
Contextualizing Rename Decisions using
Refactorings and Commit Messages

Anthony Peruma∗, Mohamed Wiem Mkaouer∗, Michael J. Decker†, Christian D. Newman∗
∗Rochester Institute of Technology, Rochester, NY, USA

†Bowling Green State University, Bowling Green, OH, USA
axp6201@rit.edu, mwmvse@rit.edu, mdecke@bgsu.edu, cnewman@se.rit.edu

Abstract—Identifier names are the atoms of comprehension;
weak identifier names decrease productivity by increasing the
chance that developers make mistakes and increasing the time
taken to understand chunks of code. Therefore, it is vital to
support developers in naming, and renaming, identifiers. In
this paper, we study how terms in an identifier change during
the application of rename refactorings and contextualize these
changes using co-occurring refactorings and commit messages.
The goal of this work is to understand how different development
activities affect the type of changes applied to names during a
rename. Results of this study can help researchers understand
more about developers’ naming habits and support developers
in determining when to rename and what words to use.

Index Terms—Program Comprehension, Identifier Names, Re-
name Refactoring

I. INTRODUCTION

Program comprehension is an extremely important part of a
developer’s day-to-day activities. Before a developer can per-
form any activity related to maintaining an existing code base,
they must first read and understand the code corresponding to
this activity. In short, comprehension is critical to all software
maintenance and evolution activities.

Previous work has shown that developers spend a significant
amount of time comprehending code [1], [2]. Some have
estimated that developers spend ten times longer reading and
analyzing code as opposed to writing it [2]. In order to
help developers perform optimally when maintaining large
code bases, it is critical that we reduce the amount of time
they spend understanding code by making it easier for them
to quickly and effectively understand the code they will be
working on [3]–[6].

One important aspect of comprehension is the choice of
naming identifiers (e.g., class names, method names, etc.).
Identifier names are the atoms of comprehension; weak identi-
fier names decrease productivity [4]–[7], normalizing identifier
names helps both developers and research tools [8], [9], and
many research projects, both recent and otherwise, have an
explicit goal of improving identifier naming in source code
using algorithms that take advantage of large datasets of
identifier names and/or static analysis [10]–[15].

One way to improve identifiers is to apply a rename refac-
toring [16]. The rename refactoring is defined as modifying
the name of an identifier without modifying the intended
behavior of the code of which the identifier is part. Many
Integrated Developer Environments (IDE) offer a built-in

rename refactoring functionality. Unfortunately, even though
there is some support for the mechanical act of renaming
via IDEs, there is little support to help inform developers of
when to rename (i.e., when a name is of sub-optimal quality),
and how to rename them (i.e., what words to use within
the name). Instead, renames are typically performed when a
developer notices that an identifier does not accurately reflect
the behavior it represents. This causes renaming to be applied
in a manner which is not always wholly systematic. Further,
a developer is free to come up with whatever name they like
(i.e., within the limits of naming conventions defined for the
project). This new name may be even worse than the original.

Because naming heavily effects comprehension, it is im-
portant to fully support developers when they must modify
identifier names. That is, research must support developers
in applying rename refactorings. Current research on naming
focuses heavily on suggesting identifier names [10], [11],
[13], [14], studying how names correlate with behavior [12],
[17], and analyzing names [18]–[22]. However, there are few
studies that investigate how names evolve [18], [23]–[25] (i.e.,
are changed via rename) and how these changes correlate
with changes made to source code (i.e., whether behavior-
preserving or not) and as part of a larger development plan.

To help fill the gap in knowledge concerning renaming
identifiers, this paper studies rename refactorings in two ways.
1) This paper utilizes a taxonomy of rename types published
by Arnoudova et al. [18] to understand the types of changes
applied to identifier names within our dataset. That is, we
study how individual terms within an identifier are modified
both syntactically and semantically when a rename refactoring
is applied. 2) The paper contextualizes these rename types by
analyzing commit log data and changes made directly to the
source code. This allows us to understand how changes to
the code surrounding an identifier affects the identifier’s name
and, likewise, how development activities (i.e., written in a
commit log) affect the identifier’s name. This work extends
the research started by Peruma et al. [23]. We first enhance
the topic modeling analysis through the use of topic coherence
and n-grams. Next, we extend the contextualizing activity to
include code refactorings that surround renames.

The goal of this study is to forward our understanding of
the changes made to identifiers during renaming activities
by studying the two perspectives described in the previous
paragraph. In the long term, the outcomes of this study will

be used to 1) recommend when a rename should be applied, 2)
recommend the types of words to use when applying a rename,
and 3) develop a model that describes how developers men-
tally synergize names using domain and project knowledge.
Additionally, we reflect on challenges for future research in
analyzing data similar to what was used in this paper.

Hence, we answer the following research questions:
RQ1: What is the distribution of experience among

developers that apply renames? We want to know how much
experience developers who apply renames typically have. This
will inform us of the types of developers in our rename data.

RQ2: What are the refactorings that occur more fre-
quently with identifier renames? With this question, we aim
to understand what types of refactorings tend to occur before
or after a rename. Our theory is that the changes made to code
immediately before or after a rename have a relationship with
the rename itself.

RQ3: To what extent can we use refactoring occurrence
and commit message analysis to understand why different
semantic changes were applied during a rename operation?
Using our refactoring co-occurrence data from RQ2, we add
in commit message data in an effort to see how effectively we
can pinpoint the development reason for certain changes (e.g.,
using more general words) to words in identifier names.

II. RELATED WORK
Since the choice of adequate naming for identifiers is critical

for code understandability, there have been many studies that
have analyzed the quality of identifiers and how identifier
quality affects comprehension and developer efficiency.

Arnoudova et al. [18] proposed an approach to analyze and
classify identifier renamings. They mined several rename op-
erations and then contrasted between the old and new namings
using the lexical database Wordnet [26]. The authors have
shown the impact of proper naming on minimizing software
development effort and conducted a survey showing that 68%
of developers think recommending identifier names would
be useful. The same researchers also defined a catalog of
linguistic anti-patterns that are found to deteriorate the quality
of code understanding [17]. They have shown the negative
impact of linguistic anti-patterns by conducting two studies
with software developers and finding that the majority of
programmers perceive anti-patterns as poor naming practices.

Liu et al. [24] proposed an approach that monitors the
rename activities performed by developers and then recom-
mends a batch of rename operations to all closely related
code elements whose names are similar to that of the renamed
element by the developer. They also studied the relationship
between argument and parameter names and use the patterns
they found to detect naming anomalies and suggest renames
to developers [25]. Peruma et al. [23] studied how terms
in an identifier change and contextualized these changes by
analyzing commit messages using a topic modeler; looking
for words that indicate what development activity had occurred
with the change. We extend this work by examining refactoring
co-occurrence with renames and analyzing commit messages
of these co-occuring refactorings.

Høst and Østvold [12] designed automated naming rules
using method signature elements, i.e., return type, parameters
names and types, and control flow. They call this technique
method phrase refinement, which takes a sequence of part of
speech tags (i.e., phrases) and concretizes them by substituting
real words. (e.g., the phrase <verb>-<adjective> might refine
to is-empty). Additionally, they use static analysis to group
method names (in phrase form) together by behavior. Binkley
et al. [21] presented empirically-derived rules that certain types
of identifiers (e.g., class field identifiers) should follow. One of
these rules is that class fields should never be just an adjective.

There are several recent approaches to appraising identifier
names for variables, methods, and classes. Kashiwabara et
al. [14] use association rule mining to identify verbs that
might be good candidates for use in method names; this
work focuses on word co-occurrence to find any emergent
relationships. [13] uses an ontology that models the word
relationships within a piece of software. They then generate
suggestions for new identifier names using different schemes
for how to choose sequences of words to put together to
form the identifier. Allamanis et al. [10] use a novel language
model called the Subtoken Context Model, which is a neural
network that has some similarity to n-grams (in that it uses
a previously seen set of tokens to predict a new token). The
difference is that the neural network is able to take into account
long-distance features (e.g., identifier names that occur very
far away from the target location) and produce neologisms
(essentially, new identifiers) by concatenating words together
(i.e., as is commonly done by developers).

Liblit et al. [27] discusses naming in several programming
languages and makes observations about how natural language
influences the use of words in these languages. Schankin et
al. [4] focus on investigating the impact of more informative
identifiers on code comprehension. Their findings show an
advantage of descriptive identifiers over non-descriptive ones.
Hofmeister et al [5] compared comprehension of identifiers
containing words against identifiers containing letters and/or
abbreviations. Their results show that when identifiers con-
tained only words instead of abbreviations or letters, developer
comprehension speed increased by 19% on average. Lawrie
et al [6] did a study on 100+ programmers; asking them to
describe twelve different functions. These functions used three
different ”levels” of identifiers: single letters, abbreviations,
and full words. The results show that full word identifiers lead
to the best comprehension, though there were cases where
there was no statistical difference between full words and
abbreviations. Butler’s work [7] extends their previous work
on java class identifiers [28] to show that flawed method iden-
tifiers are also (i.e., along with class identifiers) associated with
low-quality code according to static analysis-based metrics.

III. ANALYSIS OF RENAMES

The hypothesis of this paper is as follows: Changes to the
name of an identifier are most likely related to other changes
made locally (i.e., in the same class, function, or file) and
the intuition behind those changes. Under this hypothesis, we

should be able to correlate the types of changes made to a
name with other local changes. In this section we will take a
look at a couple examples of this occurrence found in our data
set. We use a taxonomy originally created by Arnaoudova et
al [18] and used in a study similar to this one by Peruma et al
[23] to examine rename refactorings and categorize them into
the different types prescribed by this taxonomy. In this section,
we will briefly discuss the taxonomy, but encourage the reader
to read the original work for a more thorough discussion of
each category. The taxonomy is made up of five high-level
categories which are presented below.

A. Taxonomy for Rename Refactorings

Entity Kind: This category is concerned with what source
code entity a given identifier represents. For example, the
identifier may be the name of a type, class, getter, setter, etc.

Form of Renaming: This category reflects the lexical
change made to the identifier. It is broken down into a few
subcategories: simple, complex, reordering, and formatting.
Simple changes are those that only add, remove, or change
one term in the identifier. Complex changes add, remove
or change multiple terms. Reordering is where two or more
terms in an identifier switch positions (i.e., GetSetter becomes
SetterGet), and formatting changes are those where there is
no renaming but a letter in a term changes case or a separator
(e.g., underscore) is added or removed.

Semantic Changes: These are changes due to
adding/removing terms or modifying terms (e.g., to another
term that is a synonym of the original) such that the meaning
of the identifier may have been modified. The following
heuristics are used to figure out whether the idenifier’s
semantics have been preserved or modified.

We consider the identifier’s meaning preserved if one of
the following holds: 1) The change added/removed a separator,
2) the change expanded an abbreviation, 3) the change col-
lapsed a term into an abbreviation, 4) the old term was changed
to a new term which is a synonym of the old term, 5) multiple
old terms were changed to multiple new terms which are
synonyms OR use or removal of negation preserves meaning
of the identifier (i.e., ItemNotVisible becomes ItemHidden).

We consider the identifier’s meaning modified if one of the
following holds: 1) Broaden meaning– the old term is renamed
to a hypernym of itself OR a term (i.e., adjective or noun) was
removed which generalizes the identifier (e.g., GetFirstUnit
becomes GetUnit). 2) Narrowing meaning– the old term is
renamed to a hyponym of itself OR a term was removed
which narrows the meaning of the identifier (e.g., GetUnit
becomes GetFirstUnit). 3) We consider meaning changed (i.e.,
not narrowed or broadened) when an old term is changed to a
new term which is unrelated to the old; when a new term is the
old term’s meronym/holonym, or antonym; OR when multiple
terms are changed AND a negation reverses a synonym of
the old term. 4) Add meaning– one or more new terms were
added to the identifier AND the addition does not fall into
one of the categories above (e.g., narrow meaning). 5) Remove
meaning– one or more terms removed from the identifier AND

the removal does not fall into one of the categories above (e.g.,
broaden meaning).

B. Contextualizing Rename Refactorings

Developers rename identifiers for multiple reasons. Through
careful analysis of rename refactorings, one can gain insight
into how developers choose their words, why they choose
certain types of words over others, and how to mimic this
process automatically. In this subsection, we show examples
of how developer activity, recorded in commit messages and
refactoring operations, is reflected in their renaming choices.

By analyzing the following method rename: setDisableBin-
LogCache → setEnableReplicationCache, we observe that the
meaning of the name has changed; the developer has modified
the name by changing disable to enable. This change is
reflected in the commit message entered by the developer:
“Changes replication caching to be disabled by default”
Similarly, the renaming of a class from Key → EntityKey
demonstrates an act of narrowing the meaning of the iden-
tifier. Once again, the purpose of this rename is reflected in
the commit message: “Rename Key to EntityKey to prepare
specialized caches”.

Developers may also rename identifiers to 1) better represent
the existing functionality and not when they are changing or
narrowing it, or 2) adhere to naming standards or correcting a
spelling/grammatical mistake. For example, here the developer
renamed the class TestProxyController → ProxyControllerTest
by reordering the term names to “...fixed names that were not
in standards”. In the next example, the developer preserves
the meaning of a method by renaming it from inactivate →
deactivate, through the use of a synonym. This is, again,
reflected in the commit message: “Renaming method to proper
English...”, where renaming to ‘proper English’ indicates that
the meaning has not been modified but should now be easier
to comprehend.

Finally, commit messages are not the only way to contextu-
alize rename refactorings. Changes to the code surrounding
a name also help in understanding what the developer’s
intention. Unfortunately, most types of changes to the code
are not part of a pre-defined taxonomy. That is, it is difficult
to understand the abstract, domain-level goal of individual
changes. Luckily, some types of code changes are taxono-
mized. Specifically, refactorings are a taxonomy of changes
made to the code for a specific goal; typically to optimize
non-functional attributes of the code [16]. We can look at
refactorings that happen just before and right after a given
rename to help us understand what the developer was doing
before and after they applied a rename refactoring.

For example, in commit [29] the developers applied an
Extract Method refactoring with the following comment: “us-
ing the Jangaroo parsing infrastructure; all tests green; getters
inherited”, before applying rename: getCompilationsUnit →
getCompilationUnit. This preserves the meaning of the name
but puts the name more in-line with its type, as stated by the
commit message for this change: “Corrected type in internal
method name” [30].

Engineered open-
source projects

800 random
Java projects

Clone projects &
extract commit data

Code
refactoring

mining

Rename
semantic
detection

Rename
co-occurrence

detection

Rename
co-occurrence

detection

Rename
developer
experience

Rename
developer
experience

Fig. 1: Methodology overview

Another example comes from a move class refactoring,
where a class was moved from one package to another [31].
This refactoring commit had the following comment: “In-
cremental changes, some package refactorings etc”. Further,
a rename was performed after this commit: JsonViewRe-
sult→JsonView [32]. This rename broadens the meaning of the
name by removing result, making the identifier more general
in meaning. The commit message associated with the rename
is: “Cleaned up some file names for easier usage...”, meaning
the developer was likely going through and renaming things
after the move class refactoring. The question we ask, in the
context of these examples, is whether there are overarching
themes to the way names change given that a refactoring has
occurred in a commit surrounding it. If so, then it is possible
to study these trends and use them to support developers in
their naming activities.

IV. METHODOLOGY

Our experiment methodology consisted of two phases - Data
Collection and Detection. The Data Collection phase consisted
of building our dataset while the Detection phase consisted
of analyzing and querying the dataset for specific features to
help answer our research questions. Depicted in Figure 1 is
an overview of the approach that we undertook to conduct
our experiments. In the subsequent subsections, we explain in
detail the approach for each activity.

A. Data Collection Phase

Projects: To obtain a viable dataset to perform our experiments
on we selected 800 random, curated open source Java projects
hosted on GitHub. These curated projects were selected from
a dataset made available by [33]. The authors of this dataset
classified engineered software projects based on the projects
use of software engineering practices such as documentation,
testing, and project management. In terms of recentness, the

TABLE I: Distribution of the top five refactorings

Refactoring Type Count Percentage

Rename Attribute 137,842 19.37%
Rename Variable 84,010 11.81%
Rename Method 82,206 11.55%
Move Class 76,265 10.72%
Extract Method 47,477 6.67%
Others 283,695 39.87%

projects were cloned in early 2019, and approximately 74.6%
of the projects had their most recent commit within the last
four years. In total, we collected 748,001 commits with a
project containing 732 commits and 19 developers on average.

Refactorings: Our study utilizes RefactoringMiner [34] to
mine refactorings occurring in the source code. At the time
of conducting our study, Refactoring Miner can identify 28
different refactoring operations. From this list of operations,
seven are rename based operations. RefactoringMiner iterates
over all commits of a repository in chronological order and
compares the changes made to Java source code files by
developers and detects refactorings in the code based on a pre-
defined set of refactoring rules. We investigated the renaming
operations on five types of identifiers - Classes, Attributes (i.e.,
class level variables), Methods (including getter and setters),
Method Parameters, and Method Variables. Furthermore, our
experiments were conducted on the entire commit history of
the project (and not on a release-by-release comparison). In
total, we detected 711,495 refactoring operations with each
project in our dataset exhibiting refactoring operations. After
the removal of outliers (via the Tukey’s fences approach),
on average, each project had 450.8 refactoring operations
performed by seven developers. Approximately 53.51% of the
refactoring operations in our dataset were rename based. Due
to space constraints, we present only the top five refactoring
operations, that was mined from our dataset, in Table I. The
entire list is available on our website [35].

B. Detection Phase

Rename Forms & Semantics: To detect the form and seman-
tic update an identifier undergoes we obtained the program
utilized in [23] and made some minor updates to the semantic
categorization logic. The program primarily relies on Python’s
Natural Language Toolkit (NLTK) [36] to compare the original
and renamed identifier name to determine the type of semantic
change made by the developer. Table II shows the distribution
of rename form and semantic meaning types in our dataset.

Rename Co-occurrence: We built a custom program to detect
refactorings that occur before and after rename refactoring
by iterating over the mined refactoring-based commits in our
dataset. Since our rename refactorings are related to classes,
attributes, methods, method parameters, and method variables,
we restricted our occurrence detection to refactorings that are
applied to only these types of elements. For each renamed
element type, we first extract all unique instances. Next, we
iterated through all refactorings searching for refactorings that
involved the specific instance.

TABLE II: Distribution of rename forms and semantic meanings

Type Count Percentage

Rename form types

Simple 259,754 68.31%
Complex 109,860 28.89%
Formatting 8,916 2.34%
Reordering 1,732 0.46%

Rename semantic meaning updates

Preserve 29,568 7.78%
Change 350,694 92.22%

Change – Narrow 44.21%
Change – Add 37.93%
Change – Broaden 15.09%
Change – Remove 2.58%
Change – Antonym 0.19%

To better highlight this process, consider
the example where we detected the class
stormpot.CountingAllocatorWrapper as being renamed
to stormpot.CountingAllocator [37]. We then queried
our list of unique attributes, methods, parameters, and
variables for elements that were part of this class and had
also undergone a refactoring. Our search resulted in an
attribute, counter, belonging to this class and had undergone
a rename refactoring (prior to the class being renamed) [38].
Finally, we record this pair of refactorings in our database.

Commit Log Contextualizing: As part of our experiment, we
aimed to contextualize certain instances of the commit log in
order to derive the developer’s rationale for performing specific
tasks. To achieve this, we performed a topic modeling and
n-gram analysis of commit messages. We utilized the latent
Dirichlet allocation (LDA) [39] algorithm for our topic mod-
eling analysis. We used a combination of topic coherence [40]
and manual empirical analysis to determine the ideal number
of topics, as past research has shown that the number of topics
can vary between studies and datasets [41]. A prerequisite to
these activities was a text preprocessing task where we cleaned
and standardized the commit messages. Some key steps in our
preprocessing included: removal of stopwords, URLs, numeric
and alphanumeric characters/words, and non-dictionary words.
Additionally, we also expanded contractions and performed
stemming and lemmatizing on words.

Developer Experience: Since obtaining the experience of a
developer can be subjective and also not entirely feasible
for a large scale study such as this, we conducted a more
objective-based experiment. To this extent, we followed the
approach utilized by [42]. In their approach, the authors use
project contribution as a proxy for developer experience within
a project. Hence, for each developer in each project, we
calculate the Developers Commit Ratio (DCR). In this ratio,
we measure the number of individual commits made by the
developer against all project commits. In other words, DCR
= (IndividualContributorCommits

TotalAppCommits). To mitigate the threat of
mis-attributing commits due to the use of git features such
as pull requests, we only consider the author of a commit as

0.0

0.1

0.2

0.3

0.4

1e−05 1e−03 1e−01

Developer Commit Ratio (Log Scale)

D
en

si
ty

All Refactorings Only Non−Renames Only Renames

Fig. 2: Distribution of DCR values for developers based on the type
of refactoring performed in their project

its developer.

V. EXPERIMENTAL RESULTS

We will now discuss our results. The discussion is broken
down into our three Research Questions. In RQ1, we discuss
the experience of developers that perform rename refactor-
ings versus other types of refactorings. In RQ2, we look at
what kinds of refactorings happen before or after a rename
refactoring and discuss both how often rename refactorings are
preceded or followed by another refactoring and what types
of refactorings these preceding or following changes represent.
In RQ3, we combine and discuss data from RQ2 with commit
message information and the semantic change types discussed
in Section III-A with a goal of using the commit message and
refactoring information to contextualize the semantic change
types we detected in our set of renames.

A. RQ1: What is the distribution of experience among devel-
opers that apply renames?

To compare the distributions of DCR for developers who
had performed only renames, only non-renames and a mix of
rename and non-rename refactorings, we followed the same
approach as [42]. Since the number of developers in each
project differs, we calculated an adjusted DCR value for each
developer by dividing the developers original DCR value by
the number of developers in the project. We also restricted our
experiment to projects that had only two or more developers.

As shown in Figure 2, it is not surprising that developers
who perform all types of refactorings have a higher DCR
than those that perform only rename refactorings. However,
it is interesting to observe that developers who perform only
renames share a similar DCR value as those that perform only
non-rename refactorings. To further validate these findings, we
performed a nonparametric Mann-Whitney-Wilcoxon test on
the DCR values for developers that belonged to these cate-
gories. We obtained a statistically significant p-value (< 0.05)

TABLE III: Distribution of rename form and semantic meaning up-
dates performed by developers based on their refactoring preferences

Type Only Renames All Refactorings

Percentage Percentage

Rename form types

Simple 64.65% 67.01%
Complex 30.55% 29.96%
Formatting 4.56% 2.52%
Reordering 0.24% 0.51%

Rename semantic meaning updates
Preserve 9.97% 8.50%
Change 90.03% 91.50%
Change – Narrow 48.99% 48.08%
Change – Add 29.93% 32.68%
Change – Broaden 18.33% 16.46%
Change – Remove 2.58% 2.56%
Change – Antonym 0.17% 0.21%

when the DCR values of developers who performed only
rename refactorings were compared to developers that perform
all types of refactorings. This value confirms that developers
that contribute less to a project are more likely to perform
rename refactorings, which are generally considered easier
to apply due to wide IDE support despite developers also
generally agreeing the renaming is a difficult problem [18].

Looking at the different types of identifier rename forms,
we observed that there was no significant difference in the dis-
tribution of renaming forms between developers that perform
only renames and those that perform all types of refactor-
ings. Similarly, the types of semantic updates to an identifier
name also showed no significant differences among these two
groups of developers. Table III provides a breakdown on the
distribution of rename form and semantic meaning updates.

Our experiment on developer experience shows the devel-
opers with more project experience (i.e., contributions) are
more accustomed to performing a multitude of different types
of refactoring operations. This should not be surprising as
these developers have more experience and knowledge of the
codebase (and system) and would be more comfortable in
implementing design/structural changes to the project. Given
that renames have wide IDE support and are syntactically
simple modifications, inexperienced developers will naturally
be drawn into making such refactorings in the project.

Summary for RQ1: Developers with limited project expe-
rience are more inclined to perform only rename refactorings
than other types of refactorings (which may alter the design of
the system). However, there is no difference between these two
types of user groups with regards to the complexity (i.e., form
and semantic) of the rename. Because developers who apply
renames may have limited project experience, we must keep
this factor in mind when analyzing changes made to names.

B. RQ2: What are the refactorings that occur more frequently
with identifier renames?

To derive the extent to which non-rename refactorings can
either influence or be influenced by a rename, we studied
the type of refactoring commits that occur just before and
after a rename refactoring commit. This part of our study

TABLE IV: Top 3 refactoring operations that occur before a class,
attribute, method and method variable are renamed

Refactoring
Operation Count Percentage Commit Message

Key Terms

Refactoring operations before a class rename

Move Class 3,069 26.96% package, structure, change
Rename Method 2,062 18.12% code, clean, change, fix
Rename Variable 1,376 12.09% add, code, test, support
Others 4,875 42.83% N/A

Refactoring operations before an attribute rename

Move Attribute 1,499 83.32% added, fix, support, test
Pull Up Attribute 220 12.23% added, simplification, extract
Push Down Attribute 73 4.06% separate, remove, added
Others 7 0.39% N/A

Refactoring operations before a method rename

Rename Method 1,760 19.58% revert, implementation, test
Extract Method 1,666 18.53% fix, added, modified, test
Rename Variable 1,364 15.17% added, test, fix, change
Others 4,201 46.72% N/A

Refactoring operations before a method variable rename

Rename Variable 3,067 90.66% revert, added, test, fix
Extract Variable 305 9.02% added, string, test, fix
Inline Variable 6 0.18% fix, working, change
Others 5 0.15% N/A

focused on the renames of classes, attributes, methods, method
parameters, and method variables. For each entity type, we
extracted the list of unique instances that underwent a rename
and then searched for the refactoring that directly preceded and
directly followed (i.e., there may be non-refactoring commits
that we skip) the rename for either the same entity or child
entities (as in the case of classes and methods).

Interestingly, we observed that for all elements that are
subject to renames, developers frequently perform the rename
in isolation. In other words, approximately 90% of the rename
refactorings did not have a refactoring occurring immediately
before and after the rename. However, this does not mean that
the developer only performed a rename to the element during
the lifetime of the element. There can be other non-refactoring
activities that were applied to the element by the developer that
is not considered a refactoring (e.g., adding lines of code to
a method). For scenarios where there are refactorings either
before or after a rename, we noticed that more operations
occur before a rename (≈ 8%) than after (≈ 2%).

In general, the majority of the refactorings that occur
before a rename are related to changes/updates to functionality.
Additionally, we also observed that some of these commits are
also bug fix related and also due to developers either adding
or updating unit test files. For example, in order to include
new functionality, a developer refactors the existing code by
creating a new method called getClassURL by performing
an Extract Method operation [43]. Thereafter the developer
renames the newly created method to getClassUrl to ensure
that name follows “Google’s style rules” [44].

Even though the number of refactorings occurring af-
ter a rename is much smaller, we did notice that most

of these refactorings are associated with some form of
code reversal/reverting. As an example, a developer ini-
tially renames a method from getIncludedPublishers

to getEnabledSources when introducing new functionality
[45]. However, in a subsequent commit [46], the developer
removes this functionality from the method and also reverts
back to the original method name.

As the majority or refactoring operations occur before a
rename, in the following subsections, we drill-down into each
element type with the aim of discovering the common types
of refactorings that precede the renaming of the element and
also the extent to which the commit log can contextualize the
relationship between these refactorings. Table IV highlights
the distribution of the top three refactoring operations that
occur before a class, attribute, method, and method variable
is renamed. Also provided in this table are the common terms
we extracted from our topic-modeling and n-gram analysis of
the commit messages that are associated with these refactoring
operations. The complete list of refactorings that proceed and
follow a rename refactoring is available on our project website.

C. Class Rename
Our study of class renames involved identifying the

refactorings performed on the class and all elements within
the class (i.e., attribute, methods, method parameters,
and method variables) immediately before and after the
developer renames the class. We observed that developers
more frequently performed a Move Class refactoring before
renaming the class. Results from our topic modeling and
n-gram analysis coupled with a manual analysis of random
messages showed that activities related to restructuring
project structures and change of package names cause
developers to rename class names. For example, in [47]
a developer moves the class BasicAuthLoginCommand

from com.heroku.api.command to
com.heroku.api.command.login with the message
“reorganized commands into appropriate packages.” The next
refactoring operation [48] performed on this class is renaming
the class to BasicAuthLogin. The reason for the rename is
“...to simplify some of the names.”

Looking at the number of non-refactoring commits that
separate a Move Class from a Rename Class we observed
that the majority of renames (≈ 7.15%) occur in the commit
immediately following the move. It is also interesting to note
that a gap of between 1 to 5 commits occurs around 27.73%
of the time between a class move and rename.

D. Attribute Rename
Similar to classes, developers perform move operations

on attributes before renaming them. Looking at the commit
messages, change in functionality (specifically adding of new
features) is one of the most common reasons developers move
an attribute. As an example, in commit [49], the developer
moves the attribute jobId with the message “added the jobId
to a few more logs”. The subsequent refactoring commit [50]
for this attribute involves a renaming operation in which the
attribute is renamed to context as part of a “cleanup” activity.

We observed that around 71% of the renames occur in the
commit immediately after the developer moves the attribute.
Additionally, around 82% of rename refactorings take place
within five commits after the Move Attribute operation.

E. Method Rename

For methods, we investigated the refactorings that are ap-
plied to the method and its members (i.e., parameters and
variables) just prior to and after the method is renamed.
Interestingly, we observed that developers perform a rename
to the method before renaming it again more than any other
type of refactoring. Based on the terms in the commit log,
we observed that the reason for the initial rename is due to
developers changing the behavior/purpose of the method. Fur-
thermore, we noticed that the second occurrence of the method
rename reverts the first rename operation. For example, in
[51], the developer renames the method showDelivery to
showOwnDelivery as part of a functionality change, with
the commit message “Minor changes to access controls in in-
structor MVC”. In the subsequent commit [52], the developer
reverts the name change as part of cleanup activities with the
message “Final tidy of older instructor MVC”.

Looking at the interval between commits, the majority (≈
15.22%) of the method-rename pairs of refactorings occur one
after another. Further, a gap of between 1 to 5 commits occurs
around 37.68% of the time between two method renames.

F. Method Variable Rename

Like methods, method variables also undergo rename op-
erations in succession. Once again, looking at the commit
messages, we can gauge that the reason for the initial rename
was due to either refactoring or change (including reversals) in
functionality. It is also interesting to note that the developers
revert the variable name of the initial commit in the next re-
name. For example, in [53] the developer renames the variable
drop to assembledDrop with the message “simplified drop
assembly a bit”. The next commit reverts the variable name
when the developer performs a “misc code cleanup” activity.

Summary for RQ2: We have shown that in most sce-
narios, renaming of an element does not generally seem to
be influenced by, nor does itself influence another type of
refactoring on the same element. This indicates that an analysis
of non-refactoring operations will be required to understand
how changes to code around a rename affect or are affected
by the rename. However, there is a subset of renames that
occur directly before or after another refactoring. Of this
subset, we observed that a majority of the time developers
perform a refactoring operation just before the rename, these
two operations happen in a short (commit) interval. Finally,
in situations where a rename follows another rename, it has
been observed that developers revert to the original name when
performing the second rename.

TABLE V: An overview of the types of semantic updates an identifier
name undergoes after a refactoring

Element
Type

Refactoring
Before Rename

Type of
Semantic Update

Top 3 Semantic
Change Subtypes

Class
Move Class

Change
(#: 2,659; %: 84.14%)
Preserve
(#: 501; %: 15.85%)

Narrow (63.56%)
Broaden (28.13%)
Add (3.65%)

Rename Method

Change
(#: 1,961; %: 90.0%)
Preserve
(#: 218; %: 10.0%)

Narrow (57.42%)
Broaden (31.56%)
Add (6.78%)

Rename Variable Change
(#: 1,479; %: 100.0%) Narrow (100%)

Attribute
Move Attribute

Change
(#: 1,419;%: 94.66%)
Preserve
(#: 80;%: 5.34%)

Add (54.05%)
Narrow (24.59%)
Broaden (16.07%)

Pull Up Attribute

Change
(#: 187;%: 85.0%)
Preserve
(#: 33;%: 15.0%)

Narrow (66.84%)
Broaden (25.67%)
Add (3.21%)

Push Down Attribute

Change
(#: 47;%: 63.51%)
Preserve
(#: 27;%: 36.49%)

Narrow (70.21%)
Broaden (23.4%)
Add (2.13%)

Method
Rename Method

Change
(#: 1,752;%: 81.19%)
Preserve
(#: 406;%: 18.81%)

Narrow (36.42%)
Broaden (31.16%)
Add (24.14%)

Extract Method

Change
(#: 1,447;%: 85.42%)
Preserve
(#: 247;%: 14.58%)

Narrow (64.06%)
Broaden (26.12%)
Add (4.49%)

Rename Variable

Change
(#: 840;%: 87.41%)
Preserve
(#: 121;%: 12.59%)

Narrow (49.28%)
Broaden (32.86%)
Remove (9.17%)

Variable
Rename Variable

Change
(#: 3,033;%: 98.89%)
Preserve
(#: 34;%: 1.11%)

Add(77.35%)
Narrow (14.93%)
Broaden (6.17%)

Extract Variable

Change
(#: 281;%: 92.13%)
Preserve
(#: 24;%: 7.87%)

Narrow (71.17%)
Broaden (19.57%)
Add(6.05%)

Inline Variable Change
(#: 6; %: 100.0%)

Add (66.67%)
Narrow(33.33%)

G. RQ3: To what extent can we use refactoring occurrence
and commit message analysis to understand why different
semantic changes were applied during a rename operation?

To answer this question we looked at the types of semantic
changes applied to identifier names given that another refac-
toring was applied in the previous commit. We then analyzed
this data to understand whether the refactoring that happened
before the rename had any affect on the semantic change ap-
plied during the rename. Additionally, we performed commit
message analysis using LDA and bi/trigrams in an effort to
further contextualize the semantic change; using information
about why a given refactoring was applied before the rename
to help us understand the semantic changes observed during
renames applied afterward.

The first observation we make is that renames applied after
another refactoring most frequently changed the target name’s

meaning somehow; the meaning was less frequently preserved.
Therefore, we will first look at renames that changed the
meaning of the identifier they were applied to. Please refer
to III-A for a refresher on the semantic change categories.
Table V highlights the distribution of these change types
for elements that undergo a rename after another type of
refactoring operation.

We observed that the majority of the name changes were
related to a narrowing in the meaning of the name. Generally,
a narrowing in the meaning of an identifier name is related to
a specialization of functionality. For example, in commit [54],
a developer created the method readImage(width int,

height int) by performing an Extract Method operation
in order to add “missing functionality”. In a subsequent
refactoring operation on this method, the developer renames
the method to readZlibImage(width int, height int)

with the message “Added read support for GM8 gmk files”
[55]. As can be seen by the message, the developer specializes
the method and hence reflects this behavior in the new method
name by narrowing its meaning.

The next most common type of semantic change was
broadening of the identifier’s name. Developers perform a
broadening of the name when they generalize the behavior
of the identifier. As an example, in commit [56], a developer
performs a Pull Up Attribute on idColumn as part of gen-
eralizing change – “Create generic table class” . Thereafter,
the developer renames the attribute to id in order to make it
consistent with the earlier generalizing task – “Rename generic
table column fields” [57]. Finally, adding to the identifier name
was the third most frequent type of semantic change.

There are a few interesting things to point out from Table
V. The first is that a Rename Variable followed by another
Rename Variable tended to add meaning instead of narrow or
broaden. The same applies for renames occurring after a Move
Attribute refactoring and after a Inline Variable refactoring.
However, these are the only examples of a break from the typi-
cal pattern of Narrow being the most common semantic change
type. If we only contextualize using refactorings applied before
renames, there are few significant differences in the types of
semantic changes applied after different types of refactorings.
While this data does indicate the popularity of narrowing,
adding to, or broadening the meaning of a name , it does
not completely help us understand what the developers were
trying to accomplish; an Extract Method refactoring occurring
before a rename does not serve as a strong indicator of what
semantic change will happen if a rename is applied afterward.

To help us further contextualize these refactorings and
the renames occurring afterward, we used LDA and n-gram
analysis on commit messages associated with the rename
refactorings occurring after a refactoring operation. A previous
work has also used LDA on a similar context [23], but it
performed LDA analysis on the commit message associated
with the rename without taking into account if the rename
occurred in isolation or immediately after another refactoring.
Technically, we extended [23] topic modeling approach by
incorporating additional text preprocessing and the use of topic

TABLE VI: Broadening of a method name after a variable rename

Analysis Output

LDA Topic 1

change (0.090), model (0.086), past (0.068),
discussed (0.068), allow (0.019), lambda(0.019),
route(0.019), work(0.015), early(0.014),
simplified(0.014)

LDA Topic 2

change (0.088), model (0.061), past (0.049),
discussed (0.049), fix (0.028), factory (0.026),
changed (0.023), loader (0.023), add (0.017),
set (0.013)

Trigram

(discussed, past, model), (change, discussed, past),
(model, change, discussed), (past, model, change),
(discussed, past, added), (changed, loader, factory),
(loader, factory, changed), (factory, changed, loader),
(location, model, change), (render, nicely, html)

TABLE VII: Narrowing of a variable name after its extraction

Analysis Output

LDA Topic 1

code (0.091), binding (0.083), data (0.081),
updated (0.074), fix (0.028), add (0.025),
support (0.017), cr (0.009), custom (0.009),
request (0.009)

LDA Topic 2

code (0.067), updated (0.060), binding (0.059),
data (0.058), record (0.013), id (0.010),
custom (0.010), introduced (0.010), remove (0.010),
cr (0.007)

Bigram
(data, binding), (binding, code), (updated, data),
(code, updated), (revamped, hibernate),(added, method),
(array, fix), (attribute, handle), (binding, warning)

coherence scores in order to improve the quality of our text
analysis compared to the original paper. The results of this
analysis are in Tables VI, VII VIII, and IX. In each table, we
show the two strongest topics from LDA along with either a
bigram or trigram analysis. We present either the bigram or
trigram that is the most relevant. Using the data in these tables,
we can see some indication of what development activity
caused different types of semantic changes when applying a
rename.

Table VI shows data for all method renames that are
preceded by a variable rename, and resulted in the name of
the method broadening in meaning. These preceded a rename
which resulted in a broaden meaning. The data here indicates
changes to a model and changes to a factory. We analyzed
the commit messages associated with these topics and found
the updates are due to bug fixes or code optimizations. For
example in commit [58], the broadening of the name is
associated with the message “...Made the factory generic”,

TABLE VIII: Narrowing of an attribute name after its pulled-up

Analysis Output

LDA Topic 1

work (0.094), introduce (0.043), security (0.034),
option (0.034), addition (0.034), start (0.018),
add (0.018), took (0.018), thread (0.018),
ongoing (0.018)

LDA Topic 2

symbol (0.077), table (0.077), work (0.061),
unit (0.031), option (0.031), property (0.024),
fixed (0.022), hierarchy (0.016), added (0.016),
implementation (0.016)

Trigram

(hierarchy, option, reduce),
(implemented, hierarchy, option),
(option, reduce, code), (reduce, code, duplication),
(code, duplication, implemented),
(duplication, implemented, hierarchy),
(gross, value, gross), (addition, security, addition),
(code, added, support), (entity, id, field)

TABLE IX: Adding meaning to a class name after moving it

Analysis Output

LDA Topic 1

method (0.189), added (0.083), adding (0.072),
increased (0.071), incremental (0.071), stub (0.071),
anonymous (0.071), truly (0.071), fix (0.013),
subset (0.013)

LDA Topic 2

test (0.198), validation (0.043), removing (0.030),
enable (0.029), mapping (0.029), upgrade (0.029),
failing (0.029), concept (0.029), collection (0.015),
contains (0.015)

Trigram

(added, method, adding), (adding, truly, anonymous),
(incremental, stub, method), (method, added, method),
(method, adding, truly), (stub, method, added),
(truly, anonymous, increased),
(anonymous, increased, incremental),
(cleaned, scorer, removing), (field, tree, context)

which a broaden meaning rename would logically follow.
Table VII has similar data but for a set of Extract Variable
refactorings which preceded a narrowing of the identifier name
meaning via rename. The topics and bigrams here indicate
code related to data binding, code updates and code fixes.
Again, we took a look at the commit messages associated
with this data and found that most of the data bindings were
specific to a certain project in our corpus. In this instance
[59], the developer uses a generic message, “Updated data
binding code...”. Ignoring this set of commits, a majority of
the remaining messages were associated with bug fixes.

Table VIII shows the implementation of options and re-
duction in code duplication which preceded a narrowing in
meaning. An analysis of the commit messages associated with
this table shows that the removal of duplicate [60] and legacy
[61] code is a task associated with code cleanup activities.
These activities can also range from simple identifier renames
[62] to more intensive structural changes [63]. Finally, Table
IX indicates the addition of new methods associated with
moving a class to a different location, which preceded an add
meaning change. Examining these commit messages revealed
that methods are added in response to enhancing the existing
design of the system after the class is moved and hence
contribute to the renaming of the class, such as in the case
of [64], where the developer performs a “...Method grouping”
in the newly moved class.

Preserve meaning was the least occurring semantic type,
and not surprisingly, the frequently occurring terms in these
commit messages were not change related. These terms in-
cluded ‘fix’, ‘test’ and ‘work’. Generally, such terms are
associated with behavior correction. Hence, developers feel
that the update they make to the code does not necessarily
deviate from the original expected behavior of the identifier.
For example, in [65] as part of updates to the user interface,
the developer performs a Pull Up Method operation on the
method calcTotal. The next update [66] to this method is
to address an issue, and as part of this task, the developer
renames the method to calculateTotal to better represent
its intended behavior. A cursory glance at the method shows no
changes to the functional behavior exhibited by this method.

Summary for RQ3: Developers frequently change the se-
mantic meaning of an identifier name when performing a

rename after a refactoring. A narrowing (i.e., specialization)
of the name is the most common type of change in mean-
ing. While the rationale for some semantic changes can be
derived from the commit log in addition to the actions that
occurred just prior to the rename, classical ways of analyzing
large numbers of commit messages provide only a high-level
understanding of this rationale and require significant manual
analysis to help us fully understand the rationale. The answer
to this RQ is that refactorings, occurring before and after a
rename, and commit messages can give us some high-level
insight into how names semantically change and why, but
further research using additional artifacts, and new methods
of natural language text analysis for software engineering, are
required to provide us with stronger insights.

VI. THREATS TO VALIDITY

Our experiments are based only on well-engineered Java
systems [33], meaning the results may not generalize to
systems written in other languages. The type and volume of de-
tected renaming refactorings are limited to RefactoringMiner’s
capabilities. However, RefactoringMiner is currently the most
accurate refactoring detection tool [67] and is widely used in
research concerning refactorings.

Our experiment on developer experience utilized project
contributions as a proxy for the developer’s experience; an
approach we followed from a similar study. As with many
software metrics, this metric is not perfect, and may not always
appropriately measure experience.

Part of this work analyzed commit messages. To mitigate
bias in deciding the terms to present after commit message
analysis, we used a peer-review approach. The authors re-
viewed the entire list of generated terms and decisions that
were made had to be unanimous. Furthermore, we manually
referred to the entire commit message to verify the context
around the terms of interest.

Because of our partial reliance on NLTK to detect semantic
changes performed via rename, there is a threat that some
of the conclusions drawn by the semantic change detection
algorithm may be inaccurate. We mitigate this by thorough
testing of the tool, but it is known that tools trained specifically
on software engineering data tend to generalize better than
tools trained on general natural language data and applied to
source code [8], [68]. Unfortunately, there are no models for
software data that offer word relation data similar to NLTK.

VII. CONCLUSION, DISCUSSION, FUTURE WORK

In this paper we used refactorings, static analysis, and
commit messages to understand characteristics of changes
applied to names and to determine if these changes correlate to
different developer activities (e.g., narrowing of a name after
applying extract method). Our long term goal is to support
recommendation of when/how to rename identifiers and to
understand more about developer naming mental models. This
study brings us a step closer to achieving this goal by showing
us some interesting trends in developer behavior with respect
to renaming as well as by highlighting where our methodology
is weak or where we lack data. We discuss our findings below.

RQ1 shows us that developers with relatively less expe-
rience than their peers have a higher likelihood of applying
rename refactorings than other types of refactorings. RQ2
shows us what types of refactorings happen before a rename
and that there are some specific terms that are associated with
these refactorings which can help us understand some of the
motivation behind renames occurring directly afterward and
help us determine when we should suggest applying a rename.
Other work has similarly shown how specialized terminology
indicates developer refactoring activities [69]. The data also
indicates that the vast majority of renames are not correlated
with any refactoring occurring before or after their application.

More research into these non-refactoring changes is required
since only a minority of renames happen directly after a
refactoring. Finally, in RQ3, we saw that there are generally
three types of semantic changes that frequently occur during
a rename applied after another refactoring: Narrow, Broaden,
and Add meaning. When analyzing commit messages associ-
ated with each of these, we were able to identify terms which
indicate development tasks associated with the type of rename.
While somewhat indicative of the larger context, these terms
were too isolated and required us to manually analyze commit
messages for more context. On the positive side, our data does
show that the motivation for semantic changes is recorded and
can be detected; allowing us to understand more about how
names evolve in the larger software evolution context.

However, it also shows that a significant amount of work is
needed to automatically derive these motivations more effec-
tively from commit messages, other natural language software
artifacts, and general source code changes. In particular, the
biggest problems we faced with analyzing large numbers of
commit messages is that: 1) the terms frequent enough to be
detected are high-level and not descriptive of individual project
efforts (e.g., we can determine that projects are performing
structure changes, but not what types of structural changes
or why). Also, 2) the commit messages often simply do not
contain enough information, potentially indicating the need
for more natural language software artifacts which will likely
be more challenging to analyze automatically. An effective
method for performing this type of analysis would positively
impact our ability to support developers in assigning names,
renaming, and suggesting when and where names need to
evolve. The work we present in this paper shows that this
context is obtainable, but there are still many challenges to it.

In future work, we plan to investigate more effective means
of analyzing commit messages and other natural language
software artifacts to help us address the problems discussed
above. Additionally, we intend to investigate the use of soft-
ware differencing techniques [70], [71] to allow us to analyze
general software changes that occur around a rename. Finally,
the dataset utilized in this study is available on our project
website [35].

VIII. ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. 1850412.

REFERENCES

[1] T. A. Corbi, “Program understanding: Challenge for the 1990s,” IBM
Systems Journal, vol. 28, no. 2, pp. 294–306, 1989.

[2] R. C. Martin, Clean Code: A Handbook of Agile Software Craftsman-
ship. Upper Saddle River, NJ, USA: Prentice Hall PTR, 1 ed., 2008.

[3] A. A. Takang, P. A. Grubb, and R. D. Macredie, “The effects of
comments and identifier names on program comprehensibility: an ex-
perimental investigation,” J. Prog. Lang., vol. 4, pp. 143–167, 1996.

[4] A. Schankin, A. Berger, D. V. Holt, J. C. Hofmeister, T. Riedel, and
M. Beigl, “Descriptive compound identifier names improve source code
comprehension,” in Proceedings of the 26th Conference on Program
Comprehension, ICPC ’18, (New York, NY, USA), pp. 31–40, ACM,
2018.

[5] J. Hofmeister, J. Siegmund, and D. V. Holt, “Shorter identifier names
take longer to comprehend,” in 2017 IEEE 24th International Conference
on Software Analysis, Evolution and Reengineering (SANER), pp. 217–
227, Feb 2017.

[6] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “What’s in a name? a
study of identifiers,” in 14th IEEE International Conference on Program
Comprehension (ICPC’06), pp. 3–12, June 2006.

[7] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Exploring the
influence of identifier names on code quality: An empirical study,” in
Software Maintenance and Reengineering (CSMR), 2010 14th European
Conference on, pp. 156–165, IEEE, 2010.

[8] D. Binkley, D. Lawrie, and C. Morrell, “The need for software specific
natural language techniques,” Empirical Softw. Engg., vol. 23, pp. 2398–
2425, Aug. 2018.

[9] C. D. Newman, M. J. Decker, R. S. AlSuhaibani, A. Peruma, D. Kaushik,
and E. Hill, “An empirical study of abbreviations and expansions
in software artifacts,” in Proceedings of the 35th IEEE International
Conference on Software Maintenance and Evolution (ICSME), IEEE,
2019.

[10] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Suggesting accurate
method and class names,” in Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2015, (New York,
NY, USA), pp. 38–49, ACM, 2015.

[11] K. Liu, D. Kim, T. F. Bissyand, T. Kim, K. Kim, A. Koyuncu, S. Kim,
and Y. Le Traon, “Learning to spot and refactor inconsistent method
names,” in Proceedings of the 40th International Conference on Software
Engineering, ICSE 2019, (New York, NY, USA), ACM, 2019.

[12] E. W. Høst and B. M. Østvold, “Debugging method names,” in
Proceedings of the 23rd European Conference on ECOOP 2009 —
Object-Oriented Programming, Genoa, (Berlin, Heidelberg), pp. 294–
317, Springer-Verlag, 2009.

[13] S. L. Abebe and P. Tonella, “Automated identifier completion and
replacement,” in 2013 17th European Conference on Software Main-
tenance and Reengineering, pp. 263–272, March 2013.

[14] Y. Kashiwabara, Y. Onizuka, T. Ishio, Y. Hayase, T. Yamamoto, and
K. Inoue, “Recommending verbs for rename method using association
rule mining,” in 2014 Software Evolution Week - IEEE Conference
on Software Maintenance, Reengineering, and Reverse Engineering
(CSMR-WCRE), pp. 323–327, Feb 2014.

[15] C. D. Newman, A. Peruma, and R. AlSuhaibani, “Modeling the rela-
tionship between identifier name and behavior,” in Proceedings of the
35th IEEE International Conference on Software Maintenance, IEEE,
2019.

[16] Refactoring: Improving the Design of Existing Code. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1999.

[17] V. Arnaoudova, M. Di Penta, G. Antoniol, and Y. Guhneuc, “A new
family of software anti-patterns: Linguistic anti-patterns,” in 2013 17th
European Conference on Software Maintenance and Reengineering,
pp. 187–196, March 2013.

[18] V. Arnaoudova, L. M. Eshkevari, M. D. Penta, R. Oliveto, G. Antoniol,
and Y.-G. Gueheneuc, “Repent: Analyzing the nature of identifier
renamings,” IEEE Trans. Softw. Eng., vol. 40, pp. 502–532, May 2014.

[19] C. D. Newman, R. S. AlSuhaibani, M. L. Collard, and J. I. Maletic,
“Lexical categories for source code identifiers,” in 2017 IEEE 24th Inter-
national Conference on Software Analysis, Evolution and Reengineering
(SANER), pp. 228–239, Feb 2017.

[20] R. S. Alsuhaibani, C. D. Newman, M. L. Collard, and J. I. Maletic,
“Heuristic-based part-of-speech tagging of source code identifiers and
comments,” in 2015 IEEE 5th Workshop on Mining Unstructured Data
(MUD), pp. 1–6, Sep. 2015.

[21] D. Binkley, M. Hearn, and D. Lawrie, “Improving identifier informa-
tiveness using part of speech information,” in Proceedings of the 8th
Working Conference on Mining Software Repositories, MSR ’11, (New
York, NY, USA), pp. 203–206, ACM, 2011.

[22] S. Gupta, S. Malik, L. Pollock, and K. Vijay-Shanker, “Part-of-speech
tagging of program identifiers for improved text-based software en-
gineering tools,” in 2013 21st International Conference on Program
Comprehension (ICPC), pp. 3–12, May 2013.

[23] A. Peruma, M. W. Mkaouer, M. J. Decker, and C. D. Newman, “An
empirical investigation of how and why developers rename identifiers,”
in International Workshop on Refactoring 2018, 2018.

[24] H. Liu, Q. Liu, Y. Liu, and Z. Wang, “Identifying renaming opportunities
by expanding conducted rename refactorings,” IEEE Transactions on
Software Engineering, vol. 41, no. 9, pp. 887–900, 2015.

[25] H. Liu, Q. Liu, C.-A. Staicu, M. Pradel, and Y. Luo, “Nomen est
omen: Exploring and exploiting similarities between argument and
parameter names,” in Software Engineering (ICSE), 2016 IEEE/ACM
38th International Conference on, pp. 1063–1073, IEEE, 2016.

[26] G. A. Miller, “Wordnet: a lexical database for english,” Communications
of the ACM, vol. 38, no. 11, pp. 39–41, 1995.

[27] B. Liblit, A. Begel, and E. Sweetser, “Cognitive perspectives on the
role of naming in computer programs,” in In Proc. of the 18th Annual
Psychology of Programming Workshop, 2006.

[28] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Relating identifier
naming flaws and code quality: An empirical study,” in 2009 16th
Working Conference on Reverse Engineering, pp. 31–35, Oct 2009.

[29] https://github.com/coremedia/jangaroo-tools/commit/7a494f1.
[30] https://github.com/coremedia/jangaroo-tools/commit/fc54b3f.
[31] https://github.com/3wks/thundr/commit/53aaf15.
[32] https://github.com/3wks/thundr/commit/9b02920.
[33] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating github for

engineered software projects,” Empirical Software Engineering, vol. 22,
pp. 3219–3253, Dec 2017.

[34] N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, and D. Dig,
“Accurate and efficient refactoring detection in commit history,” in Pro-
ceedings of the 40th International Conference on Software Engineering,
ICSE ’18, (New York, NY, USA), pp. 483–494, ACM, 2018.

[35] “Project website.” https://sites.google.com/g.rit.edu/scanl/.
[36] S. Bird, E. Klein, and E. Loper, Natural language processing with

Python: analyzing text with the natural language toolkit. ”O’Reilly
Media, Inc.”, 2009.

[37] https://github.com/chrisvest/stormpot/commit/459d423.
[38] https://github.com/chrisvest/stormpot/commit/d2931d3.
[39] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”

Journal of machine Learning research, vol. 3, no. Jan, pp. 993–1022,
2003.

[40] M. Röder, A. Both, and A. Hinneburg, “Exploring the space of topic
coherence measures,” in Proceedings of the Eighth ACM International
Conference on Web Search and Data Mining, WSDM ’15, (New York,
NY, USA), pp. 399–408, ACM, 2015.

[41] A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers talking
about? an analysis of topics and trends in stack overflow,” Empirical
Software Engineering, vol. 19, pp. 619–654, Jun 2014.

[42] D. E. Krutz, N. Munaiah, A. Peruma, and M. Wiem Mkaouer, “Who
added that permission to my app? an analysis of developer permis-
sion changes in open source android apps,” in 2017 IEEE/ACM 4th
International Conference on Mobile Software Engineering and Systems
(MOBILESoft), pp. 165–169, May 2017.

[43] https://github.com/stripe/stripe-java/commit/4fdadaf.
[44] https://github.com/stripe/stripe-java/commit/19d4d5a.
[45] https://github.com/atlasapi/atlas-model/commit/4da9fc2.
[46] https://github.com/atlasapi/atlas-model/commit/fc19c98.
[47] https://github.com/heroku/heroku.jar/commit/008dbc2.
[48] https://github.com/heroku/heroku.jar/commit/0c1c18d.
[49] https://github.com/mapfish/mapfish-print/commit/bc1f422.
[50] https://github.com/mapfish/mapfish-print/commit/fe44bd1.
[51] https://github.com/davemckain/qtiworks/commit/2a1f9df.
[52] https://github.com/davemckain/qtiworks/commit/9cb51b2.
[53] https://github.com/mung3r/ecocreature/commit/42e5d9f.
[54] https://github.com/ismavatar/lateralgm/commit/2d1bdaf.
[55] https://github.com/ismavatar/lateralgm/commit/e41c4c5.
[56] https://github.com/liveramp/jack/commit/762b540.
[57] https://github.com/liveramp/jack/commit/b331247.
[58] https://github.com/motech/ananya-kilkari/commit/b3b95f4.

https://github.com/coremedia/jangaroo-tools/commit/7a494f1
https://github.com/coremedia/jangaroo-tools/commit/fc54b3f
https://github.com/3wks/thundr/commit/53aaf15
https://github.com/3wks/thundr/commit/9b02920
https://sites.google.com/g.rit.edu/scanl/
https://github.com/chrisvest/stormpot/commit/459d423
https://github.com/chrisvest/stormpot/commit/d2931d3
https://github.com/stripe/stripe-java/commit/4fdadaf
https://github.com/stripe/stripe-java/commit/19d4d5a
https://github.com/atlasapi/atlas-model/commit/4da9fc2
https://github.com/atlasapi/atlas-model/commit/fc19c98
https://github.com/heroku/heroku.jar/commit/008dbc2
https://github.com/heroku/heroku.jar/commit/0c1c18d
https://github.com/mapfish/mapfish-print/commit/bc1f422
https://github.com/mapfish/mapfish-print/commit/fe44bd1
https://github.com/davemckain/qtiworks/commit/2a1f9df
https://github.com/davemckain/qtiworks/commit/9cb51b2
https://github.com/mung3r/ecocreature/commit/42e5d9f
https://github.com/ismavatar/lateralgm/commit/2d1bdaf
https://github.com/ismavatar/lateralgm/commit/e41c4c5
https://github.com/liveramp/jack/commit/762b540
https://github.com/liveramp/jack/commit/b331247
https://github.com/motech/ananya-kilkari/commit/b3b95f4

[59] https://github.com/buchen/portfolio/commit/1bdeccb.
[60] https://github.com/eclipse-vertx/vert.x/commit/921c69e.
[61] https://github.com/jetbrains/teamcity-nuget-support/commit/da10d2c.
[62] https://github.com/davemckain/qtiworks/commit/0c924ab.
[63] https://github.com/jrebirth/jrebirth/commit/d82fb1b.
[64] https://github.com/unquietcode/flapi/commit/4586325.
[65] https://github.com/buchen/portfolio/commit/9fc2fad.
[66] https://github.com/buchen/portfolio/commit/e1d7472.
[67] L. Tan and C. Bockisch, “A survey of refactoring detection tools,” in

Software Engineering, 2019.
[68] R. Jongeling, P. Sarkar, S. Datta, and A. Serebrenik, “On negative results

when using sentiment analysis tools for software engineering research,”
Empirical Software Engineering, 01 2017.

[69] E. A. Alomar, M. W. Mkaouer, and A. Ouni, “Can refactoring be
self-affirmed? an exploratory study on how developers document their
refactoring activities in commit changes,” in Proceedings of the 3rd
International Workshop on Refactoring, (New York, NY, USA), ACM,
2019.

[70] M. J. Decker, srcDiff: Syntactic Differencing to Support Software Main-
tenance and Evolution. PhD thesis, 2017.

[71] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-grained and accurate source code differencing,” in Proceedings of
the 29th ACM/IEEE International Conference on Automated Software
Engineering, ASE ’14, (New York, NY, USA), pp. 313–324, ACM,
2014.

https://github.com/buchen/portfolio/commit/1bdeccb
https://github.com/eclipse-vertx/vert.x/commit/921c69e
https://github.com/jetbrains/teamcity-nuget-support/commit/da10d2c
https://github.com/davemckain/qtiworks/commit/0c924ab
https://github.com/jrebirth/jrebirth/commit/d82fb1b
https://github.com/unquietcode/flapi/commit/4586325
https://github.com/buchen/portfolio/commit/9fc2fad
https://github.com/buchen/portfolio/commit/e1d7472

	I Introduction
	II RELATED WORK
	III ANALYSIS OF RENAMES
	III-A Taxonomy for Rename Refactorings
	III-B Contextualizing Rename Refactorings

	IV Methodology
	IV-A Data Collection Phase
	IV-B Detection Phase

	V Experimental Results
	V-A RQ1: What is the distribution of experience among developers that apply renames?
	V-B RQ2: What are the refactorings that occur more frequently with identifier renames?
	V-C Class Rename
	V-D Attribute Rename
	V-E Method Rename
	V-F Method Variable Rename
	V-G RQ3: To what extent can we use refactoring occurrence and commit message analysis to understand why different semantic changes were applied during a rename operation?

	VI Threats to Validity
	VII Conclusion, Discussion, Future Work
	VIII Acknowledgements
	References

