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Machine learning model interpretation and visualization focusing on  

meteorological domains are introduced and analyzed.

MAKING THE BLACK BOX 
MORE TRANSPARENT

Understanding the Physical Implications of 
Machine Learning

Amy McGovern, Ryan Lagerquist, David John Gagne II, G. Eli Jergensen,  
Kimberly L. Elmore, Cameron R. Homeyer, and Travis Smith

Machine learning (ML) and deep learning (DL; 
LeCun et al. 2015) have recently achieved break-
throughs across a variety of fields, including 

the world’s best Go player (Silver et al. 2016, 2017), 
medical diagnosis (Rakhlin et al. 2018), and galaxy 

classification (Dieleman et al. 2015). Simple forms of 
ML (e.g., linear regression) have been used in mete-
orology since at least the 1950s (Malone 1955), and 
ML has been used extensively to forecast convective 
hazards since the mid-1990s. Kitzmiller et al. (1995) 
use linear regression to forecast the probability of 
tornadoes, large hail, or damaging wind; Billet et al. 
(1997) use linear regression to forecast hail probabil-
ity and size; Marzban and Stumpf (1996, 1998) use 
neural networks to forecast the probability of torna-
does and damaging wind, respectively; and Marzban 
and Witt (2001) use neural networks to forecast hail 
size. Gagne et al. (2013, 2017a) use random forests to 
forecast hail probability at 1-day lead time; McGovern 
et al. (2014) and Williams (2014) use random forests 
to forecast convectively induced aircraft turbulence; 
while Cintineo et al. (2014, 2018) use naïve Bayes 
to forecast the probability of tornadoes, large hail, 
and damaging wind. DL is also beginning to be 
used in meteorology, with applications including 
hail prediction (Gagne et al. 2019) and detection of 
extreme weather patterns such as tropical cyclones, 
atmospheric rivers, and synoptic-scale fronts (Liu 
et al. 2016; Mahesh et al. 2018; Kunkel et al. 2018; 
Lagerquist et al. 2019b). The authors have extensive 
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experience using ML to improve forecasting and 
understanding of weather phenomena (Gagne et al. 
2017a,b; Lagerquist et al. 2017; McGovern et al. 2017; 
Gagne et al. 2019; Lagerquist et al. 2018). Many of 
these products have been used by human meteorol-
ogists in experiments and day-to-day operations.

Despite its wide adoption in meteorology, ML is 
often criticized by forecasters and other end users as 
being a “black box” because of the perceived inability 
to understand how ML makes its predictions. This 
phenomenon is not exclusive to meteorology, and 
many ML practitioners and users have recently be-
gun to focus on this interpretability problem (Olah 
et al. 2017; Lipton 2016; NeurIPS Foundation 2018; 
Molnar 2018).

The main contribution of this paper is to synthesize 
and analyze multiple approaches to model interpreta-
tion and visualization (MIV) for meteorology. MIV is 
useful in all phases of ML development (Selvaraju et al. 
2017). Initially, MIV can be used to aid with debugging, 
enabling the domain scientists and data scientists to en-
sure that the models are focusing on the most physically 
relevant aspects of the problem. During deployment, 
MIV can be used to help the users gain trust in the mod-
el and to identify ideal scenarios as well as shortcom-
ings. If ML surpasses human predictions, interpretation 
methods could be used to improve the humans’ skills 
(Silver et al. 2016; Johns et al. 2015) and MIV could be 
used to identify new scientific hypotheses.

To ensure general results, we use both traditional 
ML and DL for meteorological phenomena at dif-
ferent spatiotemporal scales. At the synoptic scale, 
we apply DL to predict the probability of severe hail 
24–48 h in advance across the continental United 
States (CONUS). At the mesoscale, we apply tradi-
tional ML to soundings from a mesoscale numerical 
model to predict winter precipitation type. At the 
storm scale, we use DL to predict the probability that 
a storm will produce a tornado within the next hour 
and traditional ML methods to classify a storm’s con-
vective mode. Lagerquist et al. (2018, 2019a), Gagne 
et al. (2019), McGovern et al. (2018), and Jergensen 
et al. (2019) focus on the training and evaluation of 
these models, while we focus on MIV.

MACHINE LEARNING. We briefly review ML as 
needed for the MIV explanations, giving more detail 
on DL since it is newer to meteorology. McGovern 
et al. (2017) provides a more in-depth review of tra-
ditional ML methods for meteorology.

Decision trees. Decision trees, which can be under-
stood as a f lowchart where the decision points have 

been automatically learned by a computer, have been 
used in meteorology since the 1960s (e.g., Chisholm 
et al. 1968). Decision trees were built subjectively by 
human experts until the 1980s, when an objective 
learning algorithm was developed (Quinlan 1986). 
Their human readability has helped contribute to 
their popularity in many scientific domains. During 
training, at each branch node, the algorithm con-
siders a number of potential questions that can split 
the data (e.g., is dewpoint ≥ 60°F?). Splits are chosen 
to minimize error on the predictions, which can be 
classifications, probabilities (Provost and Domingos 
2003), or real valued (Breiman 1984).

Decision trees are brittle, meaning that small 
changes in the data can cause large changes in the 
final model. Ensemble approaches, such as random 
forests (RF; Breiman 2001) and gradient-boosted 
regression trees (GBRT; Friedman 2002), mitigate 
this problem by training ensembles of trees but this 
minimizes human readability. In RF, diversity is 
maintained by training each tree with a different 
subset of examples. In GBRT, the kth tree is fit to the 
error of the first k − 1 trees, rather than being fit to 
the target value. RF and GBRT are used successfully 
in meteorology (Williams et al. 2008a,b; Gagne et al. 
2009; McGovern et al. 2014; Williams 2014; McGov-
ern et al. 2015; Clark et al. 2015; Elmore and Grams 
2016; Lagerquist et al. 2017).

Support-vector machines. Support-vector machines 
(SVM; Vapnik 1963) find a hyperplane in predictor 
space that can be used to linearly separate the data. 
SVMs can also be used for nonbinary classification 
(Franc and Hlavac 2002) or regression (Drucker 
et al. 1997). SVMs often use a kernel to transform the 
predictor space into another space where the prob-
lem is more easily separated. One such kernel, the ra-
dial basis function (RBF; Schölkopf et al. 1997), uses 
a Gaussian to transform the space. Linear SVMs, like 
decision trees, are human readable when there are 
few predictors, but high-dimensional linear SVMs 
and nonlinear SVMs are not easily interpreted by a 
human. Recent SVM applications in meteorology 
include Radhika and Shashi (2009), Rao et al. (2012), 
and Rajasekhar and Rajinikanth (2014).

Deep learning. DL is a subset of ML that specializes 
in leveraging spatiotemporal structure in the input 
data. DL is well suited for meteorology, because it 
can be applied directly to spatiotemporal grids and 
identify salient features at different spatiotemporal 
scales. The DL models we use here are convolutional 
neural networks (CNN; Fukushima and Miyake 
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1982). The main components of a CNN are con-
volutional, pooling, and dense layers (Fig. 1). Each 
convolutional layer passes many convolutional 
filters over the input maps, where an input map 
consists of multiple “channels” (e.g., red, green, and 
blue channels for an image), creating one output 
map for each filter. The output maps (feature maps) 
are passed through a nonlinear activation function, 
such as the rectified linear unit (ReLU; Nair and 
Hinton 2010). The activation function must be 
nonlinear; otherwise, the net can learn only linear 
relationships. Supplemental Fig. ES1 is an animation 
of one filter.

During training, weights in the convolutional 
filters are updated via stochastic gradient descent 
(SGD; section 4.4.3 of Mitchell 1997) to minimize 
the loss function. The typical loss function for 

classification, adopted in this work, is cross entropy, 
defined as 
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where N is the number of examples, K is the number 
of classes, yik is the true value (1 if the ith example 
belongs to the kth class, 0 otherwise), and y^ik is the 
predicted probability that the ith example belongs to 
the kth class. Cross entropy varies from [0, ∞), and 
the optimal score is zero.

Pooling layers reduce the resolution of feature 
maps, which allows deeper convolutional layers (far-
ther to the right in Fig. 1) to learn larger-scale features 
along with some amount of translational invariance. 
Deeper layers learn higher-level abstractions, because 
the feature maps are larger in scale and have passed 

Fig. 1. Architecture of CNN used for tornado prediction. Each input example is a 32 × 32 grid of 12 different 
radar variables. In the feature maps produced by convolution and pooling layers, negative values are in blue 
and positive values are in red. (The input also includes five sounding variables, listed in Fig. 3, but these are 
omitted here for the sake of simplicity.) The first convolution layer transforms the 12 variables into 32 filters 
and removes one pixel around the edge. The first pooling layer downsamples feature maps to half resolution, 
thus halving the spatial dimensions. Other convolutional and pooling layers perform similar operations. Fea-
ture maps from the last pooling layer are flattened into a length-6,400 vector (5 × 5 × 256 = 6,400), which is 
transformed by the three dense layers into vectors of length 404, then 20, and then 1. The sigmoid activation 
function of the final dense layer forces the output (tornadogenesis probability) to the range [0, 1].
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through more nonlinear transformations (section 
5.2.1 of Chollet 2018). Supplemental Fig. ES2 is an 
animation of maximum pooling.

Most CNNs end with one or more dense layers 
(section 3.1.1 of Chollet 2018; our Fig. 1), which are 
identical to hidden layers in a traditional neural 
net (Haykin 2001). Weights in the dense layers are 
learned via SGD, simultaneously with those in the 
convolutional layers. For binary classification, the 
final prediction is one value (probability of event). For 
K-class problems (K > 2), the final prediction consists 
of K values (one probability for each class).

For traditional ML methods presented in this 
work, we use scikit-learn (Pedregosa et al. 2011). 
For DL, we use Keras (Chollet 2015). All models are 
trained on the training data; hyperparameters (pa-
rameters not adjusted during training) are selected 
by which model performs best on the validation data; 
and final results are reported on the testing data.

INTERPRETATION AND VISUALIZATION 
METHODS FOR TRADITIONAL MACHINE 
LEARNING. The most general classes of MIV 
methods are filter and wrapper methods (Kohavi 
and John 1997). Filter methods consider only the data 
themselves, whereas wrapper methods incorporate 
(wrap around) the model. We focus on wrapper 
methods, as the goal is to understand what the ML 
models have learned from the data. This section 
describes interpretation methods designed for tradi-
tional ML, though all but impurity importance can 
be generalized to DL.

Impurity importance. Impurity importance (Louppe 
et al. 2013; Breiman 2001) is one of the most popular 
importance methods because it can be computed 
during training and is implemented in scikit-learn. 
However, this method works only for tree-based 
models. It is animated in supplemental Fig. ES3 and 
defined as follows: 
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where T is the number of trees in the ensemble, St,p is 
the set of all splits in tree t that involve predictor p, 
Δi(s) is the decrease in the impurity score (e.g., Gini 
or entropy) achieved by split s on the training data, 
N is the total number of training examples, Ns is the 
number of training examples passed to split s, and 
I(p) is the resulting importance for predictor p. The 
most important predictors are those that affect the 
most examples (higher in tree) and that split the data 
more effectively (decrease impurity more).

Permutation importance. The permutation method is 
another approach for ranking predictor importance. 
Although initially proposed by Breiman (2001) for 
RFs, it can be used for any traditional or DL model. 
There are two variations of permutation importance 
that we denote as single pass (Breiman 2001) and mul-
tipass (Lakshmanan et al. 2015). In both variations, 
the goal is to determine how much performance dete-
riorates when the statistical link between a predictor 
xj and the target variable is broken. This is achieved 
by randomly permuting xj over all examples, then 
comparing the performance of the trained model on 
unpermuted data to performance on the permuted 
data. If performance deteriorates significantly when 
xj is permuted, this indicates that xj is important. If 
performance does not deteriorate significantly, either 
1) xj is generally unimportant or 2) information in xj 
is redundant with information contained in the other 
predictors. For example, if there are two predictors xj 
and xk, such that xk = 2xj, they are fully linearly depen-
dent (Pearson correlation = 1.0), so either predictor 
on its own could be deemed unimportant. Multipass 
importance aims to address this issue. The single-pass 
and multipass algorithms are precisely stated in 
supplemental Fig. ES4. Supplemental Figs. ES5 and 
ES6 describe the algorithms with animations. Both 
versions are implemented with publicly available code 
in Jergensen (2019).

Sequential (forward and backward) selection. Sequential 
selection is another method for ranking predictor 
importance, but unlike impurity and permutation 
importance, it can be used to explicitly add or re-
move predictors from the model. The algorithms 
for sequential forward and backward selection (SFS 
and SBS) are shown in supplemental Fig. ES7 and 
animated in supplemental Figs. ES8 and ES9. The 
two algorithms are very similar: SFS begins with a 
climatological model (one that always predicts the 
mean target value in the training data), containing 
zero predictors, and adds one predictor at a time. 
Conversely, SBS begins with a model trained on all 
predictors and removes one at a time.

SFS may be likened to the song “99 Bottles of Pop 
on the Wall,” where each pop bottle is a predictor. 
At the kth iteration of SFS, k–1 predictors (bottles) 
have been selected (taken off the wall and put on the 
table). The goal is to find the one remaining predictor 
that, when added to those already selected, yields the 
best k-predictor model. The stopping criterion in the 
algorithm (whether cost function J decreases signifi-
cantly) is purposely vague, as there are many ways to 
implement this. Basically, J should decrease enough to 
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justify adding another predictor to the model, which 
increases model complexity.

SBS can be thought of as SFS in reverse. At the kth 
iteration, k–1 predictors (bottles) have been removed 
from the model (put back on the wall). The goal is to 
find the worst remaining predictor (i.e., the one whose 
removal from the model yields the smallest increase 
in J). Again, the stopping criterion is purposely vague. 
Basically, J should increase enough to justify no longer 
removing the worst predictor from the model.

Generalized versions of SFS and SBS have been 
proposed (e.g., Stracuzzi and Utgoff 2004; chapter 9 of 
Webb 2003), which allow both forward and backward 
steps in the same algorithm or removing several pre-
dictors at each step. Also, genetic algorithms can be 
used to iteratively improve (evolve) the set of selected 
predictors (e.g., Siedlecki and Sklansky 1993; Leardi 
1996). Last, a method called “sufficient input sub-
sets” (Carter et al. 2018) can be used to find the most 
relevant predictors for one or a subset of examples, 
without retraining the model.

Partial-dependence plots. While the above methods 
can reveal the most important predictors for a given 
problem, they do not indicate how or why each pre-
dictor is important. One way to address this would be 
to visualize the average prediction for each possible 
value of xj, the predictor of interest. However, this 
does not account for nonlinear interactions between 
xj and the other predictors. Partial-dependence 
plots (PDP; Friedman 2001) address this problem by 
fixing the value of one or more predictors X* for all 
examples, passing these new data through the trained 
model, and averaging the resulting predictions. This 
averages out the effects of the other predictors. To 
make the full PDP, the entire process is repeated for 
a range of values for X*. Regions of the PDP with 
nonzero slope indicate where the ML model is sen-
sitive to X*. Note that this method provides one plot 
for each predictor, which can be overwhelming with 
hundreds of predictors.

Related MIV methods attempt to explain the mod-
el’s prediction for an individual example. Individual 
conditional expectation (ICE; Goldstein et al. 2015) is 
the PDP for a specific example. The ICE plot (which 
can be shown on the same axes as the PDP) identifies 
clusters of model behavior, which are regions of the 
predictor space where the model treats examples 
similarly. Another method is locally interpretable 
model-agnostic explanation (LIME; Ribeiro et al. 
2016), which fits a simple model, such as linear re-
gression, to a set of slightly perturbed examples. 
The perturbed examples are similar to the example 

of interest but with slightly altered predictor values. 
Predictor weights in the simple model are used to 
explain the prediction.

INTERPRETATION METHODS FOR DEEP 
LEARNING. All methods presented in the previous 
section, with the exception of impurity importance, 
can be adapted for DL. In this work, we demonstrate 
how the permutation method can be adapted for 
DL. Although SFS and SBS can also be adapted, they 
require significant additional computation for the 
retraining of each model, making them infeasible for 
most DL applications. For permutation, images from 
one channel are permuted over all examples. Thus, 
each example consists of a set of spatially intact maps, 
but the maps are temporally shuffled (e.g., the tem-
perature field from 1 January 1970 may be matched 
with the humidity field from 5 April 2012). All inter-
pretation methods presented in this section are im-
plemented in Lagerquist and Gagne (2019); saliency 
maps are also implemented in Lagerquist (2018). We 
discuss primarily CNNs in this section, because this 
is the DL model used in our results. However, the 
methods presented herein can be applied to other 
DL models, such as convolutional long-short-term 
memory (LSTM) and recurrent neural nets.

Saliency maps. Saliency maps (Simonyan et al. 2014) 
quantify the influence of each input value (i.e., each 
predictor at each grid point) on the activation of some 
part of the CNN. This could be the activation of a par-
ticular neuron, a group of neurons, or the final pre-
diction from the CNN. Most often it is with respect 
to an output neuron, whose activation is a predicted 
probability, p. The saliency of predictor x at grid point 
(i,j,k), with respect to prediction p, is δp/δx(i,j,k). Thus, 
positive (negative) saliency means that the prediction 
increases (decreases) as x(i,j,k) changes.

One advantage of saliency maps is that they share 
the dimensions of the input data, which allows them 
to be viewed as images (the way meteorologists 
generally prefer to query data) and overlaid with the 
input data. One disadvantage is that saliency does not 
necessarily imply importance: salient values are those 
with which the prediction changes most dramatically, 
but they are not necessarily most important for the 
original prediction (Samek et al. 2017). This disadvan-
tage is alleviated by methods such as layerwise rele-
vance propagation (Samek et al. 2017; Montavon et al. 
2018) and class-activation maps (“Gradient-weighted 
class-activation maps” section). Another disadvan-
tage is that saliency is a linear approximation around 
the actual value of x(i,j,k), meaning saliency indicates 
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how the model reacts when x is perturbed slightly 
from the actual value, but not when it is perturbed 
drastically.

Gradient-weighted class-activation maps. Class-activa-
tion maps (CAM; Zhou et al. 2016) quantify the in-
fluence of each grid point, rather than each predictor 
at each grid point, on the predicted probability of a 
given class pk. However, CAM works only on a specific 
type of CNN architecture, so we use a generalization, 
gradient-weighted class-activation maps (Grad-CAM; 
Selvaraju et al. 2017). Grad-CAM quantifies the 
influence of each grid point on pk, filtered through 
a given convolutional layer in the network. In other 
words, at a given depth in the network, Grad-CAM 
indicates which spatial locations support the pre-
diction of the kth class. For deeper convolutional 
layers, the class-activation map tends to be smoother 
(with less small-scale variation) and more localized 
(with nonzero values in a smaller part of the physical 
space), reflecting the tendency for deeper layers to 
learn higher-level abstractions. The ability to leverage 
representations at different layers is an advantage of 
Grad-CAM over saliency maps.

Backward optimization. Backward optimization [BWO; 
or “feature optimization” in Olah et al. (2017)] creates 
a synthetic input example that maximizes the acti-
vation of particular neuron(s), using SGD (“Machine 
learning” section). Whereas SGD is used during 
training to update the network weights in a way that 
minimizes the loss function, it is used during BWO to 
update input values in a way that maximizes the acti-
vation of the given neuron(s). For example, if the task 
is tornado prediction and we choose to maximize the 
activation of the output neuron, BWO will create an 
“optimal tornadic storm.” Conversely, if we choose to 
minimize the activation, BWO will create an “optimal 
nontornadic storm.” Supplemental Fig. ES10 shows 
an animation of backward optimization, where the 
goal is to decrease tornado probability for a tornadic 
storm that initially had very high forecast probability.

Because SGD only adjusts the values in an array, 
rather than creating the array from scratch, it requires 
a starting point or “initial seed.” Some options are all 
zeros, Gaussian noise, or a real-dataset example. The 
advantage of all zeros and Gaussian noise is that the 
initial seed almost never resembles a real example, so 
the synthetic example created by BWO is more novel 
with respect to the initial seed. The advantage of re-
al-data initialization is that the output of BWO is usu-
ally more physically realistic. Another way to make 
the output more physically realistic is to integrate 

BWO with a generative model (e.g., Goodfellow et al. 
2014), which learns to create novel but representative 
dataset examples [Montavon et al. (2018), who use the 
term “activation maximization” instead of BWO]. The 
sensitivity of BWO to the initial seed can be seen as 
a disadvantage since it does not yield one “perfect” 
answer, but it can also be seen as an advantage, since 
BWO can be run with many initial seeds to obtain 
different answers.

Novelty detection. Novelty detection (Wagstaff and Lee 
2018) finds the most novel, or unexpected, image X* in 
a set of images (trial set) with respect to all images in 
another set (baseline set), then quantifies the novelty of 
each value in X* (i.e., each predictor at each grid point). 
The algorithm is detailed in supplemental Fig. ES11. 
As an example of its use, the baseline set could con-
tain nontornadic storms, while the trial set contains 
tornadic storms. In this case, novelty detection would 
quantify which tornadic storms are most novel, and 
which parts of these storms are most novel, with respect 
to the nontornadic ones. The algorithm involves “fea-
tures,” which are inputs to the first dense layer of the 
CNN (Fig. 1). It is crucial to remember that the CNN 
extracts only features that aid in the prediction task, so 
the results of novelty detection are always with respect 
to the prediction task.

Novelty detection works by using singular-value 
decomposition (SVD; section 9.3.5 of Wilks 2006) 
to create a lower-dimensional representation of the 
image data (feature vector) and an up-convolutional 
network (upconvnet; Dosovitskiy and Brox 2016) to 
transform the feature vector back to image space. 
Loosely, an upconvnet is a backward CNN. The up-
convnet allows novelty to be viewed in image space, 
which is easier for humans to interpret than feature 
space. The main outputs of novelty detection are the 
reconstructed image from the CNN’s feature space, 
the reconstructed image from an SVD approximation 
the same feature space, and the difference between 
the two.

METEOROLOGICAL DOMAINS. We briefly 
summarize each domain (prediction task) for which 
the MIV methods are used. Full descriptions are 
found in Lagerquist et al. (2018, 2019a), Gagne et al. 
(2019), McGovern et al. (2018), and Jergensen et al. 
(2019). We chose deliberately to present results on 
a wide variety of meteorological domains to show 
the wide applicability of the MIV methods. This 
section is kept brief, as specific details are not needed 
to understand the results fully. Rather, we wanted 
to highlight the broad applicability of the results 
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across spatial and temporal scales and different 
prediction tasks.

Storm-mode classif ication. We use traditional ML 
methods (RF, GBRT, and SVMs) to classify storms 
into three categories: supercell, part of a quasi-linear 
convective system (QLCS), and discrete storms. The 
categories and the human-labeled data both come 
from Thompson et al. (2012) and Smith et al. (2012). 
We use data from the years 2003–11. Predictors for 
this task include radar statistics derived from the 
Multi-Year Reanalysis of Remotely Sensed Storms 
(MYRORSS; Ortega et al. 2012) and environmental 
data from the Rapid Update Cycle (RUC; Benjamin 
et al. 2004). Models are trained with ninefold cross 
validation, where each fold is 1 year.

Precipitation type. We apply the same traditional ML 
methods for predicting winter precipitation type. The 
four precipitation types are rain, freezing rain, snow, 
and ice pellets. Labels are Meteorological Phenomena 
Identification Near the Ground (mPING; Elmore 
et al. 2014) reports from October 2014 to March 2015. 
The predictors are statistics derived from RUC prox-
imity soundings. Specifically, soundings are taken 
from the nearest grid point to the mPING report 
at 6-, 12-, and 18-h lead times. Although soundings 
from the three lead times are not independent, they 
increase the size and variability of the dataset, which 
is crucial given that the time period is only one win-
ter. The three forecasts have the same valid time, so 
differences among them are due solely to differences 
among the three model runs. The results in this 
paper come from training on the classic warm-nose 
sounding, characterized by an elevated warm (melt-
ing) layer above a cold (freezing) layer at the surface. 
This type of sounding contains two freezing layers, 
one above the elevated warm layer and one below, and 
is the type most commonly associated with freezing 
rain and ice pellets.

Tornado prediction. We use a CNN to forecast torna-
dogenesis. Specifically, for each storm object (one 
thunderstorm cell at one time), the CNN is applied to 
a storm-centered radar image and proximity sound-
ing, with the goal of predicting whether or not the 
storm will generate a tornado in the next hour. Radar 
images come from the GridRad dataset (Homeyer 
and Bowman 2017), a mosaic of all Next Generation 
Weather Radar (NEXRAD) scans in the CONUS. 
The GridRad data used here have a horizontal res-
olution of 0.02°, vertical resolution of 0.5 km up to 
7 km above sea level and 1.0 km aloft, and temporal 

resolution of 5 min. Storm-centered 2D grids (e.g., 
Fig. 9) are 32 × 32, interpolated to 1.5-km horizontal 
resolution, and rotated so that storm motion is to-
ward the right. The composites contain 12 variables: 
minimum, mean, and maximum reflectivity from 1 
to 3 km above ground level; minimum, mean, and 
maximum 1–3-km radial velocity spectrum width; 
minimum, mean, and maximum 2–4-km vorticity; 
and minimum, mean, and maximum 5–8-km vortic-
ity. The choice of these variables is based on previous 
work by Sandmael and Homeyer (2018), showing that 
they discriminate well between tornadic and severe 
nontornadic storms.

Soundings come from the RUC model before 1 
May 2012 and the Rapid Refresh (RAP; Benjamin 
et al. 2016) otherwise. In general, interpretation 
results are shown only for radar data, as results for 
soundings have been noisy. Tornado reports from 
Storm Data (National Weather Service 2016) are 
used to determine when/if a storm undergoes tor-
nadogenesis.

Hail prediction. We use CNNs to predict large hail in 
simulated thunderstorms (Gagne et al. 2019) from the 
National Center for Atmospheric Research (NCAR) 
convection-allowing ensemble (CAE; Schwartz et al. 
2015). The target variable is based on the storm’s 
maximum future hail size (“yes” if ≥25 mm in di-
ameter, “no” otherwise), according to the Thompson 
microphysics scheme (Thompson et al. 2004, 2008). 
This is a perfect-model experiment, because the 
target variable comes from a simulation rather than 
true observations. The goal is to identify storm-scale 
and environmental features that promote simulated 
hail growth.

The predictors are storm-centered grids of five 
variables (temperature, dewpoint, u wind, υ wind, 
and geopotential height) at three pressure levels (850, 
700, and 500 hPa). The grids are 32 × 32 and share 
the 3-km grid spacing of the NCAR CAE. Each CNN 
trained for this problem has three strided-convo-
lution layers (which combine the convolution and 
pooling operations into one layer), with either ReLU 
or leaky-ReLU activation (Maas et al. 2013), followed 
by a dense layer with sigmoid activation (cf. Fig. 1).

RESULTS. We organize results by MIV method, 
beginning with traditional ML and moving to DL.

Ranking and selecting important predictors. Figure 2 
compares importance rankings for tree-based mod-
els, using both impurity and permutation importance 
for the tasks of storm-mode classification and winter 
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precipitation. It is important to understand both the 
meteorological significance of the predictors and 
the difference in importance rankings among the 
methods. This is especially important for researchers 
who may have previously used only one importance 
ranking.

For winter precipitation type, the two versions of 
permutation agree on the top four predictors (with 
a difference in ordering for the second and third): 
surface wet-bulb temperature, mean u wind in the 
lowest cold layer (LCL), u-wind difference between 
the LCL and elevated warm layer (EWL), and mean 

Fig. 2. Comparison of importance rankings for tree-based models. The prediction tasks are (left) storm-mode 
classification and (right) winter precipitation type. Each panel shows the 10 most important predictors, with 
importance decreasing from top to bottom. Radar variables are in orange, sounding parameters are in purple, 
and other predictors (on left, shape parameters describing the storm outline) are in green. Large colored bars 
show the mean, while error bars show the 2.5th and 97.5th percentiles, for 1,000 bootstrap replicates of the 
validation set.
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u wind from the EWL to 5 km above ground level 
(AGL). The importance of these predictors makes 
sense meteorologically. For example, (isobaric) wet-
bulb temperature is the temperature that an air parcel 
would be if it were cooled by evaporating water into 
it at constant pressure. If the surface temperature is 
>273.15 K, freezing rain is impossible and rain be-
comes much more likely. There are more substantial 
differences between impurity importance and per-
mutation importance. For example, the top predictor 
(surface wet-bulb temperature) using permutation is 
fifth-most important according to impurity, while 
the most important predictor for impurity (mean υ 
wind in the EWL) is fifth- or seventh-most important 
according to permutation.

For storm-mode classification, the two versions of 
permutation importance agree on three of the top four 
predictors (with a slight difference in ordering): the y 
component of lifting condensation level-to-equilibrium 

level (LCL–EL) wind shear, perimeter, and compact-
ness. In general, the most important predictors are 
reflectivity statistics (spatial statistics based only on 
grid cells inside the storm), environmental wind shear 
(in the proximity sounding), and shape parameters. 
These results are broadly consistent with what we know 
about storm mode, especially the difference between 
supercells and other modes: supercells tend to be less 
elongated (lower eccentricity) than QLCS storms, with 
higher reflectivity and higher wind shear. Again, the 
two versions of permutation agree more with each 
other than with impurity importance. However, im-
purity importance still emphasizes shape parameters, 
reflectivity, environmental wind shear, and low-level 
shear. This last variable is radar-derived azimuthal 
shear from 0 to 2 km above ground level and is greater 
in supercells, due to rotation in the mesocyclone.

Permutation can also be used to rank predictors 
for non-tree-based models, as shown in Fig. 3. For 

Fig. 3. Comparison of permutation methods (single and multipass) for non-tree-based models. (left) Radial-ba-
sis-function SVM for winter precipitation type. (right) CNN for tornado prediction. Each panel shows only the 
10 most important predictors, with importance decreasing from top to bottom. All other details (color scheme 
and error bars) are as in Fig. 2.
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winter precipitation, the two versions agree on three 
of the top four (and five of six) predictors for SVMs: 
mean u wind from the EWL to 5 km AGL, mean υ 
wind in the EWL, and υ-wind difference between 
the two cold layers (below and above the EWL). 
However, these are mostly disparate from the top 
predictors in Fig. 2, for the RF. This suggests that 
the RF and SVM “care about” different predictors. 
This is expected, since the two models internally are 
very different. According to the error bars in Figs. 2 
and 3, the performance of the two models is statisti-
cally similar, either before permutation or after any 
number of permutations. Thus, there is no reason to 
give more credence to the permutation-importance 
results of one ML model over the other. This un-
derscores the importance of using several ranking 
methods and considering general types of predictors 
(e.g., sounding and shape statistics) rather than just 

single predictors. The different rankings would also 
be easily explainable if there were many linearly 
dependent predictors. However, the predictors for 
this task were preprocessed to remove any absolute 
Pearson correlation > 0.7 in the data.

For tornadogenesis (Fig. 3), the most important 
predictor [ranked by area under the receiver operator 
curve (AUC); Metz 1978] is υ wind (meridional wind 
in the proximity sounding). The third- to fifth-most 
important predictors in the single-pass method (max-
imum low-level reflectivity, midlevel vorticity, and 
low-level vorticity) match the second- to fourth-most 
important predictors, respectively, in the multipass 
method. Perhaps the most striking difference is that 
RH (relative humidity in the sounding) is ranked 
second by the single-pass method but seventh by the 
multipass method. This suggests that in the multipass 
method, after the first predictor (υ wind) has been 

Fig. 4. Sequential-selection results for winter precipitation type for (top) a random forest and (bottom) a ra-
dial-basis-function SVM. (left) For SFS, the first predictor selected is at the top and the last selected is at the 
bottom. (right) For SBS, the first predictor removed is at the top and the last removed is at the bottom.
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permuted, RH is no longer 
the most important predic-
tor. This is counterintuitive, 
as RH is less dependent on 
υ wind (Pearson correlation 
of 0.11) than maximum 
low-level ref lectivity on υ 
wind (0.43). However, Pear-
son correlation is linear 
and based on the entire 
dataset. It is possible that, 
for a small partition of the 
dataset with a strong ef-
fect on AUC, there is more 
dependence between RH 
and υ wind, causing the 
two variables to be more 
redundant than indicated 
by the Pearson correlation. 
In the single-pass method, after the top few predictors, 
there is very little difference in importance among the 
rest. This is because the other 16 predictors, which 
contain the vast majority of useful information, are 
still intact. Conversely, in the multipass method, AUC 
decreases substantially with each successive predictor 
permuted until it reaches ~0.5 after the ninth predictor 
(minimum low-level vorticity), which is the AUC for 
a completely random model. Overall, both methods 
suggest that reflectivity and vorticity are the most 
important radar predictors, while υ wind and relative 
humidity are the most important sounding predictors.

SFS and SBS are used to explicitly select predictors 
to keep in an ML model. Figure 4 shows results for 
winter precipitation type, based on both the RF and 
SVM models. Results for storm mode are not shown, 
because SBS would take hundreds of hours with the 
hundreds of predictors used for this task. For the RF, 
while forward and backward selection do not agree 
precisely, their ranking of predictors is similar. For 
the SVM, forward and backward selection agree on 
only two of the top five (and five of the top eight) pre-
dictors. Regularization of the SVM may affect these 
results, something that requires further investigation. 
RFs perform predictor selection internally (by choos-
ing the best predictor at each split point; “Machine 
learning” section), but SVMs do not: if it receives 17 
predictors it must fit a 17-dimensional hyperplane, 
which can lead to unstable results (Vapnik 1995).

Partial-dependence plots. A partial-dependence plot for 
precipitation type for the most important predictors 
in the RF is shown in Fig. 5. The easiest curves to in-
terpret are those for rain and freezing rain. As surface 

wet-bulb temperature increases from approximately 
267 to 273 K, rain probability increases sharply while 
freezing-rain probability decreases sharply. Freezing 
rain is impossible when surface temperature exceeds 
273.15 K, because it requires that rain fall as liquid and 
freeze upon contact with the surface. The fact that 
the RF and SVM create freezing rain at Tw well below 
freezing and freezing rain at Tw well above freezing is 
a particular characteristic of the NWP model errors.

Saliency maps. Saliency maps for tornado prediction 
are shown in Fig. 6. For the sake of brevity, these 
maps include only four of the 12 radar variables list-
ed in the “Tornado prediction” section. Each row is a 
composite over 100 examples (one example indicates 
one storm at one time) in the validation period: the 
best true positives (tornadic examples with the high-
est forecast probabilities), worst false alarms (non-
tornadic examples with the highest probabilities), 
worst misses, and best correct nulls. Composites 
are created with the method of probability-matched 
means (PMM; Ebert 2001). We initially tried using 
simple means, but the resulting composites were 
unrealistic due to spatial offsets among storms in 
the composite. We have examined interpretation 
outputs for individual storms (e.g., supplemental 
Fig. ES10), and the results are conceptually similar 
to the composites, so we are not overly concerned 
about artifacts introduced by PMM. In the future 
we will add local PMM (Clark 2017).

For the best true positives, the composite radar im-
age looks like a supercell (e.g., Kumjian and Ryzhkov 
2008), with a large core of reflectivity > 55 dBZ; a slight 
hook echo on the right flank (more visible in the top-left 

Fig. 5. Partial-dependence plots for the probability of each precipitation 
type, given two predictors in the random forest. Blue histograms show the 
distribution of each predictor in the training data.
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panel of Fig. 9); and large maxima of low-level reflectiv-
ity, low-level spectrum width, low-level vorticity, and 
midlevel vorticity in the mesocyclone. According to the 
composite saliency map, tornado probability increases 
strongly with all four of these maxima and decreases 
strongly with reflectivity behind the storm, especially 
near the mesocyclone. This latter relationship suggests 

that tornadoes are more likely when the storm is more 
isolated from surrounding deep convection and the 
rear-flank downdraft is not too cold (due to evaporative 
cooling; e.g., Markowski et al. 2002), concepts familiar 
to human meteorologists.

Adebayo et al. (2018) discuss three “sanity checks,” 
which ensure that saliency maps reflect meaningful 

Fig. 6. Composite saliency maps for the 100 best hits, worst false alarms, worst misses, and best correct nulls. 
Storm motion is to the right. Heat maps represent four of the 12 input fields (predictors): (left to right) maxi-
mum reflectivity from 1 to 3 km AGL, minimum velocity-spectrum width from 1 to 3 km AGL, mean vorticity 
from 2 to 4 km AGL, and mean vorticity from 5 to 8 km AGL. Line contours represent saliency. Positive values, 
which indicate that tornado probability increases with the underlying predictors, are shown with solid contours, 
negative values are shown with dashed contours, and darker colors indicate larger absolute values.
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relationships learned by the model, rather than pat-
terns that exist in all data, such as the “Buell patterns” 
that often appear in principal-component analysis 
(Richman 1986). We have implemented the edge-de-
tector test and supplemental Fig. ES12 shows that 
the “saliency maps” produced by an untrained edge 
detector are markedly different than those produced 
by the trained model.

For the worst false alarms, the composite radar 
image is very similar to the best hits, except that there 
is no discernible hook echo, a smaller ref lectivity 
core, and smaller maxima of all four variables. The 
composite saliency map is also similar to the best hits, 
which indicates that if these maxima were increased 
to their levels in the best hits, tornado probability 
would increase strongly. For the worst misses, the 
composite radar field looks very different than the 
best hits and worst false alarms. The reflectivity core 
has a more linear structure, which suggests that many 
of the 100 storms are part of a QLCS. This makes 
sense, given that QLCS tornadoes are often missed by 

human forecasters (Table 2; Brotzge et al. 2013). Min-
imum low-level spectrum width is near zero through-
out most of the domain, possibly because these storms 
tend to be more elevated (with bases higher aloft than 
the best hits and worst false alarms). Also, maxima 
of the two vorticity fields are only 0.5–1.0 ks–1, about 
10 times smaller than for the best hits or worst false 
alarms. Tornado probability increases strongly with 
reflectivity, slightly with spectrum width, and mod-
erately with vorticity, in the reflectivity core. Tornado 
probability also decreases strongly with reflectivity 
behind the core and moderately with reflectivity in 
front of the core, indicating a preference for isolated 
convection. For the best correct nulls, the composite 
radar image and saliency map look roughly similar 
to the worst misses. The main differences are that 
the reflectivity core is weaker and the storm is more 
elongated in the direction of motion.

For the hail-prediction task, composite saliency 
maps for selected CNN neurons are shown in Fig. 7 
(inset). The top neuron is activated by supercell-like 

Fig. 7. The inset shows composite saliency maps for selected neurons in the last (deepest) convolutional layer 
of the hail-prediction CNN. These neurons are preferentially activated by storms with human-identifiable 
morphologies. Anomalies are in standard-deviation units, based on means and standard deviations over the 
training data. “AUC” for neuron n is the area under the ROC curve, computed on all hailstorms, for how well 
n identifies severe hailstorms when activated. The main panel shows the spatial distribution of storms that 
strongly activate each filter. Adapted from Gagne et al. (2019).
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storms, with a rounded shape and rotational wind 
field. The middle neuron is activated by bow-echo-
like storms, with an elongated shape, strong low-level 
convergence, and little rotation. The bottom neuron 

is activated by pulse-type storms, with neither an 
exceptionally rounded nor exceptionally elongated 
shape and an outf low-dominant low-level wind 
field. The geographic map in Fig. 7 shows the spatial 

Fig. 8. Composite Grad-CAM (gradient-weighted class-activation maps) for the 100 best hits, 100 worst false 
alarms, and 100 worst misses, according to different convolution layers. Storm motion is to the right. Layer 1 
is the shallowest, and layer 4 is the deepest (Fig. 1). Heat maps represent input fields (predictors), as in Fig. 6, 
while line contours represent class activation. Darker colors indicate that the underlying spatial location has 
a greater positive influence on “yes” (tornado) predictions. Negative influences cannot be shown with Grad-
CAM. For the 100 worst misses, output is shown for layer 3 rather than layer 4, because class-activation maps 
produced by layer 4 are all zeros.
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distributions of storms that strongly activate the 
three neurons.

Class-activation maps. CAMs for tornado prediction, 
produced by Grad-CAM, are shown in Fig. 8. These 
maps show the most important grid cells for tornado 
prediction—that is, those that most strongly support 
a “yes” forecast. The first CAM for the best true pos-
itives, produced by the first (shallowest) convolution 
layer, suggests that the most important locations are 
in the mesocyclone, collocated with the slight hook 
echo and maxima in spectrum width and vorticity. 
Outside of this region, class activation decreases 
sharply. Contours are elongated along the right flank, 

indicating that class activation decreases less sharply 
along the right flank than perpendicular to it. This 
makes sense, as the right f lank is adjacent to the 
storm’s inflow environment, to which tornadogenesis 
is highly sensitive [e.g., review in first paragraph of 
Wade et al. (2018)]. The second CAM for the best hits, 
produced by the fourth (deepest) convolution layer, 
is similar to the first CAM, except that contours are 
smoother and nonzero activations are more confined 
to the mesocyclone. This makes sense, given that (i) 
inputs to the fourth convolution layer have coarser 
resolution (3 vs 1.5 km) and (ii) deeper layers learn 
higher-level abstractions, increasing their ability to 
selectively focus on a small part of the image (e.g., the 

Fig. 9. Composite backward-optimization results for the 100 best hits. Storm motion is to the right. In this case 
the goal of backward optimization was to minimize tornado probability. (top) Input fields (before optimization); 
(middle) output fields (after optimization), and (bottom) the increments made by backward optimization (after 
minus before).
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main vorticity maximum in the reflectivity core and 
not the secondary one in the forward flank). There 
is a slight offset between class-activation maxima 
for the first and fourth convolution layers, which 
is probably due to upsampling from dimensions of 
10 × 10 to 32 × 32.

The CAM for the worst false alarms is similar to 
the best hits, with two main exceptions. First, nonzero 
activations cover a smaller area, consistent with the 
reflectivity core covering a smaller area. Second, con-
tours are elongated in the direction of storm motion, 
rather than along the right flank. This indicates that 
the right flank is less supportive of “yes” forecasts in 
the worst false alarms than in the best hits, which 
makes sense, as vorticity maxima for the best hits 
extend farther along the right flank. Finally, the CAM 
for the worst misses is produced for the third (second 

deepest) convolution layer (Fig. 1). We show the third 
convolution layer, instead of the fourth, because 
CAMs for the fourth layer are all zeros. This makes 
sense, given that forecast probabilities for the worst 
misses (by definition) are very low. According to the 
CNN, the radar image as a whole does not support 
a “yes” forecast. Progressing deeper in the network, 
from the first to fourth convolution layer (not shown), 
the area of nonzero class activations is pushed away 
from the center until all activations become zero.

Backward optimization. BWO results for tornado pre-
diction are shown in Figs. 9 and 10. In Fig. 9, BWO is 
used to adjust each of the 100 best true positives (as 
the seed) with the goal of decreasing tornado proba-
bility. BWO decreases the CNN’s forecast probability 
from near one to near zero. Conversely, in Fig. 10, 

Fig. 10. Composite backward-optimization results for the 100 worst misses. Storm motion is to the right. In 
this case the goal of backward optimization was to maximize tornado probability (otherwise as in Fig. 9).
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BWO is used to adjust the worst misses (as the seed), 
with the goal of increasing tornado probability. Here, 
BWO increases the probability from near zero to 
near one. In general, BWO has the greatest effect on 
low-level reflectivity and spectrum width (making 
changes up to 40 dBZ and 4 m s–1, respectively), with 
a much subtler effect on the vorticity fields (making 
changes of ~10–3 s–1). However, as shown in the reflec-
tivity fields, BWO does not necessarily produce real-
istic output. It is possible that more realistic output 
could be encouraged by adding physical constraints 
to the loss function, as is sometimes done in objec-
tive analysis [e.g., the geostrophic constraint used in 
Panofsky (1949), Bergthórsson and Döös (1955), and 
Cressman (1959)].

BWO for hail prediction is shown in Fig. 11. The 
initial seed (an array of all zeros) has been adjusted 
by the CNN to maximize large-hail probability. The 
output (synthetic storm) includes a positive height 
anomaly at 850 hPa, with negative height anomalies 
at 700 and 500 hPa. This height-anomaly gradient 
is associated with a high lapse rate (strong increase 
of temperature with pressure), which can lead to 
more instability and a stronger updraft. The syn-
thetic storm also includes positive temperature and 
dewpoint anomalies at 850 and 700 hPa, along with 
confluent winds, indicating that warm and moist air 
is flowing into the storm. Finally, winds in the inflow 
region (bottom of the map) rotate clockwise with 
height, which is favorable for right-moving supercells 
(Bunkers et al. 2000).

Novelty detection. Novelty detection for tornado 
prediction is shown in Fig. 12. Each row is a PMM 
composite over the 100 most novel examples for 

which the storm undergoes tornadogenesis in the 
next hour in the validation period. Both the actual 
feature vector and its SVD reconstruction are pro-
jected to image space by the upconvnet, which allows 
the input (radar image) and output (novelty map) 
to be viewed in the same space. The most novel or 
unexpected parts of the examples shown are low re-
flectivity to the storm’s right, which indicates a lack 
of deep convection in the inflow environment; high 
spectrum width in the mesocyclone and reflectivity 
core; high low- and midlevel vorticity to the storm’s 
right; and low midlevel vorticity on the left side of 
the reflectivity core.

Although the upconvnet cannot exactly map 
storms from feature space to image space, it can 
highlight novel or interesting areas of the input for 
further examination. One must be careful to ensure 
that artifacts of the upconvnet, such as the positive 
low-level vorticity anomalies to the storm’s right and 
in the forward f lank, are recognized as such. The 
novel regions can be used for knowledge discovery 
and further hypothesis testing.

DISCUSSION AND FUTURE WORK. This 
paper synthesizes and analyzes ML MIV methods 
and demonstrates their use for various meteorological 
domains. Table 1 provides a high-level summary, list-
ing the advantages and disadvantages of each method 
and Table 2 summarizes when a user should choose 
each method. As ML continues to gain popularity in 
meteorology and other physical sciences, it is crucial 
for practitioners to understand the trade-offs inherent 
in the models themselves and the MIV methods used 
to explain them. It is also important to understand 
the computational trade-offs of these methods. Some 

Fig. 11. Backward-optimization results for hail prediction. An all-zero array was optimized to increase large-hail 
probability, resulting in the synthetic storm (optimal hailstorm) shown. Anomalies are in standard-deviation 
units, based on means and standard deviations over the training data. Adapted from Gagne et al. (2019).
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Fig. 12. Novelty detection for the 100 most novel tornadic examples in the validation period. Storm motion is 
to the right. (top to bottom) Actual storms, upconvnet projection of the storms’ feature vectors back to image 
space, analogous, except for SVD reconstructions of the feature vectors, and the novelty map (first upconvnet 
projection minus second).

methods are efficient, while some may take additional 
supercomputing time, meaning that users need to 
decide if additional computational effort is worth the 
potential insights gained.

For example, if the user wants to identify the 
most important predictors for the ML model, the 
most computationally efficient approach is impurity 
importance. However, impurity importance has a 
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Table 1. Advantages and disadvantages of MIV methods.

Method Advantages Disadvantages

Impurity importance  
(“Impurity importance” 
section)

Succinct list of predictors
Computed at training time

Does not explicitly select predictors (underly-
ing tree does selection)
Does not explain why something is important
Works only for tree-based methods

Permutation importance  
(“Permutation importance” 
section)

Succinct
Model agnostic (can be applied to any ML 
model)
Single-pass method can be easily parallelized

Greedy algorithm that chooses one predic-
tor at each step, which limits the search of 
solution space and also make it difficult to 
compare across runs if the underlying ML 
model is brittle
Multipass is computationally expensive
Does not explain why something is important

Sequential selection  
[“Sequential (forward 
and backward) selection” 
section]

Succinct
Model agnostic
Selects most relevant predictors
Generalized versions allow algorithm to be 
somewhat nongreedy

Computationally inefficient (model is retrained 
many times)
Usually implemented as a greedy algorithm
Does not explain why something is important

Partial-dependence plots  
(“Partial-dependence plots” 
section in “Interpretation 
and visualization methods 
for traditional machine 
learning” section)

Model agnostic
Explains how predictor x is important: i.e., 
how output changes with x over range of x

Difficult to extend to deep learning 
Inefficient for multivariate interactions
Potentially overwhelming for the human when 
used for large numbers of predictors

Saliency maps  
(“Saliency maps” section in 
“Interpretation methods for 
deep learning” section)

Results can be presented in image space (often 
easier for humans to examine)
Example-by-example and multiexample expla-
nations: meaningful results can be presented 
for single examples; can also be a disadvantage 
but can be alleviated by compositing
Explains how neuron activation changes with 
each input value (i.e., each predictor at each 
grid point)
Can be used for neurons, channels, or other 
groupings of neurons

Differentiable models only
Simulates only slight change to input data 
(linear approximation to derivative)

Grad-CAM  
(“Gradient-weighted 
class-activation maps” 
section)

Results can be presented in image space
Example-by-example and multiexample
Identifies important locations in the images

Deep learning only
Does not explain how values at these loca-
tions influence neuron activation

Backward optimization  
(“Backward optimization” 
section in “Interpretation 
methods for deep learning” 
section)

Results can be presented in image space
Example-by-example and multiexample
Extends saliency maps (uses derivatives to 
optimize image for desired neuron activation)
Shows model behavior for extreme case

Deep learning and differentiable models only
Can produce physically unrealistic output
Answer depends heavily on initial seed

Novelty detection  
(“Novelty detection” section 
in “Interpretation methods 
for deep learning” section)

Results can be presented in image space
Example-by-example and multiexample
Finds interesting images and/or image subsets 
for further analysis

Deep learning only
Depends on upconvnet, which can be difficult 
to train

major disadvantage: it can be used only for tree-based 
models. Permutation is more general (can be applied 
to traditional and DL models) but more computation-
ally expensive, especially for the multipass version. 

Sequential selection is also general but even more 
computationally expensive, as it requires retraining 
the model potentially thousands or millions of times. 
Also, none of these methods explain how or why a 
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predictor is important, nor 
do they differentiate be-
tween situations where the 
predictor is important and 
is not. This question can be 
answered by partial-depen-
dence plots and some of the 
DL-based methods.

DL-based interpretation 
methods can identify im-
portant spatial locations 
and spatial multivariate 
patterns, create synthetic 
data that minimize or max-
imize a certain prediction, 
identify novel examples 
in the dataset, and identi-
fy the novel parts of each 
example. Most DL-based 
methods can be applied 
to different parts of the 
model, for example, a neu-
ron in any layer, a group 
of neurons in any layer, or 
the final prediction, which 
allows these methods to 
explain what the model 
“sees” at different depths 
(e.g., Fig. 8). Compared to 
the permutation test and sequential selection, most of 
the DL-based methods discussed are computationally 
efficient. This is primarily because these methods 
do not involve retraining the DL model. However, 
training the DL model in the first place can be com-
putationally expensive.

It is crucial to understand the trade-offs between 
predictability and interpretability. Since ML models 
are not inherently modeling a physical problem, they 
may find solutions with better predictive skill at the 
cost of a less interpretable model. For example, dif-
ferent ML models inherently learn different types of 
solutions. If one method has better predictive skill 
and chooses a different set of important predictors, 
this does not necessarily mean that the other predic-
tors are physically unimportant. This is a common 
pitfall in recent MIV papers in physical science, and 
we caution new users to understand the limitations of 
and differences among MIV methods before making 
physical conclusions.

One aspect of the problem not discussed in this 
paper is formal hypothesis testing. To conclude that 
ML has confirmed existing knowledge or discovered 
something new, would require robust hypothesis 

testing. We are currently determining the best ways 
to incorporate this into our work.

In addition to explaining the behavior of the 
model, one potential use of MIV in meteorology is 
to identify new hypotheses for scientists to explore. 
This potential is becoming more attractive as datasets 
grow and prediction tasks become harder, while ML 
accordingly becomes more sophisticated and more 
integrated into our workflow. Since ML can process 
data quickly, it could be used to “f lag” interesting 
data (e.g., patterns or interactions among predictors) 
for further analysis. This has already been done with 
novelty detection, which is used to flag images taken 
by the Mars rovers as targets for future exploration by 
the rovers (Wagstaff and Lee 2018). In meteorology, 
such methods could be used, for example, to identify 
observations that need to be collected more often or 
processes that need to be better resolved in physical 
models. This would allow for data science to feed back 
on and enrich physical science.
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Table 2. Mapping MIV methods to tasks.

Method Tasks

Impurity importance  
(“Impurity importance” section)

Quick computation of predictor im-
portance for tree-based methods

Permutation importance  
(“Permutation importance” section)

Ranks and quantifies importance of 
each predictor; works for any model 
(not only trees)

Sequential selection  
[“Sequential (forward and backward) 
selection” section]

Identify a minimal set of predictors to 
build a model

Partial-dependence plots  
(“Partial-dependence plots” section in 
“Interpretation and visualization methods 
for traditional machine learning” section)

Identify sensitivity of a model to a 
predictor over its full range

Saliency maps  
(“Saliency maps” section in “Interpretation 
methods for deep learning” section)

Visualize local gradient of predictions 
with respect to the predictors in the 
input space

Grad-CAM  
(“Gradient-weighted class-activation 
maps” section)

Visualize most important spatial 
regions of the predictor space; deep 
learning only

Backward optimization  
(“Backward optimization” section in “In-
terpretation methods for deep learning” 
section)

Create synthetic examples that acti-
vate the model in a certain way (e.g., 
minimize or maximize prediction); 
deep learning only

Novelty detection  
(“Novelty detection” section in “Interpre-
tation methods for deep learning” section)

Identify novel/unexpected examples 
and what region of each example 
makes it novel; deep learning only
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