrowth of WS₂ (Fig. S3†).

The phase composition of WS₂@TiO₂ was investigated by Xray diffraction (XRD). As shown in Fig. 3a, the as-prepared TiO₂

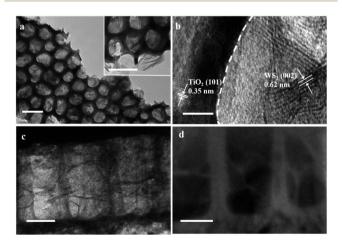


Fig. 2 (a) TEM images of 20WS2@TiO2; (b) HRTEM image of 20WS2@TiO2; (c) cross-sectional TEM image of 20WS2@TiO2; (d) cross-sectional STEM image of 20WS2@TiO2. Scale bars: (a) 100 nm, (b) 5 nm, (c) 50 nm, and (d) 50 nm.

NFs display the diffraction peaks of the Ti substrate and anatase TiO2. As for WS2@TiO2, three additional weak and broad diffraction peaks at 14.0°, 33.2°, and 58.6° were observed, corresponding to the (002), (100) and (110) planes of the hexagonal 2H-WS₂ (JCPDS card no. 84-1398) respectively. ^{15a} The observed broad and asymmetric WS₂ (100) and (110) peaks indicate the formation of nanosized crystals with ultrathin thickness.15a The Raman spectra of WS₂@TiO₂ and TiO₂ NFs (Fig. 3b) show a typical peak located at 392.6 cm^{-1} , which is assigned to the B_{1g} mode of anatase TiO2.96 As for the WS2@TiO2 NFs, two additional characteristic Raman peaks located at 353.1 and 417.1 cm⁻¹ are observed, ascribed to the in-plane E_{2g}^1 and the out-of-plane A_{1g} vibrational modes of the 2H-WS₂ phase, respectively.16 The intensity ratios of E2g/A1g are 1.45 for 10WS₂@TiO₂, 1.21 for 20WS₂@TiO₂ and 1.12 for 30WS₂@TiO₂, indicating the exfoliated WS2 nanosheets.17 No other phase impurities such as metallic W or its oxide can be detected from XRD and Raman spectroscopy, indicating a complete conversion from W to WS2 after CVD sulfurization.

The chemical states and compositions of the samples were characterized by X-ray photoelectron spectroscopy (XPS). The high-resolution Ti 2p spectra (Fig. 3c) show two peaks at binding energies of 465.1 eV and 459.3 eV, corresponding to 2p_{1/2} and 2p_{3/2} of Ti⁴⁺, respectively.9b The periodic TiO₂ NFs contain oxygen vacancies, which can be proved by O 1s spectra. The O 1s spectra of TiO₂ (Fig. 3d) can be fitted into three peaks centered at 533.6 eV, 532.3 eV, and 531.1 eV, which are attributed to the surface-adsorbed OH group, O-vacancy, and Olattice, respectively.18 The formation of oxygen vacancies in the TiO2 NFs is due to the annealing treatment under an Ar atmosphere (see Experimental details). The existence of oxygen vacancies in the TiO2 NFs can also be evidenced by the UV-vis absorption spectrum (Fig. S4†), which shows a strong light absorption tail in the visible light region.19 The WS2@TiO2 NFs show similar O 1s peaks to bare TiO2 NFs, indicating that the oxygen vacancies remain in the WS2@TiO2 NFs after sulfurization. Fig. S5† shows the high-resolution XPS spectra of W and S, respectively. The peaks are observed at binding energies of 38.0 eV, 34.7 eV, and 32.5 eV, illustrating the presence of W(IV) in WS₂.²⁰ The S 2p spectra show two strong peaks centered at binding energies of 163.4 eV and 162.2 eV, which are assigned to the S²⁻ in WS₂.²⁰ The XPS spectra of the air-annealed TiO₂ NFs were also recorded as shown in Fig. S6.† It is obvious that the content of oxygen vacancies in the air-annealed TiO2 NFs dramatically decreases as compared to the Ar-annealed TiO2 NFs (Fig. 3d). The formation of oxygen vacancies in the Arannealed TiO2 NFs is due to the fact that the surface of TiO2 NFs is unsaturated in the Ar-atmosphere. The air-annealed TiO_2 NFs show less amount of oxygen vacancies because the unsaturated surface of TiO2 NFs would be compensated by the oxygen gas when the sample was heated in the air.

Photocatalytic N2 reduction was conducted in a singlecompartment cell with TiO2 and WS2@TiO2 NFs immersed in the water/Na₂SO₃ solution with continuous N₂ bubbling under AM 1.5G irradiation. The indophenol blue method was used to quantitatively determine the produced NH3, and the calibration curves of the relationship between the

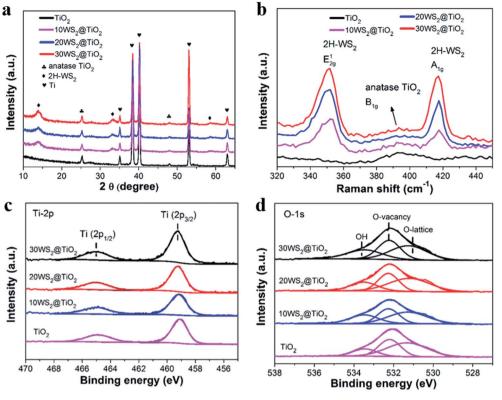


Fig. 3 (a) XRD patterns, (b) Raman spectra, and (c) high-resolution Ti XPS and (d) high-resolution O XPS spectra of samples.

concentration of NH4+ and absorbance were obtained (Fig. S7†). Fig. 4a shows the time-dependent NH₃ production over different samples. It can be seen that all the samples show photocatalytic performance for NH3 production, and the amount of NH3 increases almost linearly along with reaction time. In comparison with the bare TiO2 NFs, the N2 photofixation activities of the WS2@TiO2 NFs are greatly boosted to 0.13 μ mol h⁻¹ (ca. 1.39 mmol g⁻¹ h⁻¹) in the 20WS₂@TiO₂ NFs. This photocatalytic N2 fixation efficiency obtained by 20WS2@TiO2 is comparable to the state-of-the-art photocatalysts for N_2 reduction (Table S1†). $^{6,8\alpha,8c,8d,21}$ The control experiment carried out by using aprotic solvent CH₃CN instead of water as a reaction solution shows no photocatalytic activity, suggesting that the proton source for NH₃ evolution originates from the water. The photocatalytic performance of 20WS₂/flat TiO₂ was evaluated (Fig. S8†), which shows lower activity than 20WS₂@TiO₂ NFs, demonstrating the advantages of the porous structure for photocatalysis. Under visible light irradiation, no detectable activity was observed over 20WS₂@TiO₂ NFs, indicating that the excitation of TiO₂ is necessary for NH₃ evolution (Fig. S9†). In pure water, the dramatically decreased activity was observed (Fig. S10†), indicating that the sacrificial agent plays a dominant role in trapping photogenerated holes, thus promoting the photocatalytic activity. The 20WS2@TiO2 NFs also exhibit good stability for photocatalytic N₂ fixation, with no obvious change in activity after four successive cycles (Fig. 4b). After the photocatalytic test, the 20WS₂@TiO₂ NFs show no obvious change

of morphology and composition, as revealed by SEM and energy-dispersive spectroscopy (EDS) analysis (Fig. S11 and S12†). Inductively coupled plasma mass spectrometry (ICP-MS) of 20WS2@TiO2 before and after the reaction was performed. The weight ratio of W in 20WS₂@TiO₂ is 38.6%, while it slightly decreased to 36.5% after four successive cycles.

In order to track the N-related functional groups on the 20WS2@TiO2 surface during the N2 fixation, in situ diffuse reflectance infrared Fourier transform spectroscopy (DRFTIRS) was performed. It can be seen that some bands gradually increased with the light irradiation time from 0 to 3 h (Fig. S13†). The sharp peak at 1415 cm⁻¹ and weak peaks at 1736 cm⁻¹ and 2807 cm⁻¹ can readily be attributed to surface NH⁴⁺ species.⁶ Furthermore, the peaks at 3040 cm⁻¹ and 3142 cm⁻¹ are assigned to the adsorbed H₂O and N-H stretching vibrations. 6,21b The DRFTIRS results indicate that the 20WS₂@TiO₂ NFs can facilitate the activation of the N≡N bond until it is cleaved to NH4+ in the final step. As we knew, N2 is difficult to be reduced directly under ambient conditions, due to its strong nonpolar N≡N bond. The oxygen vacancy on the surface of TiO₂ contributes to the photocatalytic N₂ reduction by acting as a binding site for N2 activation.22 The mechanism for the N₂ photofixation on the surface oxygen vacancy of TiO₂ is presented in Fig. S14,† in which the adsorbed N2 can be converted to NH₃ via multiple reaction steps of proton-coupled hydrogenations on TiO2.8a In order to demonstrate the importance of oxygen vacancies in photocatalytic N2 fixation, the activities of the periodic TiO2 NFs without surface oxygen

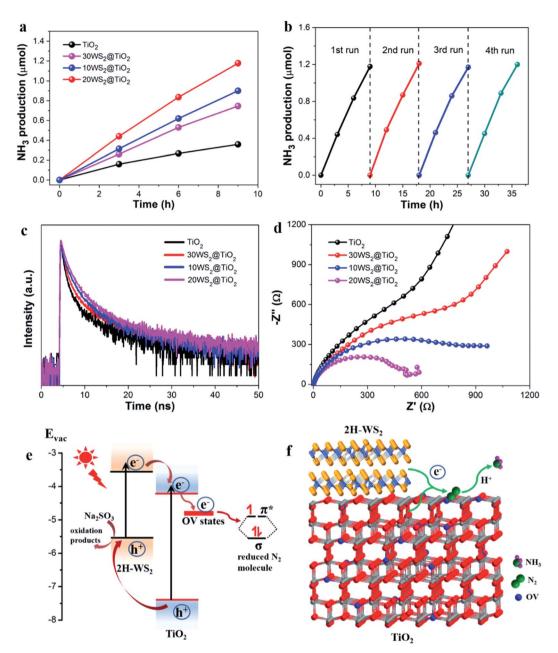


Fig. 4 (a) Time-dependent NH₃ evolution over various films. (b) Recycling test of 20WS₂@TiO₂ for photocatalytic NH₃ evolution. (c) Decay time measurement and (d) Nyquist plots of various films. (e) Schematic illustrating the electron generation and transfer for N₂ reduction processes with WS2@TiO2. (f) Artistic illustration of the efficient N2 photofixation. OV refers to oxygen vacancies.

vacancies were evaluated. The periodic TiO2 NFs without surface oxygen vacancies were prepared via annealing the anodized TiO₂ NFs in the air at 450 °C. The air-annealed TiO₂ NFs show a similar morphology to the defective Ar-annealed TiO2 NFs; however, their light absorption in the visible region is greatly weakened, due to the lack of oxygen vacancies (Fig. S4 and S15†). As expected, the air-annealed TiO2 NFs show much lower activity than the Ar-annealed TiO2 NFs, suggesting the critical role of oxygen vacancies in N₂ fixation (Fig. S16†).

The WS₂@TiO₂ NFs show higher photocatalytic performance for N₂ fixation than the bare TiO₂. The mechanism behind the functions of the heterostructures is further investigated. Due to

the well-matched energy levels between WS₂ and TiO₂, a type II heterojunction can be formed in WS2@TiO2, resulting in enhanced charge-carrier separation and transfer.12a In order to prove this assumption, time-resolved PL decay and electrochemical impedance spectroscopy (EIS) measurements were performed. As shown in Fig. 4c, the decay curves support the triexponential fitting model and indicate a prolonged lifetime from 3.51 ns of TiO2 to 4.72 ns of 30WS2@TiO2, 5.31 ns of 10WS₂@TiO₂ and 6.16 ns of 20WS₂@TiO₂. The increased fluorescence lifetime suggests the suppressed recombination of the photogenerated charge carriers and the improved separation of electron-hole pairs in the WS₂@TiO₂ NFs.

Fig. 4d shows the Nyquist plots of TiO2 and WS2@TiO2 NFs. The diameter of the semicircle in the Nyquist plots provides the information on the electron transfer resistance, which indicates the electron transfer kinetics.²³ The diameter of the semicircle follows the order $TiO_2 > 30WS_2@TiO_2 > 10WS_2@TiO_2 >$ 20WS₂@TiO₂. The smallest diameter is found for the curve of 20WS₂@TiO₂, indicating a decreased charge-transfer resistance in 20WS₂@TiO₂. The EIS results indicate the formation of the heterostructure assisted in the separation and transfer of photogenerated charge carriers. The inhibited surface recombination in WS₂@TiO₂ is further proved by the open-circuit potential (OCP) decay transient analysis. The OCP decay gives information about the surface charge recombination of the electrodes. Fig. S17† exhibits the normalized transient decay profiles of OCP in the bare TiO₂ and WS₂(a)TiO₂ NFs after interrupting the light illumination in H₂O/Na₂SO₃ electrolyte. The transient OCP curves of WS2@TiO2 show a much slower decay than the bare TiO₂, which is ascribed to the trapped holes being quickly scavenged by surface absorbed Na₂SO₃. Thus the accumulated electrons in the WS2@TiO2 electrodes have a longer survival time, contributing to the activation of the adsorbed N2 since the fixation of N₂ is a multi-electron process (Fig. S14†).⁶

A N₂ photofixation mechanism over WS₂@TiO₂ (Fig. 4e and f) was proposed based on the above discussion. Upon AM 1.5G light illumination, electron-hole pairs are generated in both WS₂ and TiO₂. A type II band alignment forms between WS₂ and TiO₂ due to the well-matched band positions. The photo-excited electrons from the conduction band of WS₂ transfer to TiO₂ across the WS2/TiO2 interfaces. Subsequently, the electrons accumulated on the conduction band of TiO₂ will be trapped by oxygen vacancy states in TiO₂ and then injected into the empty antibonding orbitals (π^*) of the N_2 molecules, eventually leading to the formation of NH₃. Na₂SO₃ acts as an electron donor to consume the holes. The separation of the photogenerated charge carriers is facilitated by the increase of the WS2 content in WS2@TiO2, leading to the improved photocatalytic N2 fixation. However, a further increase in the WS2 content (30WS2@TiO2) leads to a reduced light reception area (shading effect). In this case, some photogenerated charges on WS₂ tend to recombine instead of transferring to the adjacent TiO₂, leading to a decreased separation efficiency of electronhole pairs.

Conclusion

In summary, periodic $WS_2@TiO_2$ NFs were synthesized by a facile method that combines anodization, E-beam evaporation and CVD. The TiO_2 nanopores provide the space-confined reaction vessel for W and S, beneficial for the conformal growth of nanoscale laminated WS_2 nanoflakes. The photocatalytic conversion of N_2 to NH_3 was achieved over the $WS_2@TiO_2$ films at room temperature and atmospheric pressure. Oxygen vacancies were introduced in TiO_2 through postannealing in an Ar-atmosphere, which plays a vital role in photocatalytic N_2 fixation. The $WS_2@TiO_2$ film with an optimized WS_2 content (20 nm W) shows significantly improved photocatalytic performance compared to the bare TiO_2 ,

reaching the NH₃ evolution rate as high as 0.13 μ mol h⁻¹ (ca. 1.39 mmol g⁻¹ h⁻¹), due to the enhanced separation efficiency and prolonged lifetime of charge carriers. The catalyst design strategy developed in this work can be used for other solar energy conversion applications via altering the materials composition.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the National Science Foundation under grant no. CMMI-1851674 and the startup grant from the University of Central Florida. L. S. acknowledges the financial support from the Preeminent Postdoctoral Program (P3) at the University of Central Florida. The XPS analysis performed by H. Z. was partially supported by Science and Technology Innovation Platform no. 2018RS3070 and Hundred Youth Talents Programs of Hunan Province, the 'XiaoXiang Scholar' Talents Foundation of Hunan Normal University in Changsha, P. R. China.

References

- 1 X. Chen, N. Li, Z. Kong, W.-J. Ong and X. Zhao, *Mater. Horiz.*, 2018, 5, 9–27.
- 2 T. Kandemir, M. E. Schuster, A. Senyshyn, M. Behrens and R. Schlogl, *Angew. Chem., Int. Ed.*, 2013, **52**, 12723–12726.
- 3 (a) L. Li, Y. Wang, S. Vanka, X. Mu, Z. Mi and C. J. Li, Angew. Chem., Int. Ed., 2017, 56, 8701–8705; (b) S. Hu, X. Chen, Q. Li, F. Li, Z. Fan, H. Wang, Y. Wang, B. Zheng and G. Wu, Appl. Catal., B, 2017, 201, 58–69.
- 4 H. Li, J. Li, Z. Ai, F. Jia and L. Zhang, *Angew. Chem., Int. Ed.*, 2018, 57, 122–138.
- 5 S. Wang, X. Hai, X. Ding, K. Chang, Y. Xiang, X. Meng, Z. Yang, H. Chen and J. Ye, Adv. Mater., 2017, 29, 1701774.
- 6 H. Li, J. Shang, Z. Ai and L. Zhang, *J. Am. Chem. Soc.*, 2015, 137, 6393–6399.
- 7 H. Hirakawa, M. Hashimoto, Y. Shiraishi and T. Hirai, *J. Am. Chem. Soc.*, 2017, **139**, 10929–10936.
- 8 (a) C. Li, T. Wang, Z. J. Zhao, W. Yang, J. F. Li, A. Li, Z. Yang, G. A. Ozin and J. Gong, Angew. Chem., Int. Ed., 2018, 57, 5278–5282; (b) T. Oshikiri, K. Ueno and H. Misawa, Angew. Chem., Int. Ed., 2014, 53, 9802–9805; (c) T. Oshikiri, K. Ueno and H. Misawa, Angew. Chem., Int. Ed., 2016, 55, 3942–3946; (d) M. Ali, F. Zhou, K. Chen, C. Kotzur, C. Xiao, L. Bourgeois, X. Zhang and D. R. MacFarlane, Nat. Commun., 2016, 7, 11335.
- 9 (a) L. Shi, W. Zhou, Z. Li, S. Koul, A. Kushima and Y. Yang, ACS Nano, 2018, 12, 6335–6342; (b) L. Shi, Z. Li, T. D. Dao, T. Nagao and Y. Yang, J. Mater. Chem. A, 2018, 6, 12978– 12984.
- 10 J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo and D. W. Bahnemann, *Chem. Rev.*, 2014, 114, 9919–9986.

Communication

- 11 J. Low, J. Yu, M. Jaroniec, S. Wageh and A. A. Al-Ghamdi, Adv. Mater., 2017, 29, 1601694.
- 12 (a) B. Mahler, V. Hoepfner, K. Liao and G. A. Ozin, J. Am. Chem. Soc., 2014, 136, 14121-14127; (b) W. Ho, J. C. Yu, J. Lin, J. Yu and P. Li, Langmuir, 2004, 20, 5865-5869.
- 13 (a) D. Jing and L. Guo, Catal. Commun., 2007, 8, 795-799; (b) L. Zheng, W. Zhang and X. Xiao, Korean J. Chem. Eng., 2015, 33, 107-113.
- 14 J. E. Yoo, K. Lee, M. Altomare, E. Selli and P. Schmuki, Angew. Chem., Int. Ed., 2013, 52, 7514-7517.
- 15 (a) X. Zeng, Z. Ding, C. Ma, L. Wu, J. Liu, L. Chen, D. G. Ivey and W. Wei, ACS Appl. Mater. Interfaces, 2016, 8, 18841-18848; (b) Z. Li, L. Shi, D. Franklin, S. Koul, A. Kushima and Y. Yang, Nano Energy, 2018, 51, 400-407.
- 16 F. Raza, D. Yim, J. H. Park, H. I. Kim, S. J. Jeon and J. H. Kim, J. Am. Chem. Soc., 2017, 139, 14767-14774.
- 17 Y. Yang, H. Fei, G. Ruan, Y. Li and J. M. Tour, Adv. Funct. Mater., 2015, 25, 6199-6204.

- 18 H. Tan, Z. Zhao, W. B. Zhu, E. N. Coker, B. Li, M. Zheng, W. Yu, H. Fan and Z. Sun, ACS Appl. Mater. Interfaces, 2014, 6, 19184-19190.
- 19 L. Hou, M. Zhang, Z. Guan, Q. Li and J. Yang, Appl. Surf. Sci., 2018, 428, 640-647.
- 20 Y. Yan, B. Xia, N. Li, Z. Xu, A. Fisher and X. Wang, J. Mater. Chem. A, 2015, 3, 131-135.
- 21 (a) A. Banerjee, B. D. Yuhas, E. A. Margulies, Y. Zhang, Y. Shim, M. R. Wasielewski and M. G. Kanatzidis, J. Am. Chem. Soc., 2015, 137, 2030-2034; (b) Y. Zhao, Y. Zhao, G. I. N. Waterhouse, L. Zheng, X. Cao, F. Teng, L. Z. Wu, C. H. Tung, D. O'Hare and T. Zhang, Adv. Mater., 2017, 29, 1703828.
- 22 J. Yang, Y. Guo, R. Jiang, F. Qin, H. Zhang, W. Lu, J. Wang and J. C. Yu, J. Am. Chem. Soc., 2018, 140, 8497-8508.
- 23 L. Shi, K. Chang, H. Zhang, X. Hai, L. Yang, T. Wang and J. Ye, Small, 2016, 12, 4431-4439.