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Abstract—Private information retrieval (PIR) allows users to
retrieve data from databases without revealing the identity of
that data. An extensive body of works has investigated efficient
schemes to achieve computational and information-theoretic pri-
vacy. The latter guarantees that no information is revealed to the
databases, irrespective of their computational power. Although
information-theoretic PIR (IT-PIR) provides a strong privacy
guarantee, it can be too taxing for certain applications. In this
paper, we initiate the study of leaky private information retrieval
(L-PIR), where a bounded amount of privacy leakage is allowed
and measured through a parameter ε. The classical IT-PIR
formulation is obtained by setting ε = 0, and for ε > 0, we
explore the opportunities offered for reducing the download cost.
We derive new upper and lower bounds on the download cost of
L-PIR for any arbitrary ε, any number of messages K, and for
N = 2 databases.

I. INTRODUCTION

Private information retrieval (PIR) introduced by Chor et
al. [1] is a primitive allowing a user to retrieve a message
from a set of databases, without revealing any information
about the identity of the message. Initial methods achieved
privacy assuming that the databases were computationally
bounded. More recently, the problem has received significant
attention under information-theoretic privacy. In [2], Sun and
Jafar characterized the capacity of information-theoretic PIR
(IT-PIR), defined as the maximum possible ratio of the desired
data to the total amount of downloaded data, for non-colluding
replicated databases. Several follow-up works investigated the
PIR problem under different setups including coded databases
[3], [4], colluding databases [5], and cache-aided PIR [6].

The majority of prior works in this area have adopted the
IT-PIR definition, where no information is leaked about the
retrieved message index. This perfect privacy requirement does
not allow tuning the PIR efficiency and privacy according to
the application requirements. In scenarios of frequent message
retrieval, lowering the level of privacy could be desirable to
improve efficiency. Ideally, one would select a desired privacy
level and choose a PIR scheme that guarantees such privacy
while maximizing the PIR capacity. Recently, Toledo et al. [7]
adopted a a game-based differential privacy definition of PIR
to increase the PIR capacity at the expense of a bounded loss
in privacy. However, their privacy definition only captures the
privacy of the submitted queries. The authors propose several
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schemes that hide the query identity and study their cost.
Although, the query privacy can be thought of a functional
equivalent to an IT-PIR in some cases, it does not satisfy the
IT-PIR definition. Our work differs in that we propose a leaky
PIR definition that meets the IT-PIR criteria. Moreover, we
study relevant lower and upper bounds.

Specifically, we study the problem of leaky PIR (L-PIR)
when some bounded information leakage, determined by a
non-negative constant ε, is allowed. We present an upper bound
on the capacity of L-PIR for an arbitrary number of messages,
K, and arbitrary number of databases, N , and for any privacy
budget ε. Furthermore, we present an L-PIR scheme for the
case of N = 2 databases, and arbitrary number of messages.
Our scheme matches the lower bound for extremal values
of epsilon (ε = 0, and ε = ∞). The core new elements of
our L-PIR scheme are as follows: (a) we devise an alternate
perfect privacy scheme through a path-based approach, where
a user query is equivalent to selecting one of several possible
paths across databases that achieve decodability. (b) Since
such paths could exhibit different download costs, we leverage
this alternative approach and introduce leakage through the
idea of biasing the path selection probabilities, and these
probabilities are chosen to satisfy the privacy budget, measured
by ε. Notation: Through this work, we use the notation [X] to
represent the set of integers from 1 to X .

II. PROBLEM FORMULATION

We consider K independent messages W1,W2, · · · ,WK , of
size L bits. Each message is stored in N ≥ 2 non-colluding
databases (DBs). A user interested in privately retrieving Wi,
i ∈ [K], sends N separate queries Qi1, · · · , QiN to each of the
N DBs, where Qin denotes the query sent to the nth database
when retrieving message Wi. The queries are independent of
the messages such that their mutual information is zero.

I(W1, · · · ,WK ;Qi1, · · · , QiN ) = 0. (1)

After Qin is received by the nth database, it generates the
corresponding answer Ain as a deterministic function of both
Qin and the stored messages. Therefore,

H(Ain|Qin,W1, · · · ,WK) = 0. (2)

The user must be able to decode the desired message Wi

from all answers received from the N databases. Moreover,
the queries and corresponding answers must leak a bounded
amount of information about the identity (index i) of the
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desired message. Formally, the L-PIR scheme must satisfy
the following correctness and privacy definitions, which are
constructed under an asymptotic scenario of an arbitrarily long
message length (L approaching infinity).

Correctness: Given the generated queries, the user must be
able to recover the desired message Wi correctly by collecting
all answers Ai1, · · · , AiN from the N DBs,

H(Wi|Qi1, · · · , QiN , Ai1, · · · , AiN ) = 0. (3)

ε-Privacy: Given any message subset WΩ, the following
likelihood ratios must be bounded as follows:

Pr{Qin|WΩ}
Pr{Qjn|WΩ}

≤ eε, ∀i, j ∈ [K], ∀n ∈ [N ]. (4)

Pr{Ain|WΩ}
Pr{Ajn|WΩ}

≤ eε, ∀i, j ∈ [K], ∀n ∈ [N ]. (5)

Pr{Qin, Ain|WΩ}
Pr{Qjn, Ajn|WΩ}

≤ eε, ∀i, j ∈ [K], ∀n ∈ [N ]. (6)

where ε is a non-negative constant.
Intuitively, the reduction in privacy comes from biasing

queries and answers towards certain messages compared with
any other message. Note that by setting ε = 0, the ε-privacy
definition becomes equivalent to perfect privacy. The relaxed
privacy definition shows us that any pair of answer and query
can be biased towards a desired message.

To evaluate the capacity of L-PIR, we consider the total
amount of communication between the user and the DBs for
retrieving the desired message. Similar to prior works [2]–
[5], we adopt the Shannon theoretic formulation where the
message size is assumed to be arbitrarily long and therefore,
the upload cost is negligible compared with the download
cost [2]. In this case, the L-PIR rate is the reciprocal of
the download cost D(ε), which characterizes how much total
information per bit the user has to download to retrieve a
message with ε privacy.

D(ε) =
D

L
=

∑N
i H(Ain)

H(Wi)
, (7)

where D is the average download cost over all messages. We
say that the pair (L,D) is achievable if there exist an L-PIR
scheme that satisfies the correctness and ε-privacy constraints.
Our goal is to find the optimal download cost D∗(ε), such that
D∗(ε) = min{D(ε) : (L,D) is achievable}.

III. MAIN RESULTS AND DISCUSSION

Theorem 1. For N = 2, the optimal download cost of the
L-PIR is upper-bounded by,

D∗(ε) ≤ 1 +
2K−1

eε + 2K−1 − 1

(1
2
+

1

4
+ · · ·+ 1

2K−1

)
. (8)

Theorem 2. The download cost of the L-PIR is lower-bounded
by,

D∗(ε) ≥ 1 +
1

Ne2ε
+

1

(Ne2ε)2
+ · · ·+ 1

(Ne2ε)K−1
. (9)
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Fig. 1: (a) Lower and upper bounds of L-PIR for N = 2,
and K = 2. The download cost of perfect privacy is obtained
when ε = 0, and (b) Upper bound of L-PIR and the download
cost of perfect privacy as K grows.

We make the following remarks:
• From the upper bound in (8), we can observe

that L-PIR reduces the download cost by at least
eε−1/(eε+2K−1−1)(1/2 + · · · + 1/2K−1) compared to the
perfect PIR. The latter has an optimal download cost of
is 1 + 1/2 + · · ·+ 1/2K−1 when N = 2, [2].

• If we ignore the privacy requirement (set ε → ∞ in (8)
and (9)), the download cost approaches 1, which means
the user needs to only download the required message.

• As K grows, 2K−1
/(eε+2K−1−1) approaches 1, and the

upper bound approaches the optimal download cost for
perfect privacy. That is, the benefits of relaxing privacy
by ε diminish with the database size (as can be seen in
Fig. 1(b) for ε = 1, and K = 10 messages).

• For ε = 0, the upper and lower bounds for L-PIR match
the optimal download cost with perfect privacy [2].

Figure 1(a) shows upper and lower bounds on the capacity
of L-PIR for K = 2. One can observe the decrease in the
download cost (increase in capacity) with ε, quickly approach-
ing the minimum possible value of 1. Fig. 1(b) compares the
download cost of perfect PIR (ε = 0) with L-PIR when ε = 1.

A. A Leaky PIR Example

Consider the simplest PIR setting where N = K = 2 and
each message, W1 = {a1, . . . , a4} and W2 = {b1, . . . , b4}, is
L = 4 bits long. To motivate the construction of a leaky PIR,
we first recall the perfect PIR scheme proposed in [2]. Figure 2
shows a retrieval structure for W1. The main idea is that one
can use coding and leverage side information from the other
database to reduce the download cost to 3/2. We highlight that
the shown bit indices represent one possible permutation of
the real indices. Thus, W1 retrieval can be obtained through
multiple bit structures that are selected uniformly and have
equal download cost of 3

2 . Figure 3 shows an alternative PIR
scheme in which the requested message can be downloaded
via sequences of structures that give unequal download cost.
In particular, when the user wants to retrieve message W1, it
picks one of the four possible queries/paths:
• Path P1:(∅,W1): Send no request to DB 1 and request
W1 from DB 2. This is what we term as a path, and this
path/query has a download cost of L bits.
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Fig. 2: A PIR scheme for N = 2,K = 2, and L = 4.

Fig. 3: L-PIR scheme for N = 2,K = 2, and L = 4.

• Path P2:(W1, ∅): Request W1 from DB 1 and send no
request to DB 2. This path has a download cost of L
bits.

• Path P3:(W2,W1 ⊕ W2): Request W2 from DB 1 and
W1 ⊕W2 from DB 2. This path has a download cost of
2L bits.

• Path P4:(W1 ⊕W2,W2): Request W1 ⊕W2 from DB 1
and W2 from DB 2. This path has a download cost of
2L bits.

Paths P1 and P2 are selected with probability p, whereas q
is the selection probability for both P3 and P4. The answer of
a DB n can take four different structures, πn,1, . . . , πn,4. These
structures represent the element addition of all possible subsets
of {W1,W2}. Note that the probability of any structure πn,j ,
j ∈ [4], to be selected equals the selection probability of all
paths coming through that structure. Also, there is one path per
message that comes through each structure πn,j . For example,
π1,2 is paired with π2,2 to retrieve W1, or it can be paired with
π2,3 for W2 retrieval. Let the path selection probabilities be
uniform, i.e., p = q = 1

4 . Thus, each structure is selected with
probability 1

4 , irrespective of the requested message index.
It is straightforward to show that this probability assignment
satisfies the perfect privacy constraints. Moreover, although
the cost varies per path, the uniform path selection yields an
optimal average download cost of 3

2 . Therefore, this path-based
PIR scheme is also optimal and matches the result of Sun and
Jafar [2] for perfect privacy.

Improving the download cost via path biasing. The leaky
privacy definition in (4)-(6), together with the alternative path-
based scheme described above, leads us to consider schemes
that bias the path selection process for retrieving desired
messages. We next show that this helps reduce the average
download cost for any non-zero ε. Intuitively, if the biased
paths have lower download cost (for example L), an overall
lower cost can be achieved at the expense of some bounded
loss of privacy due to the biasing. The question we pose
is whether there are values p 6= q that yield an average
download cost less than 3

2 and simultaneously satisfy the ε-
privacy definitions in (4)-(6). To meet these definitions, the

possible structures to each query must satisfy:

e−ε ≤ Pr(πn,j |i = 1)

Pr(πn,j |i = 2)
< eε, ∀n, j. (10)

where P (πn,j |i = k) is the probability of retrieving structure
πn,j when the desired message is k. This satisfies (4) directly,
whereas it satisfies (5) and (6) as each possible answer of the
selected structure is obtained with probability cn,j ·P (πn,j |i =
k), where cn,j is a constant independent of the requested
message. For example, we have cn,j = 2−L for the structures
W1, W2, and W1 ⊕ W2. Based on the scheme in Fig. 3,
there are two cases for each structure πn,j : (i) πn,j is used
to recover W1 and W2 with the same probability either p or
q, then P (πn,j |i=1)/P (πn,j |i=2) = 1, which intuitively satisfies
(4)-(6). (ii) πn,j is selected with different probability p and q
to retrieve W1 and W2, respectively, and vice versa. Then, p
and q must satisfy

Pr(πn,j |i = 1)

Pr(πn,j |i = 2)
=
p

q
≤ eε. (11)

Invoking the fact that the sum of path probabilities must
equal one (2p+2q = 1) and substituting q = 0.5− p, we can
rewrite (11) as

p ≤ eε

2(1 + eε)
. (12)

We thus pick p that satisfies (12) with equality, and then
select q as q = 0.5 − p, as a valid choice of path selection
probabilities which satisfy the ε-privacy constraints.

Computing the download cost D(ε): Since our scheme is
symmetric, the same download cost is obtained for the retrieval
of message W1 or message W2. Then, the average download
cost can be written as

D(ε) =

∑4
j=1 Pr{P = Pj} ·DPj

L
, (13)

where Pr{P = Pj} ∈ {p, q} is the probability that path Pj is
chosen and DPj is the cost of path Pj . From Fig. 3, we know
that DP1 = DP2 = L, and DP3 = DP4 = 2L. Hence, D(ε)
equals

D(ε) =
2× p× L+ 2× q × (2L)

L
= 2− 2p ≥ 2− eε

(1 + eε)
,

(14)
where the last inequality comes from (12). The achievable
download cost of our L-PIR scheme can be rewritten as

D(ε) =
3

2
− eε − 1

2(eε + 1)
, (15)

which is lower than 3
2 , the optimal download cost under perfect

privacy, for any ε.

IV. PROOF OF THEOREM 1

In this section, we construct an L-PIR scheme for general K
and N = 2. The download cost of this scheme gives the upper
bound in Theorem 1. Assume there are K ≥ 2 messages,
W1, . . . ,WK . For each DB n ∈ {1, 2}, there are 2K different
structures, πn,1, . . . , πn,2K that represent the addition of mes-
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Fig. 4: One path of the L-PIR scheme that retrieves Wi.

sages belonging to any possible subset S of the K messages.
To decode the desired message Wi, the two structures that
form each path are selected such that their ⊕ addition gives
the requested message. For instance, W1 can be recovered
from paths (W1, ∅), (W2,W1 ⊕W2), (W3,W1 ⊕W3), etc. A
general form for a path selected with probability p` is shown
in Fig. 4. This construction yields: (i) two paths with a cost of
L bits which include the ∅ structure. (ii) (2K − 2) other paths
with a cost of 2L bits. Without loss of generality, we assign
probabilities p and q to paths with cost L and 2L, respectively,
such that 2p+(2K−2)q = 1. Due to symmetry, these paths are
assigned the same probability. Assigning different probabilities
does not improve the download cost or the privacy. Figure 5
shows the L-PIR scheme for K = 3.

Fig. 5: An L-PIR scheme for N = 2, and K = 3.

Figure 4 shows that for any structure, there is a path that
passes through it to recover any desired message. This is
crucial to satisfy ε-privacy because accessing a structure does
not eliminate any of message possibilities. In total, there are
K paths passing through each structure. The following lemma
generalizes the condition in (12) for satisfying ε-privacy to any
K. It provides an upper bound on the path biasing probability
that does not violate the ε-privacy.

Lemma 1. To preserve ε-privacy

p ≤ eε

2(eε + 2K−1 − 1)
. (16)

Proof. Similar to the privacy analysis in (10) and (11) for
the L-PIR scheme in Fig. 2, we only need to guarantee that
p ≤ q eε. Substituting the inequality in 2p + (2K − 2)q = 1,
we get

2p(1 + e−ε(2K−1 − 1)) ≤ 2p+ (2K − 2)q = 1. (17)

This gives

p ≤ 1

2(1 + e−ε(2K−1 − 1))
=

eε

2(eε + 2K−1 − 1)
. (18)

This proves the lemma.

Given that all messages are requested equiprobably, the
download cost can be written as,

D(ε) =

∑2K

s=1 Pr{P = Ps} ·DPs
L

=
2× p× L+ (2K − 2)× q × 2L

L
= 2p+ 2(2K − 2)q

(a)
= 2p+ 2(1− 2p) = 2− 2p

(b)

≥ 2− eε

eε + 2K−1 − 1
= 1 +

2K−1 − 1

eε + 2K − 1

= 1 +
2K−1

eε + 2K − 1
· 2

K−1 − 1

2K−1

= 1 +
2K−1

eε + 2K−1 − 1

(1
2
+

1

4
+

1

8
+ · · ·+ 1

2K−1

)
,

(19)

where (a) comes from the equality 2p+ (2K − 2)q = 1, and
(b) is due to Lemma 1. This gives the upper bound in (8) on
the download cost of L-PIR for arbitrary K, and N = 2, and
completes the proof of Theorem 1.

V. PROOF OF THEOREM 2

In this Section, we prove the lower bound stated in Theorem
2. For N ≥ 2 and without loss of generality, assume the
requested message is W1, then D can be lower bounded as

D = H(A1
1) + · · ·+H(A1

N ) ≥ H(A1
[1:N ])

≥ H(A1
[1:N ]|Q

1
[1:N ])

= H(W1, A
1
[1:N ]|Q

1
[1:N ])−H(W1|A1

[1:N ], Q
1
[1:N ])

(a)
= H(W1, A

1
[1:N ]|Q

1
[1:N ]) = L+H(A1

[1:N ]|Q
1
[1:N ],W1)

(b)
= L+ I(W[2:K];A

1
[1:N ]|Q

1
[1:N ],W1)

(c)
= L+ I(W[2:K];A

1
[1:N ], Q

1
[1:N ]|W1)

≥ L+ I(W[2:K];A
1
1, Q

1
1|W1)

(d)
= L+H(A1

1|W1, Q
1
1),

where (a) follows from the correctness constraint in (3), (b)
follows from (2), (c) follows from (1), and (d) follows again
from (1) and (2).

Under perfect privacy condition (ε = 0), the proof is contin-
ued by setting H(A1

1|W1, Q
1
1) = H(Aj1|W1, Q

j
1), for j ∈ [K].

However, this does not hold under ε-privacy, whenever ε > 0.
Thus, we obtain a bound on H(A1

1|W1, Q
1
1) by invoking the

following lemma.

Lemma 2. Let X and Y be two random variables, over [G],
satisfying the following condition,

e−ε ≤ Pr(X = g)

Pr(Y = g)
≤ eε, ∀g ∈ [G], (20)

then we get
H(X) ≥ e−εH(Y ). (21)
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Proof. Let xg and yg be the probabilities Pr(X = g) and
Pr(Y = g), respectively. As |X| = |Y| = G, where |.|
represents the set cardinality, we can write H(X), H(Y) as,

H(X) = log2(G)−D(X||U), (22)

H(Y) = log2(G)−D(Y||U), (23)

where D(·||·) is the KL divergence and U is a random
variable, uniformly distributed over [G]. This yields

H(X)−H(Y) = D(Y||U)−D(X||U). (24)

From (20) and ∀g ∈ [G], we have e−εyg ≤ xg ≤ eεyg , then
xg = e−εyg + δg , where 0 ≤ δg ≤ eεyg − xg . From this
relation, we get∑

δg =
∑

xg −
∑

e−εyg = 1− e−ε. (25)

We write xg equivalently as

xg = e−εyg + (1− e−ε) δg
1− e−ε

. (26)

Note that both yg and δg
1−e−ε are valid probability mass

functions (p.m.f.s) with sums equal one. Let T be a random
variable over [G] such that Pr{T = g} =

δg
1−e−ε . Next, we

utilize the convexity of the KL divergence and the relation in
(26) to get

D(X||U) ≤ e−εD(Y||U) + (1− e−ε)D(T||U). (27)

The last inequality and (24) yield

H(X)−H(Y) ≥ (1− e−ε)(D(Y||U)−D(T||U))

= (1− e−ε)(D(Y||U)− log2(G) + log2(G)−D(T||U))

= (1− e−ε)(H(T)−H(Y)).
(28)

Then, we have

H(X) = e−εH(Y) + (1− e−ε)H(T) ≥ e−εH(Y). (29)

To continue the converse proof, we utilize (4) and (6) in
bounding the following ratio ∀i, j ∈ [K],

Pr{Ain|Qin,WΩ}
Pr{Ajn|Qjn,WΩ}

=
Pr{Qin, Ain|WΩ} · Pr{Qjn|WΩ}
Pr{Qin|WΩ} · Pr{Qjn, Ajn|WΩ}

≤ e2ε.

(30)

Replacing X and Y in Lemma 2 with the conditional random
variables of answers given queries and messages, we get

H(Ain|Qin,WΩ) ≥ e−2εH(Ajn|Qjn,WΩ), ∀i, j ∈ [K], ∀n
(31)

Given the previous inequality, D can be bounded as

D ≥ L+ e−2εH(A2
n|W1, Q

2
n), ∀n. (32)

The addition of (32) over all possible n’s gives us the following

N ×D ≥ N × L+ e−2ε
N∑
n=1

H(A2
n|W1, Q

2
n). (33)

Dividing by N ,

D ≥ L+ e−2ε · 1
N

N∑
n=1

H(A2
n|W1, Q

2
n)

≥ L+ e−2ε · 1
N
H(A2

1, . . . , A
2
N |W1, Q

2
1, . . . , Q

2
N )

= L+ e−2ε · 1
N
H(W2, A

2
1, . . . , A

2
N |W1, Q

2
1, . . . , Q

2
N )

−H(W2|A2
1, . . . , A

2
N ,W1, Q

2
1, . . . , Q

2
N )

(a)
= L+ e−2ε · 1

N
H(W2, A

2
1, . . . , A

2
N |W1, Q

2
1, . . . , Q

2
N )

(b)
= L+ e−2ε · 1

N
H(W2)

+
1

N
H(A2

1, . . . , A
2
N |W1,W2, Q

2
1, . . . , Q

2
N )

=L+ e−2ε · L
N

+
1

N
H(A2

1, . . . , A
2
N |W1,W2, Q

2
1, . . . , Q

2
N ),

(34)

where (a) comes from (3), and (b) is due to the independence
of the messages and queries. Following the same iterative
process used in [2] and applying Lemma 2 yields a lower
bound on the download cost equal to:

D∗(ε) ≥ 1 +
1

Ne2ε
+ · · ·+ 1

(Ne2ε)K−1
. (35)

This proves the lower bound in Theorem 2.

VI. CONCLUSION

In this paper, we studied the PIR problem under a relaxed
definition of privacy that trades off some bounded amount of
information leakage controlled by a non-negative parameter ε
for lower download cost. We explored the opportunities offered
by this relaxation and proposed an L-PIR scheme that lowers
the download cost for any ε and any arbitrary number of
messages. We derived new upper and lower bounds on the
download cost of L-PIR for N = 2 databases. Closing the
gap between the two bounds was left as an interesting open
problem for further research.
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