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Abstract— Data shuffling between distributed cluster of nodes
is one of the critical steps in implementing large-scale learning
algorithms. Randomly shuffling the data-set among a cluster of
workers allows different nodes to obtain fresh data assignments
at each learning epoch. This process has been shown to provide
improvements in the learning process (via testing and training
error). However, the statistical benefits of distributed data shuf-
fling come at the cost of extra communication overhead from the
master node to worker nodes, and can act as one of the major
bottlenecks in the overall time for computation. There has been
significant recent interest in devising approaches to minimize
this communication overhead. One approach is to provision
for extra storage at the computing nodes. The other emerging
approach is to leverage coded communication to minimize the
overall communication overhead. The focus of this work is to
understand the fundamental tradeoff between the amount of
storage and the communication overhead for distributed data
shuffling. In this paper, we first present an information theoretic
formulation for the data shuffling problem, accounting for the
underlying problem parameters (number of workers, K , number
of data points, N, and available storage, and S per node).
We then present an information theoretic lower bound on the
communication overhead for data shuffling as a function of
these parameters. We next present a novel coded communication
scheme and show that the resulting communication overhead of
the proposed scheme is within a multiplicative factor of at most
K

K−1 from the lower bound (which is upper bounded by 2 for
K ≥ 2). Furthermore, we present new results towards closing
this gap through a novel coded communication scheme, which
we call the aligned coded shuffling. This scheme is inspired by the
ideas of coded shuffling and interference alignment. In particular,
we show that the aligned scheme achieves the optimal storage
vs communication trade-off for K < 5, and further reduces the

maximum multiplicative gap down to
K− 1

3
K−1 , for K ≥ 5.

Index Terms— Coded data shuffling, distributed computing,
coded multi-casting, distributed learning.

I. INTRODUCTION

OWING to the parallelized nature of the distributed com-
puting, and the abundance of computational resources

over a large cluster of workers, distributed computational
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frameworks can enable data-intensive learning tasks and big
data applications in a timely manner. Distributed computing
comes at the unavoidable communication cost due to data
transfer to the distributed machines, and the data shuffling
process among the distributed workers, which is a basic
building block in machine learning paradigms. The data
shuffling block can arise in many applications such as: a)
random shuffling of the data-set across different points before
each learning epoch so that each worker is assigned new
training data, which is a common practice that provides
statistical benefits, e.g., distributed gradient descent algorithm
and its stochastic variations [1]–[4]; b) shuffling the data-set
across attributes to assign different features (or attributes) to
each worker, e.g., in mobile cloud gaming systems [5]; and
c) shuffling the data between the mappers and the reducers
in the MapReduce framework [6], where the reducers are
interested in collecting the data with the assigned “key(s)”
from the mappers.
Another limiting byproduct of distributing the learning

process over a large number of machines is the latency
caused by the stragglers, i.e., the workers slower than the
average due to several factors such as resource contention,
disk failure, power limits, and heterogeneous processing
capabilities [7], [8]. The straggler problem usually limits the
completion time by the slowest worker. Several approaches to
mitigate the stragglers effect include a) scheduling redundant
computations in [9]–[12], such that any unexpected tardiness
or failure of a worker can be compensated by another worker
doing the same computations; b) work stealing where the faster
workers once they finish their tasks take over the remaining
computations from the slower workers [13]; and recently c)
work exchange based on the work conservation principle,
where coarse heterogenity knowledge/estimation can be used
to reassign the work load according to the speed of the
workers [14].
A promising research has recently emerged in large

scale distributed computing addressing both wired networks,
where the computations are done over the cloud [15], [16],
and wireless networks, where the computations are done
over small mobile machines removing the burden from the
cloud [17]–[19]. Distributed computing platforms can also be
classified according to the underlying network topology. In the
master-worker setting, a centralized master node posses the
whole data set and assigns different parts of the data to a set
of distributed workers, which collaboratively learn a shared
prediction model to be averaged out at the master node later;
while in the worker-to-worker setting (also referred to as
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the MapReduce framework [6]), the distributed workers are
mapped to train different parts of the data to calculate some
functions, then the reducers collect the data with the same
“key” to compute each function separately.
The application of coding theory to overcome the com-

munication and latency bottlenecks in order to speed-up the
learning process was first considered in [20]. In particular,
the idea of using coded data shuffling was first proposed
in [20], where excess storage at the workers was utilized to
create coded broadcasting opportunities in order to reduce the
communication overhead. In the same work, (n, k) Maximum
Distance Separable (MDS) codes were proposed for distributed
matrix multiplication to mitigate the impact of stragglers.
Coded computation using MDS codes in presence of strag-
glers was proposed in [21] for synchronous gradient descent,
and [22]–[24] for linear computation tasks, e.g., matrix multi-
plication. The use of Polynomial codes for high dimensional
coded matrix multiplication was proposed in [25]. Coded
computation over wireless networks was proposed in [26],
where only one worker can transmit at a time. The use of
codes to reduce the communication overhead due to data shuf-
fling was considered in [27]–[36]. In [27]–[30], the authors
considered the MapReduce setting, where in order to reduce
the communication between the mappers and the reducers,
coding opportunities are created with more redundant com-
putations at the mappers, leading to a trade-off between com-
munication and computation. Reference [31], [32] provided a
unified coding framework for distributed computing, where
the communication load due to shuffling can be alleviated
by trading the computational complexity in the presence of
straggling servers. The information theoretic limits for data
shuffling in the wired master-worker setting was considered
in [19], [35], and [36]. Coded data shuffling in wireless setting
was recently considered in [19], [35], [36] for both centralized
and decentralized approaches.

A. Related Works and Connections to Index Coding

Using codes for random data shuffling over wired
master-worker based distributed computational systems was
first considered in [20]. A probabilistic coding scheme was
introduced showing how using excess storage can reduce the
average communication overhead. In our initial preliminary
work [33], the optimal worst-case communication overhead
was characterized as a function of the available storage for
K = 2, 3 workers using a systematic storage placement, and
data delivery schemes. In another work [34], the no-excess
storage case was considered, where it was shown that even
for minimum storage value coding opportunities still exist.
A systematic coding scheme was developed for any number
of workers, which was proven to be information theoretically
optimal in the worst-case scenario.
The data shuffling problem can also be viewed as an index

coding problem [38], where the amount of data stored at
the workers form the side information, and the new data
assignments are the messages needed by each worker. The side
information in the data shuffling problem is generally not sta-
tic, where the storage of the workers can be adapted to reduce

the communication overhead in the next shuffle. We propose
in this work a structural invariant placement (SIP) mechanism,
where the storage of the workers is updated according to the
latest shuffle to maintain the structure. Furthermore, it was
shown in [38] that the index coding is a NP-hard problem, and
may require in the worst-case a rate of order O(K ), where K
is the number of workers. A pliable index coding approach
for data shuffling was assumed in [39], where a semi-random
shuffles were considered and was shown to achieve a rate
of order O(log2(K )). In this work however, we consider the
worst-case rate over all possible shuffles and show that even
for the minimum storage (side information at the workers),
a rate of order O( K−1

K ) can be achieved, which does not scale
with the number of workers for large values of K .
A recent work in [40] proposed a different coded shuffling

scheme based on interference alignment and index coding
approaches. The scheme in [40] uses our novel structural
invariant placement/update (SIP/SIU) and utilize more coding
opportunities. Interestingly, the new coded shuffling scheme
in [40] matches our information theoretically lower bound for
the worst-case shuffle under the constraint of uncoded cache
placement. Moreover, the authors of [40] showed that their
coded data shuffling scheme is optimal for any shuffle when
the number of files is equal to the number of workers. These
results shows that SIP is a key factor in building the coded
shuffling scheme.

B. Main Contributions of This Paper

In this paper, we focus on the coded data shuffling for
the wired master-worker setting, where coding opportunities
are created by exploiting the excess storage at the workers.
Before each learning epoch, the data is shuffled at the master
node for different training data assignments at each worker,
which causes the communication overhead. On one extreme,
when all the workers have enough storage to store the whole
data set, then no communication is needed for any random
shuffle. On the other hand, when the storage is just enough
to store the assigned data, which we also refer to as the no
excess storage case, then the communication is expected to
be maximal. Thus, we aim to characterize the fundamental
information-theoretic trade-off between the communication
overhead due to random shuffling and the available storage
at the distributed workers. As a first step towards understand-
ing the fundamental limits of this trade-off for any random
shuffle, we focus our attention in this paper on characterizing
the optimal trade-off for the worst-case among all shuffles.
While it is clear that the average-case rate trade-off will be
superior to the worst-case scenario, it is noteworthy that even
in the worst-case scenario, there are significant gains from
coded data shuffling. Moreover, we show simulations of the
performance of our proposed shuffling scheme averaged over
random shuffles compared to the state-of-the-art schemes. The
contributions of this paper are summarized next:
• We first derive an information theoretic lower bound on
the worst-case communication overhead for the data shuffling
problem. We start by obtaining a family of lower bounds on
the rate of some chosen shuffles. Since the rate of any shuffle
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is at most as large as the worst-case shuffle, the obtained lower
bounds serve as valid lower bounds for the worst-case rate as
well. We then average out all the lower bounds we get using
the chosen shuffles. The key step here is choosing the shuffles
which lead to the best lower bound on the communication
overhead as a function of the storage. In particular, we consider
a set of cyclic shuffles with no overlap between the assigned
data batch to any worker in the two subsequent shuffles. Based
on a novel bounding methodology similar to the recent results
in the caching literature [41] and [42], we are able to express
the lower bound as a linear program (LP). We then solve the
LP to obtain the best lower bounds on the communication
overhead for different regimes of storage.
• Next, we introduce our achievable scheme based on a
placement/update procedure that maintains the structure of the
storage, which we refer to as “the structural invariant place-
ment and update (SIP/SIU)”. The storage placement is inspired
by the latest development in the caching literature [43], [44],
where we partition the data points across dimensions, which
allows each worker to store at least some parts of each data
point. Through a careful novel storage update, the structure of
the storage can be maintained over time. This allows for apply-
ing a data delivery mechanism for any arbitrary shuffle similar
to [43], which approaches the optimal communication-storage
trade-off in the worst-case (based on the obtained lower
bound) within a vanishing gap ratio of K

K−1 as the number of
distributed workers K increases. It is noteworthy to mention
that the storage update mechanism for coded shuffling bears
similarities to the process of cache update in online coded
caching [44], where the users update their storage according to
the change in the popularity pattern. These two cache/storage
updates, however, serve different purposes, although the ulti-
mate goal of both update mechanisms is to provide more
coding opportunities. In online coded caching, the users update
their storage to satisfy the change in the popularity pattern,
while our proposed structural invariant update is done to
maintain the global structure of the storage across all workers
in order to satisfy the data delivery for any subsequent data
shuffles.
• Furthermore, we introduce new ideas on how to fully
characterize the optimal worst-case communication overhead.
We show that by considering more sophisticated interference
alignment mechanisms, we can force the interference seen
by each worker to occupy the minimum possible dimensions.
We refer to this procedure as the “Aligned Coded Shuffling”
scheme. This scheme also involves a different SIP mechanism
of the storage, which we refer to in this paper as the modified
structural invariant placement or (modified SIP). The modified
SIP mechanism is based on data partitioning and relabeling of
the data parts over time. Following these ideas, we can close
the gap between the obtained bounds for some storage values,
which closes the gap for K < 5, and brings the maximum gap

ratio down to
K− 1

3
K−1 , for K ≥ 5.

• Finally, we conduct some numerical simulations to com-
pare the average performance of our proposed scheme with the
random placement scheme in [20]. In our simulations, we do
not use the Aligned Coded Shuffling scheme since it is not

generalized for any number of workers K . The experimental
results show that our scheme outperform the probabilistic
scheme in [20] for large storage values with much lower
computational complexity. Furthermore, we show the power
of our novel modifed SIP mechanism proposed in this paper
compared to the random placement in [20]. In our simulations,
we use the recent coded shuffling scheme proposed in [40]
based on modified SIP for the special case when the number of
workers equals to the number of data-points, since the scheme
is not generalized yet. The experimental results show that the
new coded shuffling scheme in [40] based on modified SIP
outperforms the probabilistic scheme in [20] for any value of
storage.

C. Notation

The notation [n1 : n2] for n1 < n2, and n1, n2 ∈ N

represents the set of all integers between n1, and n2,
i.e., [n1 : n2] = {n1, n1 + 1, . . . , n2}. The combination coeffi-
cient

(n
k

) = n!
(n−k)!k! equals zero for k > n, or k < 0. In order

to describe subsets of ordered sets, we use the subscript to give
the indexes of the elements being chosen from the set, e.g., for
the ordered set π = (π1 . . . , πn), π[1:4] = (π1, π2, π3, π4).
We denote Random Variables (RVs) by capital letters, ordered
sets of RVs by capital bold letters, and sets of data points/sub-
points by calligraphy letters. The set in the subscript of a set
of ordered RVs is used for short notation of a subset of the
set of RVs, e.g., for a set of RVs Z = {Z1, . . . , Zn}, we use
ZW to denote the set {Zi}i∈W .

II. SYSTEM MODEL

We assume a master node which has access to the entire
data-set A = {D1, D2, . . . , DN } of size Nd bits, i.e., A is
a set containing N data points, denoted by D1, D2, . . . , DN ,
where d is the dimensionality of each data point. Treating the
data points Dn as i.i.d. random variables, we therefore have
the entropies of these random variables as

H (A) = N × H (Dn) = Nd, ∀n ∈ [1 : N], (1)

where H (.) is the entropy function. Table I summarizes the
notation used in this paper to denote subsets of the data-set A:
At each iteration, indexed by t , the master node

divides the data-set A into K data batches given as
At (1),At (2), . . . ,At (K ), where At (k) denotes the data par-
tition designated to be processed by worker wk at time t , and
these batches correspond to the random permutation of the
data-set, π t : A → (At (1), . . . ,At (K )). Note that these data
batches are disjoint, and span the whole data-set, i.e.,

At (i) ∩ At ( j) = φ, ∀i �= j, (2a)

At (1) ∪ At (2) ∪ . . . ∪ At (K ) = A, ∀t . (2b)

Hence, the entropy of any batch At (k) is given as

H (At(k)) = 1

K
H (A) = N

K
d, ∀k ∈ [1 : K ]. (3)

After getting the data batch, each worker locally computes
a function (as an example, this function could correspond to
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TABLE I

SUMMARY OF DATA SUBSET NOTATION

the gradient or sub-gradients of the data points assigned to the
worker). The local functions from the K workers are processed
subsequently at the master node. We assume that each worker
wk has a storage Zt

k of size Sd bits, for a real number S, which
is used to store some function of the data-set. Therefore, if we
consider Zt

k as a random variable then,

H (Zt
k|A) = 0, ∀k ∈ [1 : K ]. (4)

For processing purposes, the assigned data blocks are needed
to be stored by the workers, therefore, each worker wk must
at least store the data block At (k) at time t , which gives the
storage constraint as

H (Zt
k) = Sd ≥ H (At(k)), ∀k ∈ [1 : K ]. (5)

According to (3) and (5), we get the minimum storage per
worker S ≥ N

K . We also have the processing constraint as

H (At(k)|Zt
k) = 0, ∀k ∈ [1 : K ], (6)

which means At (k) is a deterministic function of the
storage Zt

k .
In the next epoch t + 1, the data-set is randomly reshuffled

at the master node according to a random permutation π t+1 :
A → (At+1(1),At+1(2), . . . ,At+1(K )), which also satisfies
the properties in (2). The main communication bottleneck
occurs during Data Delivery since the master node needs to
communicate the new data batches to the workers. Trivially,
if the storage (per worker) exceeds Nd bits, i.e., S ≥ N , then
each worker can store the whole data-set, and no communica-
tion has to be done between the master node and the workers
for any shuffle. Therefore from the constraint on minimum
storage per worker, we can write the possible range for storage
as N

K ≤ S ≤ N .
We next proceed to describe the data delivery mechanism,

and the associated encoding and decoding functions. The main
process can be divided into two phases, namely the data
delivery phase and the storage update phase as described next:

A. Data Delivery Phase

At time t + 1, the master node sends a function of
the data batches for the subsequent shuffles (πt , πt+1),

Xπt ,πt+1 = φ(At (1), . . . ,At (K ),At+1(1), . . . ,At+1(K )) =
φπt ,πt+1(A) over the shared link, where φ is the data delivery
encoding function,

φπt ,πt+1 :
[
2

N
K d
]2K → [2Rπt ,πt+1d ], (7)

where Rπt ,πt+1 is the rate of the shared link based on the
shuffles (πt , πt+1). Therefore, we have

H
(
Xπt ,πt+1 |A

) = 0, H
(
Xπt ,πt+1

) = Rπt ,πt+1d, (8)

which means that Xπt ,πt+1 is a deterministic function of the
whole data-set A.
Each worker wk should reliably decode the desired batch

At+1(k) out of the transmitted function Xπt ,πt+1 , as well as
the data stored in the previous time slot Zt

k , i.e., At+1(k) =
ψ(Xπt ,πt+1, Z

t
k), where ψ is the decoding function at the

workers,

ψπt ,πt+1 : [2Rπt ,πt+1d ] × [2Sd] → [2 N
K d ]. (9)

Therefore, for reliable decoding, we have the following decod-
ability constraint at each worker:

H
(
At+1(k)|Zt

k, Xπt ,πt+1

)
= 0, ∀k ∈ {1, . . . , K }. (10)

B. Storage Update Phase

At the next iteration t + 1, every worker updates its stored
content according to the placement strategy, where the new
storage content for worker wk is given by Zt+1

k , which is a
function of the old storage content Zt

k as well as transmitted
function Xπt ,πt+1 , i.e., Z

t+1
k = μ(Xπt ,πt+1, Z

t
k), where μ is the

update function

μπt ,πt+1 : [2Rπt ,πt+1d ] × [2Sd] → [2Sd], (11)

Therefore, we have the following storage-update constraint:

H (Zt+1
k |Zt

k, Xπt ,πt+1) = 0, ∀k ∈ {1, . . . , K }. (12)
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The excess storage after storing At+1(k) in Zt+1
k , given

by
(
S − N

K

)
d bits, can be used to store opportunistically a

function of the remaining K −1 data batches. For the scope of
this work, we assume that the placement of the excess storage
is uncoded, which means that the excess storage is dedicated
to store uncoded functions of the remaining K − 1 batches.
We give the notation At+1(i, k), where i �= k, as the part of
data that worker wk stores about At+1(i) in the excess storage
at time t + 1. As a result, we can write the content of Zt+1

k
for uncoded storage placement as

Zt+1
k =

{
At+1(k), ∪

j∈[1:K ]\kA
t+1( j, k)

}
. (13)

Furthermore, we assume a generic placement strategy for the
excess storage as follows: the batch At+1(i) consists of 2K−1

partitions, denoted as At+1
W (i), W ∈ 2[1:K ]\i , where 2[1:K ]\i

is the power set of all possible subsets of the set [1 : K ] \ i
including the empty set. The worker wk , for k �= i , stores
the partition At+1

W (i) in the excess storage, only if k ∈ W .
Therefore, the sub-batches At+1(i), and At+1(i, k) can be
expressed as

At+1(i) = ∪
W⊆[1:K ]\i

At+1
W (i),

At+1(i, k) = ∪
W⊆[1:K ]\i: k∈W

At+1
W (i). (14)

Let us consider At+1
W (i) as a random variable with entropy

H (At+1
W (i)) = |At+1

W (i)|d , and size |At+1
W (i)| normalized by

the data point size d . Therefore, the following two constraints
are obtained:
• Data size constraint: The first constraint is related to the
total size of the data given by Nd bits,

N = 1

d
H (A) = 1

d

K∑
i=1

H (At+1(i))

(a)= 1

d

K∑
i=1

∑
W⊆[1:K ]\i

H (At+1
W (i))

=
K∑

�=1

K∑
i=1

∑
W⊆[1:K ]\i: |W |=�

|At+1
W (i)| =

K∑
�=1

x�, (15)

where (a) follows from (14), and x� ≥ 0 is defined as

x�
�=

K∑
i=1

∑
W⊆[1:K ]\i: |W |=�

|At
W (i)|, � ∈ [0 : K − 1]. (16)

• Excess storage size constraint: The second constraint is
related to the total excess storage of all the workers, which
cannot exceed K

(
S − N

K

)
d bits,

K

(
S − N

K

)
≥ 1

d

K∑
i=1

∑
k∈[1:K ]\i

H
(
At+1(i, k)

)

(a)=
K∑
i=1

∑
k∈[1:K ]\i

∑
W⊆[1:K ]\i: k∈W

|At+1
W (i)|

(b)=
K∑
i=1

∑
W⊆[1:K ]\i

|W| |At+1
W (i)|

=
K∑

�=1

�

K∑
i=1

∑
W⊆[1:K ]\i: |W |=t |

|At+1
W (i)| (c)=

K∑
�=1

�x�, (17)

where (a) follows from (14), (b) is true because when we
sum up the contents of the excess storage at all the workers,
the chunk At+1

W (i) is counted |W| number of times, which
is the number of workers storing this chunk, and (c) follows
from (16).
A data shuffling scheme is characterized by the data

delivery encoding function φπt ,πt+1 , decoding function
ψπt ,πt+1 , and storage update function μπt ,πt+1 defined
in (7), (9), and (11), respectively. Note that the functions
(φπt ,πt+1, ψπt ,πt+1, μπt ,πt+1) depend on the shuffle (πt , πt+1).
For ease of notation, we drop (πt , πt+1) in the following
discussion. We next define the worst-case communication as
follows:
Definition 1 (Worst-Case Communication): For any

achievable scheme characterized by the encoding, decoding,
and cache update functions (φ,ψ,μ), the worst-case
communication overhead over all possible consecutive data
shuffles (πt , πt+1) is defined as

R(φ,ψ,μ)
worst-case(S)

�= max
(πt ,πt+1)

R(φ,ψ,μ)
(πt ,πt+1)

(S). (18)

Our goal in this work is to characterize the optimal
worst-case communication R∗

worst-case(K , N, S) defined as

R∗
worst-case(S)

�= min
(φ,ψ,μ)

R(φ,ψ,μ)
worst-case(S). (19)

We next present a claim which shows that the optimal
worst-case communication R∗

worst-case(S) is a convex function
of the storage S:
Claim 1: R∗

worst-case(S) is a convex function of S, where S
is the available storage at each worker.
Proof: Claim 1 follows from a simple memory sharing argu-
ment which shows that for any two available storage values
S1 and S2, if (S1, R∗

worst-case(S1)), and (S2, R∗
worst-case(S2))

are achievable optimal schemes, then for any storage S̄ =
αS1 + (1−α)S2, 0 ≤ α ≤ 1, there is a scheme which achieves
a communication overhead of R̄(S̄) = αR∗

worst-case(S1) +
(1 − α)R∗

worst-case(S2).
This is done as follows: first, we divide the data-set A

across d dimensions into 2 batches namely; A(α), and A(1−α)

of dimensions αd , and (1 − α)d , for each point respectively.
Then, we divide the storage for every worker wk into 2 parts
namely; Z (α)

k , and Z (1−α)
k of size S1αd , and S2(1 − α)d ,

respectively. The former batch A(α) will be shuffled among
the former part of the storage Z (α)

k to achieve the point
(S1, R∗

worst-case(S1)), while the latter batch A(1−α) will be
shuffled among the latter part of the storage Z (1−α)

k to achieve
the point (S2, R∗

worst-case(S2)). Therefore, the total achievable
load is given by

H (X) = R∗
worst-case(S1)αd + R∗

worst-case(S2)(1 − α)d

= R̄(S̄)d. (20)
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We next note that the optimal communication rate
R∗
worst-case(S̄) is upper bounded by R̄(S̄), the rate of the

memory sharing scheme, i.e.,

R∗
worst-case(αS1 + (1 − α)S2)

≤ αR∗
worst-case(S1) + (1 − α)R∗

worst-case(S2), (21)

which shows that R∗
worst-case(S) is a convex function of S. �

III. MAIN RESULTS AND DISCUSSIONS

A. Theorem 1: Achievablitiy in the Worst-Case

The first theorem presents an achievable worst-case rate
Rworst-case, which also yields an upper bound on the optimal
storage-rate trade-off R∗

worst-case.
Theorem 1: For a data-set containing N ∈ N data points,

and a set of K ∈ N distributed workers, the lower convex
envelope of the following K+1 storage-rate pairs is achievable
for all i ∈ [0 : K ]:(

S =
(
1 + i

K − 1

K

)
N

K
, Rupper

worst-case = N(K − i)

K (i + 1)

)
. (22)

The proof of Theorem 1 is presented in Appendix I. We
present an encoding, decoding, and cache update scheme,
which achieves the above rate-storage pairs. One of the crucial
steps in the proof is the structural invariant placement and
update (SIP/SIU) of the storage of the workers over time. The
storage placement involves partitioning the data points across
dimensions, which allows each worker to store at least some
parts of each data point, which in turns introduces a local
storage gain for any potential data assignment. In order to
increase the global gain through increasing the coding oppor-
tunities, we minimize the overlap between the parts stored
by each worker of each data point. Through a careful novel
update of storage across time, the structure can be maintained
for any random data assignment, which allows applying a
coded data delivery mechanism to reduce the communication
overhead. Now, we give the following illustrative example
for K = N = 4 to introduce the main elements of the
achievability proof.
1) Example 1: Achievability for N = 4 and K = 4:

Consider the case of K = 4 workers, and N = 4 i.i.d. data
points, labeled as {D1, D2, D3, D4}. According to Theorem 1,
the achievable worst-case storage-rate trade-off is given by
the lower convex envelope of the 5 storage-rate pairs (S =
3i/4 + 1, R = (4 − i)/(i + 1)) for i ∈ [0 : 4], which is also
shown by the red dashed curve in Figure 1.
From Claim 1, once we achieve these pairs, the lower con-

vex envelope is also achievable by memory sharing. At time t ,
we consider the data is assigned according to the shuffle
πt = (1, 2, 3, 4), e.g., w1 is assigned the data point D1,
i.e., At (1) = D1. At time t +1, we consider the cyclic shuffle
πt+1 = (2, 3, 4, 1), e.g., w1 is assigned the data point D2 at
time t + 1, i.e., At+1(1) = D2. Once we achieve the rate
for the shuffle πt+1 = (2, 3, 4, 1), a similar data delivery
mechanism can be used for any πt+1 ∈ [4!], where [4!] is the
set containing all the 4! possible permutations of the set [1 : 4].
The achievability, according to (πt , πt+1), for the storage value
S = 3i/4 + 1 and i ∈ [0 : 4] follows next.

Fig. 1. The lower bound and the upper bound on the worst-case rate
R∗
worst-case for N = 4, and K = 4 versus the amount of storage S. The

maximum gap appears to be when S = 1, which is given as a ratio 4/3.

• Case i = 0 (S = 1):
This storage value represents the no-excess storage case,

where every worker only stores the assigned data point under
processing. To satisfy the new assignment at time t + 1,
we choose now to send the 4 data points, which satisfies any
shuffle at time t + 1, achieving the pair (S = 1, R = 4).
Later in Appendix IV, we will show how to improve this rate
and prove that in fact (S = 1, R = 3) is optimal. The storage
update is trivial in this case, where every worker keeps the new
assigned data point and discard the remaining three points.
• Case i = 1 (S = 7/4):
Storage Placement: The storage placement for i = 1 is

shown in Figure 2a. First, every data point is partitioned into
4 sub-points of size d/4 bits each, where every sub-point is
labeled by a unique subset W ⊆ [1 : 4] of size |W| = 1. For
instance, the data point D1 is partitioned as follows:

D1 = {D1,{1}, D1,{2}, D1,{3}, D1,{4}}. (23)

Every worker first fully stores the assigned data point. For the
excess storage, every worker wk stores from the remaining
points, not being processed, the sub-points where k ∈ W . For
instance, w1 stores 1 sub-point of D2, labeled as At (2, 1) =
{D2,{1}}. To summarize, each worker stores the assigned data
point of size d , and for each one of the remaining 3 data
points, it stores 1 sub-point of size d/4. That is, the storage
requirement is given by S =1+3×1/4 = 7/4, which satisfies
the storage constraint for i = 1 (S = 7/4).
Data Delivery: According to the storage placement at time t

in Figure 2a, at time t + 1 every worker needs 3 sub-points
of the assigned data point, and every sub-point is available
at least in one of the remaining workers, e.g., w1 needs the
sub-points {D2,{2}, D2,{3}, D2,{4}}. Now, if we pick any 2 out
of the 4 workers, then each one of the 2 workers needs a
sub-point available at the other worker. Therefore, we can send
an “order 2” symbol, of size d/4 bits, useful for these chosen
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Fig. 2. Structural invariant storage placement (SIP), (a), and update, (b), for K = 4 workers, N = 4 data points, and i = 1 (S = 7/4). Every data point is
partitioned into 4 sub-points each labeled by a unique subset of the set [1 : 4] of length 1. Above the dotted line is the data point fully stored for processing,
and below the dotted line is the excess storage used to store the sub-points containing the worker’s index.

two workers in the same time, and for all possible choices of
2 out of the 4 workers we send the following

(4
2

) = 6 coded
symbols which satisfies the required 3 needed sub-points for
the 4 workers:

Xπt ,πt+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

D2,{2} ⊕ D3,{1}, useful for w1, w2,

D2,{3} ⊕ D4,{1}, useful for w1, w3,

D2,{4} ⊕ D1,{1}, useful for w1, w4,

D3,{3} ⊕ D4,{2}, useful for w2, w3,

D3,{4} ⊕ D1,{2}, useful for w2, w4,

D4,{4} ⊕ D1,{3}, useful for w3, w4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (24)

The rate of this transmission is
(4
2

)
/4 = 3/2, and the pair

(S = 7/4, R = 3/2) is achieved.
Storage Update: At time t + 1, the storage update follows

from Figure 2b. In order to maintain the structure of the
storage, the workers first store the data points newly assigned
and acquired from the delivery phase. For the excess storage
update, each worker wk keeps from the data point previously
assigned at time t the sub-points which are labeled by a set
W where k ∈ W . For example, w1 keeps from At (1) =
At+1(4) = D1 the sub-point At+1(4, 1) = {D1,{1}}.
• Case i = 2 (S = 5/2):
Storage Placement: The storage placement for i = 2 is

shown in Figure 3a. First, every data point is partitioned into
6 sub-points of size d/6 bits each, where every sub-point is
labeled by a unique subset W ⊆ [1 : 4] of size |W| = 2. For
instance, the data point D1 is partitioned as follows:

D1 = {D1,{1,2}, D1,{1,3}, D1,{1,4}, D1,{2,3},
D1,{2,4}, D1,{3,4}}. (25)

Every worker first fully stores the assigned data point. For the
excess storage, every worker wk stores from the remaining
points, not being processed, the sub-points where k ∈ W .

For instance, w1 stores 3 sub-point of D2, labeled as
At (2, 1) = {D2,{1,2}, D2,{1,3}, D2,{1,4}}. To summarize, each
worker stores the assigned data point of size d , and for each
one of the remaining 3 data points, it stores 3 sub-point of
size d/6 each. That is, the storage requirement is given by
S =1+3×3×1/6 = 5/2, which satisfies the storage constraint
for i = 2 (S = 5/2).
Data Delivery: According to the storage placement at time t

in Figure 3a, at time t + 1 every worker needs 3 sub-points
of the assigned data point, and every sub-point is available
at least in two of the remaining workers, e.g., w1 needs the
sub-points {D2,{2,3}, D2,{2,4}, D2,{3,4}}. Now, if we pick any 3
out of the 4 workers, then every one of the 3 workers needs a
sub-point available at the other 2 workers. Therefore, we can
send an order 3 symbol, of size d/6 bits, useful for these
chosen workers in the same time, and for all possible choices
of 3 out of the 4 workers we send the following

(4
3

) = 4 coded
symbols which satisfies the required 3 needed sub-points for
the 4 workers:
Xπt ,πt+1 =⎧⎪⎪⎪⎨
⎪⎪⎪⎩
D2,{2,3} ⊕ D3,{1,3} ⊕ D4,{1,2}, useful for w1, w2, w3,

D2,{2,4} ⊕ D3,{1,4} ⊕ D1,{1,2}, useful for w1, w2, w4,

D2,{3,4} ⊕ D4,{1,4} ⊕ D1,{1,3}, useful for w1, w3, w4,

D3,{3,4} ⊕ D4,{2,4} ⊕ D1,{2,3}, useful for w2, w3, w4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

The rate of this transmission is
(4
3

)
/
(4
2

) = 2/3, and the pair
(S = 5/2, R = 2/3) is achieved.
Storage Update: At time t + 1, the storage update fol-

lows from Figure 3b. In order to maintain the structure of
the storage, the workers first store the data points newly
assigned and acquired from the delivery phase. For the
excess storage update, each worker wk keeps from the data
point previously assigned at time t the sub-points which are
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Fig. 3. Structural invariant storage placement (SIP), (a), and update, (b), for K = 4 workers, N = 4 data points, and i = 2 (S = 5/2). Every data point is
partitioned into 6 sub-points each labeled by a unique subset of the set [1 : 4] of length 2. Above the dotted line is the data point fully stored for processing,
and below the dotted line is the excess storage used to store the sub-points containing the worker’s index.

labeled by a set W where k ∈ W . For example, w1 keeps
from At (1) = At+1(4) = D1 the sub-point At+1(4, 1) =
{D1,{1,2}, D1,{1,3}, D1,{1,4}}.
• Case i = 3 (S = 13/4):
Storage Placement: The storage placement for i = 3 is

shown in Figure 4a. First, every data point is partitioned into
4 sub-points of size d/4 bits each, where every sub-point is
labeled by a unique subset W ⊆ [1 : 4] of size |W| = 3. For
instance, the data point D1 is partitioned as follows:

D1 = {D1,{1,2,3}, D1,{1,2,4}, D1,{1,3,4}, D1,{2,3,4}}. (26)

Every worker first fully stores the assigned data point. For the
excess storage, every worker wk stores from the remaining
points, not being processed, the sub-points where k ∈ W . For
instance, w1 stores 3 sub-point of D2, labeled as At (2, 1) =
{D2,{1,2,3}, D2,{2,2,4}, D2,{1,3,4}}. To summarize, each worker
stores the assigned data point of size d , and for each one of
the remaining 3 data points, it stores 3 sub-point of size d/4
each. That is, the storage requirement is given by S =1+3 ×
3×1/4 = 13/4, which satisfies the storage constraint for i = 3
(S = 13/4).
Data Delivery: According to the storage placement at time t

in Figure 4a, at time t + 1 every worker only needs one
sub-point of the assigned data point which is available at the
three remaining workers, e.g., w1 needs D2,{2,3,4} which is
available at the workers w2, w3, and w4. Therefore, we can
send the following order 4 symbol useful for all the 4 workers

at the same time:
Xπt ,πt+1 =
{D2,{2,3,4} ⊕ D3,{1,3,4} ⊕ D4,{1,2,4} ⊕ D1,{1,2,3}}. (27)

Since the the size of each sub-point is d/4, the rate of
the transmission is

(4
4

)
/4 = 1/4 and hence the pair (S =

13/4, R = 1/4) is achieved.
Storage Update: At time t + 1, the storage update fol-

lows from Figure 4b. In order to maintain the structure of
the storage, the workers first store the data points newly
assigned and acquired from the delivery phase. For the
excess storage update, each worker wk keeps from the data
point previously assigned at time t the sub-points which are
labeled by a set W where k ∈ W . For example, w1 keeps
from At (1) = At+1(4) = D1 the sub-point At+1(4, 1) =
{D1,{1,2,3}, D1,{2,2,4}, D1,{1,3,4}}.
• Case i = 4 (S = 4): This case is trivial where every worker
can store all the 4 data points and hence no communication
is needed for any shuffle. Therefore, the pair (S = 4, R = 0)
is achieved.

B. Theorem 2: Lower Bounds on the
Optimal Worst-Case Rate

We next present our second main result in Theorem 2, which
gives an information theoretic lower bound on the optimal
worst-case rate.
Theorem 2: For a data-set containing N ∈ N data points,

and a set of K ∈ N distributed workers, a lower bound
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Fig. 4. Structural invariant storage placement (SIP), (a), and update, (b), for K = 4 workers, N = 4 data points, and i = 3 (S = 13/4). Every data point is
partitioned into 4 sub-points each labeled by a unique subset of the set [1 : 4] of length 3. Above the dotted line is the data point fully stored for processing,
and below the dotted line is the excess storage used to store the sub-points containing the worker’s index.

on R∗
worst-case is given by the lower convex envelope of the

following K storage-rate pairs:(
S = m

N

K
, Rlower

worst-case = N(K − m)

Km

)
, ∀m ∈ [1 : K ]. (28)

The complete proof of Theorem 2 can be found in Appendix II.
Remark 1 (Basic idea for the lower bound): A lower

bound on the optimal rate R∗
πt ,πt+1

of a shuffle (πt , πt+1)
serves also as a lower bound on the worst-case since the
optimal worst-case rate is larger than the optimal rate for any
shuffle, i.e., R∗

worst-case ≥ R∗
πt ,πt+1

. Therefore, we get lower
bounds over R∗

worst-case by focusing on a sequence of shuffles,
and then average out all the lower bounds. The novel part in
our proof is to carefully choose the right shuffles which lead
to the best lower bound.
In our converse proof, we apply a novel bounding method-
ology similar to the recent result in [41], [42], where the
optimal uncoded cache placement problem for a file delivery
system is considered. In this paper however, we consider the
data delivery based on subsequent assignments according to
random shuffles of the data. Our problem also requires storing
the data under processing, and allows for storage update over
time as opposed to [41], [42]. At the end, we arrive at a linear
program subject to the problem constraints (data size and
storage constraints), which can be solved to obtain the best
lower bounds over different regimes of the available storage.
In the following example, we show how to obtain the lower
bounds on the worst-case rate for the case of N = K = 4.
1) Example 2: Lower Bounds for N = 4 and K = 4:

Consider the case of K = 4 workers, and N = 4 i.i.d.
data points, labeled as {D1, D2, D3, D4}. Assume the 4 data

points are assigned at time t according to πt = (1, 2, 3, 4),
i.e., At (k) = Dk for k ∈ [1 : 4]. Therefore, at time t , the data
point Dk is fully stored at the cache of the worker wk , and
partially stored at the remaining workers, which gives the
storage content of the worker wk as follows:

Zt+1
k =

{
Dk, ∪

j∈[1:4]\kD j (k)

}
, (29)

where Dj (k) is the part of Dj stored in the excess storage of
worker wk at time t .
We start by considering the following shuffle (πt , πt+1): for

a permutation σ : (1, 2, 3, 4) → (σ1, σ2, σ3, σ4), the worker
wσk is assigned at time t + 1 the data point that was assigned
to the worker wσk−1 at time t , i.e., At+1(σk) = At (σk−1) =
Dσk−1 . Using the decodability constraint in (10), worker wσk
must be able to decode At+1(σk) = Dσk−1 using its own cache
Zt

σk
as well as the transmission X(πt ,πt+1) which gives the

following condition:

H (At+1(σk)|Zt
σk

, X(πt ,πt+1))

= H (Dσk−1 |Zt
σk

, X(πt ,πt+1)) = 0, ∀k ∈ [1 : 4]. (30)

Furthermore, from (6), each worker should store the assigned
data point at time t , therefore,

H (At(σk)|Zt
σk

) = H (Dσk |Zt
σk

) = 0, ∀k ∈ [1 : 4]. (31)

Note that the conditions (30) and (31) fully characterize the
shuffle (πt , πt+1). Consequently, the transmission Xπt ,πt+1 as
well as the cache of any three workers can decode the 4 data
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points, which can be shown as follows:
H (A|Zt

σ[2:4], X(πt ,πt+1))

= H (D1, D2, D3, D4|Zt
σ[2:4], X(πt ,πt+1))

= H (Dσ1, Dσ2 , Dσ3 , Dσ4 |Zt
σ[2:4], X(πt ,πt+1))

(a)≤ H (Dσ1|Zt
σ2

, X(πt ,πt+1)) + H (Dσ2|Zt
σ2

)

+ H (Dσ3|Zt
σ3

) + H (Dσ4|Zt
σ4

)
(b)= 0, (32)

where (a) follows from the fact that H (A, B) ≤ H (A) +
H (B) and that conditioning reduces entropy, and (b) follows
directly using (30) and (31). Next, we obtain the following
bound using (32):

4d = H (A)

= I (A; Zt
σ[2:4], Xπt ,πt+1) + H (A|Zt

σ[2:4], Xπt ,πt+1)

(a)= I (A; Zt
σ[2:4], Xπt ,πt+1)

(b)= H (Zt
σ[2:4], Xπt ,πt+1)

(c)= H (Zt
σ4

, Xπt ,πt+1) + H (Zt
σ2

, Zt
σ3

|Zt
σ4

, Xπt ,πt+1)

≤ H (Xπt,πt+1) + H (Zt
σ4

) + H (Zt
σ3

|Zt
σ4

, Xπt ,πt+1)

+ H (Zt
σ2

|Zt
σ3

, Zt
σ4

, Xπt ,πt+1)

(d)≤ R∗
πt ,πt+1

d + H (Zt
σ4

) + H (Zt
σ3

|Zt
σ4

, Dσ3 , Dσ4)

+ H (Zt
σ2

|Zt
σ3

, Zt
σ4

, Dσ2 , Dσ3 , Dσ4), (33)

where (a) follows from (32), (b) follows from (4) and (8),
where Zt

σ[2:4] and Xπt ,πt+1 are deterministic functions of the
data-set A, (c) from the chain rule of entropy, (d) follows
from (30), (31), and because conditioning reduces entropy.
Using the uncoded storage contents in (29), where every

worker wk stores the assigned data point Dk plus separate
functions of all the remaining data points, i.e. Dj (k) for j ∈
[1 : K ] \ k, we can write the previous bound as follows

4d ≤ R∗
πt ,πt+1

d + H (Zt
σ4

) + H (Zt
σ3

|Zt
σ4

, Dσ3, Dσ4)

+ H (Zt
σ2

|Zt
σ3

, Zt
σ4

, Dσ2 , Dσ3 , Dσ4)

(a)= R∗
πt ,πt+1

d + H (Dσ4, Dσ1(σ4), Dσ2(σ4), Dσ3(σ4))

+ H (Dσ1(σ3), Dσ2(σ3)|Zt
σ4

) + H (Dσ1(σ2)|Zt
σ3

, Zt
σ4

)

(b)= R∗
πt ,πt+1

d + H (Dσ4, Dσ1(σ4), Dσ2(σ4), Dσ3(σ4))

+ H (Dσ1(σ3), Dσ2(σ3)|Dσ1(σ4), Dσ2(σ4))

+ H (Dσ1(σ2)|Dσ1(σ3), Dσ1(σ4))

= R∗
πt ,πt+1

d + H (Dσ4) + H (Dσ3(σ4))

+ [H (Dσ1(σ4)) + H (Dσ1(σ3)|Dσ1(σ4))

+ H (Dσ1(σ2)|Dσ1(σ3), Dσ1(σ4))]
+ [H (Dσ2(σ4)) + H (Dσ2(σ3)|Dσ2(σ4))]

(c)= R∗
πt ,πt+1

d + d + H (Dσ1(σ2, σ3, σ4))

+ H (Dσ2(σ3, σ4)) + H (Dσ3(σ4))

(d)≤ R∗
worst-cased + d + H (Dσ1(σ2, σ3, σ4))

+ H (Dσ2(σ3, σ4)) + H (Dσ3(σ4)), (34)

where (a) follows from the storage content at time t
given in (29), where after knowing {Dσ3, Dσ4} (or similarly
{Dσ2, Dσ3 , Dσ4}), the only parts left in Zt

σ3
(or Zt

σ2
) are

{Dσ1(σ3), Dσ2(σ3)} ({Dσ1(σ2)}), (b) follows since out of the
cache contents Zt

j , the data sub-point Dk(i) only depends on
the sub-point Dk( j), for any i �= j , (c) follows from the
chain rule of entropy where Di (W) is the part of Di stored
in the excess storage of all the workers whose indexes are
in the set W , and finally (d) follows from Remark 1 where
R∗
worst-case ≥ R∗

πt ,πt+1
for every shuffle (πt , πt+1).

Summing up over all possible 4! = 24 permutations of the
ordered set (1, 2, 3, 4), we arrive at the following bound,

R∗
worst-cased

≥ 3d − 1

24

∑
σ∈[4!]

[
H (Dσ1(σ2, σ3, σ4))

+H (Dσ2(σ3, σ4)) + H (Dσ3(σ4))
]

(a)= 3d − 1

24

∑
σ∈[4!]

[
H (Dσ1(σ2, σ3, σ4))

+H (Dσ1(σ2, σ3)) + H (Dσ1(σ2))
]
,
(35)

where [4!] is the set of all possible permutations of the ordered
set (1, 2, 3, 4), and (a) follows due to the symmetry in the
summation by simple change of summation indexes. Following
the definition in (14), we can define Dk,W as the part of Dk

stored exclusively in the excess storage of the workers whose
labels are in the set W . According to πt = (1, 2, 3, 4), at
time t , Dk,W is only defined for k �∈ W (wk does not store
Dk as excess storage). Therefore, at time t , we can express
the following entropies in terms of Dk,W as follows:

H (Dk) =
∑

W⊆[1:4]\k
|Dk,W |d, H (Dk( j))

=
∑

W⊆[1:4]\k
j∈W

|Dk,W |d, (36)

where |Dk,W | is entropy of the sub-point of Dk stored as
excess storage only in the set of workers W , i.e., Dk,W ,
normalized by the data point size d . In the summa-
tion term of (35), we only have parts of the data
points stored in the excess storage of 1, 2, or 3 work-
ers, i.e., {Dσ1(σ2, σ3, σ4), Dσ1(σ2, σ3), Dσ1(σ2)}. Therefore,
we obtain the term |Dk,W | only for |W| ∈ {1, 2, 3}. Next,
we show how to find the coefficients of |Dk,W | for different
sizes of W .
• Coefficient of |Dk,W | for |W| = 1: Due to symmetry,
we notice that obtaining the coefficient of |Dk,W | in the
summation in (35) for any |W| = 1; is equivalent to obtaining
the coefficient of |D1,{2}|. We get |D1,{2}| in the first term of
the summation, i.e., H (Dσ1(σ2, σ3, σ4)) only if σ1 = 1 which
is satisfied in 6 out of the 24 permutations. In the second term,
i.e., H (Dσ1(σ2, σ3)), we obtain |D1,{2}| only if σ1 = 1 and
σ4 �= 2 in total number of 4 permutations. In the third term,
i.e., H (Dσ1(σ2)), we obtain |D1,{2}| only if σ1 = 1 and σ2 = 2
in total number of 2 permutations. Therefore, the coefficient
of |D1,{2}|, hence any |Dk,W | for |W| = 1, is 6+4+2

24 = 1
2 .• Coefficient of |Dk,W | for |W| = 2: Similarly, we obtain

the coefficient of |Dk,W | for any |W| = 2 by obtaining the
coefficient of |D1,{2,3}|. We get |D1,{2,3}| in the first two terms
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of the summation only if σ1 = 1 which is satisfied in 6 out of
the 24 permutations. In the third term, we obtain |D1,{2,3}| only
if σ1 = 1 and σ2 ∈ {2, 3} in total number of 4 permutations.
Therefore, the coefficient of |D1,{2,3}|, hence any |Dk,W | for
|W| = 2, is 6+6+4

24 = 2
3 .• Coefficient of |Dk,W | for |W| = 3: We obtain the

coefficient of |Dk,W | for any |W| = 3 by obtaining the
coefficient of |D1,{2,3,4}|. We get |D1,{2,3,4}| in the first three
terms of the summation only if σ1 = 1 which is satisfied
in 6 out of the 24 permutations. Therefore, the coefficient of
|D1,{2,3,4}|, hence any |Dk,W | for |W| = 3, is 6+6+6

24 = 3
4 .

Therefore, we can simplify the bound in (35) as follows:

R∗
worst-cased ≥ 3d − 1

2

4∑
k=1

∑
W⊆[1:K ]\k

|W |=1

|Dk,W |d

− 2

3

4∑
i=1

∑
W⊆[1:K ]\k

|W |=2

|Dk,W |d − 3

4

4∑
k=1

∑
W⊆[1:K ]\k

|W |=3

|Dk,W |d

= 3d − x1d

2
− 2x2d

3
− 3x3d

4
, (37)

where x� for � ∈ [0 : 3] is defined similar to (16) as x� =∑K
k=1

∑
W⊆[1:4]\k: |W |=� |Dk,W |. By dividing both sides by d ,

we get the following bound:

R∗
worst-case ≥ 3 − x1

2
− 2x2

3
− 3x3

4
. (38)

Moreover, the data size and the excess storage size constraints
for this example follow (15) and (17), respectively. Hence,
we obtain the following constraints:

x0 + x1 + x2 + x3 = 4, (39)

x1 + 2x2 + 3x3 ≤ 4(S − 1). (40)

We get the first bound on R∗
worst-case by eliminating x1

from (38) using the bound in (40) as follows:

R∗
worst-case ≥ 3 − x1

2
− 2x2

3
− 3x3

4

≥ 3 − 1

2
(4(S − 1) − 2x2 − 3x3) − 2x2

3
− 3x3

4

= 5 − 2S + x2
3

+ 3x3
4

(a)≥ 5 − 2S, (41)

where (a) follows since x2, x3 ≥ 0.
We get the second bound on R∗

worst-case in two steps. First,
we eliminate x1 from (38) and (40) using (39) to get the
following two bounds:

R∗
worst-case ≥ 3 − 1

2
(4 − x0 − x2 − x3) − 2x2

3
− 3x3

4

= 1 + x0
2

− x2
6

− x3
4

, (42)

4(S − 1) ≥ (4 − x0 − x2 − x3) + 2x2 + 3x3
= 4 − x0 + x2 + 2x3. (43)

We eliminate x2 from (42) using the bound in (43) to obtain

R∗
worst-case ≥ 1 + x0

2
− x2

6
− x3

4

≥ 1 + x0
2

− 1

6
(4(S − 1) − 4 + x0 − 2x3) − x3

4

= 7

3
− 2S

3
+ x0

3
+ x3

12

(a)≥ 7 − 2S

3
, (44)

where (a) follows since x0, x3 ≥ 0.
Following similar steps, we get a third bound on R∗

worst-case
by first eliminating x2 from (38) and (40) using (39) to get
the following two bounds:

R∗
worst-case ≥ 3 − x1

2
− 2

3
(4 − x0 − x1 − x3) − 3x3

4

= 1

3
+ 2x0

3
+ x1

6
− x3

12
, (45)

4(S − 1) ≥ x1 + 2 (4 − x0 − x1 − x3) + 3x3
= 8 − 2x0 − x+x3. (46)

We eliminate x3 from (45) using the bound in (46) and arrive
to

R∗
worst-case ≥ 1

3
+ 2x0

3
+ x1

6
− x3

12
≥ 1

3
+ 2x0

3
+ x1

6

− 1

12
(4(S − 1) − 8 + 2x0 + x1)

= 4

3
− S

3
+ 5x0

6
+ x1

12

(a)≥ 4 − S

3
, (47)

where (a) follows since x0, x1 ≥ 0.
In summary, we obtain in (41), (44), and (47) the following

bounds on R∗
worst-case:

R∗
worst-case ≥ 5 − 2S, R∗

worst-case ≥ 7 − 2S

3
,

R∗
worst-case ≥ 4 − S

3
. (48)

The intersection of the three bounds is the lower convex hull
of the 4 storage-rate pairs, (S = m, R = 4−m

m ) for m ∈ [1 : 4],
which is the obtained lower bound on R∗

worst-case given by the
blue curve in Figure 1, satisfying Theorem 2 for K = N = 4.

C. Theorem 3: Gap Between the Bounds in Theorems 1 and 2

In our next result, we compare the upper and lower bounds
in Theorems 1 and 2, respectively, and show that they are
within a constant multiplication gap of each other.
Theorem 3: For a data-set containing N ∈ N data points,

and a set of K ∈ N distributed workers, the gap ratio
between the upper and the lower bounds on R∗

worst-case given
by Theorems 1, and 2, respectively, is bounded as follows:

Rupper
worst-case

Rlower
worst-case

≤ K

K − 1
≤ 2. (49)

The formal proof for the maximum gap analysis for any
value of K and N can be found in Appendix III. This Theo-
rem shows that there is a vanishing gap between the bounds as
the number of workers K increases, i.e., limK→∞

( K
K−1

) = 1.
We also show that for the discrete set of storage points
considered in Theorem 1, i.e., S = (

1 + i K−1
K

) N
K for i ∈

[1 : K ], our achievable scheme is in fact optimal, and that
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the gap only results in the values of storage in between,
i.e., memory sharing is not optimal in this case. For example,
consider the bounds on R∗

worst-case for K = N = 4 shown
in Figure 1. We first notice that the achieved storage-rate
pairs (S = 7/4, R = 3/2), (S = 5/2, R = 2/3), and
(S = 13/4, R = 1/4) are optimal. Furthermore, we can show
that the maximum gap between the bounds is at S = 1, which
is given by 4/3, satisfying the bound in (49).

D. Theorem 4: Improved Gap Between the
Bounds in Theorems 1 and 2

The next Theorem provides an improved gap through a
new achievable scheme, which we call as “aligned coded
shuffling”.
Theorem 4: For a data-set containing N ∈ N data points,

and a set of K ∈ N distributed workers, the lower bound on
R∗
worst-case in Theorem 2 is in fact achievable for K < 5 (hence

gives the optimal rate), while for K ≥ 5 is achievable within
a gap ratio bounded as

Rupper
worst-case

Rlower
worst-case

≤ K − 1
3

K − 1
≤ 7

6
. (50)

In Appendix IV, we present the complete proof of Theorem 4.
The above theorem is proved by closing the gap between the
two bounds in Theorems 1 and 2 for the storage values S =
m N

K , and m ∈ {1, K − 2, K − 1}. This can be done with
the use of sophisticated interference alignment mechanisms,
which force the interference seen by each worker to occupy
the minimum possible dimensions. To illustrate the new ideas
introduced here, we revisit again Example III-A.1 of K =
N = 4 to show how the gap between the lower and the upper
bounds on R∗

worst-case can be closed in this case.
1) Example 3: Optimal Worst-Case Rate for N = 4 and

K = 4: From Figure 1, we notice that if we close the gap for
the storage points S = m, for m ∈ [1 : 3], then we can fully
characterize R∗

worst-case using memory sharing between the
achievable points (see Claim 1). In the achievability, we con-
sider a different placement strategy, which is also invariant
in the structure. We also consider the aligned coded shuffling
scheme for data delivery, which reduces the rate by forcing
the interference to occupy the minimum possible dimensions.
We consider the same subsequent shuffles πt = (1, 2, 3, 4),
and πt+1 = (2, 3, 4, 1). Furthermore, we define δt (i) as the
index of the worker being assigned the data point Di at time t .
Therefore, δt = (1, 2, 3, 4), and δt+1 = (4, 1, 2, 3). Next,
we discuss the achievability for storage values S = m, and
m ∈ [1 : 3].
• Case m = 1 (S = 1):
As mentioned before in Example III-A.1, the storage place-

ment for the case m = 1 (no excess storage) is trivial
where every worker only stores the data point which needs
to be processed. We start by sending 3 independent linear
combinations of the 4 data points as follows:

Xπt ,πt+1 =

⎧⎪⎨
⎪⎩
L1(D1, D2, D3, D4),

L2(D1, D2, D3, D4),

L3(D1, D2, D3, D4)

⎫⎪⎬
⎪⎭ . (51)

where L1, L2, and L3 are three independent linear functions.
We notice that each worker already stores one data point, and
then can decode the 3 remaining data points and acquire the
one needed at time t+1. For instance, worker w1 has D1 from
the previous shuffle at time t , and then can get 3 independent
linear functions enough to decode D2, D3, and D4. Therefore,
the pair (S = 1, R = 3) is achievable for K = N = 4 closing
the gap in Figure 1 for S = 1. The storage update is also
trivial, where every worker keeps the new assigned data point
and discard the remaining three points.
• Case m = 2 (S = 2):
Storage Placement: Every data point at time t is partitioned

into 3 sub-points of size d/3 bits each, where every sub-point
of the data point Di is labeled by a unique subset W ⊆ [1 :
4] \ δt (i), where |W| = 1. For example, the data point D1
at time t is partitioned as D1 = {D1,{2}, D1,{3}, D1,{4}}. The
storage placement at time t follows from Figure 5a. First, every
worker stores the data point needed to be processed. Then,
in the excess storage, every worker wk stores the sub-points
labeled by the set W , where k ∈ W , e.g., w1 stores the
sub-point At (2, 1) = {D2,{1}} from D2. To summarize, each
worker stores the assigned data point of size d bits, and for
each one of the remaining 3 data points, it stores 1 sub-point
of size d/3 bits. That is, the storage requirement is given by
S =1+3× 1× 1/3 = 2, which satisfies the storage constraint.
Aligned Coded Shuffling: According to the storage place-

ment at time t in Figure 5a, at time t + 1 every worker needs
2 sub-points of the assigned data point, where every needed
sub-point is available at exactly 2 other workers. From an
interference perspective, every one of the needed sub-points is
an interference to only one worker, e.g., D3,{4} needed by w2
at time t+1, is available at w3 and w4, and cause interference
at w1 (neither needed nor available). Therefore, w1 can face
interference from total 2 sub-points: D3,{4} (needed by w2),
and D4,{2} (needed by w3). By aligning these two sub-points
and considering the coded symbol D3,{4} ⊕ D4,{2}, we notice
the following: 1) This coded symbol is available at the worker
w4; 2) It is useful for the two workers w2, and w3 at the
same time; and 3) It is the only source of interference for
w1. Similarly, we can produce 3 more aligned symbols to
get in total 4 aligned coded symbols, of size d/3 bits each,
summarized as follows:

D3,{4} ⊕ D4,{2} : Interference at w1, available at w4,

and useful for w2, and w3;
D1,{3} ⊕ D4,{1} : Interference at w2, available at w1,

and useful for w3, and w4;
D1,{2} ⊕ D2,{4} : Interference at w3, available at w2,

and useful for w1, and w4;
D2,{3} ⊕ D3,{1} : Interference at w4, available at w3,

and useful for w1, and w2. (52)

Therefore, these 4 coded symbols provide every worker with
the 2 needed sub-points. Moreover, it suffices to send only
three independent linear combinations of these 4 coded sym-
bols as shown in Figure 5b, since every worker already has
one of them available locally at its storage. The rate of this
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Fig. 5. An example on closing the gap of K = 4 workers, N = 4 data points, and m = 2 (S = 2): (a) New SIP mechanism, (b) Data Delivery and storage
update, and (c) Relabeling some sub-points in red frames to maintain the storage structure. At time t , every data point Di is partitioned into 3 sub-points
each labeled by a unique subset of length 1 of the set [1 : 4] \ δt (i). At time t + 1, for every data point Di the sub-point Di,{δt+1(i)} is relabeled as Di,{δt (i)} .
Above the dotted line is the data point fully stored for processing, and below the dotted line is the excess storage used to store the sub-points containing the
worker’s index.

transmission is R = 3×1/3 = 1, and the pair (S = 2, R = 1)
is achievable which closes the gap in Figure 1 for S = 2.
Storage Update and Sub-points Relabeling: The storage

update at time t + 1 is done in a way that preserves the
structure of the storage at time t . The storage update
is shown in Figure 5b, while the relabeling process is
shown in Figure 5c for the sub-points in red frames.
A data point Di is processed by the workers wδt (i), and
wδt+1(i) at epochs t , and t + 1, respectively. At epoch t ,
the worker wδt (i) already has Di completely, and therefore
it is not stored in its excess storage. In the same time
epoch t , the worker wδt+1(i) has only part of Di stored in
its excess storage, i.e., At (δt (i), δt+1(i)) = {Di,{δt+1 (i)}}.
At epoch t + 1, the worker wδt+1(i) now gets Di

completely in its storage. In order to maintain the
global structure of the storage, the worker wδt (i) will
only keep the part of Di in its excess storage at time
t + 1 (stored completely at time t) which was stored
within the excess storage of the worker wδt+1(i) at time t ,
i.e., At+1(δt+1(i), δt (i)) = At (δt (i), δt+1(i)) = {Di,{δt+1 (i)}}.
Since the data sub-point Di,{δt+1(i)} is stored in the excess
storage of the worker wδt (i) at time t + 1, it needs to be
relabeled as Di,{δt (i)}, i.e.,

At (δt (i), δt+1(i)) = {Di,{δt+1 (i)} −→ Di,{δt (i)}}
= At+1(δt+1(i), δt (i)), ∀i ∈ [1 : 4]. (53)

For example as shown in Figure 5b, D1 is assigned to
workers w1, and w4 at time epochs t , and t + 1, respec-
tively. Therefore at time t + 1, w1 will keep the sub-point
At+1(4, 1) = At (1, 4) = {D1,{4}} of D1 in its excess storage.
As shown in Figure 5c, D1,{4} is relabeled as D1,{1} since it
is now stored in the excess storage of worker w1:

At (1, 1) = {D1,{4} −→ D1,{1}} = At+1(4, 1), (54)

which preserves the structure of the storage.
• Case m = 3 (S = 3):
Storage Placement: Every data point at time t is parti-

tioned into 3 sub-points of size d/3 bits each, where every
sub-point of the data point Di is labeled by a unique
subset W ⊆ [1 : 4] \ δt (i), where |W| = 2. For exam-
ple, the data point D1 at time t is partitioned as D1 =
{D1,{2,3}, D1,{2,4}, D1,{3,4}}. The storage placement at time t
follows from Figure 6a. First, every worker stores the data
point needed to be processed. Then, in the excess storage,
every worker wk stores the sub-points labeled by the set W ,
where k ∈ W , e.g., w1 stores the two sub-points At (2, 1) =
{D2,{1,3}, D1,{1,4}} from D2. To summarize, each worker stores
the assigned data point of size d bits, and for each one of
the remaining 3 data points, it stores 2 sub-points of size
d/3 bits each. That is, the storage requirement is given by
S =1+3× 2× 1/3 = 3, which satisfies the storage constraint.
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Fig. 6. An example on closing the gap of K = 4 workers, N = 4 data points, and m = 3 (S = 3): (a) new SIP mechanism, (b) Data Delivery and storage
update, and (c) Relabeling some sub-points in red frames to maintain the storage structure. At time t , every data point Di is partitioned into 3 sub-points each
labeled by a unique subset of length 2 of the set [1 : 4] \ δt (i). At time t + 1, for every data point Di the sub-point Di,W where δt+1(i) ∈ W is relabeled
by replacing δt+1(i) with δt (i). Above the dotted line is the data point fully stored for processing, and below the dotted line is the excess storage used to
store the sub-points containing the worker’s index.

Aligned Coded Shuffling: According to the storage place-
ment at time t in Figure 6a, at time t + 1 every worker
needs only one sub-point of the assigned data point, which
is available at the 3 other workers, e.g., w1 needs D2,{3,4}
which is available at the workers w2, w3, and w4. Therefore,
we can send an order 4 symbol useful for the 4 workers at the
same time as follows:
Xπt ,πt+1 = {

D2,{3,4} ⊕ D3,{1,4} ⊕ D4,{1,2} ⊕ D1,{2,3}
}
. (55)

The rate of this transmission is R = 1 × 1/3 = 1/3, and the
pair (S = 3, R = 1/3) is achievable which closes the gap
in Figure 1 for S = 3.
Storage Update and Sub-points Relabeling: Similar to the

case m = 2, the storage update for the case m = 3 is
shown in Figure 6b, and the relabeling process is shown
in Figure 6c for the sub-points in red frames. For every data
point Di , the worker wδt (i), which already has Di completely
at time t , will only keep at time t + 1 the part of Di

stored within the excess storage of the worker wδt+1(i) at time
t , i.e., At+1(δt+1(i), δt(i)) = At (δt (i), δt+1(i)) = {Di,W },
where δt+1(i) ∈ W . Then, we relabel this set of sub-points by
replacing δt+1(i) in W with δt (i), i.e.,

At (δt (i),δt+1(i)) = {
Di,W : δt+1(i) ∈ W −→

Di,W ′ : W ′ = W ∪ {δt (i)} \ {δt+1(i)}
}

= At+1(δt+1(i), δt (i)), ∀i ∈ [1 : 4]. (56)

For example, the data point D1 is processed by w1, and
w4 in the epochs t , and t + 1, respectively. As shown
in Figure 6b, w1 will keep the sub-points At+1(4, 1) =
At (1, 4) = {D1,{2,4}, D1,{3,4}} of D1 in its excess storage
at time t + 1. Then, the following relabeling is done to the
sub-points of D1 as shown in Figure 6c:

At (1, 1) = {D1,{2,4} −→ D1,{1,2}, and

D1,{3,4} −→ D1,{1,3}} = At+1(4, 1), (57)

which preserves the structure of the storage.
As a conclusion for the example K = N = 4, the lower

convex envelope of the achievable pairs (S = m, R = 4−m
m ),

for m ∈ [1 : 4], is the optimal storage-rate trade-off.

IV. COMPARISONS AND SIMULATIONS

In this Section, we conduct some numerical simulations
to compare the average performance of our proposed coded
shuffling scheme using SIP with the probabilistic scheme
using random placement in [20]. While the Aligned Coded
Shuffling scheme is proposed in this paper to achieve the
optimal worst-case rate for some storage values, we do not
use it in our simulations since it is not generalized for any
number of workers K .
In our first set of simulations, we plot the normalized

shuffling rate in Figure 7 for probabilistic coding scheme using
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Fig. 7. Average normalized rate for probabilistic coding scheme using random placement versus our proposed scheme using SIP for five different values of
number of data points N ∈ {102, 103, 104, 105, 106} and K = 10 workers.

random placement versus our proposed scheme using SIP,
averaged over 103 random shuffles. We consider five different
values of number of data points N ∈ {102, 103, 104, 105, 106}
and K = 10 workers. For the random placement, we consider
both the uncoded and the probabilistic coded schemes. We also
plot the theoretical guarantees on the rate for our proposed
scheme given by (63), as well as the probabilistic coded
shuffling scheme given in [20] as follows,

lim
N→∞ RCoded-Prob

= N

(pK )2

(
(1 − p)K+1 + (K − 1)p(1 − p) − (1 − p)2

)
,

(58)

where p = S− N
K

N− N
K
.

In Figure 7, we notice that generally our proposed scheme
achieves average rates very close to the theoretical guaran-
tees (asymptotic) in (63) even for small values of N . However,
the probabilistic coded scheme is far from its theoretical
guarantees (58) for small values of N and gets closer as
the number of data points N increases, an observation that
was first addressed and studied in [4]. We can also notice

that except for small storage values, our proposed scheme
outperforms the probabilistic scheme for different values of N .
We also note that it is possible to further improve the

proposed coded shuffling scheme in the small storage regime,
since it does not leverage all possible coding opportunities
provided by the structural invariant placement strategy (SIP).
For instance, our scheme only sends uncoded symbols for the
no-excess storage case, while order-2 symbols can still be used
as discussed in Appendix IV-B. In fact, the recent subsequent
work of Elmahdy and Mohajer [40] precisely exploits such
opportunities to further reduce the rate.
Furthermore, we show the power of our novel modified

SIP mechanism (in Appendix IV-A) compared to the random
placement in [20]. In our second simulation, we compare the
recent coded shuffling scheme proposed in [40] based on the
modified SIP mechanism for the special case when the number
of workers equals to the number of data-points, i.e., N = K ,
since this scheme is not generalized yet for all values of N and
K and any arbitrary shuffle. The simulations results are shown
in Figure 8 for N = K = 10. We notice that the new scheme
in [40] outperforms the probabilistic scheme in [20] for any
value of storage. In general, the scheme in [40] is proven
optimal for the special N = K and any arbitrary shuffle.
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Fig. 8. Average rate for probabilistic scheme using random placement, our proposed coded shuffling scheme using modified SIP, and the new coded shuffling
scheme in [40] using SIP for N = 10 data points, and K = 10 workers.

Fig. 9. Average rate for probabilistic scheme using random placement versus our proposed scheme using SIP for N =∈ {102, 103, 104} data points, and
K = 4 workers. For probabilistic scheme, we consider the following coding opportunities: a) uncoded transmission; b) up to order-2 coded symbols; c) up to
order-3 coded symbols; and d) up to order-4 coded symbols.

Since the asymptotic rate of the probabilistic scheme is lower
than the optimal trade-off given by the coded shuffling scheme
in [40], this means that (58) is not necessary achievable for
small values of N and only gives the theoretical guarantees
for for large enough N .
It is noteworthy here that while the scheme in [20] requires

exhaustive search of all coding opportunities, i.e., coded sym-
bols of order i for i ∈ [2 : K ], our scheme only uses for each
value of storage coded symbols of the same order, i.e., for
the storage values S = (

1 + i
( K−

K

)) N
K where i ∈ [0 : K ],

only order i symbols are transmitted. Therefore, our scheme
has significantly reduced encoding and decoding complexity
compared to [20].

In order to study the complexity of the probabilistic stor-
age placement scheme in [20] versus our proposed scheme,
we present simulation results in Figure 9 for three different val-
ues of number of data points N ∈ {102, 103, 104}, and K = 4
workers. For K = 4, we only have coding opportunities up to
order-4 symbols using random placement. Therefore, in our
simulations, we consider the rate of the probabilistic scheme
by leveraging the following coding opportunities: a) uncoded
transmission; b) up to order-2 coded symbols; c) up to order-3
coded symbols; and d) up to order-4 coded symbols. Figure 9
shows that our scheme generally outperforms the probabilistic
scheme with the corresponding level of coding leveraging for
different values of N , e.g., the rate of our proposed scheme
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when order-2 symbols is used is lower than the rate of the
probabilistic scheme when up to order-2 symbols are used,
i.e., lower rate for same coding complexity. Moreover, our
scheme outperforms the probabilistic scheme even when all
coding opportunities are leveraged for large values of storage.
We notice that while our proposed scheme behaves similarly
for different N values, the probabilistic coded scheme rate
decreases with respect to the rate of our scheme as the value of
N grows larger since it approaches the theoretical asymptotic
guarantees as given in (58).

V. CONCLUSION

We considered the worst-case trade-off between the amount
of storage and communication overhead for the data shuffling
problem. First, we presented an information theoretic formu-
lation of the problem. Following that, we proposed a novel
uncoded-structural invariant storage placement and update
(SIP/SIU) strategy for different storage values at the work-
ers. This placement strategy allowed for applying a similar
coding scheme to the one in [43]. Through a novel bounding
methodology similar to [41], [42], we derived an information
theoretic lower bound on the worst-case communication rate
as a function of the storage, which showed that the resulting
communication overhead of our scheme is within a maximum
multiplicative factor of K

K−1 , where K is the number of
workers. Furthermore, we presented a new scheme inspired by
the idea of interference alignment, which closes the gap and
hence achieves the optimal worst-case rate-storage trade-off
for K < 5, and further reduces the maximum multiplicative

factor to
K− 1

3
K−1 for K ≥ 5.

While our SIP strategy provides coding opportunities and
is proven optimal in the worst-case shuffle for some values
of K , it requires arbitrary large number of divisions for
each data point. For instance, in the aligned coded shuffling
scheme we need

(K−1
m−1

)
number of data point divisions for the

storage value S = m N
K . Adding data divisibility constraints has

been considered recently in the caching literature [45]–[48] to
restrict finite number of files divisions, while achieving com-
parable levels of coding gain. An interesting future direction is
to adapt some of these approaches to the problem of distributed
data shuffling.

APPENDIX I
UPPER BOUND ON R∗

WORST-CASE (PROOF OF THEOREM 1)

Following Example III-A.1, we present our general achiev-
ability for any number of workers K , any number of data
points N , and any storage value S. Our scheme has two main
phases: structural invariant storage placement/update phase
(SIP/SIU); and data delivery phase. This scheme also proves
the upper bound on the optimal worst-case rate, i.e., Rupper

worst-case
stated in Theorem 1.

A. Structural Invariant Placement (SIP)

We first propose the SIP mechanism, which allows applying
a similar data delivery scheme to the one proposed in [43]. The
placement procedure involves updating the storage content for

each worker after each shuffle in order to maintain the structure
of the storage. Since the shuffling process at each time is done
randomly, all the data points not being processed by a worker
wk are of equal importance to reduce the communication
overhead in the next shuffle. Consequently, the amount of
excess storage of size

(
S − N

K

)
d bits is equally divided among

these points, where we assume uncoded storage placement.
We focus on a discrete set of storage values given by S =(

1 + i( K−1
K )

) N
K , for i ∈ [0 : K ]. The values in between can

then be achieved by memory sharing as stated in Claim 1.
At time t , the worker wk first stores the batch assigned for
processing, At (k), in order to satisfy the processing constraint
in (6), which requires N

K d bits of the available storage. That is
if a data point D ∈ At (k), then D is fully stored in Zt

k . Assume
in the following that the dimensionality of the data points d is
integer multiples of

(K
i

)
. The excess storage of size (S− N

K )d =
i( K−1

K )( NK )d is used as follows: every data point D ∈ A is
divided across the dimension d into

(K
i

)
non-overlapping parts

of size d/
(K
i

)
bits each, and then each part is labeled by a

unique set W ⊆ [1 : K ] of size i . The worker wk stores the
sub-point DW in the excess storage, where D �∈ At (k), only
if k ∈ W . Therefore, the number of sub-points a worker wk is
storing from a point D �∈ At (k); is given by

(K−1
i−1

)
sub-points.

The total number of these points is N − N
K = (K−1)N

K points.
Then, the total size necessary for excess storage is

(K − 1)N

K
×
(
K − 1

i − 1

)
× d(K

i

) = i(K − 1)N

K 2 d

=
(
S − N

K

)
d, (59)

which satisfies the memory constraint.

B. Data Delivery Phase

Next, we present our proposed delivery scheme to satisfy the
new data assignment characterized by the shuffles (πt , πt+1).
According to the adopted placement strategy, whenever a
new data point is newly assigned to a worker, it already has(K−1
i−1

)
out of the total

(K
i

)
partitions. Therefore, the number

of sub-points still needed for every new assigned data point
is
(K
i

) − (K−1
i−1

) = (K−1
i

)
. This gives the total number of data

sub-points needed by each worker to be
(K−1

i

) × |At+1(k) \
At (k)|, where |At+1(k) \ At (k)| is the number of data-points
newly assigned to worker wk at time t + 1.
According to the placement strategy, every data sub-point

DW , is stored at least in i different workers. Now, if we pick
any set M ⊆ [1 : K ] of the workers, where |M| = i + 1,
then for each worker wk , where k ∈ M, and for each point
D newly assigned to wk in the next shuffle, i.e., D �∈ At (k),
and D ∈ At+1(k), there is at least one sub-point needed by
wk from the remaining workers in the set, labeled as DM\k .
Therefore, we can send order i + 1 coded symbols in the
form ⊕

k∈M

(
At+1
M\k(k) \ At (k)

)
, of size d/

(K
i

)
each, useful

for all the i + 1 workers in M in the same time. Note
that in general, the data batches At+1(k) \ At (k) differ in
their sizes for different k, so we zero-pad the shorter batches
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before summing. Therefore, the number of such order i + 1
coded symbols is max

k∈M
|At+1(k)\ At(k)|, of size d/

(K
i

)
each.

Considering all the possible setsM of size i+1, this process
is repeated

( K
i+1

)
number of times, which gives the following

coded symbols:

Xπt ,πt+1 =

⎧⎪⎨
⎪⎩ ∪
M⊆[1:K ]
|M|=i+1

⊕
k∈M

(
At+1
M\k(k) \ At (k)

)⎫⎪⎬
⎪⎭ . (60)

The corresponding total number of bits sent over the shared
link is given by

R(πt ,πt+1)d =
∑

M⊆[1:K ]
|M|=i+1

max
k∈M

|At+1(k) \ At (k)| × d(K
i

) .
(61)

It is important to notice that the total number of times wk

becomes a member of the set M in (60) is
(K−1

i

)
. Therefore,

every worker gets
(K−1

i

)×|At+1(k)\At (k)| sub-points in total,
which are enough to recover the new assigned data points in
At+1(k) \ At (k) as previously discussed.
According to (60), the proposed coded shuffling scheme first

finds the number of newly assigned data points to each worker
wk , i.e., |At+1(k) \ At (k)|. The probability that a data point
D is newly assigned to the worker wk is given as Pr(D ∈
At+1(k) \ At (k)) = K−1

K . Therefore, as the number of points
N grows larger we have

|At+1(k) \ At (k)| = K − 1

K

N

K
+ o(N). (62)

Therefore using (61), we obtain the following rate for large
values of N :

lim
N→∞ R(πt ,πt+1)d

=
∑

M⊆[1:K ]
|M|=i+1

K − 1

K

N

K
× d(K

i

) = K − 1

K

N(K − i)

K (i + 1)
d. (63)

Worst-case Analysis of the Proposed Scheme: For the
worst-case scenario, each worker is assigned completely new
data points, and there are N

K new data points for each worker,
i.e., At+1(k) \ At (k) = At+1(k) and the number of new
assigned data points is |At+1(k) \ At (k)| = N

K . Therefore
using (60), the worst-case transmission is given as follows:

Xworst-case =

⎧⎪⎨
⎪⎩ ∪
M⊆[1:K ]
|M|=i+1

⊕
k∈M

At+1
M\k(k)

⎫⎪⎬
⎪⎭ . (64)

Using (61), the corresponding total worst-case number of bits
sent over the shared link is given by

Rworst-cased =
∑

M⊆[1:K ]
|M|=i+1

N

K
× d(K

i

)

=
(

K

i + 1

)
× N

K
× d(K

i

) = N(K − i)

K (i + 1)
d. (65)

Using the memory sharing concept in Claim 1, we can
achieve the lower convex envelope of the following K + 1
points for all i ∈ [0 : K ]:(

S =
(
1 + i

K − 1

K

)
N

K
, Rupper

worst-case = N(K − i)

K (i + 1)

)
, (66)

which completes the proof of Theorem 1.
Comparing (63) and (65), we notice that ratio between

the rate for any arbitrary shuffle as the number of data points
grows large and the worst-case rate is given as K−1

K .

C. Storage Update Procedure

In order to maintain the structure of the storage after the
next shuffle at time t + 1, the storage update procedure takes
place at worker wk for every point D ∈ A according to the
following cases:
• D ∈ At (k), and D ∈ At+1(k): In this case D remains
stored completely in Zt+1

k .
• D �∈ At

k , and D ∈ At+1
k : After the data delivery, worker wk

stores D completely in Zt+1
k .

• D ∈ At (k), and D �∈ At+1(k): Out of the point D previ-
ously stored completely in Zt

k , worker wk chooses to stores
in Zt+1

k the sub-points DW where k ∈ W .
• D �∈ At (k), and D �∈ At+1(k): Nothing changes about the
storage of D in the excess storage of Zt+1

k , and wk keeps the
same sub-points of D previously stored in Zt

k , i.e., DW where
k ∈ W .

APPENDIX II
LOWER BOUND ON R∗

WORST-CASE (PROOF OF THEOREM 2)

In this section, we present an information theoretic lower
bound on the worst-case communication rate. We start by
considering the following shuffle (πt , πt+1) at time t + 1: for
a permutation of the worker indexes σ : (1, 2, . . . , K ) →
(σ1, σ2, . . . , σK ), the worker wσk at time t + 1 is assigned
the data batch that was assigned to the worker wσk−1 at time
t , i.e., At+1(σk) = At (σk−1), which gives the following
condition using the decodability constraint in (10):

H (At+1(σk)|Zt
σk

, Xπt ,πt+1)

= H (At(σk−1)|Zt
σk

, Xπt ,πt+1) = 0, ∀k ∈ [1 : K ]. (67)

Furthermore using the uncoded storage contents at time t given
in (13), for the worker wσk the storage content is given as
follows:

Zt+1
σk

=
{
At (σk), ∪

j∈[1:K ]\kA
t (σ j , σk)

}
, (68)

which also gives the following constraint:
H (At(σk)|Zt

σk
) = 0, ∀k ∈ [1 : K ]. (69)

Note that the conditions (67) and (69) fully char-
acterize the shuffle (πt , πt+1). Next, we prove that
H (A|Zt

σ[2:K ], Xπt ,πt+1) = 0 using (69), and (67) as follows:
H (A|Zt

σ[2:K ], Xπt ,πt+1)

= H (At([1 : K ])|Zt
σ[2:K ], Xπt ,πt+1)
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≤
K∑
j=1

H (At(σ j )|Zt
σ[2:K ] , Xπt ,πt+1)

≤
K∑
j=2

H (At(σ j )|Zt
σ j

) + H (At(σ1)|Zt
σ2

, Xπt ,πt+1) = 0.

(70)

Using (67), (69) and (70), we obtain the following bound:

Nd = H (A)

= I
(
A; Zt

σ[2:K ], Xπt ,πt+1

)
+ H

(
A|Zt

σ[2:K ], Xπt ,πt+1

)
(a)= I

(
A; Zt

σ[2:K ], Xπt ,πt+1

)
(b)= H

(
Zt

σ[2:K ], Xπt ,πt+1

)
(c)= H

(
Xπt ,πt+1, Z

t
σK

)+
K−1∑
i=2

H
(
Zt

σi
|Zt

σ[i+1:K ] , Xπt ,πt+1

)
(d)≤ H

(
Xπt ,πt+1

)+ H
(
Zt

σK

)
+

K−1∑
i=2

H
(
Zt

σi
|Zt

σ[i+1:K ] , Xπt ,πt+1 ,At (σ[i:K ]
)

, (71)

where (a) follows from (70), (b) follows from (4), and (8),
where Zt

σ[2:K ] , and Xπt ,πt+1 are deterministic functions of the
data-set A, (c) follows from the chain rule of entropy, and
(d) follows from the processing constraint in (69) where
the storage variables Zt

σ[i+1:K ] contain At (σ[i+1:K ], and the
decodability constraint in (67) where Zt

σi+1
and Xπt ,πt+1 can

decode At (σi+1). Using the storage contents in (68), we can
write the previous bound as follows

Nd
(a)≤ R∗

πt ,πt+1
d + H

(At (σK )
)

+ H
(At (σ[1:K−1], σK )

)
+

K−1∑
i=2

H
(At (σi ),At (σ[1:K ]\i , σi )|

Zt
σ[i+1:K ] , Xπt ,πt+1,At (σ[i:K ])

)
(b)= R∗

πt ,πt+1
d + N

K
d + H

(At (σ[1:K−1], σK )
)

+
K−1∑
i=2

H
(At (σ[1:i−1], σi )|

Zt
σ[i+1:K ] , Xπt ,πt+1,At (σ[i:K ])

)
(c)≤ R∗

πt ,πt+1
d + N

K
d + H

(At (σ[1:K−1], σK )
)

+
K−1∑
i=2

H
(
At (σ[1:i−1], σi )|Zt

σ[i+1:K ]

)

= R∗
πt ,πt+1

d + N

K
d

+
K∑
i=2

i−1∑
j=1

H
(
At (σ j , σi )|Zt[σi+1:σK ]

)
(d)= R∗

πt ,πt+1
d + N

K
d

+
K∑
i=2

i−1∑
j=1

H
(At (σ j , σi )|At (σ j , σ[i+1:K ])

)

= R∗
πt ,πt+1

d + N

K
d

+
K−1∑
j=1

K∑
i= j+1

H
(At (σ j , σi )|At (σ j , σ[i+1:K ])

)

(e)= R∗
πt ,πt+1

d + N

K
d +

K−1∑
j=1

H
(At (σ j , σ[ j+1:K ])

)
, (72)

where (a) follows from the uncoded storage contents given
in (68) where every worker wk stores the assigned data batch
At (k) plus separate functions of all the remaining data batches,
i.e. At ( j, k) for j ∈ [1 : K ] \ k, (b) is because after knowing
At (σ[i:K ]), the only parts left in Zt

σi
are At (σ[1:i−1], σi ),

(c) because conditioning reduces entropy, (d) follows since
At (σ j , σi ) only depends on the parts of the batch At (σ j )
stored at Zt[σi+1:σK ], and finally (e) follows from the chain
rule of entropy. From the definition in (14), we can write
At (σ j , σ[ j+1:K ]) as

At (σ j , σ[ j+1:K ]) = ∪
S⊆σ[ j+1:K ]: S �=φ

∪
W⊆[1:K ]\σ j : S∈W

At
W (σ j )

(73)

Therefore, we can upper bound the entropy
H
(At (σ j , σ[ j+1:K ])

)
as

H
(At (σ j , σ[ j+1:K ])

)
≤

∑
S⊆σ[ j+1:K ]: S �=φ

∑
W⊆[1:K ]\σ j : S∈W

|At
W (σ j )| d

=
∑

W⊆[1:K ]\σ j

|At
W(σ j )| d −

∑
W⊆σ[1: j−1]

|At
W (σ j )| d,

(74)

where |At
W ( j)| is the size of the sub-batchAt

W ( j) normalized
by d . Therefore, by applying (74) in (72), we get a lower
bound on R∗

πt ,πt+1
, which is also a lower bound on R∗

worst-case
following Remark 1, as follows:

R∗
worst-case ≥ Rπt ,πt+1

≥ N − N

K
−

K−1∑
j=1

⎡
⎣ ∑
W⊆[1:K ]\σ j

|At
W (σ j )|

−
∑

W⊆σ[1: j−1]

|At
W (σ j )|

⎤
⎦

= N − N

K
−

K−1∑
�=0

K−1∑
j=1

⎡
⎢⎢⎢⎣

∑
W⊆[1:K ]\σ j

|W |=�

|At
W (σ j )|

−
∑

W⊆σ[1: j−1]
|W |=�

|At
W (σ j )|

⎤
⎥⎥⎥⎦ .

(75)
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For K ! possible permutations σ of the ordered set
(1, 2, . . . , K ), we get K ! different bounds over R∗

worst-case
from (75). Summing up over all the possible K ! permutations
σ , we get

R∗
worst-case ≥ N − N

K

− 1

K !
K−1∑
�=0

K−1∑
j=1

∑
σ∈[K !]

⎡
⎢⎢⎢⎣

∑
W⊆[1:K ]\σ j

|W |=�

|At
W (σ j )|

−
∑

W⊆σ[1: j−1]
|W |=�

|At
W (σ j )|

⎤
⎥⎥⎥⎦ ,

(76)
where [K !] is defined as the set of all possible permutations of
the ordered set (1, 2, . . . , K ), which contains K ! permutations.
Due to symmetry, for each value of a (�, j) pair in the outer
summation in (76), where � ∈ [0 : K −1] and j ∈ [1 : K −1],
the coefficients of each |At

W (k)| in the inner summation for
k ∈ [1 : K ] and |W| = � are equal. Therefore, we can write
the inner summation in (76) in the following form:

∑
σ∈[K !]

⎡
⎢⎢⎢⎣

∑
W⊆[1:K ]\σ j

|W |=�

|At
W (σ j )| −

∑
W⊆σ[1: j−1]

|W |=�

|At
W (σ j )|

⎤
⎥⎥⎥⎦

=
(
c j,�1 − c j,�2

) K∑
k=1

∑
W⊆[1:K ]: |W |=�

|At
W (k)|

=
(
c j,�1 − c j,�2

)
x�, (77)

where c j,�1 , and c j,�2 are the two coefficients of x� coming from
the two inner summations in the LHS of (77). From (77),
finding c j,�1 , and c j,�2 is the same as finding the coefficients of
one realization of k, and W on the right side of the equation,
and we consider for instance At[2:�+1](1). In the first sum,

we get c j,�1 by counting the number of permutations where
σ j = 1, which is given by

c j,�1 = (K − 1)!. (78)

In the second sum, we get c j,�2 by counting the number of
permutations such that σ j = 1, and σ j+1, . . . , σK ∈ [� +
2 : K ], which is given by

c j,�2 = (K − � − 1)!
( j − � − 1)! ( j − 1)! =

( j−1
�

)
(K−1

�

) (K − 1)!. (79)

Therefore, we can write the summation in (77) in the following
form:

∑
σ∈[K !]

⎡
⎢⎢⎢⎣

∑
W⊆[1:K ]\σ j

|W |=�

|At
W (σ j )| −

∑
W⊆σ[1: j−1]

|W |=�

|At
W (σ j )|

⎤
⎥⎥⎥⎦

=
(

(K − 1)! −
( j−1

�

)
(K−1

�

) (K − 1)!
)
x�. (80)

Now, we use (80) in (76) to obtain the following bound:
R∗
worst-case ≥ N − N

K

− 1

K !
K−1∑
�=0

K−1∑
j=1

[
(K − 1)! −

( j−1
�

)
(K−1

�

) (K − 1)!
]
x�

= N − N

K

− 1

K !
K−1∑
�=0

[
(K − 1)(K − 1)! −

(K−1
�+1

)
(K−1

�

) (K − 1)!
]
x�

= N − N

K
− 1

K

K−1∑
�=0

[
(K − 1) − K − � − 1

t + 1

]
x�

(a)=
K−1∑
�=0

x� − N

K
−

K−1∑
�=0

�

� + 1
x� =

K−1∑
�=0

1

� + 1
x� − N

K
, (81)

where (a) follows from the data size constraint in (15). Next,
we obtain K − 1 different lower bounds on the optimal
worst-case transmission rate R∗

wc, by eliminating the pairs
(x j−1, x j ), for each j ∈ [1 : K − 1], in the equation (81) using
the equations (15) and (17). We use (15) to write x j−1 as
follows:

x j−1 = N −
∑

�∈[0:K ]\ j−1

x�. (82)

We first apply (82) in (81) to obtain

R∗
worst-case ≥

∑
�∈[0:K−1]\ j−1

1

� + 1
x�

+ 1

j

⎛
⎝N −

∑
�∈[0:K−1]\ j−1

x�

⎞
⎠− N

K

= N(K − j)

K j
−

∑
�∈[0:K−1]\ j−1

� − j + 1

j (� + 1)
x�. (83)

We next apply (82) in the excess storage constraint of (17) to
obtain

∑
�∈[0:K−1]\ j−1

�x� + ( j − 1)

⎛
⎝N −

∑
�∈[0:K ]\ j−1

x�

⎞
⎠

≤ K

(
S − N

K

)
,

∑
�∈[0:K−1]\ j−1

(� − j + 1) x� ≤ K

(
S − j

N

K

)
. (84)

Now, we need to eliminate x j from (83). We use (84) to bound
x j as

x j ≤ K

(
S − j

N

K

)
−

∑
�∈[0:K−1]\{ j−1, j }

(� − j + 1) x�. (85)

Then, we use this bound in (83) as follows:
R∗
worst-case ≥ N(K − j)

K j
−

∑
�∈[0:K−1]\{ j−1, j }

� − j + 1

j (� + 1)
x�

− 1

j ( j + 1)
x j
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(a)≥ N(K − j)

K j
−

∑
�∈[0:K−1]\{ j−1, j }

� − j + 1

j (� + 1)
x�

− K
(
S − j NK

)
j ( j + 1)

+
∑

�∈[0:K−1]\{ j−1, j }

(� − j + 1)

j ( j + 1)
x�

= N(K − j)

K j
− K

(
S − j NK

)
j ( j + 1)

+
∑

�∈[0:K−1]\{ j−1, j }
λ�x�

(b)≥ N(K − j)

K j
− K

(
S − j NK

)
j ( j + 1)

, (86)

where (a) follows from (85) where the coefficient of x j

in the above equation is negative for all j ∈ [1 : K − 1],
and (b) since the coefficients, λ�, of x� > 0 are positive
for � ∈ [0 : K − 1] \ { j − 1, j}, which can be shown in the
following:

λ� = � − j + 1

j ( j + 1)
− � − j + 1

j (� + 1)
= (� − j)(� − j + 1)

j ( j + 1)(� + 1)
, (87)

where j, j + 1, � + 1 > 0 for �, j ≥ 0, then we only
need to show that (� − j)(� − j + 1) > 0 for
� ∈ [0 : K − 1] \ { j − 1, j}. This can be easily checked by
assuming y = � − j , then y(y + 1) is only negative in the
range −1 < y < 0, or j − 1 < � < j , which is not in the
range of � in the above summation.
The lower bound in (86) is a linear function of S

for a fixed value of j ∈ [1 : K − 1] pass-
ing through the points

(
S1 = j NK , R1 = N(K− j )

K j

)
, and(

S2 = ( j + 1) NK , R2 = N(K− j−1)
K ( j+1)

)
. We obtain K − 1 such

lower bounds for every j ∈ [1 : K −1], which eventually give
the lower bound on R∗

worst-case as the lower convex envelope
of the following K points:(

S = m
N

K
, Rlower

worst-case = N(K − m)

Km

)
, ∀m ∈ [1 : K ],

(88)

which completes the proof of Theorem 2.

APPENDIX III
MAXIMUM GAP ANALYSIS (PROOF OF THEOREM 3)

To characterize the maximum gap between the obtained
bounds over R∗

worst-case, we first express the storage S as
multiples of N

K , i.e., S = m N
K , for 1 ≤ m ≤ K . From

Theorem 1 for
(
1 + i K−1

K

) ≤ m ≤ (
1 + (i + 1) K−1

K

)
, and

i ∈ [0 : K − 1], we can achieve the line joining the
two points

(
m = (

1 + i K−1
K

)
, R = N(K−i)

K (i+1)

)
, and

(
m =(

1 + (i + 1) K−1
K

)
, R = N(K−i−1)

K (i+2)

)
, which gives the following

upper bounds over R∗
worst-case as

Rupper
worst-case − N(K−i)

K (i+1)

m − (
1 + i K−1

K

) =
N(K−i−1)
K (i+2) − N(K−i)

K (i+1)(
1 + (i + 1) K−1

K

)− (
1 + i K−1

K

)
= − N(K + 1)

(K − 1)(i + 1)(i + 2)
,

Rupper
worst-case = N(K − i)

K (i + 1)

− N(K + 1)

(K − 1)(i + 1)(i + 2)

(
m − 1 − i

K − 1

K

)
, (89)

for
(
1 + i K−1

K

) ≤ m ≤ (
1 + (i + 1) K−1

K

)
, and i ∈ [0 : K −1].

Also, from (86) we have the lower bounds over R∗
worst-case as

Rlower
worst-case = N(K − j)

K j
− N (m − j)

j ( j + 1)
, (90)

for j ≤ m ≤ j + 1, and j ∈ [1 : K − 1].
Due to the properties of the piece-wise linear functions,

we obtain the maximum gap at one of the following 2K − 1
values of m: m = j , for j ∈ [1 : K − 1], or m = 1 + i K−1

K ,
for i ∈ [1 : K ].

A. Gap Analysis for m = 1 + i K−1
K , and i ∈ [1 : K]

We first notice that when i ∈ [1 : K ], then i ≤ m ≤ i + 1.
Therefore, the lower bound Rlower

worst-case at m = 1+i K−1
K follows

from (90) where j = i :

Rlower
worst-case

(
m = 1 + i

K − 1

K

)

= N(K − i)

Ki
− N

(
1 + i K−1

K − i
)

i(i + 1)

= N(K − i)

Ki
− N (K − i)

Ki(i + 1)
= N(K − i)

K (i + 1)
, (91)

which matches the upper bound in (89), when m = 1+ i K−1
K .

Therefore, the proposed achievable scheme is optimal for m =
1 + i K−1

K , where i ∈ [1 : K ].

B. Gap Analysis for m = j , and j ∈ [1 : K − 1]

We first notice that when m = j , then
(
1 + ( j − 1) K−1

K

) ≤
m ≤ (

1 + j K−1
K

)
for j ∈ [1 : K − 1]. Therefore, the upper

bound Rupper
worst-case at m = j follows from (89) where i = j−1:

Rupper
worst-case(m = j)

= N(K − j + 1)

K j

− N(K + 1)

j (K − 1)( j + 1)

(
j − 1 − ( j − 1)

K − 1

K

)

= N(K − j + 1)

K j
− N(K + 1)( j − 1)

j K (K − 1)( j + 1)

= N(K − j)

K j
+ N

K j

(
1 − (K + 1)( j − 1)

(K − 1)( j + 1)

)
, (92)

whereas the lower bound on R∗
worst-case(m = j) follows

from (90) directly as follows:

Rlower
worst-case(m = j) = N(K − j)

K j
. (93)

Hence, the ratio between the bounds follows by dividing (92)
by (93) as

Rupper
worst-case

Rlower
worst-case

= 1 + 1

K − j

(
1 − (K + 1)( j − 1)

(K − 1)( j + 1)

)

= 1 + 2

(K − 1)( j + 1)
, j ∈ [1 : K − 1]. (94)

We notice that ratio in (94) is a decreasing function in j .
Therefore, we obtain the maximum gap with the smallest value
of j , i.e., j = 1, which is the no excess storage case S = N

K .
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Applying j = 1 in (94), we obtain the maximum gap ratio as
follows:

Rupper
worst-case

Rlower
worst-case

= 1 + 1

(K − 1)
= K

K − 1
, (95)

which completes the proof of Theorem 3.

APPENDIX IV
CLOSING THE GAP (PROOF OF THEOREM 4)

Based on Example III-D.1, we introduce the general achiev-
ability to close the gap for some storage values. In particular,
we consider the storage values S = m N

K , for m ∈ {1, K −
2, K −1}, any number of workers K , and any number of data
points N . We also consider a variation of the SIP mechanism
which we refer to as the modified SIP mechanism.

A. Modified Structural Invariant Placement (Modified SIP)

Assume in the following that the dimensionality of the data
points d is integer multiples of

(K−1
m−1

)
. Every data point Di for

i ∈ [1 : N] is now partitioned into
(K−1
m−1

)
non-overlapped sub-

points. As suggested in the Example III-D.1, the labeling for
the data sub-points is changing over time as follows: At the
time epoch t , the data sub-points of the data point Di are
labeled by unique subsets Wt ⊆ [1 : K ] \ δt (i), where δt (i) is
the index of the worker assigned to the data point Di at time t .
Every worker stores the assigned data points as well as the data
sub-points having the worker’s index in their labels. Therefore,
any partition of a data point is stored at total number of m
workers; m − 1 workers are storing it as excess storage, and
1 worker is assigned the whole corresponding data point for
processing.
For invariant structure placement, the change in the labels

at time t + 1 is required only for the data sub-points Di,Wt ,
where δt+1(i) ∈ Wt , by replacing δt+1(i) with δt (i) in the
label Wt to obtain the newly labeled sub-points Di,Wt+1 where
δt (i) ∈ Wt+1. Therefore, these newly labeled sub-points are
required now to be stored in the excess storage of the worker
wδt (i), which already has the data point Di fully available at
its cache at time t . Then, there is no need to deliver these
sub-points, and the storage structure can be preserved.
The number of data sub-points of the point Di needed to be

stored at worker wk at time t , where δt (i) �= k (Di �∈ At (k)) is(K−2
m−2

)
of size d/

(K−1
m−1

)
bits each. In total, we have (K − 1) NK

such data points where δt (i) �= k for the worker wk . Therefore,
the worker wk needs to store in the excess storage data of total
size

(K − 1)
N

K
×
(
K − 2

m − 2

)
× d(K−1

m−1

)
= (m − 1)

N

K
d =

(
S − N

K

)
d, (96)

which satisfies the memory constraint.
Before we proceed to the delivery mechanism we define

At,t+1(i ; j) = At (i) ∩ At+1( j) as the part of data assigned
to w j at time t + 1 which was also assigned to wi at time t .
Furthermore, we define St,t+1

i, j = |At,t+1(i ; j)| as the number

of such data points. Therefore, the data batches At (i) and
At+1(i) can then be written as

At (i) = ∪K
j=1At,t+1(i ; j),

At+1(i) = ∪K
j=1At,t+1( j ; i). (97)

Since we have the size of the data batches is fixed as |At (i)| =
|At+1(i)| = N

K , we obtain the following property:
K∑
j=1

St,t+1
i, j =

K∑
j=1

St,t+1
j,i = N

K
. (98)

Remark 2 (Data-flow Conservation Property): We next
state an important property satisfied by any shuffle, namely
the data-flow conservation property:∑

j∈[1:K ]\i
St,t+1
i, j =

∑
j∈[1:K ]\i

St,t+1
j,i . (99)

The proof of this property follows directly by subtracting

St,t+1
i,i from the two sides of (98), and has the following

interesting interpretation: the total number of new data points
that need to be delivered to worker wi (and are present
elsewhere), i.e., the RHS of (99), is exactly equal to the total
number of data points that worker wi has that are desired by
the other workers, which is the LHS of (99).
The rate Rπt ,πt+1 is characterized by St,t+1

i, j for i, j ∈
[1 : K ]. These shuffling parameters can be held in the
matrix St,t+1 = [St,t+1

i, j ]i, j , which can be named as the
shuffling matrix. Moreover, according to the property in (98)
the shuffling matrix St,t+1 is a K × K square matrix with the
row sum equals the column sum equals N

K . In the following
discussion, we drop the superscript t, t + 1 from At,t+1(i ; j),
and St,t+1

i, j for short notation.
Lemma 1: The rate achieved when the diagonal entries of

the shuffling matrix are greater than zero, i.e., when Si,i > 0
for i ∈ [1 : K ], is no larger than the worst-case rate.
Proof: The proof is straight forward, where Si,i is the number
of data points that are needed by worker wi at times t and t+1.
Therefore, they remain in the storage of the worker wi and do
not participate in the communication process. If Si,i > 0, then
less number of data points are needed by worker wi and the
rate is no larger than the worst-case rate, which completes the
proof of the lemma. �
Corollary 5: For the worst-case rate analysis, we can

assume that every worker is assigned only new data points,
i.e., Si,i = 0. Hence, the data conservation property in (99)
can be written as∑

j∈[1:K ]\ j
Si, j =

∑
j∈[1:K ]\ j

S j,i = N

K
. (100)

B. Closing the Gap for m = 1

We consider the storage value m = 1 (S = N
K ), which is the

no-excess storage case considered in our previous work [34]
for any arbitrary shuffle. One can easily show that the pair
(S = N

K , Rworst-case = (K − 1) NK ) is achievable by sending
K−1 linear independent combinations of the K data batches at
time t , i.e., At (1), . . . ,At (K ), to satisfy any data assignment
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at time t + 1. Since every worker wk has already the data
batch At (k) already stored in its cache, it can solve for the
remaining K −1 batches and obtain the whole data-set to store
the new data assignment.

C. Closing the Gap for m = K − 1

According to the adopted placement strategy, whenever a
new data point is needed at any worker, it already has

(K−2
m−2

)
out of the total

(K−1
m−1

)
partitions, that is for the storage value

m = K − 1 (S = (K − 1) NK ), only 1 out of K − 1 sub-points
is needed. Furthermore, this needed data sub-point is already
available at the remaining m = K − 1 workers. Therefore,
for the Si, j data points assigned to worker w j and available
at wi , i.e., A(i ; j), the data sub-batch A[1:K ]\{i, j }(i ; j) is
the only part needed to be transmitted to w j , which is
available at all the workers except w j . For the worst-case
scenario according to Corollary 5, we assume every worker
is assigned completely new data batch, i.e., Si,i = 0 for all
i ∈ [1 : K ]. Therefore, we can write the total part needed
to be transmitted to w j as ∪i∈[1:K ]\ jA[1:K ]\{i, j }(i ; j), which
consists of N

K data sub-points each of size d
K−1 each, and the

size of ∪i∈[1:K ]\ jA[1:K ]\{i, j }(i ; j) (normalized by d) is

| ∪i∈[1:K ]\ j A[1:K ]\{i, j }(i ; j)| = N

K (K − 1)
. (101)

In the delivery phase, we can send the following coded data
batch: ⊕

j∈[1:K ]
∪i∈[1:K ]\ jA[1:K ]\{i, j }(i ; j), (102)

which is useful for the K workers in the same time as follows:
wk has

⊕
j∈[1:K ]\k ∪i∈[1:K ]\ jA[1:K ]\{i, j }(i ; j) which it can

subtract to recover the needed part ∪i∈[1:K ]\kA[1:K ]\{i,k}(i ; k).
Moreover, the size of the coded transmission in (102) is the
same as the size of the uncoded elements given in (101) as

N
K (K−1) , which achieves the pair (S = (K −1) NK , Rworst-case =

N
K (K−1) ).

D. Closing the Gap for m = K − 2

For the storage point m = K −2 (S = (K −2) NK ), whenever
a data point is newly assigned to a worker, it already has(K−2
K−4

) = (K−2)(K−1)
2 out of

(K−1
K−3

) = (K−1)(K−2)
2 parts, and

hence only K−2 parts are needed of size 2d
(K−1)(K−2) bits each.

We also assume the worst-case scenario, where according to
Corollary 5 every worker is assigned completely new data
batch, i.e., Si,i = 0 and worker wi needs N

K new data points
for all i ∈ [1 : K ]. Therefore, the total number of sub-points
needed by every worker is (K − 2) NK .
• Consider the data sub-points which are considered interfer-
ence to wk (neither available nor needed). First, wk does not
need nor previously assigned the data points in the batches
A(i ; j) where i �= j and i, j ∈ [1 : K ] \ k (potential
interference). However, not the whole data points in A(i ; j)
are sent to w j , since w j has already some parts of them,
which are given by AW (i ; j), where j ∈ W and |W| =
K − 3. Moreover, wk also has some parts available in its
cache of A(i ; j) given by AW (i ; j), where k ∈ W (do not

cause interference). As a summary, the part of A(i ; j), where
i �= j and i, j ∈ [1 : K ] \ k, that is considered interference
to wk is given by A[1:K ]\{i, j,k}(i ; j), and hence the total
interference faced by wk is

I(k) = ∪
i, j∈[1:K ]\k

i �= j

A[1:K ]\{i, j,k}(i ; j). (103)

• Next, we organize these interference sub-batches according
to the workers that need them as in Figure 10a. Worker w j ,
where j ∈ [1 : K ]\k, needs the following sub-batches causing
interference to wk :

I( j ; k) = ∪
i∈[1:K ]\{k, j }A[1:K ]\{i, j,k}(i ; j), (104)

which consists of data sub-points of size 2d
(K−1)(K−2) each and

total number given by

I j ;k =
∑

i∈[1:K ]\{k, j }
Si, j

= N/K − Sk, j =
∑

i∈[1:K ]\{k, j }
Sk,i . (105)

Note that I( j ; k) serves as: a) interference to wk , b) useful
for w j ; and c) available at all the remaining workers. Also,
the total interference faced by wk can be written as I(k) =
∪ j∈[1:K ]\kI( j ; k) which consists of data sub-points of size

2d
(K−1)(K−2) bits each and total number given by

Ik =
∑

j∈[1:K ]\k
I j ;k =

∑
j∈[1:K ]\k

(N/K − Sk, j )

= (K − 2)
N

K
. (106)

• Following Example III-D.1, we apply a similar interference
alignment argument. We first break I( j ; k) for every j ∈ [1 :
K ] \ k into K − 2 partitions labeled as I(i)( j ; k) for i ∈
[1 : K ] \ { j, k}. The number of sub-points in I(i)( j ; k) is
Sk,i which satisfies the total size of I( j ; k) given in (105).
As shown in Figure 10b, we generate Sk,i coded sub-points
for every i ∈ [1 : K ] \ k as follows:

Sk,i coded sub-points :
C(i)(k) =

⊕
j∈[1:K ]\{k,i}

I(i)( j ; k), ∀i ∈ [1 : K ] \ k. (107)

Note that C(i)(k) is a coded sub-batch serves as: a) aligned
interference to wk , b) available at wi as j �= i in the above
summation; and c) useful for all the remaining workers as
follows: worker w� for � �∈ {i, k} has⊕ j∈[1:K ]\{k,i,�} I(i)( j ; k)
so it can subtract from C(i)(k) to get the needed part I(i)(�; k).
• The total size of ∪i∈[1:K ]\kC(i)(k) is

∑
i∈[1:K ]\k Sk,i = N

K
coded sub-points, which aligns the Ik = (K −2) NK total inter-
ference sub-points seen by wk , i.e., I(k) into N

K coded sub-
points. In the same time, these N

K coded sub-points serve, for
each remaining worker w j for j �= k, as

∑
i∈[1:K ]\{ j,k} Sk,i =

N
K −Sk, j useful sub-points given by ∪i∈[1:K ]\{k, j }C(i)(k), while
the remaining Sk, j sub-points, given by C( j )(k), are available
at w j ’s cache.
• By aligning all the interference seen by all the workers,
i.e., generating the coded batches ∪i∈[1:K ]\kC(i)(k) for all
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Fig. 10. In (a), the interference sub-batches seen by wk are organized according to the workers that need them, such that I(i; k) for i �= k is the data
needed to be delivered to wi while causing interference to wk . In (b), we pick Sk,i sub-points from each I( j; k) (labeled as I(i)( j; k)) where j �∈ {i, k},
and align them into Sk,i coded symbols labeled by the set C(i)(k), which serve as aligned interference for wk , available at wi , and useful for the remaining
workers.

k ∈ [1 : K ], we get a total number of N coded sub-points
seen as follows by every worker w j : a) N

K aligned interference
coded sub-points, b)

∑
k∈[1:K ]\ j Sk, j = N

K available sub-
points; and c)

∑
k∈[1:K ]\ j

( N
K − Sk, j

) = (K −2) NK useful sub-
points, which satisfies the total number of sub-points needed
in the worst case as discussed in the beginning. Since out of all
the N coded sub-points every worker already has N

K of them,
then the N coded sub-points can be sent in only (K − 1) NK
linear independent combinations of size 2d

(K−1)(K−2) bits each,

where the interference sub-points occupy N
K dimensions, while

the useful sub-points occupy (K−2) NK dimensions. As a result,
the total rate achieved is 2N

K (K−2)d bits, which achieves the pair

(S = (K − 2) NK , Rworst-case = 2N
K (K−2) ).

Now that we have closed the gap between the bounds in
Theorems 1 and 2 for S = m N

K , where m ∈ {1, K −2, K −1},
which covers all the storage values for K < 5, while for K ≥ 5
we can do the same analysis as in Section III to obtain the
gap ratio similar to (94) as follows:
Rupper
worst-case

Rlower
worst-case

= 1 + 1

K − j

(
1 − (K + 1)( j − 1)

(K − 1)( j + 1)

)

= 1 + 2

(K − 1)( j + 1)
, j ∈ [2 : K − 1], (108)

which is maximized for j = 2 to obtain the maximum gap

ratio as 1 + 2
(K−1)(3) = K− 1

3
K−1 for K ≥ 5 which completes the

proof of Theorem 4.
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