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Abstract—In this paper, we consider the problem of designing
additive noise mechanisms for data release subject to a local
information privacy constraint. While there has been significant
prior work on devising additive noise mechanisms for differential
privacy (such as Laplacian and Gaussian mechanisms), for
the notion of information privacy, which accounts for prior-
knowledge about the data, there are no such general purpose
additive noise mechanisms. To this end, we devise a prior-aware
Laplacian noise mechanism, which satisfies local information
privacy. We show that adding context awareness (i.e., via the
knowledge of prior of the data) improves the tradeoff between
utility and privacy when compared to context-unaware mecha-
nisms.

I. INTRODUCTION

Differential privacy (DP) [1] has been considered a de facto
standard notion for private data analysis and aggregation. In-
tuitively, in DP, an adversary can not infer the presence or the
absence of an individual contributing to the released output.
DP notion has been considered in two contexts: 1) centralized
setting, where a trusted service provider releases data; and
2) the localized setting, where a user can locally perturb
and disclose the data to an untrusted data curator/aggregator.
Recently, local privacy setting has gained attention in the liter-
ature. Randomized response (RR) [2] was the earliest privacy
preserving mechanism used for the local setting. However,
the original RR mechanism does not have formal privacy
guarantees. To this end, local differential privacy (LDP) was
proposed as a local variant of DP. In the literature, many
schemes were proposed under the LDP notion for private data
aggregation such as [3]-[5].

It is worth noting that both localized and centralized DP
are context-free privacy notions, i.e., there is no assumption
on the underlying prior on data of the users, and thus the
privacy guarantees are strong and hold for worst-case set-
tings (any realization of the data). In contrast, context-aware
privacy notions such as mutual information privacy (MIP)
and information privacy [6] and local information privacy
(LIP) [7] consider the priors of users’ data in their definitions
(also see [8] for a data-driven context-aware privacy definition
and references therein). In fact, context-aware notions can
lead to mechanisms with better utility-privacy tradeoff by
incorporating the priors of users’ data. In many applications,
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prior knowledge about the data is often publicly available, for
instance, location data in location-based services and periodic
surveys [9].

For DP, there are well-known general purpose mechanisms
such as Laplacian [1], exponential [10] and randomized re-
sponse [3] which have been widely adopted in practice. To
the best of our knowledge, general purpose context-aware
mechanisms have not been explored in the existing literature.

Contributions: The contributions of this paper are sum-
marized as follows: 1) We discuss the approximate case of
LIP and its relationship to the approximate LDP. We formally
show that (e, §)-LDP implies (¢, §)-LIP. Conversely, we show

that (e, 8)-LIP implies (2e, %)-LDR where Prin —
min, Px(x), is the minimum probability over the given data
prior. Thus, LIP relaxes LDP notion for the approximate
case as well. 2) We then present a context-aware Laplacian
mechanism which satisfies (e,0)-LIP for the local privacy
setting. The notion of context-awareness is incorporated by
taking into account the prior knowledge of user’s data. More
specifically, the additive Laplace noise is made dependent
on the prior distribution by making its variance inversely
proportional to Py, . Intuitively, this is because a smaller P,
means that the data distribution is skewed, and rare instances
can potentially leak more information. Therefore, for smaller
Pohin, the noise variance is large, i.e., we add more noise. On
the other extreme, when P, = ﬁ (i.e., uniform prior), we
add the least amount of noise.

II. PRIVACY DEFINITIONS AND PROPERTIES

We consider the problem of local privacy-preserving data
release, where a user perturbs his input data X € D,D =
{x1,22,...,2m} and outputs Y to an untrusted data aggre-
gator. For the scope of this paper, we consider two context-
aware privacy metrics, namely mutual information privacy,
and information privacy. We next define these metrics, along
with local differential privacy, and briefly discuss the inter-
relationships between these metrics.

A. Context-free privacy notion

Definition 1: (e-Local Differential Privacy (LDP) [3]). A
randomized mechanism M : X — Y which takes an input X
and outputs Y satisfies ¢-LDP for some ¢ € R, if for any
x,x’ € D and for all Sy, € Range(M), we have

Pr(Y € Sou|X = 2) <ePr(Y € S| X =2'). (1)
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Fig. 1: Comparison between context-free mechanism and context-aware mechanism under the same privacy level e.

LDP guarantees that each user’s perturbed data has a similar
output probability for any two input instances, x,z’ € D.

B. Context-aware privacy notions

Definition 2: (e-Mutual Information Privacy (MIP) [6]). A
randomized mechanism M : X — Y which takes an input X
and outputs Y satisfies e-MIP for some ¢ € R™, if the mutual
information between X and Y, i.e., I(X;Y) satisfies

I(X;Y) <e (2)

Definition 3: (e-Local Information Privacy (LIP) [7]). A
randomized mechanism M : X — Y which takes an input
X and outputs Y satisfies e-LIP for some ¢ € R, if for any
2 € D and for all sets S,y C Range(M), we have

676 S Pr(X = .’L‘,Y € Sout) S 667 (3)

Px (z)Pr(Y € Sou)
where Px (x) denotes the prior of input data X taking value
z. Using Bayes’ rule, the above definition can be re-written

as

o< < Pr(X = z|Y € Sou) < e @
Px ()

Remark 1: From the above, it is clear that LIP essentially
guarantees that the ratio of posterior (upon observing Y) to
prior is bounded. Hence, having the knowledge of a user’s
prior, an adversary can not infer too much additional informa-
tion about any input X by observing any output Y.

Remark 2: Since MI is the expected value of the ratio of
posterior and prior distributions, thus, it is immediate that LIP
is a stronger privacy notion than MIP. In essence, MIP provides
an average privacy guarantee while LIP provides a privacy
guarantee for every pair of input and output realizations.

Remark 3: With regards to the relationship between LDP
and LIP, it was shown in [7] that e-LIP implies 2¢-LDP while
e-LDP implies e-LIP. To conclude, LIP is stronger than MIP
but weaker than LDP and thus a stronger candidate for context-
aware privacy guarantees.

Next, we define the approximate LIP as follows.

Definition 4: ((e,d)-Local Information Privacy (LIP)). A

randomized mechanism M : X — Y which takes an input

X and outputs Y satisfies (e, d)-LIP for some € € R™, if for
any x € D and for all sets Soy C Range(M), we have

Pr(Y € Sou, X =) < ePr(Y € Sou)Px(z) +6, (5)
Pr(Y € Sou)Px () < ePr(Y € Sou, X =z)+6.  (6)

In the following Proposition, we show the relationship
between approximate LDP and approximate LIP.

Proposition 1: If a mechanism M satisfies (e, 6)-LDP, then
it also satisfies (¢, 0)-LIP. Conversely, if M satisfies (¢, )-LIP,
then it satisfies (26, (e;ril)é)—LDP, where Pyin > 0.

min

Proof: We start proving the first part. If a mechanism M
satisfies (e, d)-LDP, then we have

Pr(Y € Sou|X = 2') < ePr(Y € Sou|X =) + 4.
Now we have the following:

Pr(Y € Sou) = ZPr(Y € Soue| X = 2")Px(2")

< (ePr(Y € Sou| X = z) + 6) Px (')
=ePr(Y € Sou| X =2) 46,
which yields,

Pr(Y € Sout) Px(z) < ePr(Y € Sou, X = x) + Px(x)d
< ePr(Y € Sou, X =) + 0.

By switching the inputs, we can readily prove that
Pr(Y € Sou, X =) < ePr(Y € Sou) Px (z) + 9,

which implies that the mechanism M also satisfies (e, §)-LIP.
Now we prove the second part. If M satisfies (¢, )-LIP,
then from Definition 4, we have

Pr(Y € Sou) < ePr(Y € Sou|X = 2') +6/Px (2')
<ePr(Y € Sou| X =2) + 8/ Puin. (7)

Furthermore, from Definition 4, we also have
Pr(Y € Sou|X = ) < ePr(Y € Sout) + 6/ Prnin-

Hence, from the above equation, we have



Pr(Y € Sour) > e Pr(Y € Sou| X =) — e 0/ Ppin.  (8)
Plugging (8) in (7), we obtain the following,

C+1)8
Pr(Y € Sou|X = 2) < ®Pr(Y € Sou|X =2/) + (ep;_),

which completes the proof of Proposition 1. |

Remark 4: This result can be viewed as the generalization of
the results in [6], [7], which show that e-LIP implies 2¢-LDP.
In contrast to the pure case (6 = 0), the above proposition
shows that the relationship between approximate LIP and
approximate LDP depends on the underlying prior of the data.

III. PRELIMINARIES ON LAPLACIAN MECHANISM

Consider the setting when a single user has to release
the local data X to an untrusted data curator. To achieve
privacy, we perturb the data X by adding independent random
noise N drawn from Laplacian distribution. The noise-adding
mechanism will output

Y =X+ N, €))

where N ~ Lap(0,b) is a random variable with probability
density function

1 In|
fN (n) - 2be b )
where b is the noise parameter that describes the Laplacian
distribution. Note that b controls the width of the distribution,
and the variance is 2b2. It has been shown in [1] that if we

pick the noise parameter b as

(10)

AX
bLpp = —

(1)

satsifies e-LDP, where AX is the query sensitivity. Formally,
the local sensitivity, AX is defined as follows.

Definition 5: (Local Sensitivity). Let an input X €
[©mins Tmax]- Then, for a real-valued query f(X) = X (e,
identity query), the sensitivity of X is defined as

AX £ max|X; — X|| (12)
i, Ty
= Tmax — LTmin- (13)

As the support of the Laplacian mechanism is infinite, the
output of the Laplacian mechanism can have undesired values
(e.g., the value of the output falls outside a certain specified
range). To circumvent this issue, for the scope of this work,
we focus on the bounded Laplacian mechanism [11].

Definition 6: (Bounded Laplacian Mechanism [11]). Given
b > 0 and a domain interval [[,u] C R, ! < u. The bounded
Laplacian mechanism Mp : X — Y, Yy € [l,u] is given by
the following conditional density function:

0, ifyé¢ll,ul,
fY|X(y|x) = { 1 1 _ly—=l . (14)
A OPE if y € [l,u],

—ly

—x . o
v dy is a normalization constant

where C,(b) = [ 3¢
which depends on X.

Remark 5: We set AX = u—I, however, in the most general
case [, u] is a powerset of [Zmin, Tmax] -

Next, we present two Lemmas concerning C,(b) presented
in [11], where these Lemmas will be useful in the design of
the noise parameter b.

Lemma 1: The normalization constant C,(b) is written as
follows:

1 —z=l _u—z
Cx(b):l—i(e 7ot b). (15)
It can be readily shown that the result of the integration yields
(15). Tt is worth noting that for a fixed b, the minimum value
of (', is attained when x = [ or z = w.

Lemma 2: Let C,(b) be given by Definition 6. Then for a
fixed b and AX = u — I, we have

Ca(b) Car2(b)
T Cp () Cor ()

|z’ —z| AX

6%26’7.

; (16)
Outline of the proof: By the symmetry of C,(b) around x =
HT“, we can assume that x > z’. Also, as shown in [11],
el (%e%) > 0 whenever 2’ + z < u. Therefore, the value

oz
and the minimum value of z’ is .

Remark 6: For the context-free bounded Laplacian mecha-
nism, it has been shown in [11] that when AX = u — [, the
noise obtained in (11) satisfies e-LDP. In the next Section, we
present our main results.

We note that the definition of LDP is independent of the
priors, in which we can not adjust the perturbation parameters
based on the priors. In the next Section, we show the advantage
of devising mechanisms that are dependent on the priors which
satisfy LIP. Fig. 1 gives an illustration of the differences
between context-free and context-aware mechanisms.

of z that maximize the ratio is AX. Also

IV. MAIN RESULTS AND DISCUSSIONS

In this Section, we present our main result on context-aware
Laplacian mechanism which satisfies (¢, 0)-LIP. In particular,
we show how to design the noise parameter b as a function
of the prior knowledge about the user’s input data X' in the
following Theorem. Before presenting the result, we highlight
that for the context-aware Laplacian mechanism design, there
are two methodologies to design the noise parameter b: 1)
first case, which we term as instance independent, where we
design b as a function of the prior distribution, however, each
instance is perturbed by the same amount of noise. 2) second
case being instance dependent, where we design the functional
b(x) as a function of the prior of every input instance = such
that we add less noise for the high probability instances, and
vice versa (see Fig. 2). For the scope of this paper, we focus
on the first case, and the second setting of instant dependent
mechanism design is left for future work.

Note that the adversary may have inaccurate prior knowledge about user’s
data inputs. This scenario is left as a future work.
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Theorem 1: Let My be the bounded Laplacian mechanism

given in Definition 6 and let ¢ > 0 and § = 0. Then,
{Mp(2)|y € [l,u]} satisfies e-LIP if
AX 1
—ep—, €<log(s—)
bLIP = log( 1*15:]:) Frmin (17)

AX

e

otherwise,

where P, is the minimum probability value of the distribu-
tion Px(x).

The proof of Theorem 1 is presented in the Appendix. From
Theorem 1, we make the following observations: the noise pa-
rameter br;p is picked as a function of Py, = min, Px (),
the minimum probability over the data prior. Furthermore, for
e < log(ﬁ), we observe that context-aware mechanism
satisfying LIP adds less noise compared to context-unaware
Laplacian mechanism satisfying LDP. Finally, we note that
both mechanisms become equivalent in the limit Py, — 0.

Remark 7: (Comparison of Utility). We numerically com-
pare the performance of context-free and context-aware Lapla-
cian mechanisms for different probability distributions. To
assess the performance i.e., utility, we define the following
cost function?:

MSE2£E [(Y — X)?]
_ Px(z) [“77 5 _in
= wezp m /l n’e dn.

—T

(18)

19)

The expected cost is a function of the prior distribution Px, the
noise distribution fn and the bounds on the released output
l,u. If the output support is unbounded, i.e., | — —oo and
u — 00, then MSE = E [NQ] = 2b2%. We used MATLAB in
order to compute the expression in (19).

Remark 8: (Numerical Comparison). In Fig. 3, we plot
the utility function of context-free Laplacian mechanism and
the context-aware Laplacian mechanism. We can see that our
mechanism outperforms the conventional Laplacian mecha-
nism, this is due to the relaxed definition of LIP where the
noise parameter b is adjusted to the priors, i.e., as Py,
increases, we require less noise. If |X| = m, then Py, < %
We note that the best utility is attained when P, =
the priors are uniformly distributed.

m 1.6

2The details are skipped due to space limitation.
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Fig. 3: MSE vs. € for X = {0,1.5,3}, where AX =3, |X| =3
and [I,u] = [0, 3]. We consider two distributions: Py = {Z, 2, 2}
and Px = {3, &5, 15}, and PX = {5}, %, 5 }-

V. CONCLUSION

In this paper, we considered the problem of mechanism de-
sign under local information privacy constraints. We discussed
the approximate case of local information privacy and showed
its relationship to local differential privacy. We proposed
a context-aware Laplacian mechanism which satisfies local
information privacy. We showed better utility-privacy tradeoff
for the proposed mechanism compared to the context-free
Laplacian mechanism. There are several interesting directions
for future work. First, it would be interesting to devise
instance dependent Laplacian mechanisms which satisfy LIP
constraints. Second, an interesting scenario is where the
knowledge about the underlying prior distribution is limited.
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APPENDIX

In this Section, we present the main steps behind the proof
of the Theorem 1 in Section IV. We derive the minimum
amount of noise needed to ensure e-LIP for any input data
X € D. We can write the LIP definition as

Pr(Y € Sou)Px(z) Pr(Y € Sou)
Pr(Y € Sou, X =2) Pr(Y € S| X =)’

For any arbitrary S, C Range(M), and any pair x,z’, we
have the following sequence of inequalities:

Pr(Y € Sou) 2 Pr(Y € Sou| X = 2') Px (2)
Pr(Y € Sow|X = 2) o Pr(Y € Sou|X = )
(20)
_ly=2'|
B S Px (@) [s Clm/ He o dy
= _lu—a
Jswme T dy
Co  Jsw©
=Px(@)+ > Px(a) g S‘”, PR
@' #e C Jsae dy
(@ nCa Jsw €™
< Px(z Z Px(z S(mlti ST PEEd
. 1' fsom b dy
3 P G
z'#x
(b)
< PX Z PX
z'#x

= Px(z) + ¢ (1 — Px(x)),

where (a) follows from triangle inequality and (b) follows
directly from Lemma 2. In order to upper bound the ratio

_ Pr(YeSa) €
Pr(Y €Sou| X =2) by e€, we have

. ax e — Px(x)
(1-Px(z)) <e =e Sm-

We choose the same noise parameter by p for every input data
X. Here, we pick the worst b p in order to satisfy e-LIP
for every X. Therefore, we pick the noise parameter byp as
follows:

Px(x) e

AX
bLIP Z max T()
P tog (775
—Px (z)
1—Px (x)

21

We note that
ie.,

is an increasing function in Px(x),

0 (e — Px( ))_ e —1 -0
OPx(z) \ 1 - Px(x) (1—Px(z))?2 —
Therefore, we pick Px(x) that minimize the denominator

of (21). Hence, from the above argument, we arrive at the
following choice of the noise parameter by p:

AX

e 22)

bLp =

Now, we derive another lower bound for the amount of noise
needed to satisfy e-LIP. Starting from (20), we have the
following sequence of inequalities:

ly—a’]
Pr(Y € Sou) Z Px(x fsom c. we” T dy
_ - ly—=|
Pr(Y € Sou| X = :c) f&)m o Le~ dy
_ly—ata—a!|
C Js. 6o 7 dy
+ Z PX C_, ly— L\
' #x ¥ fsoul
(a) C, —la—2'|
> Px(r) + Z PX(x’)C:/e T
z'#x
(b) ; —AX
> Px(z) + Z Px(x')e® (23)
z'#x

= Px(x) + e#(l — Px(x)),

where (a) follows from triangle inequality and (b) follows
directly from Lemma 2. In order to lower bound the ratio
Y ESm) _ py e—€ we have

Pr(Y €Sou]X=2) 0¥ ¢ » W€ hav

—ax _ —ax _ e = Px(x)
P 5 (1 — P €= 5 > - 7
X( )+€ ( X( )) € € = lfpx(:E)

Therefore, we pick the noise parameter by p as follows:

AX
bLIp 2 max

Px(@) log (;fﬁg%)

(24)

%(()) is an increasing function in Px(x),

We note that
ie.,
0 (1—PX(95)>: 1—e°¢ >0
OPx (z) \e~¢ — Px(x) (e=¢ — Px(x))2 =
Therefore, we pick Px (x) that minimizes the denominator of
(24). This leads to the following choice for the noise parameter

bLip:

AX
b = .
].Og ( 1— P}gm )

We pick the parameter by p as the maximum of (22) and (25).
Therefore, we get the following:

AX

Poain 1—Poin )|
mln |:10g ( 1— Pmm ) IOg ( _E_Pmm>:|

Now, we wan check which term in the denominator of (26) is
smaller by computing the following:

ef — Pmin 1- Pmin o (2 —ef — e_E)Pmin
1-— Pmin e ¢ — Pmin N (1 - P)min)(€7€ - Pmin) .
(27

Note that e* 4+ e~* > 2 for all @ € R. Therefore, (2 — ¢ —
’6) <0.To this end, (27) is negative when (e~ ¢ — Ppin) > 0,
e < log(5— -).
Next we check the difference between the denominators in
the expressions of (11) and (26). It is easy to see that byp <

(25)

buip = (26)

brLpp for € < log
This completes the proof of Theorem 1.



