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Machine learning model interpretation and visualization focusing on

meteorological domains are introduced and analyzed.

achine learning (ML) and deep learning (DL;
LeCun etal. 2015) have recently achieved break-
throughs across a variety of fields, including
the world’s best Go player (Silver et al. 2016, 2017),
medical diagnosis (Rakhlin et al. 2018), and galaxy
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classification (Dieleman et al. 2015). Simple forms of
ML (e.g., linear regression) have been used in mete-
orology since at least the 1950s (Malone 1955), and
ML has been used extensively to forecast convective
hazards since the mid-1990s. Kitzmiller et al. (1995)
use linear regression to forecast the probability of
tornadoes, large hail, or damaging wind; Billet et al.
(1997) use linear regression to forecast hail probabil-
ity and size; Marzban and Stumpf (1996, 1998) use
neural networks to forecast the probability of torna-
does and damaging wind, respectively; and Marzban
and Witt (2001) use neural networks to forecast hail
size. Gagne et al. (2013, 2017a) use random forests to
forecast hail probability at 1-day lead time; McGovern
et al. (2014) and Williams (2014) use random forests
to forecast convectively induced aircraft turbulence;
while Cintineo et al. (2014, 2018) use naive Bayes
to forecast the probability of tornadoes, large hail,
and damaging wind. DL is also beginning to be
used in meteorology, with applications including
hail prediction (Gagne et al. 2019) and detection of
extreme weather patterns such as tropical cyclones,
atmospheric rivers, and synoptic-scale fronts (Liu
et al. 2016; Mahesh et al. 2018; Kunkel et al. 2018;
Lagerquist et al. 2019b). The authors have extensive
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experience using ML to improve forecasting and
understanding of weather phenomena (Gagne et al.
2017a,b; Lagerquist et al. 2017; McGovern et al. 2017;
Gagne et al. 2019; Lagerquist et al. 2018). Many of
these products have been used by human meteorol-
ogists in experiments and day-to-day operations.

Despite its wide adoption in meteorology, ML is
often criticized by forecasters and other end users as
being a “black box” because of the perceived inability
to understand how ML makes its predictions. This
phenomenon is not exclusive to meteorology, and
many ML practitioners and users have recently be-
gun to focus on this interpretability problem (Olah
et al. 2017; Lipton 2016; NeurIPS Foundation 2018;
Molnar 2018).

The main contribution of this paper is to synthesize
and analyze multiple approaches to model interpreta-
tion and visualization (MIV) for meteorology. MIV is
useful in all phases of ML development (Selvaraju et al.
2017). Initially, MIV can be used to aid with debugging,
enabling the domain scientists and data scientists to en-
sure that the models are focusing on the most physically
relevant aspects of the problem. During deployment,
MIV canbe used to help the users gain trust in the mod-
el and to identify ideal scenarios as well as shortcom-
ings. If ML surpasses human predictions, interpretation
methods could be used to improve the humans’ skills
(Silver et al. 2016; Johns et al. 2015) and MIV could be
used to identify new scientific hypotheses.

To ensure general results, we use both traditional
ML and DL for meteorological phenomena at dif-
ferent spatiotemporal scales. At the synoptic scale,
we apply DL to predict the probability of severe hail
24-48 h in advance across the continental United
States (CONUS). At the mesoscale, we apply tradi-
tional ML to soundings from a mesoscale numerical
model to predict winter precipitation type. At the
storm scale, we use DL to predict the probability that
a storm will produce a tornado within the next hour
and traditional ML methods to classify a storm’s con-
vective mode. Lagerquist et al. (2018, 2019a), Gagne
et al. (2019), McGovern et al. (2018), and Jergensen
et al. (2019) focus on the training and evaluation of
these models, while we focus on MIV.

MACHINE LEARNING. We briefly review ML as
needed for the MIV explanations, giving more detail
on DL since it is newer to meteorology. McGovern
et al. (2017) provides a more in-depth review of tra-
ditional ML methods for meteorology.

Decision trees. Decision trees, which can be under-
stood as a flowchart where the decision points have
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been automatically learned by a computer, have been
used in meteorology since the 1960s (e.g., Chisholm
etal. 1968). Decision trees were built subjectively by
human experts until the 1980s, when an objective
learning algorithm was developed (Quinlan 1986).
Their human readability has helped contribute to
their popularity in many scientific domains. During
training, at each branch node, the algorithm con-
siders a number of potential questions that can split
the data (e.g., is dewpoint > 60°F?). Splits are chosen
to minimize error on the predictions, which can be
classifications, probabilities (Provost and Domingos
2003), or real valued (Breiman 1984).

Decision trees are brittle, meaning that small
changes in the data can cause large changes in the
final model. Ensemble approaches, such as random
forests (RF; Breiman 2001) and gradient-boosted
regression trees (GBRT; Friedman 2002), mitigate
this problem by training ensembles of trees but this
minimizes human readability. In RF, diversity is
maintained by training each tree with a different
subset of examples. In GBRT, the kth tree is fit to the
error of the first k — 1 trees, rather than being fit to
the target value. RF and GBRT are used successfully
in meteorology (Williams et al. 2008a,b; Gagne et al.
2009; McGovern et al. 2014; Williams 2014; McGov-
ern et al. 2015; Clark et al. 2015; Elmore and Grams
2016; Lagerquist et al. 2017).

Support-vector machines. Support-vector machines
(SVM; Vapnik 1963) find a hyperplane in predictor
space that can be used to linearly separate the data.
SVMs can also be used for nonbinary classification
(Franc and Hlavac 2002) or regression (Drucker
etal. 1997). SVMs often use a kernel to transform the
predictor space into another space where the prob-
lem is more easily separated. One such kernel, the ra-
dial basis function (RBF; Scholkopf et al. 1997), uses
a Gaussian to transform the space. Linear SVMs, like
decision trees, are human readable when there are
few predictors, but high-dimensional linear SVMs
and nonlinear SVMs are not easily interpreted by a
human. Recent SVM applications in meteorology
include Radhika and Shashi (2009), Rao et al. (2012),
and Rajasekhar and Rajinikanth (2014).

Deep learning. DL is a subset of ML that specializes
in leveraging spatiotemporal structure in the input
data. DL is well suited for meteorology, because it
can be applied directly to spatiotemporal grids and
identify salient features at different spatiotemporal
scales. The DL models we use here are convolutional
neural networks (CNN; Fukushima and Miyake
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Fic. |. Architecture of CNN used for tornado prediction. Each input example is a 32 x 32 grid of 12 different
radar variables. In the feature maps produced by convolution and pooling layers, negative values are in blue
and positive values are in red. (The input also includes five sounding variables, listed in Fig. 3, but these are
omitted here for the sake of simplicity.) The first convolution layer transforms the 12 variables into 32 filters
and removes one pixel around the edge. The first pooling layer downsamples feature maps to half resolution,
thus halving the spatial dimensions. Other convolutional and pooling layers perform similar operations. Fea-
ture maps from the last pooling layer are flattened into a length-6,400 vector (5 x 5 x 256 = 6,400), which is
transformed by the three dense layers into vectors of length 404, then 20, and then |. The sigmoid activation
function of the final dense layer forces the output (tornadogenesis probability) to the range [0, I].

1982). The main components of a CNN are con- classification, adopted in this work, is cross entropy,
volutional, pooling, and dense layers (Fig. 1). Each  defined as

convolutional layer passes many convolutional 1 & & K

filters over the input maps, where an input map _ﬁz z yylog, ()’ik),

consists of multiple “channels” (e.g., red, green, and e

blue channels for an image), creating one output
map for each filter. The output maps (feature maps)
are passed through a nonlinear activation function,
such as the rectified linear unit (ReLU; Nair and
Hinton 2010). The activation function must be
nonlinear; otherwise, the net can learn only linear
relationships. Supplemental Fig. ES1 is an animation
of one filter.

where N is the number of examples, K is the number
of classes, y, is the true value (1 if the ith example
belongs to the kth class, 0 otherwise), and y, is the
predicted probability that the ith example belongs to
the kth class. Cross entropy varies from [0, ), and
the optimal score is zero.

Pooling layers reduce the resolution of feature
maps, which allows deeper convolutional layers (far-

During training, weights in the convolutional
filters are updated via stochastic gradient descent
(SGD; section 4.4.3 of Mitchell 1997) to minimize
the loss function. The typical loss function for
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ther to the right in Fig. 1) to learn larger-scale features
along with some amount of translational invariance.
Deeper layers learn higher-level abstractions, because
the feature maps are larger in scale and have passed
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through more nonlinear transformations (section
5.2.1 of Chollet 2018). Supplemental Fig. ES2 is an
animation of maximum pooling.

Most CNNs end with one or more dense layers
(section 3.1.1 of Chollet 2018; our Fig. 1), which are
identical to hidden layers in a traditional neural
net (Haykin 2001). Weights in the dense layers are
learned via SGD, simultaneously with those in the
convolutional layers. For binary classification, the
final prediction is one value (probability of event). For
K-class problems (K > 2), the final prediction consists
of K values (one probability for each class).

For traditional ML methods presented in this
work, we use scikit-learn (Pedregosa et al. 2011).
For DL, we use Keras (Chollet 2015). All models are
trained on the training data; hyperparameters (pa-
rameters not adjusted during training) are selected
by which model performs best on the validation data;
and final results are reported on the testing data.

INTERPRETATION AND VISUALIZATION
METHODS FOR TRADITIONAL MACHINE
LEARNING. The most general classes of MIV
methods are filter and wrapper methods (Kohavi
and John 1997). Filter methods consider only the data
themselves, whereas wrapper methods incorporate
(wrap around) the model. We focus on wrapper
methods, as the goal is to understand what the ML
models have learned from the data. This section
describes interpretation methods designed for tradi-
tional ML, though all but impurity importance can
be generalized to DL.

Impurity importance. Impurity importance (Louppe
etal. 2013; Breiman 2001) is one of the most popular
importance methods because it can be computed
during training and is implemented in scikit-learn.
However, this method works only for tree-based
models. It is animated in supplemental Fig. ES3 and

defined as follows:
T

1(p)= /1), S, /)81,
t=1seS; ,

where T is the number of trees in the ensemble, S, is
the set of all splits in tree ¢ that involve predictor p,
Ai(s) is the decrease in the impurity score (e.g., Gini
or entropy) achieved by split s on the training data,
N is the total number of training examples, N_is the
number of training examples passed to split s, and
I(p) is the resulting importance for predictor p. The
most important predictors are those that affect the
most examples (higher in tree) and that split the data
more effectively (decrease impurity more).
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Permutation importance. The permutation method is
another approach for ranking predictor importance.
Although initially proposed by Breiman (2001) for
RFs, it can be used for any traditional or DL model.
There are two variations of permutation importance
that we denote as single pass (Breiman 2001) and mul-
tipass (Lakshmanan et al. 2015). In both variations,
the goal is to determine how much performance dete-
riorates when the statistical link between a predictor
x, and the target variable is broken. This is achieved
by randomly permuting x. over all examples, then
comparing the performance of the trained model on
unpermuted data to performance on the permuted
data. If performance deteriorates significantly when
x; is permuted, this indicates that x, is important. If
performance does not deteriorate significantly, either
1) X, is generally unimportant or 2) information in x,
is redundant with information contained in the other
predictors. For example, if there are two predictors x,
and x,, such that x, = 2x, they are fully linearly depen-
dent (Pearson correlation = 1.0), so either predictor
on its own could be deemed unimportant. Multipass
importance aims to address this issue. The single-pass
and multipass algorithms are precisely stated in
supplemental Fig. ES4. Supplemental Figs. ES5 and
ES6 describe the algorithms with animations. Both
versions are implemented with publicly available code
in Jergensen (2019).

Sequential (forward and backward) selection. Sequential
selection is another method for ranking predictor
importance, but unlike impurity and permutation
importance, it can be used to explicitly add or re-
move predictors from the model. The algorithms
for sequential forward and backward selection (SFS
and SBS) are shown in supplemental Fig. ES7 and
animated in supplemental Figs. ES8 and ES9. The
two algorithms are very similar: SFS begins with a
climatological model (one that always predicts the
mean target value in the training data), containing
zero predictors, and adds one predictor at a time.
Conversely, SBS begins with a model trained on all
predictors and removes one at a time.

SES may be likened to the song “99 Bottles of Pop
on the Wall,” where each pop bottle is a predictor.
At the kth iteration of SFS, k-1 predictors (bottles)
have been selected (taken off the wall and put on the
table). The goal is to find the one remaining predictor
that, when added to those already selected, yields the
best k-predictor model. The stopping criterion in the
algorithm (whether cost function J decreases signifi-
cantly) is purposely vague, as there are many ways to
implement this. Basically, ] should decrease enough to



justify adding another predictor to the model, which
increases model complexity.

SBS can be thought of as SFS in reverse. At the kth
iteration, k-1 predictors (bottles) have been removed
from the model (put back on the wall). The goal is to
find the worst remaining predictor (i.e., the one whose
removal from the model yields the smallest increase
in ]). Again, the stopping criterion is purposely vague.
Basically, J should increase enough to justify no longer
removing the worst predictor from the model.

Generalized versions of SFS and SBS have been
proposed (e.g., Stracuzzi and Utgoff 2004; chapter 9 of
Webb 2003), which allow both forward and backward
steps in the same algorithm or removing several pre-
dictors at each step. Also, genetic algorithms can be
used to iteratively improve (evolve) the set of selected
predictors (e.g., Siedlecki and Sklansky 1993; Leardi
1996). Last, a method called “sufficient input sub-
sets” (Carter et al. 2018) can be used to find the most
relevant predictors for one or a subset of examples,
without retraining the model.

Partial-dependence plots. While the above methods
can reveal the most important predictors for a given
problem, they do not indicate how or why each pre-
dictor is important. One way to address this would be
to visualize the average prediction for each possible
value of X the predictor of interest. However, this
does not account for nonlinear interactions between
x; and the other predictors. Partial-dependence
plots (PDP; Friedman 2001) address this problem by
fixing the value of one or more predictors X* for all
examples, passing these new data through the trained
model, and averaging the resulting predictions. This
averages out the effects of the other predictors. To
make the full PDP, the entire process is repeated for
a range of values for X*. Regions of the PDP with
nonzero slope indicate where the ML model is sen-
sitive to X*. Note that this method provides one plot
for each predictor, which can be overwhelming with
hundreds of predictors.

Related MIV methods attempt to explain the mod-
el’s prediction for an individual example. Individual
conditional expectation (ICE; Goldstein et al. 2015) is
the PDP for a specific example. The ICE plot (which
can be shown on the same axes as the PDP) identifies
clusters of model behavior, which are regions of the
predictor space where the model treats examples
similarly. Another method is locally interpretable
model-agnostic explanation (LIME; Ribeiro et al.
2016), which fits a simple model, such as linear re-
gression, to a set of slightly perturbed examples.
The perturbed examples are similar to the example
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of interest but with slightly altered predictor values.
Predictor weights in the simple model are used to
explain the prediction.

INTERPRETATION METHODS FOR DEEP
LEARNING. All methods presented in the previous
section, with the exception of impurity importance,
can be adapted for DL. In this work, we demonstrate
how the permutation method can be adapted for
DL. Although SFS and SBS can also be adapted, they
require significant additional computation for the
retraining of each model, making them infeasible for
most DL applications. For permutation, images from
one channel are permuted over all examples. Thus,
each example consists of a set of spatially intact maps,
but the maps are temporally shuffled (e.g., the tem-
perature field from 1 January 1970 may be matched
with the humidity field from 5 April 2012). All inter-
pretation methods presented in this section are im-
plemented in Lagerquist and Gagne (2019); saliency
maps are also implemented in Lagerquist (2018). We
discuss primarily CNNG in this section, because this
is the DL model used in our results. However, the
methods presented herein can be applied to other
DL models, such as convolutional long-short-term
memory (LSTM) and recurrent neural nets.

Saliency maps. Saliency maps (Simonyan et al. 2014)
quantify the influence of each input value (i.e., each
predictor at each grid point) on the activation of some
part of the CNN. This could be the activation of a par-
ticular neuron, a group of neurons, or the final pre-
diction from the CNN. Most often it is with respect
to an output neuron, whose activation is a predicted
probability, p. The saliency of predictor x at grid point
(i,§,k), with respect to prediction p, is 5p/0x(i,j,k). Thus,
positive (negative) saliency means that the prediction
increases (decreases) as x(i,j,k) changes.

One advantage of saliency maps is that they share
the dimensions of the input data, which allows them
to be viewed as images (the way meteorologists
generally prefer to query data) and overlaid with the
input data. One disadvantage is that saliency does not
necessarily imply importance: salient values are those
with which the prediction changes most dramatically,
but they are not necessarily most important for the
original prediction (Samek et al. 2017). This disadvan-
tage is alleviated by methods such as layerwise rele-
vance propagation (Samek et al. 2017; Montavon et al.
2018) and class-activation maps (“Gradient-weighted
class-activation maps” section). Another disadvan-
tage is that saliency is a linear approximation around
the actual value of x(i,,k), meaning saliency indicates
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how the model reacts when x is perturbed slightly
from the actual value, but not when it is perturbed
drastically.

Gradient-weighted class-activation maps. Class-activa-
tion maps (CAM; Zhou et al. 2016) quantify the in-
fluence of each grid point, rather than each predictor
at each grid point, on the predicted probability of a
given class p,. However, CAM works only on a specific
type of CNN architecture, so we use a generalization,
gradient-weighted class-activation maps (Grad-CAM;
Selvaraju et al. 2017). Grad-CAM quantifies the
influence of each grid point on p,, filtered through
a given convolutional layer in the network. In other
words, at a given depth in the network, Grad-CAM
indicates which spatial locations support the pre-
diction of the kth class. For deeper convolutional
layers, the class-activation map tends to be smoother
(with less small-scale variation) and more localized
(with nonzero values in a smaller part of the physical
space), reflecting the tendency for deeper layers to
learn higher-level abstractions. The ability to leverage
representations at different layers is an advantage of
Grad-CAM over saliency maps.

Backward optimization. Backward optimization [BWO;
or “feature optimization” in Olah et al. (2017)] creates
a synthetic input example that maximizes the acti-
vation of particular neuron(s), using SGD (“Machine
learning” section). Whereas SGD is used during
training to update the network weights in a way that
minimizes the loss function, it is used during BWO to
update input values in a way that maximizes the acti-
vation of the given neuron(s). For example, if the task
is tornado prediction and we choose to maximize the
activation of the output neuron, BWO will create an
“optimal tornadic storm.” Conversely, if we choose to
minimize the activation, BWO will create an “optimal
nontornadic storm.” Supplemental Fig. ES10 shows
an animation of backward optimization, where the
goal is to decrease tornado probability for a tornadic
storm that initially had very high forecast probability.

Because SGD only adjusts the values in an array,
rather than creating the array from scratch, it requires
astarting point or “initial seed.” Some options are all
zeros, Gaussian noise, or a real-dataset example. The
advantage of all zeros and Gaussian noise is that the
initial seed almost never resembles a real example, so
the synthetic example created by BWO is more novel
with respect to the initial seed. The advantage of re-
al-data initialization is that the output of BWO is usu-
ally more physically realistic. Another way to make
the output more physically realistic is to integrate
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BWO with a generative model (e.g., Goodfellow et al.
2014), which learns to create novel but representative
dataset examples [Montavon et al. (2018), who use the
term “activation maximization” instead of BWO]. The
sensitivity of BWO to the initial seed can be seen as
a disadvantage since it does not yield one “perfect”
answer, but it can also be seen as an advantage, since
BWO can be run with many initial seeds to obtain
different answers.

Novelty detection. Novelty detection (Wagstaff and Lee
2018) finds the most novel, or unexpected, image X* in
a set of images (trial set) with respect to all images in
another set (baseline set), then quantifies the novelty of
each value in X* (i.e., each predictor at each grid point).
The algorithm is detailed in supplemental Fig. ES11.
As an example of its use, the baseline set could con-
tain nontornadic storms, while the trial set contains
tornadic storms. In this case, novelty detection would
quantify which tornadic storms are most novel, and
which parts of these storms are most novel, with respect
to the nontornadic ones. The algorithm involves “fea-
tures,” which are inputs to the first dense layer of the
CNN (Fig. 1). It is crucial to remember that the CNN
extracts only features that aid in the prediction task, so
the results of novelty detection are always with respect
to the prediction task.

Novelty detection works by using singular-value
decomposition (SVD; section 9.3.5 of Wilks 2006)
to create a lower-dimensional representation of the
image data (feature vector) and an up-convolutional
network (upconvnet; Dosovitskiy and Brox 2016) to
transform the feature vector back to image space.
Loosely, an upconvnet is a backward CNN. The up-
convnet allows novelty to be viewed in image space,
which is easier for humans to interpret than feature
space. The main outputs of novelty detection are the
reconstructed image from the CNN’s feature space,
the reconstructed image from an SVD approximation
the same feature space, and the difference between
the two.

METEOROLOGICAL DOMAINS. We briefly
summarize each domain (prediction task) for which
the MIV methods are used. Full descriptions are
found in Lagerquist et al. (2018, 2019a), Gagne et al.
(2019), McGovern et al. (2018), and Jergensen et al.
(2019). We chose deliberately to present results on
a wide variety of meteorological domains to show
the wide applicability of the MIV methods. This
section is kept brief, as specific details are not needed
to understand the results fully. Rather, we wanted
to highlight the broad applicability of the results



across spatial and temporal scales and different
prediction tasks.

Storm-mode classification. We use traditional ML
methods (RF, GBRT, and SVMs) to classify storms
into three categories: supercell, part of a quasi-linear
convective system (QLCS), and discrete storms. The
categories and the human-labeled data both come
from Thompson et al. (2012) and Smith et al. (2012).
We use data from the years 2003-11. Predictors for
this task include radar statistics derived from the
Multi-Year Reanalysis of Remotely Sensed Storms
(MYRORSS; Ortega et al. 2012) and environmental
data from the Rapid Update Cycle (RUC; Benjamin
et al. 2004). Models are trained with ninefold cross
validation, where each fold is 1 year.

Precipitation type. We apply the same traditional ML
methods for predicting winter precipitation type. The
four precipitation types are rain, freezing rain, snow,
and ice pellets. Labels are Meteorological Phenomena
Identification Near the Ground (mPING; Elmore
etal. 2014) reports from October 2014 to March 2015.
The predictors are statistics derived from RUC prox-
imity soundings. Specifically, soundings are taken
from the nearest grid point to the mPING report
at 6-, 12-, and 18-h lead times. Although soundings
from the three lead times are not independent, they
increase the size and variability of the dataset, which
is crucial given that the time period is only one win-
ter. The three forecasts have the same valid time, so
differences among them are due solely to differences
among the three model runs. The results in this
paper come from training on the classic warm-nose
sounding, characterized by an elevated warm (melt-
ing) layer above a cold (freezing) layer at the surface.
This type of sounding contains two freezing layers,
one above the elevated warm layer and one below, and
is the type most commonly associated with freezing
rain and ice pellets.

Tornado prediction. We use a CNN to forecast torna-
dogenesis. Specifically, for each storm object (one
thunderstorm cell at one time), the CNN is applied to
a storm-centered radar image and proximity sound-
ing, with the goal of predicting whether or not the
storm will generate a tornado in the next hour. Radar
images come from the GridRad dataset (Homeyer
and Bowman 2017), a mosaic of all Next Generation
Weather Radar (NEXRAD) scans in the CONUS.
The GridRad data used here have a horizontal res-
olution of 0.02°, vertical resolution of 0.5 km up to
7 km above sea level and 1.0 km aloft, and temporal
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resolution of 5 min. Storm-centered 2D grids (e.g.,
Fig. 9) are 32 x 32, interpolated to 1.5-km horizontal
resolution, and rotated so that storm motion is to-
ward the right. The composites contain 12 variables:
minimum, mean, and maximum reflectivity from 1
to 3 km above ground level; minimum, mean, and
maximum 1-3-km radial velocity spectrum width;
minimum, mean, and maximum 2-4-km vorticity;
and minimum, mean, and maximum 5-8-km vortic-
ity. The choice of these variables is based on previous
work by Sandmael and Homeyer (2018), showing that
they discriminate well between tornadic and severe
nontornadic storms.

Soundings come from the RUC model before 1
May 2012 and the Rapid Refresh (RAP; Benjamin
et al. 2016) otherwise. In general, interpretation
results are shown only for radar data, as results for
soundings have been noisy. Tornado reports from
Storm Data (National Weather Service 2016) are
used to determine when/if a storm undergoes tor-
nadogenesis.

Hail prediction. We use CNNss to predict large hail in
simulated thunderstorms (Gagne et al. 2019) from the
National Center for Atmospheric Research (NCAR)
convection-allowing ensemble (CAE; Schwartz et al.
2015). The target variable is based on the storm’s
maximum future hail size (“yes” if 225 mm in di-
ameter, “no” otherwise), according to the Thompson
microphysics scheme (Thompson et al. 2004, 2008).
This is a perfect-model experiment, because the
target variable comes from a simulation rather than
true observations. The goal is to identify storm-scale
and environmental features that promote simulated
hail growth.

The predictors are storm-centered grids of five
variables (temperature, dewpoint, u wind, v wind,
and geopotential height) at three pressure levels (850,
700, and 500 hPa). The grids are 32 x 32 and share
the 3-km grid spacing of the NCAR CAE. Each CNN
trained for this problem has three strided-convo-
lution layers (which combine the convolution and
pooling operations into one layer), with either ReLU
or leaky-ReLU activation (Maas et al. 2013), followed
by a dense layer with sigmoid activation (cf. Fig. 1).

RESULTS. We organize results by MIV method,
beginning with traditional ML and moving to DL.

Ranking and selecting important predictors. Figure 2
compares importance rankings for tree-based mod-
els, using both impurity and permutation importance
for the tasks of storm-mode classification and winter
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FiG. 2. Comparison of importance rankings for tree-based models. The prediction tasks are (left) storm-mode
classification and (right) winter precipitation type. Each panel shows the 10 most important predictors, with
importance decreasing from top to bottom. Radar variables are in orange, sounding parameters are in purple,
and other predictors (on left, shape parameters describing the storm outline) are in green. Large colored bars
show the mean, while error bars show the 2.5th and 97.5th percentiles, for 1,000 bootstrap replicates of the
validation set.

precipitation. It is important to understand both the For winter precipitation type, the two versions of
meteorological significance of the predictors and permutation agree on the top four predictors (with
the difference in importance rankings among the a difference in ordering for the second and third):
methods. This is especially important for researchers ~ surface wet-bulb temperature, mean u wind in the
who may have previously used only one importance lowest cold layer (LCL), u-wind difference between
ranking. the LCL and elevated warm layer (EWL), and mean

2182 | BAMS NOVEMBER 2019



Winter precipitation: SVM Tornado prediction: CNN

g ;
| H [
— |Origina| Score i -8 :
© . ] 1
(W] ]
'5' 3 : > :
S : |
€ E 5 % :
A .
5 5 | |
: = 1
w5 : S |
0w 2 : © .
T L : = :
o S k [} ;
H jul
Q9 E : o ! No permutation ._r
> ' 00 02 04 06 08
- r T T T T T h ) i . ' '
¢O 0000 0050 0100 0.150 0.200 0.250 Validation AUC
Peirce Skill Score
c ' - ]
5 [Griamarscore ‘ | 8 [ No permutation »-!~
— ©
=0 [1Mean EWL3-am w-vind m 57} 5 !
o ] =] !
= S T - |
3 1
E -n Layer v-wind (m s™1) a—) :
S 8 |
()] o -hulb témperature (K) - i
Q‘ ‘6 ' -:L w-wind (m s71) 8 :
8 -t') .n EWL relative humidity .9 AGL :
(0] 5 .ean EWL-5-km v-wind (m s71) 8 L :
CI). @ LCL Wet-bulb temp (K) Q": GL E
-— o 1
— t-freezing height (m AGL)
S : , , , , , 0.0 0.2 0.4 0.6 0.8
S 0.000 0.050 0.100 0.150 0.200 0.250 Validation AUC

Peirce Skill Score

Fic. 3. Comparison of permutation methods (single and multipass) for non-tree-based models. (left) Radial-ba-
sis-function SVM for winter precipitation type. (right) CNN for tornado prediction. Each panel shows only the
10 most important predictors, with importance decreasing from top to bottom. All other details (color scheme
and error bars) are as in Fig. 2.

u wind from the EWL to 5 km above ground level
(AGL). The importance of these predictors makes
sense meteorologically. For example, (isobaric) wet-
bulb temperature is the temperature that an air parcel
would be if it were cooled by evaporating water into
it at constant pressure. If the surface temperature is
>273.15 K, freezing rain is impossible and rain be-
comes much more likely. There are more substantial
differences between impurity importance and per-
mutation importance. For example, the top predictor
(surface wet-bulb temperature) using permutation is
fifth-most important according to impurity, while
the most important predictor for impurity (mean v
wind in the EWL) is fifth- or seventh-most important
according to permutation.

For storm-mode classification, the two versions of
permutation importance agree on three of the top four
predictors (with a slight difference in ordering): the y
component of lifting condensation level-to-equilibrium

AMERICAN METEOROLOGICAL SOCIETY

level (LCL-EL) wind shear, perimeter, and compact-
ness. In general, the most important predictors are
reflectivity statistics (spatial statistics based only on
grid cells inside the storm), environmental wind shear
(in the proximity sounding), and shape parameters.
These results are broadly consistent with what we know
about storm mode, especially the difference between
supercells and other modes: supercells tend to be less
elongated (lower eccentricity) than QLCS storms, with
higher reflectivity and higher wind shear. Again, the
two versions of permutation agree more with each
other than with impurity importance. However, im-
purity importance still emphasizes shape parameters,
reflectivity, environmental wind shear, and low-level
shear. This last variable is radar-derived azimuthal
shear from 0 to 2 km above ground level and is greater
in supercells, due to rotation in the mesocyclone.
Permutation can also be used to rank predictors
for non-tree-based models, as shown in Fig. 3. For

NOVEMBER 2019 BANS | 2183



Random Forest

RBF

Fic. 4. Sequential-selection results for winter precipitation type for (top) a random forest and (bottom) a ra-
dial-basis-function SVM. (left) For SFS, the first predictor selected is at the top and the last selected is at the

winter precipitation, the two versions agree on three
of the top four (and five of six) predictors for SVMs:
mean u wind from the EWL to 5 km AGL, mean v
wind in the EWL, and v-wind difference between
the two cold layers (below and above the EWL).
However, these are mostly disparate from the top
predictors in Fig. 2, for the RF. This suggests that
the RF and SVM “care about” different predictors.
This is expected, since the two models internally are
very different. According to the error bars in Figs. 2
and 3, the performance of the two models is statisti-
cally similar, either before permutation or after any
number of permutations. Thus, there is no reason to
give more credence to the permutation-importance
results of one ML model over the other. This un-
derscores the importance of using several ranking
methods and considering general types of predictors
(e.g., sounding and shape statistics) rather than just
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single predictors. The different rankings would also
be easily explainable if there were many linearly
dependent predictors. However, the predictors for
this task were preprocessed to remove any absolute
Pearson correlation > 0.7 in the data.

For tornadogenesis (Fig. 3), the most important
predictor [ranked by area under the receiver operator
curve (AUC); Metz 1978] is v wind (meridional wind
in the proximity sounding). The third- to fifth-most
important predictors in the single-pass method (max-
imum low-level reflectivity, midlevel vorticity, and
low-level vorticity) match the second- to fourth-most
important predictors, respectively, in the multipass
method. Perhaps the most striking difference is that
RH (relative humidity in the sounding) is ranked
second by the single-pass method but seventh by the
multipass method. This suggests that in the multipass
method, after the first predictor (v wind) has been

Sequential Backward Selection
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bottom. (right) For SBS, the first predictor removed is at the top and the last removed is at the bottom.
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permuted, RH is no longer

Precipitation Type Partial Dependence Plots

the most important predic-
tor. This is counterintuitive, 0.40 ~
as RH is less dependent on 0.35 4
v wind (Pearson correlation > o
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] FiG. 5. Partial-dependence plots for the probability of each precipitation
two variables to be more

type, given two predictors in the random forest. Blue histograms show the

redundant than indicated

distribution of each predictor in the training data.

by the Pearson correlation.
In the single-pass method, after the top few predictors,
there is very little difference in importance among the
rest. This is because the other 16 predictors, which
contain the vast majority of useful information, are
still intact. Conversely, in the multipass method, AUC
decreases substantially with each successive predictor
permuted until it reaches ~0.5 after the ninth predictor
(minimum low-level vorticity), which is the AUC for
a completely random model. Overall, both methods
suggest that reflectivity and vorticity are the most
important radar predictors, while v wind and relative
humidity are the most important sounding predictors.
SES and SBS are used to explicitly select predictors
to keep in an ML model. Figure 4 shows results for
winter precipitation type, based on both the RF and
SVM models. Results for storm mode are not shown,
because SBS would take hundreds of hours with the
hundreds of predictors used for this task. For the RF,
while forward and backward selection do not agree
precisely, their ranking of predictors is similar. For
the SVM, forward and backward selection agree on
only two of the top five (and five of the top eight) pre-
dictors. Regularization of the SVM may affect these
results, something that requires further investigation.
RFs perform predictor selection internally (by choos-
ing the best predictor at each split point; “Machine
learning” section), but SVMs do not: if it receives 17
predictors it must fit a 17-dimensional hyperplane,
which can lead to unstable results (Vapnik 1995).

Partial-dependence plots. A partial-dependence plot for
precipitation type for the most important predictors
in the RF is shown in Fig. 5. The easiest curves to in-
terpret are those for rain and freezing rain. As surface

AMERICAN METEOROLOGICAL SOCIETY

wet-bulb temperature increases from approximately
267 to 273 K, rain probability increases sharply while
freezing-rain probability decreases sharply. Freezing
rain is impossible when surface temperature exceeds
273.15 K, because it requires that rain fall as liquid and
freeze upon contact with the surface. The fact that
the RF and SVM create freezing rain at T well below
freezing and freezing rain at T, well above freezing is
a particular characteristic of the NWP model errors.

Saliency maps. Saliency maps for tornado prediction
are shown in Fig. 6. For the sake of brevity, these
maps include only four of the 12 radar variables list-
ed in the “Tornado prediction” section. Each row is a
composite over 100 examples (one example indicates
one storm at one time) in the validation period: the
best true positives (tornadic examples with the high-
est forecast probabilities), worst false alarms (non-
tornadic examples with the highest probabilities),
worst misses, and best correct nulls. Composites
are created with the method of probability-matched
means (PMM; Ebert 2001). We initially tried using
simple means, but the resulting composites were
unrealistic due to spatial offsets among storms in
the composite. We have examined interpretation
outputs for individual storms (e.g., supplemental
Fig. ES10), and the results are conceptually similar
to the composites, so we are not overly concerned
about artifacts introduced by PMM. In the future
we will add local PMM (Clark 2017).

For the best true positives, the composite radar im-
age looks like a supercell (e.g., Kumjian and Ryzhkov
2008), with a large core of reflectivity > 55 dBZ; a slight
hook echo on the right flank (more visible in the top-left
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Fic. 6. Composite saliency maps for the 100 best hits, worst false alarms, worst misses, and best correct nulls.
Storm motion is to the right. Heat maps represent four of the 12 input fields (predictors): (left to right) maxi-
mum reflectivity from | to 3 km AGL, minimum velocity-spectrum width from | to 3 km AGL, mean vorticity
from 2 to 4 km AGL, and mean vorticity from 5 to 8 km AGL. Line contours represent saliency. Positive values,
which indicate that tornado probability increases with the underlying predictors, are shown with solid contours,
negative values are shown with dashed contours, and darker colors indicate larger absolute values.

panel of Fig. 9); and large maxima of low-level reflectiv-
ity, low-level spectrum width, low-level vorticity, and
midlevel vorticity in the mesocyclone. According to the
composite saliency map, tornado probability increases
strongly with all four of these maxima and decreases
strongly with reflectivity behind the storm, especially
near the mesocyclone. This latter relationship suggests
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that tornadoes are more likely when the storm is more
isolated from surrounding deep convection and the
rear-flank downdraft is not too cold (due to evaporative
cooling; e.g., Markowski et al. 2002), concepts familiar
to human meteorologists.

Adebayo et al. (2018) discuss three “sanity checks,”
which ensure that saliency maps reflect meaningful
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FiG. 7. The inset shows composite saliency maps for selected neurons in the last (deepest) convolutional layer
of the hail-prediction CNN. These neurons are preferentially activated by storms with human-identifiable
morphologies. Anomalies are in standard-deviation units, based on means and standard deviations over the
training data. “AUC” for neuron n is the area under the ROC curve, computed on all hailstorms, for how well
n identifies severe hailstorms when activated. The main panel shows the spatial distribution of storms that
strongly activate each filter. Adapted from Gagne et al. (2019).

relationships learned by the model, rather than pat-
terns that exist in all data, such as the “Buell patterns”
that often appear in principal-component analysis
(Richman 1986). We have implemented the edge-de-
tector test and supplemental Fig. ES12 shows that
the “saliency maps” produced by an untrained edge
detector are markedly different than those produced
by the trained model.

For the worst false alarms, the composite radar
image is very similar to the best hits, except that there
is no discernible hook echo, a smaller reflectivity
core, and smaller maxima of all four variables. The
composite saliency map is also similar to the best hits,
which indicates that if these maxima were increased
to their levels in the best hits, tornado probability
would increase strongly. For the worst misses, the
composite radar field looks very different than the
best hits and worst false alarms. The reflectivity core
has a more linear structure, which suggests that many
of the 100 storms are part of a QLCS. This makes
sense, given that QLCS tornadoes are often missed by

AMERICAN METEOROLOGICAL SOCIETY

human forecasters (Table 2; Brotzge et al. 2013). Min-
imum low-level spectrum width is near zero through-
out most of the domain, possibly because these storms
tend to be more elevated (with bases higher aloft than
the best hits and worst false alarms). Also, maxima
of the two vorticity fields are only 0.5-1.0 ks™!, about
10 times smaller than for the best hits or worst false
alarms. Tornado probability increases strongly with
reflectivity, slightly with spectrum width, and mod-
erately with vorticity, in the reflectivity core. Tornado
probability also decreases strongly with reflectivity
behind the core and moderately with reflectivity in
front of the core, indicating a preference for isolated
convection. For the best correct nulls, the composite
radar image and saliency map look roughly similar
to the worst misses. The main differences are that
the reflectivity core is weaker and the storm is more
elongated in the direction of motion.

For the hail-prediction task, composite saliency
maps for selected CNN neurons are shown in Fig. 7
(inset). The top neuron is activated by supercell-like
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Fic. 8. Composite Grad-CAM (gradient-weighted class-activation maps) for the 100 best hits, 100 worst false
alarms, and 100 worst misses, according to different convolution layers. Storm motion is to the right. Layer |
is the shallowest, and layer 4 is the deepest (Fig. ). Heat maps represent input fields (predictors), as in Fig. 6,
while line contours represent class activation. Darker colors indicate that the underlying spatial location has
a greater positive influence on ‘“‘yes” (tornado) predictions. Negative influences cannot be shown with Grad-
CAM. For the 100 worst misses, output is shown for layer 3 rather than layer 4, because class-activation maps
produced by layer 4 are all zeros.

storms, with a rounded shape and rotational wind is activated by pulse-type storms, with neither an
field. The middle neuron is activated by bow-echo-  exceptionally rounded nor exceptionally elongated
like storms, with an elongated shape, stronglow-level ~shape and an outflow-dominant low-level wind
convergence, and little rotation. The bottom neuron field. The geographic map in Fig. 7 shows the spatial

2188 | BAMS NOVEMBER 2019



Vorticity (ks™1) Vorticity (ks™1)
MEAN from 2-4 km AGL MEAN from 5-8 km AGL

Spectrum width (m s71)
MIN from 1-3 km AGL

Reflectivity (dBZ)
MAX from 1-3 km AGL

PR - — -

|
1
+ -
1
|
]
)

b N - -

Before

F====r—s e ——T— ===
II 1
I
1
1
I ——— k- - — P
1
1
[}
I

—

1
4
T
|
1
)
1

After

T

1

]

1

1
F==--r=-——=-r====71==-"1

I

1

1

I
SRR EEEEL LY

LAAAA
. |
|
-:r————-
ra
B |
"

Difference

|- — — 25

o o o o o g N O o~ oMNMOoONOWNOoWmo oONOoONONOWOo

<+ N N | | S~NMNONINK~ O O~ NONINKO

| I E=R=R=k=E=E=R=E e E=k=R=k=E=E=E=E]
[ | I |

FiG. 9. Composite backward-optimization results for the 100 best hits. Storm motion is to the right. In this case
the goal of backward optimization was to minimize tornado probability. (top) Input fields (before optimization);
(middle) output fields (after optimization), and (bottom) the increments made by backward optimization (after

minus before).

distributions of storms that strongly activate the
three neurons.

Class-activation maps. CAMs for tornado prediction,
produced by Grad-CAM, are shown in Fig. 8. These
maps show the most important grid cells for tornado
prediction—that is, those that most strongly support
a “yes” forecast. The first CAM for the best true pos-
itives, produced by the first (shallowest) convolution
layer, suggests that the most important locations are
in the mesocyclone, collocated with the slight hook
echo and maxima in spectrum width and vorticity.
Outside of this region, class activation decreases
sharply. Contours are elongated along the right flank,

AMERICAN METEOROLOGICAL SOCIETY

indicating that class activation decreases less sharply
along the right flank than perpendicular to it. This
makes sense, as the right flank is adjacent to the
storm’s inflow environment, to which tornadogenesis
is highly sensitive [e.g., review in first paragraph of
Wade et al. (2018)]. The second CAM for the best hits,
produced by the fourth (deepest) convolution layer,
is similar to the first CAM, except that contours are
smoother and nonzero activations are more confined
to the mesocyclone. This makes sense, given that (i)
inputs to the fourth convolution layer have coarser
resolution (3 vs 1.5 km) and (ii) deeper layers learn
higher-level abstractions, increasing their ability to
selectively focus on a small part of the image (e.g., the
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this case the goal of backward optimization was to maximize tornado probability (otherwise as in Fig. 9).

main vorticity maximum in the reflectivity core and
not the secondary one in the forward flank). There
is a slight offset between class-activation maxima
for the first and fourth convolution layers, which
is probably due to upsampling from dimensions of
10 x 10 to 32 x 32.

The CAM for the worst false alarms is similar to
the best hits, with two main exceptions. First, nonzero
activations cover a smaller area, consistent with the
reflectivity core covering a smaller area. Second, con-
tours are elongated in the direction of storm motion,
rather than along the right flank. This indicates that
the right flank is less supportive of “yes” forecasts in
the worst false alarms than in the best hits, which
makes sense, as vorticity maxima for the best hits
extend farther along the right flank. Finally, the CAM
for the worst misses is produced for the third (second
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deepest) convolution layer (Fig. 1). We show the third
convolution layer, instead of the fourth, because
CAMs for the fourth layer are all zeros. This makes
sense, given that forecast probabilities for the worst
misses (by definition) are very low. According to the
CNN, the radar image as a whole does not support
a “yes” forecast. Progressing deeper in the network,
from the first to fourth convolution layer (not shown),
the area of nonzero class activations is pushed away
from the center until all activations become zero.

Backward optimization. BWO results for tornado pre-
diction are shown in Figs. 9 and 10. In Fig. 9, BWO is
used to adjust each of the 100 best true positives (as
the seed) with the goal of decreasing tornado proba-
bility. BWO decreases the CNN’s forecast probability
from near one to near zero. Conversely, in Fig. 10,
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units, based on means and standard deviations over the training data. Adapted from Gagne et al. (2019).

BWO is used to adjust the worst misses (as the seed),
with the goal of increasing tornado probability. Here,
BWO increases the probability from near zero to
near one. In general, BWO has the greatest effect on
low-level reflectivity and spectrum width (making
changes up to 40 dBZ and 4 m s, respectively), with
a much subtler effect on the vorticity fields (making
changes of ~10~ s™'). However, as shown in the reflec-
tivity fields, BWO does not necessarily produce real-
istic output. It is possible that more realistic output
could be encouraged by adding physical constraints
to the loss function, as is sometimes done in objec-
tive analysis [e.g., the geostrophic constraint used in
Panofsky (1949), Bergthorsson and D66s (1955), and
Cressman (1959)].

BWO for hail prediction is shown in Fig. 11. The
initial seed (an array of all zeros) has been adjusted
by the CNN to maximize large-hail probability. The
output (synthetic storm) includes a positive height
anomaly at 850 hPa, with negative height anomalies
at 700 and 500 hPa. This height-anomaly gradient
is associated with a high lapse rate (strong increase
of temperature with pressure), which can lead to
more instability and a stronger updraft. The syn-
thetic storm also includes positive temperature and
dewpoint anomalies at 850 and 700 hPa, along with
confluent winds, indicating that warm and moist air
is flowing into the storm. Finally, winds in the inflow
region (bottom of the map) rotate clockwise with
height, which is favorable for right-moving supercells
(Bunkers et al. 2000).

Novelty detection. Novelty detection for tornado

prediction is shown in Fig. 12. Each row is a PMM
composite over the 100 most novel examples for
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which the storm undergoes tornadogenesis in the
next hour in the validation period. Both the actual
feature vector and its SVD reconstruction are pro-
jected to image space by the upconvnet, which allows
the input (radar image) and output (novelty map)
to be viewed in the same space. The most novel or
unexpected parts of the examples shown are low re-
flectivity to the storm’s right, which indicates a lack
of deep convection in the inflow environment; high
spectrum width in the mesocyclone and reflectivity
core; high low- and midlevel vorticity to the storm’s
right; and low midlevel vorticity on the left side of
the reflectivity core.

Although the upconvnet cannot exactly map
storms from feature space to image space, it can
highlight novel or interesting areas of the input for
further examination. One must be careful to ensure
that artifacts of the upconvnet, such as the positive
low-level vorticity anomalies to the storm’s right and
in the forward flank, are recognized as such. The
novel regions can be used for knowledge discovery
and further hypothesis testing.

DISCUSSION AND FUTURE WORK. This
paper synthesizes and analyzes ML MIV methods
and demonstrates their use for various meteorological
domains. Table 1 provides a high-level summary, list-
ing the advantages and disadvantages of each method
and Table 2 summarizes when a user should choose
each method. As ML continues to gain popularity in
meteorology and other physical sciences, it is crucial
for practitioners to understand the trade-offs inherent
in the models themselves and the MIV methods used
to explain them. It is also important to understand
the computational trade-offs of these methods. Some
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Fic. 12. Novelty detection for the 100 most novel tornadic examples in the validation period. Storm motion is
to the right. (top to bottom) Actual storms, upconvnet projection of the storms’ feature vectors back to image
space, analogous, except for SVD reconstructions of the feature vectors, and the novelty map (first upconvnet
projection minus second).

methods are efficient, while some may take additional For example, if the user wants to identify the
supercomputing time, meaning that users need to most important predictors for the ML model, the
decide if additional computational effort is worth the  most computationally efficient approach is impurity
potential insights gained. importance. However, impurity importance has a
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TasLE |. Advantages and disadvantages of MIV methods.

Method

Impurity importance
(“Impurity importance”
section)

Permutation importance
(“Permutation importance”
section)

Sequential selection
[“Sequential (forward
and backward) selection”
section]

Partial-dependence plots
(“Partial-dependence plots”
section in “Interpretation
and visualization methods
for traditional machine
learning” section)

Saliency maps

(“Saliency maps” section in
“Interpretation methods for
deep learning” section)

Grad-CAM
(“Gradient-weighted
class-activation maps”
section)

Backward optimization
(“Backward optimization”
section in “Interpretation
methods for deep learning”
section)

Novelty detection
(“Novelty detection” section
in “Interpretation methods
for deep learning” section)

Advantages
Succinct list of predictors

Computed at training time

Succinct

Model agnostic (can be applied to any ML
model)

Single-pass method can be easily parallelized

Succinct

Model agnostic

Selects most relevant predictors
Generalized versions allow algorithm to be
somewhat nongreedy

Model agnostic

Explains how predictor x is important: i.e.,
how output changes with x over range of x

Results can be presented in image space (often
easier for humans to examine)

Example-by-example and multiexample expla-
nations: meaningful results can be presented
for single examples; can also be a disadvantage
but can be alleviated by compositing

Explains how neuron activation changes with
each input value (i.e., each predictor at each
grid point)

Can be used for neurons, channels, or other
groupings of neurons

Results can be presented in image space
Example-by-example and multiexample

Identifies important locations in the images

Results can be presented in image space
Example-by-example and multiexample

Extends saliency maps (uses derivatives to
optimize image for desired neuron activation)

Shows model behavior for extreme case
Results can be presented in image space
Example-by-example and multiexample

Finds interesting images and/or image subsets
for further analysis

Disadvantages

Does not explicitly select predictors (underly-
ing tree does selection)

Does not explain why something is important
Works only for tree-based methods

Greedy algorithm that chooses one predic-
tor at each step, which limits the search of
solution space and also make it difficult to
compare across runs if the underlying ML
model is brittle

Multipass is computationally expensive

Does not explain why something is important
Computationally inefficient (model is retrained
many times)

Usually implemented as a greedy algorithm
Does not explain why something is important

Difficult to extend to deep learning
Inefficient for multivariate interactions

Potentially overwhelming for the human when
used for large numbers of predictors

Differentiable models only

Simulates only slight change to input data
(linear approximation to derivative)

Deep learning only

Does not explain how values at these loca-
tions influence neuron activation

Deep learning and differentiable models only
Can produce physically unrealistic output

Answer depends heavily on initial seed

Deep learning only

Depends on upconvnet, which can be difficult
to train

major disadvantage: it can be used only for tree-based
models. Permutation is more general (can be applied
to traditional and DL models) but more computation-
ally expensive, especially for the multipass version.
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Sequential selection is also general but even more
computationally expensive, as it requires retraining
the model potentially thousands or millions of times.
Also, none of these methods explain how or why a
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predictor is important, nor

TaeLE 2. Mapping MIV methods to tasks.

do they differentiate be-
tween situations where the
predictor is important and
is not. This question can be
answered by partial-depen-
dence plots and some of the
DL-based methods.
DL-based interpretation
methods can identify im-
portant spatial locations
and spatial multivariate
patterns, create synthetic
data that minimize or max-
imize a certain prediction,
identify novel examples
in the dataset, and identi-
fy the novel parts of each
example. Most DL-based
methods can be applied
to different parts of the
model, for example, a neu-
ron in any layer, a group
of neurons in any layer, or
the final prediction, which
allows these methods to

Method

selection” section]

Saliency maps

Grad-CAM

maps” section)

section)

Novelty detection

Impurity importance
(“Impurity importance” section)

Permutation importance
(“Permutation importance” section)

Sequential selection
[“Sequential (forward and backward)

(“Saliency maps” section in “Interpretation
methods for deep learning” section)

(“Gradient-weighted class-activation

Backward optimization
(“Backward optimization” section in “In-
terpretation methods for deep learning”

(“Novelty detection” section in “Interpre-
tation methods for deep learning” section)

Tasks

Quick computation of predictor im-
portance for tree-based methods

Ranks and quantifies importance of
each predictor; works for any model
(not only trees)

Identify a minimal set of predictors to
build a model

Partial-dependence plots
(“Partial-dependence plots” section in
“Interpretation and visualization methods
for traditional machine learning” section)

Identify sensitivity of a model to a
predictor over its full range

Visualize local gradient of predictions
with respect to the predictors in the
input space

Visualize most important spatial
regions of the predictor space; deep
learning only

Create synthetic examples that acti-
vate the model in a certain way (e.g.,
minimize or maximize prediction);
deep learning only

Identify novel/unexpected examples

and what region of each example
makes it novel; deep learning only

explain what the model
“sees” at different depths
(e.g., Fig. 8). Compared to
the permutation test and sequential selection, most of
the DL-based methods discussed are computationally
efficient. This is primarily because these methods
do not involve retraining the DL model. However,
training the DL model in the first place can be com-
putationally expensive.

It is crucial to understand the trade-offs between
predictability and interpretability. Since ML models
are not inherently modeling a physical problem, they
may find solutions with better predictive skill at the
cost of a less interpretable model. For example, dif-
ferent ML models inherently learn different types of
solutions. If one method has better predictive skill
and chooses a different set of important predictors,
this does not necessarily mean that the other predic-
tors are physically unimportant. This is a common
pitfall in recent MIV papers in physical science, and
we caution new users to understand the limitations of
and differences among MIV methods before making
physical conclusions.

One aspect of the problem not discussed in this
paper is formal hypothesis testing. To conclude that
ML has confirmed existing knowledge or discovered
something new, would require robust hypothesis
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testing. We are currently determining the best ways
to incorporate this into our work.

In addition to explaining the behavior of the
model, one potential use of MIV in meteorology is
to identify new hypotheses for scientists to explore.
This potential is becoming more attractive as datasets
grow and prediction tasks become harder, while ML
accordingly becomes more sophisticated and more
integrated into our workflow. Since ML can process
data quickly, it could be used to “flag” interesting
data (e.g., patterns or interactions among predictors)
for further analysis. This has already been done with
novelty detection, which is used to flag images taken
by the Mars rovers as targets for future exploration by
the rovers (Wagstaff and Lee 2018). In meteorology,
such methods could be used, for example, to identify
observations that need to be collected more often or
processes that need to be better resolved in physical
models. This would allow for data science to feed back
on and enrich physical science.
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