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Abstract—This paper presents the features of a model that
relates the natural language found in identifiers with program
semantics. The model takes advantage of part of speech infor-
mation and static-analysis-based program models to understand
how different types of statically-derived semantics correlates with
the natural language meaning of identifiers.

Index Terms—Program Comprehension, Identifier Names,
Static Analysis

I. INTRODUCTION

Currently, developers spend a large amount of time com-
prehending code [1], [2]; 10 times the amount they spend
writing it by some estimates [2]. One important aspect of
comprehension is the naming of identifiers (e.g., class names,
function names, parameter names); weak identifier names
decrease productivity [3]-[7], normalizing identifier names
helps both developers and research tools [8], [9], and many
research projects aim to improve identifier naming [10]-[20].

Even though there are many approaches to measuring
the quality of identifiers and recommending better identifier
names, research has yet to discover a way to produce a
model which fully captures the relationship between natural
language tokens and program semantics. Understanding how
natural language and program semantics relate to one another
will enable automated generation of identifiers; make software
development more accessible to different types of people (e.g.,
different types of learners/readers) at different stages of experi-
ence (e.g., identifiers made to help novices comprehend versus
experts); and would be a strong step forward in understanding
how developers model programs mentally.

There is a wide range of perspectives in literature on how
to improve naming. Some use token frequency with different
models (e.g., SMTs, neural networks) and some static analysis
to predict tokens that should appear in an identifier name
[10], [11], [13], [14]; others combine natural language (NL)
and static analysis, using NL techniques to reveal the role of
words which constitute identifiers. This role is then mapped
to statically-defined program semantics [15], [18], [19], [21]-
[24]; and some take a fully static-analysis-based approach to
group identifiers by common semantic role based purely on
programming language rules and no NL analysis [16], [17],
[25]. Each of these perspectives approach a similar problem
but from a different angle. In this work, we aim to extend
the second and third perspectives by using part of speech
(POS) tagging on groups of words present in identifiers and

TABLE I: Example Features of the Proposed Model

Identifier Example Grammar Pattern

1. GList* tile_list_head = NULL; adjective adjective noun

2. GList* tile_list_tail = NULL; adjective adjective noun

3. Gulong max_tile_size = 0; adjective adjective noun

4. GimpWireMessage msg; noun

5. g_list_remove_link (tile_list_head, list) preamble noun verb noun

6. g_list_last (list) preamble adjective noun

7. g_assert (tile_list_head != tile_list_tail);  preamble verb
S-Lexical Category Stereotype

1. s-pronoun (tile_list_head) N/A

2. s-pronoun (tile_list_tail) N/A

3. s-adjective (max_tile_size) N/A

4. proper s-noun (msg) N/A

5. s-verb (g_list_remove_link) Command

6. s-verb (g_list_last) Getter

7. s-verb (g_assert) Predicate

connecting this with static analysis-based models that group
identifiers by their common semantics. The goal of this paper
is to describe the basis of an extensible model combining NL
and program semantics.

II. MODELLING NL. AND PROGRAM SEMANTICS

The model discussed in this paper significantly extends and
combines previous work by Binkley et al. [18], Newman et al.
[16], AlSuhaibani et al. [17], and Dragan et al. [25]. Binkley
studied patterns of part of speech tags in identifiers to help
understand the structure of class identifier names; Newman
and AlSuhaibani proposed a model that groups identifiers
together by their declarations, and Dragan proposed a model
for grouping methods by semantics. These four papers form
part of the basis of the proposed work, which will model
what the identifier can do (e.g., constraints placed on it by
its declaration [16], [17], [25]) with what it says it does (i.e.,
by analyzing the terms used in a given identifier using part of
speech [18]) and how it interacts with the rest off the program
through function calls. The model is generated by looking for
statistically-significant, empirically-derived, patterns between
statically-captured program semantics and part of speech. It
extends the works cited above by combining the models that
underpin each work into a single, cohesive model which can be
easily extended to include more features (e.g., we immediately
extend it by including function call data). We give an example
of the model features that we use in Tables I and II.



TABLE II: Example of Usage Patterns

tile_list_head usages

static GList * tile_list_head = NULL

list = tile_list_head

g_assert (tile_list_head != tile_list_tail)
tile_list_head = g_list_remove_link (tile_list_head, list)
while (tile_list_head )

if (!tile_list_head)

tile_list_head = tile_list_tail

tile_list_head = g_list_remove_link (tile_list_head, list)

tile_list_tail usages

static GList * tile_list_tail = NULL

if (list == tile_list_tail)

g_assert (tile_list_head != tile_list_tail)

tile_list_tail = g_list_last (g_list_concat (tile_list_tail, list))
g_hash_table_insert (tile_hash_table, tile, tile_list_tail)
tile_list_tail = g_list_last (tile_list_tail)

tile_list_head = tile_list_tail

A. Grammar Patterns

A grammar pattern is the set of part of speech tags that
correspond to the individual terms that make up an identifier
(i.e., identifiers can be made of one or more terms concate-
nated together). To assign a grammar pattern to an identifier,
we must split [26] the identifier first and then run a part of
speech tagger to obtain a part of speech tag for the terms that
make up that identifier. In Table I, the Grammar Pattern (top
right) segment gives the grammar pattern for the corresponding
(bolded) identifier name in the Identifier Example segment. So
the grammar pattern for tile_list_head is adjective adjective
noun, (tile-list modifies/describes head) in terms of parts of
speech, and the same for tile_list_tail. Here, the grammar
pattern represents the natural language characteristics that our
model aims to map into source code semantics.

B. S-Lexical Categories

On the bottom left of Table I, we provide the s-lexical
category for the bolded identifiers [16], [17]. S-Lexical cate-
gories are a taxonomy of static-analysis-based categories that
group identifiers based on their type declarations. They are
able to categorize any identifier that has a type (i.e., function
name, parameters, local/globals, etc). They group identifiers
that have similar constraints on their semantics (i.e., due to
their declaration) together. The categories in this taxonomy are
named after natural language part of speech tags prepended
with an s-. For example, s-pronouns are identifiers whose
declaration indicates that they behave in a similar fashion as
pointers in C/C++. Specifically, they may refer to different
entities depending on context, much like pronouns in NL. We
refer the reader to the original publication for a more formal
definition. By grouping using both the s-lexical categories
and grammar patterns, we can correlate different grammar
patterns and their relationship to multiple identifiers’ type-
based constraints.

C. Method Stereotypes

On the bottom right, we provide the stereotype [25] label for
function identifiers. Stereotypes classify functions based on the

role they play in the context of a class. For example, command
stereotyped functions are mutators that execute a complex
change to the calling objects state. Stereotypes only work
on functions, so other identifiers have no label. The s-lexical
categories label function names at a high level (i.e., they are
either s-verbs or s-adjectives). The stereotypes are much more
granular; allowing us to break function name identifiers down
to more specific categories and correlate grammar patterns
with this information. As with the s-lexical categories, the
goal here is to correlate common grammar patterns to different
stereotypes in order to connect source code semantics (i.e., via
stereotypes) with natural language (i.e., via grammar patterns).

D. Usage Patterns

Table II gives an example of usage patterns, which are
function calls that a given identifier has participated in (e.g.,
as an argument or calling object). For this example, we have
taken two identifiers and listed out every one of their usages
from Gimp [27]. The S-lexical category attributed with both
the tile_list_head and tile_list_tail identifiers is s-pronoun and
the grammar pattern for each is adjective adjective noun. In
terms of S-lexical category and grammar patterns, they are the
exact same. If we compare the literal words in each identifier,
they are the same up to the very last term in each (i.e., head
and tail) and both these terms have the same POS tag (i.e.,
noun). If we look at their usages, they have two expressions in
common (in bold); the rest differ, however. The tile_list_tail
identifier is used in methods like append(), insert(), and last().
By contrast, file_list_head is used in remove() and in looping
structures. The point here is that the two identifiers are very
similar because they are related; the S-lexical categories and
grammar patterns reveal their relatedness. However, there are
some important differences that we miss. Specifically, one is
the head and the other is the tail. Considering usage patterns
allow us to discriminate more effectively. We can use as many
or as few usage patterns as required and can consider inter-
procedural use cases using slicing [28], [29].

III. CONCLUSION

One problem we will apply this model to is identifier name
appraisal; assigning a quality rating to a name. This will
work by considering how well an identifier’s grammar pattern,
declarations, and usages (i.e., the features of our model) match
up to other identifiers with similar characteristics. Some long
term goals of this research are to 1) provide a method of
suggesting names for developers, 2) generate names automat-
ically for code generation tools, and 3) help create a theory
of optimal naming; specifically, how to assign the best words
to an identifier. The model’s toolset will be built using srcML
[30] and opened to the community to encourage and support
more research in this area.
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