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ABSTRACT

Matrix multiplication is a fundamental building block for large
scale computations arising in various applications, including
machine learning. There has been significant recent interest
in using coding to speed up distributed matrix multiplication,
that are robust to stragglers (i.e., machines that may perform
slower computations). In many scenarios, instead of exact
computation, approximate matrix multiplication, i.e., allow-
ing for a tolerable error is also sufficient. Such approximate
schemes make use of randomization techniques to speed up
the computation process. In this paper, we initiate the study of
approximate coded matrix multiplication, and investigate the
joint synergies offered by randomization and coding. Specifi-
cally, we propose two coded randomized sampling schemes
that use (a) codes to achieve a desired recovery threshold and
(b) random sampling to obtain approximation of the matrix
multiplication. Tradeoffs between the recovery threshold and
approximation error obtained through random sampling are in-
vestigated for a class of coded matrix multiplication schemes.

Index Terms— Matrix multiplication, Random sampling,
Coded Distributed Computing

1. INTRODUCTION

Matrix multiplication has been one of the most essential fun-
damental building blocks for various applications in fields
such as signal and image processing, machine learning, op-
timization and wireless communications. Outsourcing the
computations to distributed machines has become a preferable
way to speed up the process when one is dealing with large
scale data. However, distributed systems suffer from the strag-
gler effect where the slowest worker(s) can limit the speed-ups
offered by distributed computation.

In order to mitigate the impact of stragglers, the idea of
using coded distributed computation has gained significant
recent interest. In general, these codes are used to introduce
redundancy to the computations. For example, by applying
one of the simplest codes - repetition codes, one can let mul-
tiple machines work on the same computation. One can then
obtain the desired result whenever the fastest machine finishes
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the assigned tasks. Much more efficient codes have been ap-
plied to the distributed computing problems. Significant recent
progress has been made on understanding the additional speed-
ups gained by mitigating stragglers using codes. Several codes
that are particularly efficient for the distributed matrix multi-
plication problems include Polynomial codes, MatDot codes
and Lagrange codes [1–4]. These codes add redundancy in a
way that one can obtain the desired result with the responses
from an arbitrary subset of machines. The smallest number of
machines which allow perfect recovery of the computation is
referred as the recovery threshold.

In contrast to adding redundancy, another methodology to
speed up matrix multiplication comes from the idea of random-
ization. By allowing some tolerable error in the computation,
randomized algorithms can provide speed-ups by working on
matrices of smaller dimensionality. However, the randomiza-
tion techniques must be carefully designed, in order to provide
guarantees on the error. Random sampling and random pro-
jection are two commonly used techniques for this purpose.
Random sampling algorithms sample either the columns or
rows from the original matrix to construct sketches of original
matrices, and the subsequent task is performed on sketched
matrices. The key to a good sampling scheme is to carefully
design what to sample, since not all columns/rows carry the
same amount of information. Several works on random sam-
pling include [5–10]. Random projection algorithms construct
the sketch matrix by projecting the original matrix to a vec-
tor space with a lower dimension. Projection algorithms are
typically designed to have good distance preserving proper-
ties (Johnson-Lindenstrauss lemma [11, 12]), and have been
investigated in various works [11–16].

Main Contributions: In this paper, we explore the syn-
ergies between coding and randomization, and explore the
tradeoffs between reconstruction error and recovery threshold
for distributed matrix multiplication. To answer this question,
we devise two novel coded sampling schemes that can achieve
various levels of speed-ups depending on how well one wishes
to approximate the desired result. For the scope of this paper,
we focus on Matdot codes [3], and design sampling strate-
gies tailored to these codes. We present a family of coded
sampling schemes, which sample a sub-set of columns from
the matrices, followed by application of Matdot codes on the
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sampled matrices. We analyze two sampling strategies: one
where the sampling of rows/columns is done independently
(with replacement), and one where we sample a subset of
rows/columns (without replacement).

We show that if the matrices A,B to be multiplied are
divided into m parts (for details, see Section 4), and for any
integer 1 ≤ s ≤ m, a recovery threshold of K = 2s − 1 is
achievable. Moreover, the expected approximation errors of
the proposed coded sampling schemes for a recovery threshold
of K = 2s − 1 are as follows: (a) E[‖AB − ÂB̂S‖2F ] =
(
∑

S ‖
∑

q∈S AqBq‖F )2/c2 − ‖AB‖2F , where S, |S| = s de-
notes the set of s sampled indices and c =

(
m
s

)
· s/m when

coded set-wise sampling scheme is used; and (b) E[‖AB −
ÂB̂‖2F ] = (

∑m−1
q=0 ‖AqBq‖F )2/s − ‖AB‖2F /s when coded

independent sampling scheme is used. These results reveal a
tradeoff between recovery threshold and approximation error,
i.e., a lower recovery threshold can be obtained by allowing
reconstruction error.

2. SYSTEM MODEL

We consider a distributed system which consists of a mas-
ter and N workers. Each worker is connected to the mas-
ter through a separate link. The goal of the master is to ap-
proximate matrix multiplication AB, where A ∈ Fd1×d2 and
B ∈ Fd2×d3 , using N workers, in the presence of stragglers,
for some sufficiently large field F. We note that depending
on the computation strategy used, the master may not need
to wait for all N workers to recover the approximation of
AB. The smallest number of workers needed to recover the
approximation is referred as the recovery threshold K.

To tolerate stragglers, the master encodes A and B sepa-
rately, and workers multiply the encoded versions of A and
B. The encoding functions used are f = (f0, · · · , fN−1)
and g = (g0, · · · , gN−1), where fn and gn are the encod-
ing functions for worker n. Specifically, the encoded ma-
trices for worker n are Ãn and B̃n, where Ãn = fn(A)

and B̃n = gn(B). We denote the answer from worker n

as Zn = ÃnB̃n. The master must be able to decode the
desired result from any K workers. We denote the approx-
imated result as ÂB̂ = d(Zn0

, · · · , ZnK−1
), where d(·) is

the decoding function. The performance of coded sampling
schemes is measured through the expected approximation error
E[‖AB − ÂB̂‖2F ], where ‖M‖F denotes the Frobenius norm
of a matrix M . Note that we choose Frobenius norm for its
properties, which will be useful for our analysis. Other norms
could potentially be used for evaluating the schemes.

3. CODED MATRIX MULTIPLICATION

For the scope of this paper, we focus on one of the codes,
namely MatDot codes [3]1. We show the intuition behind
MatDot codes and its application to approximate matrix multi-
plication through an illustrative example.

Example 1. Consider a matrix multiplication problem with N
workers using m = 2-MatDot code, where N ≥ 3. The input
matrices are partitioned into m = 2 submatrices as follows,

A =
[
A0 A1

]
, B =

[
B0

B1

]
, (1)

where Aq ∈ Fd1× d2
2 and Bq ∈ F

d2
2 ×d3 , for q = 0, 1. The

product of AB can then be written as,

AB = A0B0 +A1B1. (2)

The submatrices Aq and Bq are encoded as follows,

Ãn = A0 + xnA1, B̃n = xnB0 +B1, (3)

for n = 0, · · · , N − 1, where Ãn and B̃n have the same
dimensions as Aq and Bq, and xn ∈ F is a distinct non-zero
element assigned to worker n. After encoding, worker n
computes ÃnB̃n and sends the result to the master. Without
loss of generality, we assume that the first 3 workers respond
and the master receives,

Z0 = Ã0B̃0 = A0B1 + (A0B0 +A1B1)x0 +A1B0x
2
0,

Z1 = Ã1B̃1 = A0B1 + (A0B0 +A1B1)x1 +A1B0x
2
1,

Z2 = Ã2B̃2 = A0B1 + (A0B0 +A1B1)x2 +A1B0x
2
2.

It can be seen that the results can be viewed as 3 distinct
evaluations of a degree 2 polynomial. Thus, the master can
apply any polynomial interpolation technique and obtain the
coefficients A0B1, A0B0+A1B1 and A1B0 using any 3 eval-
uations received. Since the desired result A0B0 +A1B1 can
be obtained from any K = 3 evaluations, we say 2-MatDot
code achieves a recovery threshold of K = 3.

We now introduce the idea of randomization in this context.
In particular, for scenarios where approximate matrix multipli-
cation is sufficient, we show that the recovery threshold can
be even reduced to 1. Using the same partition as the previous
example, if we want the recovery threshold to be K = 1, the
master can follow the following strategy: it samples one of
the submatrices of A and B (i.e., either (A0, B0) or (A1, B1)
with a certain probability). The chosen index is a Bernoulli
random variable Y . It then assigns each worker to compute
AY BY . It waits for only K = 1 worker, and declares AY BY

as the approximate answer for AB. It can be readily shown
that the expected value of AY BY is AB with proper scaling.
Although AY BY is an unbiased estimator of AB on average,
there will be some error in practice, and the sampling scheme
must be designed to (a) give an unbiased estimate of AB,
and (b) minimize the resulting error as much as possible. We
first briefly summarize the general construction of MatDot,
followed by the details of our randomized sampling scheme.

1We note that there are many other codes that could potentially be applied
to our problem, such as Polynomial and Lagrange codes [1,2,4]. Investigating
randomization schemes for other codes is part of our ongoing work.
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To apply MatDot codes for any m that divides d2,
the input matrices A and B are partitioned into m dis-
joint submatrices horizontally and vertically, respectively,
i.e., A = [A0 · · ·Am−1], B = [BT

0 · · ·BT
m−1]

T , where

Aq ∈ Fd1× d2
m and Bq ∈ F

d2
m ×d3 , q = 0, · · · ,m − 1.

The submatrices of A and B are encoded into Ãn =∑m−1
q=0 Aqx

q
n, B̃n =

∑m−1
r=0 Brx

m−1−r
n for worker n,

where xn is a distinct non-zero element in F assigned to
worker n. Workers compute the product of their respective
Ãn and B̃n, and return the results to the master. The re-
sults can be seen as a polynomial evaluated at N distinct
points, i.e., h(x) =

∑m−1
q=0

∑m−1
r=0 AqBrx

q+m−1−r, where
x = xn, n = 0, · · · , N − 1. The degree of this polynomial is
2m− 2, hence, the coefficients of the polynomial can be inter-
polated using any 2m− 1 evaluations. Note that the desired
result is the sum of AqBr, q = r, and it is the coefficient of
xm−1. With the ability of computing the desired result from
any 2m− 1 workers, we say m-MatDot achieves a recovery
threshold of K = 2m− 1 (see [3] for details).

4. CODED SAMPLING FOR APPROXIMATE
MATRIX MULTIPLICATION

In this section, we present two coded sampling schemes and
study the tradeoff between recovery threshold and approxima-
tion error. To apply MatDot, matrices A and B are partitioned
into m submatrices horizontally and vertically, respectively.
Both schemes sample s submatrices from A and the corre-
sponding submatrices from B, and encode them using MatDot,
where the choice of s controls both the approximation error
and the recovery threshold.

4.1. Coded Set-wise Sampling
For the coded set-wise sampling scheme, the master samples
a subset S ⊂ {0, · · · ,m − 1} of the indices of submatrices,
where |S| = s ≤ m is picked according to probability PS. We
denote the sampled submatrices as AS , (Aq0 , · · · , Aqs−1)

and BS , (Bq0 , · · · , Bqs−1
). The sampled submatrices are

then encoded as,

Ãn =

s−1∑
`=0

Aq`x
`
n√

cPS

, B̃n =
s−1∑
`′=0

Bq`′x
s−1−`′
n√
cPS

, (4)

where the scaling is done to ensure that the approximation is
an unbiased estimator of AB and the choice of the constant
c =

(
m
s

)
· s/m will become clear in the analysis. The goal

is to approximate AB using the sum of Aq`Bq`′ , ` = `′ =
0, · · · , s − 1. Note that this sum is originally a part of AB.
Workers are assigned to compute their respective ÃnB̃n and
return the results. The master receives the results,

h(xnk
) =

1

cPS

s−1∑
`=0

s−1∑
`′=0

Aq`Bq`′x
`+s−1−`′
nk

, (5)

for k = 0, . . . ,K − 1, corresponding to any K workers. As
shown in Section 3, since the degree of this polynomial is 2s−

2, the coefficients of the polynomial can be interpolated using
the results from any K = 2s−1 workers. The master can then
obtain the approximation ÂB̂S =

∑s−1
`=0

∑
`′=` Aq`Bq`′/cPS.

Our main result is stated in the following Theorem:
Theorem 1. For an approximate coded matrix multiplication
problem, to achieve a recovery threshold of K = 2s − 1
using s-MatDot codes, the expected approximation error of
the coded set-wise sampling scheme is as follows,

E
[
‖AB − ÂB̂S‖2F

]
=

(∑
S

‖
∑
q∈S

AqBq‖F

)2

c2
− ‖AB‖2F ,

by sampling using the optimal distribution P ?
S shown in the

analysis, where S, |S| = s denotes the set of sampled indices
and c =

(
m
s

)
· s/m.

To prove Theorem 1, we first show that the approximation
ÂB̂S is an unbiased estimator of AB. We start by looking at
the expected value of the ijth element of the approximation:

E
[
(ÂB̂S)ij

]
= E

∑
q∈S

(AqBq)ij
cPS


=

1

c

∑
S

PS

∑
q∈S

(AqBq)ij
PS

= (AB)ij , (6)

where (6) follows from the definition of expected value and
the design of the scheme, and c is the number of times each
AqBq appears in the summation. Thus,

E
[
(ÂB̂S)

2
ij

]
=

1

c2

∑
S

(
∑
q∈S

AqBq)
2
ij

PS

. (7)

Since Var[(ÂB̂S)ij ] = E[(ÂB̂S)
2
ij ]− E[(ÂB̂S)ij ]

2, we have

Var
[
(ÂB̂S)ij

]
=

1

c2

∑
S

(
∑
q∈S

AqBq)
2
ij

PS

− (AB)2ij . (8)

We next find the expected approximation error by calculating:

E
[
‖AB − ÂB̂S‖2F

]
=

d1−1∑
i=0

d3−1∑
j=0

E
[
(AB − ÂB̂S)

2
ij

]
=

d1−1∑
i=0

d3−1∑
j=0

Var
[
(ÂB̂S)ij

]

=

d1−1∑
i=0

d3−1∑
j=0

1

c2

∑
S

(
∑
q∈S

AqBq)
2
ij

PS

−
d1−1∑
i=0

d3−1∑
j=0

(AB)2ij (9)

=
1

c2

∑
S

‖
∑
q∈S

AqBq‖2F

PS

− ‖AB‖2F , (10)

where (10) follows from placing the double summations before
(
∑

q∈S AqBq)
2
ij .
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Fig. 1. Normalized error for coded set-wise sampling scheme
as function of recovery threshold K (errors for K = 3 are
zoomed in).

Note that ‖AB‖2F is a constant for fixed A and B,
hence, we can use the method of Lagrange multipliers
to find the optimal PS by putting

∑
S PS = 1 as a con-

straint on the first term in (10) and solve for the PS that
minimizes the error. The optimal P ?

S can be found to be
P ?
S = ‖

∑
q∈S AqBq‖F /

∑
S′ ‖

∑
q∈S′ AqBq‖F . Plugging

P ?
S in (10) completes the proof of Theorem 1.

We note that the computational complexity of finding the
optimal probabilities is

(
m
s

)
×O(d1d2d3s/m), which can be

high. A way to overcome this issue is to sample A and B
using uniform distribution PS = 1/

(
m
s

)
at the cost of higher

approximation error. We next propose another alternative
(and simpler) sampling strategy and obtain the corresponding
approximation error.

4.2. Coded Independent Sampling
For coded independent sampling, at each iteration, the master
samples an index qt ∈ [0 : m−1] according to probability Pqt ,
the probability that Aqt and Bqt being sampled at time t, t =
0, · · · , s− 1. After sampling s indices, the corresponding sub-
matrices are encoded into Ãn =

∑s−1
t=0 Aqtx

t
n/
√
sPqt , B̃n =∑s−1

t′=0 Bqt′x
s−1−t′
n /

√
sPqt′ . Workers are assigned to com-

pute their respective ÃnB̃n. The results the master received are
h(x) =

∑s−1
t=0

∑s−1
t′=0 AqtBqt′x

t+s−1−t′
n /s

√
PqtPqt′ , where

x = xn, n = 0, · · · , N − 1. The degree of this polyno-
mial is 2s− 2, hence, the coefficients of the polynomial can
be interpolated by using the results from any 2s − 1 work-
ers. The master can thus obtain the approximation ÂB̂ =∑s−1

t=0

∑
t′=t AqtBqt′/s

√
PqtPq′t

. The expected error is (fol-
lowing similar steps as in previous section) as follows:

E
[
‖AB − ÂB̂‖2F

]
=

1

s

(
m−1∑
q=0

‖AqBq‖F

)2

− 1

s
‖AB‖2F .

4.3. Simulation Results
In this section, we present simulation results to show the per-
formance of the two coded randomized sampling schemes. We

Fig. 2. Normalized error for coded independent sampling
scheme as function of recovery threshold K (errors for K = 3
are zoomed in).

Independent Sampling Set-wise Sampling
Recovery Uniform Optimal Uniform Optimal
Threshold
K = 1 3.1314 3.0917 3.1155 3.0972
K = 3 1.5679 1.5349 1.0409 1.0337
K = 5 1.0545 1.0489 0.3468 0.3463
K = 7 0.8105 0.7633 0 0

Table 1. The normalized empirical errors, where the bolded
values indicates the best scheme for each K.

consider the case where A ∈ F60×4 and B ∈ F4×60, where A
and B are partitioned into m = 4 submatrices. With m = 4,
the master can sample either s = 1, 2, 3 or s = 4 submatrices
and achieved recovery thresholds of K = 1, 3, 5 or K = 7,
respectively. The normalized errors shown in Fig. 1, 2 and
Table 1 are calculated by computing ‖AB − ÂB̂‖2F /‖AB‖2F .
It can be seen in Fig. 1 and 2 that the empirical errors obtained
by using the optimal sampling distributions have better approx-
imations than the ones obtained by using uniform distributions.
Note that in Table 1, we can observe that in most cases, coded
set-wise sampling has better approximations than coded in-
dependent sampling for the same recovery threshold. This is
due to the fact that it is possible for the master to sample same
submatrices multiple times when using the coded independent
sampling scheme. While in coded set-wise sampling, the mas-
ter always samples fresh submatrices. Furthermore, the errors
of coded set-wise sampling always go to zero when s = m as
it is equivalent to performing the exact computation of AB.

5. CONCLUSION

In this paper, we studied the problem of approximate coded
matrix multiplication. We presented two novel coded sam-
pling schemes where a subset of columns/rows is sampled
from the matrices. The sampled submatrices are then encoded
using MatDot codes. The results reveal an interesting tradeoff
between recovery threshold and approximation error. General-
izing these ideas for other coded computation schemes is an
interesting future research direction.
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