Modeling the Relationship Between Identifier Name
and Behavior

Christian D. Newman®*, Anthony Peruma*, Reem AlSuhaibanit
*Rochester Institute of Technology, Rochester, NY, USA
TKent State University, Kent, OH, USA, Prince Sultan University, Riyadh, Saudi Arabia
cnewman @se.rit.edu, axp6201 @rit.edu, ralsuhai @kent.edu

Abstract—This paper presents the features of a model that
relates the natural language found in identifiers with program
semantics. The model takes advantage of part of speech infor-
mation and static-analysis-based program models to understand
how different types of statically-derived semantics correlates with
the natural language meaning of identifiers.

Index Terms—Program Comprehension, Identifier Names,
Static Analysis

I. INTRODUCTION

Currently, developers spend a large amount of time com-
prehending code [1], [2]; 10 times the amount they spend
writing it by some estimates [2]. One important aspect of
comprehension is the naming of identifiers (e.g., class names,
function names, parameter names); weak identifier names
decrease productivity [3]-[7], normalizing identifier names
helps both developers and research tools [8], [9], and many
research projects aim to improve identifier naming [10]-[20].

Even though there are many approaches to measuring
the quality of identifiers and recommending better identifier
names, research has yet to discover a way to produce a
model which fully captures the relationship between natural
language tokens and program semantics. Understanding how
natural language and program semantics relate to one another
will enable automated generation of identifiers; make software
development more accessible to different types of people (e.g.,
different types of learners/readers) at different stages of experi-
ence (e.g., identifiers made to help novices comprehend versus
experts); and would be a strong step forward in understanding
how developers model programs mentally.

There is a wide range of perspectives in literature on how
to improve naming. Some use token frequency with different
models (e.g., SMTs, neural networks) and some static analysis
to predict tokens that should appear in an identifier name
[10], [11], [13], [14]; others combine natural language (NL)
and static analysis, using NL techniques to reveal the role of
words which constitute identifiers. This role is then mapped
to statically-defined program semantics [15], [18], [19], [21]-
[24]; and some take a fully static-analysis-based approach to
group identifiers by common semantic role based purely on
programming language rules and no NL analysis [16], [17],
[25]. Each of these perspectives approach a similar problem
but from a different angle. In this work, we aim to extend
the second and third perspectives by using part of speech
(POS) tagging on groups of words present in identifiers and

TABLE I: Example Features of the Proposed Model

Identifier Example Grammar Pattern

1. GList* tile_list_head = NULL; adjective adjective noun

2. GList* tile_list_tail = NULL; adjective adjective noun

3. Gulong max_tile_size = 0; adjective adjective noun

4. GimpWireMessage msg; noun

5. g_list_remove_link (tile_list_head, list) preamble noun verb noun

6. g_list_last (list) preamble adjective noun

7. g_assert (tile_list_head != tile_list_tail); preamble verb
S-Lexical Category Stereotype

1. s-pronoun (tile_list_head) N/A

2. s-pronoun (tile_list_tail) N/A

3. s-adjective (max_tile_size) N/A

4. proper s-noun (msg) N/A

5. s-verb (g_list_remove_link) Command

6. s-verb (g_list_last) Getter

7. s-verb (g_assert) Predicate

connecting this with static analysis-based models that group
identifiers by their common semantics. The goal of this paper
is to describe the basis of an extensible model combining NL
and program semantics.

II. MODELLING NL. AND PROGRAM SEMANTICS

The model discussed in this paper significantly extends and
combines previous work by Binkley et al. [18], Newman et al.
[16], AlSuhaibani et al. [17], and Dragan et al. [25]. Binkley
studied patterns of part of speech tags in identifiers to help
understand the structure of class identifier names; Newman
and AlSuhaibani proposed a model that groups identifiers
together by their declarations, and Dragan proposed a model
for grouping methods by semantics. These four papers form
part of the basis of the proposed work, which will model
what the identifier can do (e.g., constraints placed on it by
its declaration [16], [17], [25]) with what it says it does (i.e.,
by analyzing the terms used in a given identifier using part of
speech [18]) and how it interacts with the rest off the program
through function calls. The model is generated by looking for
statistically-significant, empirically-derived, patterns between
statically-captured program semantics and part of speech. It
extends the works cited above by combining the models that
underpin each work into a single, cohesive model which can be
easily extended to include more features (e.g., we immediately
extend it by including function call data). We give an example
of the model features that we use in Tables I and II.

TABLE II: Example of Usage Patterns

tile_list_head usages

static GList * tile_list_head = NULL

list = tile_list_head

g_assert (tile_list_head != tile_list_tail)
tile_list_head = g_list_remove_link (tile_list_head, list)
while (tile_list_head)

if (!tile_list_head)

tile_list_head = tile_list_tail

tile_list_head = g_list_remove_link (tile_list_head, list)

tile_list_tail usages

static GList * tile_list_tail = NULL

if (list == tile_list_tail)

g_assert (tile_list_head != tile_list_tail)

tile_list_tail = g_list_last (g_list_concat (tile_list_tail, list))
g_hash_table_insert (tile_hash_table, tile, tile_list_tail)
tile_list_tail = g_list_last (tile_list_tail)

tile_list_head = tile_list_tail

A. Grammar Patterns

A grammar pattern is the set of part of speech tags that
correspond to the individual terms that make up an identifier
(i.e., identifiers can be made of one or more terms concate-
nated together). To assign a grammar pattern to an identifier,
we must split [26] the identifier first and then run a part of
speech tagger to obtain a part of speech tag for the terms that
make up that identifier. In Table I, the Grammar Pattern (top
right) segment gives the grammar pattern for the corresponding
(bolded) identifier name in the Identifier Example segment. So
the grammar pattern for tile_list_head is adjective adjective
noun, (tile-list modifies/describes head) in terms of parts of
speech, and the same for tile_list_tail. Here, the grammar
pattern represents the natural language characteristics that our
model aims to map into source code semantics.

B. S-Lexical Categories

On the bottom left of Table I, we provide the s-lexical
category for the bolded identifiers [16], [17]. S-Lexical cate-
gories are a taxonomy of static-analysis-based categories that
group identifiers based on their type declarations. They are
able to categorize any identifier that has a type (i.e., function
name, parameters, local/globals, etc). They group identifiers
that have similar constraints on their semantics (i.e., due to
their declaration) together. The categories in this taxonomy are
named after natural language part of speech tags prepended
with an s-. For example, s-pronouns are identifiers whose
declaration indicates that they behave in a similar fashion as
pointers in C/C++. Specifically, they may refer to different
entities depending on context, much like pronouns in NL. We
refer the reader to the original publication for a more formal
definition. By grouping using both the s-lexical categories
and grammar patterns, we can correlate different grammar
patterns and their relationship to multiple identifiers’ type-
based constraints.

C. Method Stereotypes

On the bottom right, we provide the stereotype [25] label for
function identifiers. Stereotypes classify functions based on the

role they play in the context of a class. For example, command
stereotyped functions are mutators that execute a complex
change to the calling objects state. Stereotypes only work
on functions, so other identifiers have no label. The s-lexical
categories label function names at a high level (i.e., they are
either s-verbs or s-adjectives). The stereotypes are much more
granular; allowing us to break function name identifiers down
to more specific categories and correlate grammar patterns
with this information. As with the s-lexical categories, the
goal here is to correlate common grammar patterns to different
stereotypes in order to connect source code semantics (i.e., via
stereotypes) with natural language (i.e., via grammar patterns).

D. Usage Patterns

Table II gives an example of usage patterns, which are
function calls that a given identifier has participated in (e.g.,
as an argument or calling object). For this example, we have
taken two identifiers and listed out every one of their usages
from Gimp [27]. The S-lexical category attributed with both
the tile_list_head and tile_list_tail identifiers is s-pronoun and
the grammar pattern for each is adjective adjective noun. In
terms of S-lexical category and grammar patterns, they are the
exact same. If we compare the literal words in each identifier,
they are the same up to the very last term in each (i.e., head
and tail) and both these terms have the same POS tag (i.e.,
noun). If we look at their usages, they have two expressions in
common (in bold); the rest differ, however. The tile_list_tail
identifier is used in methods like append(), insert(), and last().
By contrast, file_list_head is used in remove() and in looping
structures. The point here is that the two identifiers are very
similar because they are related; the S-lexical categories and
grammar patterns reveal their relatedness. However, there are
some important differences that we miss. Specifically, one is
the head and the other is the tail. Considering usage patterns
allow us to discriminate more effectively. We can use as many
or as few usage patterns as required and can consider inter-
procedural use cases using slicing [28], [29].

III. CONCLUSION

One problem we will apply this model to is identifier name
appraisal; assigning a quality rating to a name. This will
work by considering how well an identifier’s grammar pattern,
declarations, and usages (i.e., the features of our model) match
up to other identifiers with similar characteristics. Some long
term goals of this research are to 1) provide a method of
suggesting names for developers, 2) generate names automat-
ically for code generation tools, and 3) help create a theory
of optimal naming; specifically, how to assign the best words
to an identifier. The model’s toolset will be built using srcML
[30] and opened to the community to encourage and support
more research in this area.

IV. ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. 1850412.

[6]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

REFERENCES

T. A. Corbi, “Program understanding: Challenge for the 1990s,” IBM
Systems Journal, vol. 28, no. 2, pp. 294-306, 1989.

R. C. Martin, Clean Code: A Handbook of Agile Software Craftsman-
ship. Upper Saddle River, NJ, USA: Prentice Hall PTR, 1 ed., 2008.
A. Schankin, A. Berger, D. V. Holt, J. C. Hofmeister, T. Riedel, and
M. Beigl, “Descriptive compound identifier names improve source code
comprehension,” in Proceedings of the 26th Conference on Program
Comprehension, ICPC *18, (New York, NY, USA), pp. 31-40, ACM,
2018.

D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “What’s in a name? a
study of identifiers,” in /4th IEEE International Conference on Program
Comprehension (ICPC’06), pp. 3—12, June 2006.

J. Hofmeister, J. Siegmund, and D. V. Holt, “Shorter identifier names
take longer to comprehend,” in 2017 IEEE 24th International Conference
on Software Analysis, Evolution and Reengineering (SANER), pp. 217-
227, Feb 2017.

S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Exploring the
influence of identifier names on code quality: An empirical study,” in
Software Maintenance and Reengineering (CSMR), 2010 14th European
Conference on, pp. 156-165, IEEE, 2010.

A. A. Takang, P. A. Grubb, and R. D. Macredie, “The effects of
comments and identifier names on program comprehensibility: an ex-
perimental investigation,” J. Prog. Lang., vol. 4, pp. 143-167, 1996.
D. Binkley, D. Lawrie, and C. Morrell, “The need for software specific
natural language techniques,” Empirical Softw. Engg., vol. 23, pp. 2398—
2425, Aug. 2018.

C. D. Newman, M. J. Decker, R. S. AlSuhaibani, A. Peruma, D. Kaushik,
and E. Hill, “An empirical study of abbreviations and expansions
in software artifacts,” in Proceedings of the 35th IEEE International
Conference on Software Maintenance and Evolution (ICSME), 1EEE,
2019.

M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Suggesting accurate
method and class names,” in Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2015, (New York,
NY, USA), pp. 38-49, ACM, 2015.

K. Liu, D. Kim, T. F. Bissyand, T. Kim, K. Kim, A. Koyuncu, S. Kim,
and Y. Le Traon, “Learning to spot and refactor inconsistent method
names,” in Proceedings of the 40th International Conference on Software
Engineering, ICSE 2019, (New York, NY, USA), ACM, 2019.

E. W. Hgst and B. M. @stvold, “Debugging method names,” in
Proceedings of the 23rd European Conference on ECOOP 2009 —
Object-Oriented Programming, Genoa, (Berlin, Heidelberg), pp. 294—
317, Springer-Verlag, 2009.

S. L. Abebe and P. Tonella, “Automated identifier completion and
replacement,” in 2013 17th European Conference on Software Main-
tenance and Reengineering, pp. 263—-272, March 2013.

Y. Kashiwabara, Y. Onizuka, T. Ishio, Y. Hayase, T. Yamamoto, and
K. Inoue, “Recommending verbs for rename method using association
rule mining,” in 2014 Software Evolution Week - IEEE Conference
on Software Maintenance, Reengineering, and Reverse Engineering
(CSMR-WCRE), pp. 323-327, Feb 2014.

[15]

[16]

(17]

(18]

[19]

[20] S

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

V. Arnaoudova, L. M. Eshkevari, M. D. Penta, R. Oliveto, G. Antoniol,
and Y.-G. Gueheneuc, “Repent: Analyzing the nature of identifier
renamings,” IEEE Trans. Softw. Eng., vol. 40, pp. 502-532, May 2014.
C. D. Newman, R. S. AlSuhaibani, M. L. Collard, and J. I. Maletic,
“Lexical categories for source code identifiers,” in 2017 IEEE 24th Inter-
national Conference on Software Analysis, Evolution and Reengineering
(SANER), pp. 228-239, Feb 2017.

R. S. Alsuhaibani, C. D. Newman, M. L. Collard, and J. I. Maletic,
“Heuristic-based part-of-speech tagging of source code identifiers and
comments,” in 2015 IEEE 5th Workshop on Mining Unstructured Data
(MUD), pp. 1-6, Sep. 2015.

D. Binkley, M. Hearn, and D. Lawrie, “Improving identifier informa-
tiveness using part of speech information,” in Proceedings of the Sth
Working Conference on Mining Software Repositories, MSR *11, (New
York, NY, USA), pp. 203-206, ACM, 2011.

S. Gupta, S. Malik, L. Pollock, and K. Vijay-Shanker, “Part-of-speech
tagging of program identifiers for improved text-based software en-
gineering tools,” in 2013 2Ist International Conference on Program

Comprehension (ICPC), pp. 3-12, May 2013.
. L. Abebe and P. Tonella, “Automated identifier completion and

replacement,” in 2013 17th European Conference on Software Main-
tenance and Reengineering, pp. 263-272, March 2013.

V. Arnaoudova, M. Di Penta, G. Antoniol, and Y. Guhneuc, “A new
family of software anti-patterns: Linguistic anti-patterns,” in 2013 17th
European Conference on Software Maintenance and Reengineering,
pp. 187-196, March 2013.

A. Peruma, M. W. Mkaouer, M. J. Decker, and C. D. Newman, “Con-
textualizing rename decisions using refactorings and commit messages,”
in Proceedings of the 19th IEEE International Working Conference on
Source Code Analysis and Manipulation, IEEE, 2019.

A. Peruma, M. W. Mkaouer, M. J. Decker, and C. D. Newman, “An
empirical investigation of how and why developers rename identifiers,”
in International Workshop on Refactoring 2018, 2018.

E. Hill, L. Pollock, and K. Vijay-Shanker, “Improving source code
search with natural language phrasal representations of method signa-
tures,” in 2011 26th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2011), pp. 524-527, Nov 2011.

N. Dragan, M. L. Collard, and J. I. Maletic, “Reverse engineering
method stereotypes,” in Proceedings of the 22Nd IEEE International
Conference on Software Maintenance, ICSM 06, (Washington, DC,
USA), pp. 24-34, IEEE Computer Society, 2006.

E. Hill, D. Binkley, D. Lawrie, L. Pollock, and K. Vijay-Shanker,
“An empirical study of identifier splitting techniques,” Empirical Softw.
Engg., vol. 19, pp. 1754-1780, Dec. 2014.

S. Kimball, P. Mattis, and T. G. D. Team, “Gimp.”

H. Alomari, M. Collard, J. I. Maletic, N. Alhindawi, and O. Meqdadi,
“sreslice: very efficient and scalable forward static slicing,” Journal of
Software: Evolution and Process, vol. 26, 11 2014.

C. D. Newman, T. Sage, M. L. Collard, H. W. Alomari, and J. I. Maletic,
“sreslice: A tool for efficient static forward slicing,” in 2016 IEEE/ACM
38th International Conference on Software Engineering Companion
(ICSE-C), pp. 621-624, May 2016.

M. L. Collard and J. I. Maletic, “srcml 1.0: Explore, analyze, and
manipulate source code,” in 2016 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pp. 649-649, Oct 2016.

	I Introduction
	II Modelling NL and Program semantics
	II-A Grammar Patterns
	II-B S-Lexical Categories
	II-C Method Stereotypes
	II-D Usage Patterns

	III Conclusion
	IV Acknowledgements
	References

