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New technologies for future electronics such as personal healthcare devices and foldable smartphones
require emerging developments in flexible energy storage devices as power sources. Besides the energy
and power densities of energy devices, more attention should be paid to safety, reliability, and compatibil-
ity within highly integrated systems because they are almost in 24-hour real-time operation close to the
human body. Thereupon, all-solid-state energy devices become the most promising candidates to meet
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these requirements. In this mini-review, the most recent research progress in all-solid-state flexible super-
capacitors and batteries will be covered. The main focus of this mini-review is to summarize new
materials development for all-solid-state flexible energy devices. The potential issues and perspectives
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1. Introduction

An energy storage device is the critical technology in many
defense and commercial applications where it is either directly
used as a power source for transportation and electronics or
integrated with other energy devices, such as thermoelectrics
and piezoelectrics, to use energy in an efficient manner." In
recent years, flexible energy storage has been taken into
special consideration with increasing demands for wearable
devices, including flexible displays, portable electronics, per-
sonal healthcare devices, and so forth.*® In terms of wearable
electronics, the future will be miniaturized, integrated, and
self-powered devices that are assembled in all-solid-state and
can be utilized for a long period of time without safety and
reliability issues.”® So far, some energy storage devices, for
instance electrochemical capacitors (or supercapacitors),
metal-ion batteries, and most recently rechargeable metal-air
batteries, have been recognized to be the most practical and
feasible technologies for all-solid-state energy storage.'®™?
However, the main challenges in the current all-solid-state
energy storage are still the low volumetric energy density, high
internal resistance at the materials interfaces, poor mechanical
durability, and controversial environmental concerns.”*™® To
address these concerns, the following strategies have been
suggested:

(i) The electrode materials should have a high areal and
volumetric capacity, which represents their abilities to supply
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regarding all-solid-state flexible energy device technologies will be highlighted.

high energy within a confined space.'” More specifically, emer-
ging materials able to store energy based on mechanisms
beyond double-layer storage and intercalation chemistry
should be designed. In addition, some advanced features
should be considered in electrode materials design such as
additive-free and free-standing, which can significantly reduce
the content of electrochemically inactive materials in the
electrode.'®*?

(i) The electrode materials should have reduced resistance
with the use of high conductivity materials or conducting com-
ponents towards high-rate performance and less energy con-
sumption by the internal resistance.*® Experimentally, doping
and hybridizing with other elements may improve the conduc-
tivity of electrode materials.>® Computationally, data-driven
simulation and machine-learning methods can be used to
predict material compositions and structures to achieve the
optimum electrode conductivity.>?

(iii) Advanced solid-state electrolyte films with high ionic
conductivities should be designed.*® The ionic conductivities
of electrolyte films are always the critical point for solid-state
energy storage. Similar to electrode materials, doping may
solve the low ionic conductivity issue of the solid electrolyte.

(iv) Materials engineered at the nanoscale should be used
to design new self-organized nanostructures that enable the
release of the interfacial stress in all-solid-state devices.””
Nano-engineering has been demonstrated to be very successful
in boosting the material performance in renewable energy
applications.*®**° Designing new electrode structures may
solve the interfacial resistance and stability issues of solid-
state devices.

(v) Environmentally benign and non-toxic materials should
be utilized.*" Both electrode materials and solid electrolytes
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Scheme 1 lllustration of the significance and methods to improve the
safety and reliability of all-solid-state energy storage devices such as
flexible supercapacitors and batteries by means of materials design,
interface engineering, and nanoscience.

should be very safe and non-toxic in order to be used for flex-
ible and personal devices. New electrode materials without
metal dissolving and leaking should be considered for
material design.

The detailed and specific reviews on electrode materials,
solid-state electrolytes, and energy storage devices have been
comprehensively discussed elsewhere.’*® In this mini-review,
therefore, recent advances in addressing the safety and
reliability considerations of all-solid-state energy storage
devices for wearable devices will be outlined (Scheme 1).

2. All-solid-state supercapacitors

Supercapacitors deliver a fast dynamic response, high power
density, and long cyclability through non-faradaic and faradaic
processes in electric double-layer capacitors (EDLCs) and
pseudocapacitors, respectively.*® The recent technological pro-
gress in the new nanostructured materials development, such
as nano-carbons, other carbonaceous materials, and thin-film
materials, enables all-solid-state supercapacitors to be reliable
and environmentally benign for wearable devices.*’

2.1. Electrical double-layer capacitors

Non-faradaic EDLCs store energy in an ionic double-layer
(Helmbholtz layer) built upon the accumulation and electro-
static adsorption of electrolytic ions at the electrode/electrolyte
interfaces, leading to extremely high power densities.”’ The
higher power density usually refers to a faster charging rate.
On the other hand, the strong dependence of double-layered
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charge storage on the surface areas of the electrodes limits the
maximum possible number of the adsorbed ions at the EDLC
interfaces, consequently resulting in low energy densities.*?
This makes the EDLCs store insufficient energy for long-term
utilization. A general strategy to improve the energy densities
of EDLCs is to tremendously increase the electrode/electrolyte
interfaces by using high surface conducting materials.*’ In
this perspective, nano-carbon materials, including carbon
nanotubes (CNTs), graphene, reduced graphene oxide (rGO),
and nanoporous carbon fibers, and other carbon materials
with hierarchically nanoporous structures have become the
core competencies of all-solid-state EDLCs due to their good
electrical conductivity, supreme mechanical strength, and
highly engineerable surface area.**™*

Creating nanopores in carbon-based EDLCs has been
widely used as the most efficient approach to improve energy
densities. Taking graphene as an example, in order to make
the best use of its large theoretical surface area (2630 m> g™")
and extraordinary electron mobility, different porous struc-
tures such as foams, aerogels, and sponges have been
designed to overcome the aggregation problem.**~>" But these
graphene architectures are of no help in creating additional
active sites to increase the charge storage capacity. In addition
to using porous architectures, directly creating nanopores in
graphene has been suggested to be a fascinating approach to
form hierarchically porous structures, leading to a dramatically
improved capacitance.”® For instance, by integrating macro-
pores, mesopores, and micropores into bamboo-like carbon
fibers with a hierarchically porous structure, excellent
reliability and outstanding capacitance have been achieved.’?
The usage of hierarchically porous carbons in EDLCs for wear-
able electronics is emerging but still controversial. This is
because carbon materials usually have low densities, which
require high material loading in limited space in order to
achieve sufficiently high capacitance, therefore resulting in
structural collapse.

Polyvinyl alcohol (PVA) gel has been widely used as a
porous matrix to mix with ionically conducting agents such as
phosphoric acid, KOH, other salts, and ionic liquids, forming
solid polymer electrolytes for all-solid-state EDLCs. This is due
to the attractive mechanical and electrical merits of PVA,
including high stretchability, good strength, and controllable
thickness and porosity.>*® The most important feature of
using PVA gel electrolytes is the reduced probability of electro-
Iyte leakage, which makes wearable EDLCs tailorable (being
cut) and safe at the device level.”” Taking into account the fact
that charge is stored at the surface or subsurface of EDLC elec-
trodes, the following concerns are still unsolved in gel electro-
Iyte based all-solid-state EDLCs: (i) since using high surface
area nanoporous electrodes is necessary for high capacitance
EDLCs, how to completely fill nanoscale pores with the gel
and form a seamless interface. (ii) How to maintain sufficient
strength to resist the intense mechanical impact in the gel
electrolyte with weak molecular interactions. And these con-
cerns may become more serious when a ceramic electrolyte is
used because of the sluggish ion mobility across the poorly
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contacted electrode/electrolyte interfaces.”®*® Most recently,
Braun et al. reported a bottom-up method to completely infill
gel electrolytes into porous electrodes (Fig. 1a).°* As a result, a
500 pm thick all-solid-state supercapacitor electrode composed
of CNTs completely infilled with a PVA gel electrolyte was fabri-
cated (Fig. 1b). In the rolling-up test, the CNT-based electrode
did not show any microcracks, indicating exceptional mechani-
cal properties (Fig. 1c). The excellent mechanical properties
enable the CNT-based electrode to have 95% capacitance reten-
tion after 5000 bending cycles (Fig. 1d). The areal capacitance of
the 500 pm thick supercapacitor electrode delivered an out-
standing capacitance of 2662 mF cm > (Fig. 1e and f), which is
superior to the current flexible supercapacitors (Fig. 1g).
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Balancing energy and power densities in energy storage
devices is always very challenging. Although recent advances
have improved the energy densities of EDLCs, they are still
known for providing a high power density for high energy con-
sumption in a short period. Therefore, other high energy
density energy devices such as pseudocapacitors and batteries
have been developed in order to integrate with EDLCs and fill
the functional gap (high energy density) in a solid-state device.

2.2. Pseudocapacitors

Beyond EDLCs, pseudocapacitors exhibit high energy densities
derived from reversible faradaic redox reactions at the surface
and subsurface of the materials, including some conducting
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Fig. 1 (a) Schematic illustration of the bottom-up infilling method. Left to right: Sol casting on the porous electrode; the gel formation; a freestand-
ing gel-filled electrode after substrate removal. (b) SEM image of the CNT-based electrodes infilled with the gel electrolyte. The scale bar is 200 nm.
(c) The lack of microcracks in the 150 pm thick CNT-based electrodes infilled with the gel electrolyte tested by rolling-up over a glass tube with a
radius of 0.5 mm. (d) Electrochemical performance of the CNT-based electrode supercapacitor. (e) CV and (f) GCD curves over different potential
windows for the 500 um thick CNT-based electrodes. (g) Areal Ragone plot. This figure has been adapted/reproduced from ref. 61 with permission

from Springer Nature.
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polymers (CPs) and transition metal compounds (TMCs).**> **
Although these CPs such as polyaniline (PANi), poly(3,4-ethyl-
ene dioxythiophene) (PEDOT), and polypyrrole (PPy) show great
potential as active materials for pseudocapacitors, they are
mostly used as conducting components in TMC-based electro-
des rather than being used alone.®®®” This is because of their
lower capacities than TMCs and low-density (1-2 g ml™") issue
similar to carbon materials.®®®® The poor cycling stability of
CPs caused by structural alteration and dissolving in organic
electrolytes is another barrier to practical application.”®
Because of the insufficient flexibility and low conductivity,
TMCs are always mixed with conducting materials such as
carbons and CPs.”' In these TMC-based hybrid electrodes,
carbons or CPs serve as conducting frameworks, which only
contribute in a minor way to the overall capacitance as com-
pared to TMCs.”* Thereupon, it is always a trade-off between
the capacity and flexibility in pseudocapacitors using hybrid
electrodes.”>”* 1t is necessary but very challenging to develop
new techniques that can increase the loading amount of TMCs
and meanwhile can maintain the mechanical strength without
sacrificing the flexibility of hybrid electrodes. More recently,
some advanced techniques, including growing or loading
active materials on 3D metallic current collectors and forming
highly porous nanostructured films, have been developed to
increase the TMC loading in flexible and robust electrodes
without using any carbon and CP additives.”>””® The self-
adjusting capability of these 3D current collectors and porous
films enables highly flexible and mechanically robust electro-
des for wearable energy storage devices. Our group recently
developed a freestanding NiFe oxyfluoride (NiFeOF) holey film
(HF) using an electrochemical approach - electrodeposition
followed by anodization (Fig. 2a-c).”® The metallic NiFe alloy
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filaments remained in the NiFeOF HF protected the nanopor-
ous structure of the materials during bending and twisting
tests (Fig. 2d and e). As a result, the as-prepared NiFeOF HF is
freestanding and self-supporting, which can be used as an
electrode without reliance on additives. The interconnected
holey structure and hierarchical pores provide a high surface
area for energy storage (Fig. 2f and g). Endowed with the good
electrical conductivity and highly porous structure, the NiFeOF
holey film delivered a maximum specific capacitance of 670 F
em™ (Fig. 2h and i). Additionally, the NiFeOF HF presented
exceptional performance stability under bending and long-
term cycling conditions (Fig. 2j and k), showing supreme
reliability for wearable electronic devices.

Although pseudocapacitors exhibit better energy densities than
EDLCs and sometimes may show both acceptable energy densities
and power densities, they may not really compete with EDLCs and
batteries in terms of high power and energy, respectively.

3. Flexible batteries

Rechargeable batteries have been well investigated because of
their capabilities to provide high energy density to power elec-
tronic devices for long-term utilization.®® Metal-ion batteries,
especially Li-ion batteries (LIBs), have been widely investigated
for flexible batteries due to their abilities to be built in an all-
solid-state construction.®" Although the energy storage mecha-
nisms between LIBs and supercapacitors are significantly
different, the basic concepts to develop flexible batteries are
similar.®” To enhance the flexibility and conductivity of the
battery electrodes, conducting additives such as carbon and
carbonaceous materials are used to form composites with
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Fig. 2 (a) Schematic illustration of the electrochemical fabrication of the NiFeOF holey layer (HF). (b, c) Photos of the electrodeposited NiFe alloy
and the anodized NiFeOF HF, respectively. The scale bars are 0.25 inch. (d, e) Excellent flexibility and mechanical robust feature of the freestanding
HF. (f, g) Cross-sectional and top-view SEM images of HF. The scale bars in (f) and (g) denote 500 and 200 nm, respectively. (h) CV curves. (i)
Charge/discharge profiles. (j) CV curves with different binding angles. (k) Cycling performance. This figure has been adapted/reproduced from

ref. 79 with permission from John Wiley and Sons.
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TMC-based active materials.®* However, taking into account
the nonaqueous electrolytes used in most rechargeable bat-
teries, potential environmental and safety issues should be of
concern to develop a human-compatible wearable device.**

3.1. Li-ion batteries

The commercial and most typical LIBs are produced using
layered materials as electrodes in which Li-ion intercalation/
extraction processes are involved during discharge/charge
cycling.®® Li-Intercalation enables small volume expansion of
active materials which ensures stable performance during
long-term utilization, nevertheless, a low energy storage
capacity is achieved.®® Thereafter, novel electrode materials
such as transition-metal based multi-valence materials based
on other energy storage mechanisms such as alloying and con-
version reactions have been developed to deliver much higher
capacities than Li-intercalation electrodes, but the huge
volume change becomes the major barrier to flexible bat-
teries.’” To address this issue, mechanically robust additives
and self-adjusting nanostructures have been developed.®®°
Similar to flexible SCs, carbon materials and CPs are com-
monly used to form a flexible and high conductivity network
to load electrode materials for flexible LIBs.”” Mesoporous
NiCo,0,4 nanowire arrays coated with carbon textiles have been
demonstrated to facilitate electron transport by directly con-
necting active materials to the current collectors and provide
facile ion diffusion path by forming a mesoporous structure.
Benefiting from these structural merits, binder-free NiC0,0,/
carbon textile anodes exhibit high performance and excellent
reliability.” A polypyrrole@porous silicon hollow sphere
(PPy@PHSi) composite exhibited excellent structural stability
and electrochemical performance (high rate capability and
outstanding cyclability) for flexible LIBs, owing to the syner-
gism between the porous structure and the PPy coating. The
porous structure of the shell buffered the volume change and
reduced the internal stress, therefore facilitating Li" diffusion
in the porous electrodes. In addition, the PPy coating signifi-
cantly enhanced the electrode conductivity and stabilized the
structure.”” Mg-modified LiMnPO, nanofibers were mixed
with a conducting carbon matrix in order to enhance the elec-
trode conductivity, structural integrity, and flexibility.
Therefore, a high capacity of 107 mA h g~ was achieved at 5C,
representing a superior rate performance for LiMnPO,-based
cathodes.”® Flexible LIB full cells composed of Mn,0O; and
LiMn,0, nanowires as anodes and cathodes, respectively, have
been developed without using any carbon supporting
materials. The structure of one-dimensional nanowires pro-
vides a short Li" transport path and volume flexibility during
lithiation, leading to high rate performance.”* Even though
various advanced materials and new techniques have been
conceived to fabricate flexible LIBs, it is still very challenging
to achieve a balance between device flexibility (mechanical pro-
perties) and LIB performance (electrochemical properties such
as power and energy densities) because of the electrochemi-
cally inactive components such as conducting additives and
binders commonly used in the current flexible LIBs.

This journal is © The Royal Society of Chemistry 2020
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Safety issues related to organic electrolyte leakage, unsatisfac-
tory packaging to withstand harsh utilization environments, and
battery failure originating from either thermal runaway or metal
dendrite growth are the chief concerns in view of practical appli-
cations of flexible LIBs in wearable and human-compatible elec-
tronic devices.”> To address these battery safety risks, ceramic
and novel polymer separators associated with thermal shutdown
functions are of special importance in improving the safety and
reliability of flexible LIBs.”® A thermostable ceramic SiO,-grafted
PE separator prepared by electron beam irradiation showed a
shrinkage ratio of only 20% even at 180 °C.”” This separator also
displayed an improved ionic conductivity because of the good
wettability and electrochemical stability. Conventionally, most of
the polymer separators are unstable at 120 °C and above when
used in LIBs. To enhance thermal stability, a pure aluminum
oxide nanowire-based membrane without any organic additives
was developed as a bendable ceramic separator. At room temp-
erature and 120 °C, LIBs fabricated with a ceramic separator
showed a higher rate-performance and longer cyclability as com-
pared to the conventional polymer separator.”® Recently, ceramic
nanowire fillers have been demonstrated to form ionically con-
ducting networks in the polymer-based solid electrolyte. Dendrite
growth threatens the safety of LIBs by piercing the separator and
making the cell short. To address this issue, an aramid-PEO
nanofiber composite has recently been demonstrated to show
suppressed dendrite growth, a high modulus, and a high ionic
conductivity. The small pores in the membranes were proved to
eliminate the possibility of dendrite growth.

One of the most promising approaches to solve the safety
issues in flexible LIBs is to utilize ionic liquids (ILs) in solid
electrolytes due to their unique merits such as low melting
point, almost no vapor pressure (non-volatile), high-tempera-
ture stability (non-flammable), and a wide electrochemical
stability window.”® When used in flexible LIBs, IL-based solid
electrolytes do not release any toxic compounds such as HF if
the cells are damaged and exposed to air.'°® Shahbazian-
Yassar et al. recently reported an all-3D-printed LIB using an
IL-based solid electrolyte (Fig. 3a-f)."°" By adding nanosized
ceramic fillers to the solid electrolyte, a continuous, thin, and
dense layer was obtained between the porous electrolyte and
the electrode. This is helpful to effectively reduce the inter-
facial resistance of all-solid-state LIBs. As a result, an ionic
conductivity of 0.78 x 10~ S em™" was achieved using a 3D
printed solid electrolyte, leading to superior capacity and rate
performance to the traditionally cast flexible LIBs (Fig. 3g-1).

LIBs surpass supercapacitors (EDLCs and pseudocapacitors)
in terms of energy density, however they have the most serious
safety and reliability concerns because of the metal dissolving/
leaking and electrode material decomposition during improper
usage such as over-charging/over-discharging.

3.2. Other metal-ion batteries
Besides LIBs, other flexible metal-ion batteries such as Na-ion,

Mg-ion, and Al-ion batteries have been developed in recent
years. Besides experiencing similar challenges to flexible LIBs,
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Fig. 3 (a, b) Cross-sectional and surface SEM images of the 3D printed electrolyte, respectively. (c) Schematic of the 3D printed solid electrolyte. (d)
Cross-sectional SEM image of the 3D printed electrolyte after washing out the ionic liquid. (e) SEM image of the dense layer between the porous
layer and the electrode. (f) Schematic of the bilayer structure of the 3D printed solid electrolyte. (g) First cycle charge—discharge profiles. (h) Rate
profile. (i) Voltage profile of the 3D printed LIB cell. (j) Voltage profile of the cast LIB cell. (k) Cycling performance. (1) Cross-sectional SEM image of
the 3D printed electrolyte after 100 cycles. This figure has been adapted/reproduced from ref. 101 with permission from John Wiley and Sons.

other flexible batteries face problems in terms of sluggish
metal ion diffusion in the electrodes and limited options for
electrode materials and electrolytes. A universal strategy to
address these issues is to develop 3D electrodes with open
channels in order to achieve the facilitated metal ion/cluster
extraction and insertion from host materials to the electrolyte.
However, the development of 3D electrodes for flexible Na-ion

Nanoscale

batteries is still hampered by the intricate production methods
and the relatively high cost of building blocks for 3D structures
such as graphene and CNTs. Wu et al. designed a simple and
low-cost electrospinning technique to wrap large-sized
NazV,(PO,); with hierarchically 3D electronic channels for flex-
ible Na-ion batteries.'* Such flexible electrodes exhibited out-
standing electrolyte wettability, ultrafast electrical conductivity,

This journal is © The Royal Society of Chemistry 2020


https://doi.org/10.1039/c9nr08722b

Published on 02 January 2020. Downloaded by University of Central Florida on 1/31/2020 5:31:58 PM.

Nanoscale

and high Na' ion diffusion coefficients, leading to a high
reversible capacity of 116 mA h g~! at 0.1C. Even at a high rate
of 30C, a discharge capacity of 63 mA h g~' was retained.
Polymer-based solid electrolytes can boost the development of
highly safe and flexible Mg-ion batteries because of great
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merits, including greatly improved safety, high energy density,
and structural flexibility. Recently, Cui et al. developed an
in situ crosslinking reaction method to fabricate a novel polyte-
trahydrofuran-borate-based gel electrolyte coupled with glass
fiber (Fig. 4a).’® This gel electrolyte exhibited a reversible Mg
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Fig. 4 (a) Schematic illustration of the preparation of MogSg//PTB@GF-GPE//Mg flexible Mg-ion battery cells. (b) C-Rate performance at room
temperature (RT). (c) The RT cycling stability at 0.5C. (d) Temperature-dependent performance at 0.1C. (e) The cycling stability at 0.1C and at —20 °C.
(f—i) Flexible Mg-ion batteries in the cutting tests. This figure has been adapted/reproduced from ref. 103 with permission from John Wiley and

Sons.
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plating/stripping performance, high Mg®" ionic conductivity,
and remarkable Mg>" ion transfer number (Fig. 4b and c).
MoeSs/Mg batteries assembled with this gel electrolyte showed
unprecedented electrochemical properties in a wide tempera-
ture range (—20 °C to 60 °C, Fig. 4d and e) and showed well-
addressed safety issues without suffering from internal short-
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circuit failure during the cutting test (Fig. 4f-i). Among all the
metal-ion batteries beyond Li-ions, Al-ion batteries provide
three-electron transfer during the AI**/Al redox reactions, as a
result delivering a maximum gravimetric capacity of 2980 mA
h g7, In addition, the price of Al is sufficiently low and stable
in open air under ambient conditions for large-scale manufac-
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SWCNT
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5
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Fig. 5 (a) Schematic illustration of the electrospraying/electrospinning-assisted fabrication of a Zn anode. (b, c) Top-view and cross-sectional SEM
images of a Zn anode, respectively. The insets show the EDS mapping of Zn. (d, e) The electrical resistance of the Zn anode as functions of bending
and twisting, respectively. (f) Galvanostatic discharge/charge cycling during the bending and twisting tests. (g) The operation of an LED powered by
flexible Zn—air batteries. The inset shows the galvanostatic discharge/charge cycling behavior of the flexible Zn—air batteries. This figure has been
adapted/reproduced from ref. 112 with permission from American Chemical Society.

Nanoscale

This journal is © The Royal Society of Chemistry 2020


https://doi.org/10.1039/c9nr08722b

Published on 02 January 2020. Downloaded by University of Central Florida on 1/31/2020 5:31:58 PM.

Nanoscale

turing, which can significantly reduce the production cost of
rechargeable batteries. However, the three-electron transfer
process involved in the charge/discharge reactions, as well as
the strong bonding between AI*" and the host materials,
makes Al-ion batteries slow in reaction kinetics. Most recently,
our group designed a self-supported tin sulfide (SnS) porous
film (PF), which was used as a flexible 3D cathode in Al-ion
batteries, delivering a high specific capacity of 406 mA h g~*.>*
A capacity decay rate of 0.03% per cycle is achieved, indicating
good stability. This self-supported SnS film showed an out-
standing electrochemical performance and stability during
dynamic and static bending tests. The porous structure of SnS
is beneficial for minimizing the volume expansion during
charge/discharge, leading to improved structural stability
when used as flexible 3D electrodes.

Although recent research progress has improved the kine-
tics for other metal-ion storage in electrode materials, more
research efforts on enhancing the coulombic efficiency and
further increasing the power/energy densities of the materials
are still required.

3.3. Metal-air batteries

Metal-air batteries (MABs) store energy by the surface catalytic
oxygen reduction and evolution reactions (ORR/OER) on the
cathode side and redox reactions on the metal anode
side.’®* % In principle, MABs deliver a much larger capacity
to maintain a higher power density than that of LIBs. For the
detailed background of the charging/discharging mechanism
please refer to previous comprehensive review papers.’”'71%8
In order to activate the catalytic reactions occurring on the
cathodes, high surface area carbon-based bifunctional cata-
lysts are preferred. Using a facile H, etching approach, Zhang
et al. prepared a coaxial cable-like structure composed of a
carbon fiber skeleton and nanostructured porous and defect-
rich graphene skin.'® By introducing more heteroatoms and
defects as active sites, core—shell nanocarbons exhibited excel-
lent OER/ORR activities and reliability in bending tests. Metal
anodes play the central roles in determining the MAB energy
density and cycle life because of metal (e.g. Al, Zn, Fe, and Mg)
corrosion and the irreversible formation of discharge products
on the electrode surfaces. More specifically, Zn anodes experi-
ence inhomogeneous deposition and the formation of den-
drites when charging, leading to a quick loss of cyclability and
potential safety issues caused by internal short circuits. Fe
anodes suffer from surface passivation by iron hydroxide
formed during the discharge process. Hence, increasing inter-
est has been devoted to developing stable anode materials that
are resistant to surface passivation and corrosion.'*® Porous
metals or alloys with 3D structures have been mostly used to
suppress metal passivation and dendrite formation by elimi-
nating the electrical field inhomogeneity during charging.
However, relevant research progress in 3D metal anodes for
flexible MABs is still very limited. Taking Zn-air batteries as an
example, Zn anodes are most commonly fabricated by coating
Zn particle slurries on the current collectors or directly using
Zn foils.""" Besides surface passivation by the discharge
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product and internal short-circuit failure, these Zn anodes
possess insufficient mechanical properties, leading to fatigue
failure, mechanical rupture, and eventually losing the electri-
cal contact under external deformation. Lee et al. developed a
new class of flexible Zn-air batteries using a multifunctional
heteronanomat (HM) architecture to address these issues. HM
framework-supported electrodes were fabricated by a one-pot
concurrent electro-spraying and electro-spinning process
(Fig. 5a), forming 3D bicontinuous ion/electron transport
channels in the electrodes (Fig. 5b and c). Benefiting from this
unique structure, the HM-structured electrodes showed excel-
lent electrical properties in deformation tests (Fig. 5d and e).
In addition, when assembled into a flexible Zn-air battery cell,
considerably improved mechanical properties and electro-
chemical rechargeability were achieved (Fig. 5f and g).'"?

MABs are the most promising energy devices that can be
used to complement the traditional energy storage devices
such as supercapacitors and metal-ion batteries because of
their high energy densities and power densities. From the per-
spective of practical application, reducing the materials cost
and designing the cell configuration should be focused on in
future research in order to avoid the destruction of the elec-
trode materials and electrolyte leakage.

4. Conclusions and outlook

Flexible electronic devices powered by bendable, foldable, and
even cuttable energy devices are of significance for both
defense and commercial utilization in the future. Safety
should be placed in a priority position when developing flex-
ible energy devices. Flexible supercapacitors are usually safe
and provide high power but low energy, which cannot be used
as power sources alone for electronic devices. Therefore, devel-
oping safe flexible batteries has become increasingly impor-
tant. Making the energy devices all-solid-state could be a
promising solution to the safety issue for flexible batteries.
“All-solid-state” does not necessarily mean “rigid” or “brittle”.
Using 3D porous electrodes or developing advanced thin-film
technology have been demonstrated to be very effective strat-
egies for improving the flexibility of the device and meanwhile
achieving an improved performance. Despite the increasing
interest in flexible energy storage in recent years, there are
many challenges and opportunities to be explored:

1. Integration with other energy solutions: Future flexible elec-
tronics should be minimized, foldable, and all-integrated and
consume low energy. In order to provide a continuous energy
supply, integrating with other energy sources such as solar or
thermal energy could be a solution to the low energy density of
state-of-the-art electrochemical energy storage devices. To this
end, thin-film solar cells and thermoelectric devices could be
used to generate electricity from external energy sources (sun-
light, environment temperature change, etc.), which can
provide energy to continuously charge flexible batteries or
supercapacitors during day time. The integration of multiple
components into a single device is in high demand for flexible
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electronics, which requires the involvement of multiple disci-
plines in device design such as electrical engineering, indus-
trial engineering, and so forth.

2. Developing all bio-compatible materials for energy storage
devices: A special priority should be given to the development
of bio-compatible materials for flexible energy devices. Besides
safety concerns, the bio-compatibility should be paid more
attention because all flexible devices would be used in the
pocket, on the skin, or implanted in the human body.
Therefore, soft materials, including polymers, gels, and soft
biological materials could be considered in terms of bio-com-
patibility. However, it is always a big challenge to make a
balance between energy density and safety when using “all-
organic” soft materials in energy devices.

3. Developing new nanomanufacturing techniques for energy
device fabrication: Inspired by the device design in the semi-
conductor industry, designing 3D interdigitated microstruc-
tures could be an effective way to address the mechanical and
interfacial issues of flexible energy devices. In order to build
seamless interfaces between the anode/solid-state-electrolyte
and solid-state-electrolyte/cathode, cleanroom-based tech-
niques such as patterning and lithography should be used for
3D interdigitated energy devices. And more importantly, new
manufacturing processes such as additive manufacturing (3D
and 4D printing) at the nanoscale could be introduced for the
fabrication of 3D energy devices.

4. Developing new energy harvesting devices: Instead of
electrochemical energy storage, new and emerging energy
harvesting devices should be considered when designing
flexible energy sources. If flexible electronic devices are used
on the skin, there would be an opportunity to harvest the
chemical energy from sweat or mechanical energy from vas-
cular pulsation. Microstructured fuel cells and piezoelectric
devices would play roles in converting other energy sources
from the human body to electricity, which could power flex-
ible electronics if the energy consumption for the devices is
not high.

5. Integrating data-driven prediction and machine-learning
methods into materials design: Materials design always involves
a huge amount of experimental testing in order to identify an
ideal composition or structure for the target performance.
However, traditional trial-and-error methods are not efficient
for new materials design. The emerging data-driven prediction
and machine-learning methods should be integrated into
experimental tests in order to predict the optimum material
compositions and structures for the boosted performance
toward solid-state energy storage.

6. Advanced in situ/operando characterization: Advanced
in situ/operando characterization such as in situ X-ray tech-
niques (XRD, XAS, etc.) and in situ microscopy (TEM, SEM,
optical microscopy, etc.) is very helpful to identify the material
growth mechanisms in the manufacturing process and
material failure mechanisms in solid-state energy devices.
Developing new in situ/operando techniques or integrating
in situ/operando characterization into the materials design
should be very crucial for solid-state devices.
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