

1 **Taxonomic Reappraisal of the Northeast Mindanao Stream Frog, *Sanguirana***
2 ***albotuberculata* (Inger 1954), Validation of *Rana mearnsi* Stejneger 1905, and Description**
3 **of a New Species from the Central Philippines**

4

5 RAFE M. BROWN¹, ALLYSON PRUE^{1, 2}, CHAN KIN ONN¹, MAREN GAULKE³, MARITES B.
6 SANGUILA⁴, AND CAMERON D. SILERS⁵

7

8 ¹Department of Ecology and Evolutionary Biology & Biodiversity Institute, University
9 of Kansas, Lawrence, KS 66045-7561, USA; e-mail, rafe@ku.edu

10 ²Haskell Indian Nations University, Lawrence, KS 66045; e-mail, atprue@gmail.com

11 ³GeoBio Center LMU, Richard-Wagner-Strasse 10, 80333 München, Germany;
12 e-mail, mgaulke@web.de

13 ⁴Biodiversity Informatics and Research Center, Father Saturnino Urios University,
14 San Francisco St., 8600, Butuan City, Philippines; e-mail, mbsanguila@uriost.edu.ph

15 ⁵Department of Biology and Sam Noble Oklahoma Museum of Natural History,
16 University of Oklahoma, Norman, OK 73072-7029; e-mail, camsiler@ou.edu

17

18 ⁵ CORRESPONDENCE: e-mail, rafe@ku.edu

19 RRH: BROWN ET AL.— NEW PHILIPPINE *SANGUIRANA*

20

21

22

23 ABSTRACT: With a published multilocus phylogenetic analysis as our guide, we use
24 new data from the external phenotype and genetically defined distributions of evolutionary
25 lineages to resolve unclear species boundaries associated with the southwest Mindanao stream
26 frog, *Sanguirana everetti* (Boulenger 1882), and its junior synonym, *Rana mearnsi* Stejneger
27 1905. We also reconsider the taxonomic status and nomenclatural history of the northeast
28 Mindanao stream frog, *S. albotuberculata* (Inger 1954), in light of phylogenetic relationships,
29 genetically confirmed geographic distributions, morphology, relevant type localities, and
30 examination of type specimens. All evidence clearly indicates that the names *R. mearnsi* and *S.*
31 *albotuberculata* refer to the same geographically circumscribed, phenotypically distinct
32 lineage, and we recognize the oldest available name (*S. mearnsi*) for this species.

33 We also define the central Philippine lineage (from Negros, Masbate, and Panay
34 islands) as an evolutionarily distinct new species. Long confused with *S. everetti*, the new
35 taxon possesses a suite of diagnostic character state differences of external morphology, and
36 color pattern. The species is isolated within the Philippines' biogeographically distinct West
37 Visayan faunal region and its identification is substantiated further by its phylogenetic position.
38 The new multilocus estimate of phylogeny and our multivariate analysis of morphological
39 variation demonstrate that the new species is closely related, and phenotypically most similar,
40 to northern Philippine *Sanguirana luzonensis*, to the exclusion of *S. everetti*, the southern
41 species with which it previously was confused. Morphological characters distinguishing the
42 new species include body size, the absence of infracloacal tubercles, the presence of smooth
43 dorsal skin without dorsolateral folds or dermal asperities, its degree of sexual size
44 dimorphism, uniquely stratified flank coloration, bright white subarticular tubercles, bold
45 pectoral patches, and dark transverse bars on the limbs.

46 The identification of this distinctive new species further emphasizes the predictable
47 nature of island bank-structured endemism in the Philippine archipelago and demonstrates that
48 the country's vertebrate diversity remains underestimated, and in need of continued study and
49 faunal inventories, necessarily including collection of voucher specimens. Our observations
50 suggest that the new species is relatively rare, patchily distributed, and infrequently
51 encountered. With so little natural habitat remaining in the central Philippines, this species
52 constitutes an immediate conservation priority that qualifies for formal recognition as a
53 threatened species. Management of this urgent species-specific conservation problem will
54 require field-based empirical data on the species' distribution, local abundance, natural history,
55 reproductive biology, and larval ecology—most of which currently is unknown.

56

57 **Key words:** Anuran Biodiversity; Biogeography; Cascade Frogs; Endemicity; Ranidae;
58 *Sanguirana mearnsi*; Slender Stream Frogs.

59

60 PHILIPPINE amphibian diversity currently consists of 112 species, with most (~85%) of
61 these taxa endemic to the archipelago (Brown 2007, 2009; Diesmos and Brown 2012; Diesmos
62 et al. 2014, 2015). Rates of species discovery in the archipelago show no signs of slowing
63 (Brown et al. 2008, 2013; Brown and Stuart 2012; Diesmos et al. 2014, 2015; Brown 2015)
64 with nearly 30% of the country's amphibian fauna being discovered and described in the last
65 two decades (Brown 2007; Diesmos and Brown 2011; Diesmos et al. 2014, 2015).

66 Unfortunately, more than a third of the archipelago's species have been found to qualify for
67 formal threatened status at some level (Diesmos and Brown 2011; Diesmos et al. 2014; IUCN
68 2016).

69 Endemic ranoid frogs are particularly diverse, with at least 11 species of *Limnonectes*
70 and two species of *Occidozyga* (Dicoglossidae; Taylor 1920, 1922; Evans et al. 2004; Siler et
71 al. 2009; Setiadi et al. 2011), 32 or more *Platymantis* (Ceratobatrachidae; Siler et al. 2010;
72 Brown et al. 2015a,b), two species of *Staurois* (Arifin et al. 2011), and 13 native species of
73 ranids (Brown 2007; Diesmos et al. 2015). Excluding introduced species such as
74 *Hoplobatrachus rugulosus*, *Hylarana erythraea*, and *Lithobates catesbeianus* (Diesmos et al.
75 2006, 2015; Brown 2007), Philippine ranids are divided into three genera: *Pulchrana* with five
76 species (Brown and Guttman 2002; Brown and Siler 2013; Brown 2015), *Amnirana*, consisting
77 of one non-endemic native species (Inger 1954, 1999; Brown and Alcala 1970; Oliver et al.
78 2015; Diesmos et al. 2015), and *Sanguirana*, containing seven species formerly referred to the
79 *Rana everetti* Complex (Brown et al. 2000a; Brown 2007; Fuiten et al. 2011; Brown et al.
80 2016). Philippine *Pulchrana* and *Sanguirana* are found on most major islands of the
81 archipelago and are distributed in accordance with biogeographic regions known as Pleistocene
82 Aggregate Island Complexes (PAICs; Brown and Diesmos 2002, 2009; Brown et al. 2013a),
83 with most PAICs possessing at least one widespread species (Inger 1999; Brown et al. 2000a,
84 2016; Brown and Siler 2013) and the largest islands (Luzon and Mindanao) supporting 2–4
85 species, with the respective species distributions structured geographically and/or along
86 elevational gradients (Taylor 1922; Brown 2015; Brown et al. 2000a, 2016; Fuiten et al. 2011).

87 Boulenger (1882) described *Rana everetti* from an unspecified type locality of
88 “Zamboanga” (an elongate peninsula of western Mindanao Island, southern Philippines; Fig.
89 1A) and more than two decades later, Stejneger (1905) named *Rana mearnsi* from the
90 mountains of eastern Mindanao. Taylor (1920) recognized both of these taxa and named a third
91 Mindanao stream frog, *Rana dubita* from Bunawan, east-central Mindanao. Particularly

92 important for the current study, in the same work he also referred some of his own specimens
93 from an allopatric population on southern Negros Island (Fig. 1A) to *Rana mearnsi*.

94 When Inger (1954) later synonymized *Rana mearnsi* and *R. dubita* with *R. everetti*, he
95 characterized the Negros Island population as conspecific with the Mindanao population. He
96 conceived of *R. everetti* as a polytypic taxon, containing three subspecies: *R. e. everetti*
97 Boulenger 1882, *R. e. luzonensis* Boulenger 1896, and *R. e. albotuberculata* Inger 1954). The
98 West Visayan populations (Negros, Masbate, and Panay islands) have resided in synonymy
99 with *Sanguirana everetti* ever since (Brown and Alcala 1970; Sison et al. 1995; Ferner et al.
100 2000; Brown et al. 2000a,b, 2016). This arrangement has persisted, but without explicit
101 scrutiny of its underlying assumptions and despite the fact that prevailing biogeographic
102 frameworks (Brown and Alcala 1970; Brown and Diesmos 2009; Brown et al. 2013a) such a
103 distribution is highly anomalous because it spans widely allopatric, yet restricted geographic
104 regions on multiple PAICs (Brown and Guttman 2002; Brown and Diesmos 2009; Brown and
105 Siler 2013).

106 Meanwhile, recent taxonomic works have recognized all of Inger's former subspecies
107 as full species (Brown et al. 2000a; Brown 2007; Diesmos et al. 2015), resurrected Taylor's
108 (1922) *Rana igorota* (Brown et al. 2000a), and described two additional species, *S. tipanan*
109 (Brown et al. 2000a) and *S. aurantipunctata* (Fuiten et al. 2011). Most recently, following
110 higher-level phylogenetic analyses (Wiens et al. 2009), Fuiten et al. (2011) expanded and
111 augmented the definition of the genus *Sanguirana* (Dubois 1992; Brown et al. 2000a) to
112 include the Palawan Wood Frog *S. sanguinea* (Boettger 1893). This Palawan PAIC endemic
113 had previously been considered a Papuan-derived Philippine faunal element (Inger 1954;
114 Dubois 1992); the morphological and biogeographic distinctiveness of *S. sanguinea* most

115 likely led to this view never being challenged by anuran taxonomists (Inger 1954; Fuiten et al.
116 2011). Recent phylogenetic analyses (Brown et al. 2016) demonstrate that *S. sanguinea* is
117 actually the first-diverging lineage in a ‘Palawan-Ark’-facilitated biogeographic diversification
118 scenario (Blackburn et al. 2010; Siler et al. 2012), suggesting that *Sanguirana* first diversified
119 on the isolated Palawan Micro-continental Block (Zamoros et al. 2008; Yumul et al. 2009a;
120 Aurelio et al. 2013), before undergoing range expansion via overseas dispersal after
121 colonization of multiple oceanic Philippine landmasses (Blackburn et al. 2010; Siler et al.
122 2012; Brown et al. 2016).

123 The genus *Sanguirana* now consists of species with largely allopatric distributions,
124 including: *S. albotuberculata* from Leyte, Samar, and eastern Mindanao islands (Sanguila et al.
125 2015); *S. aurantipunctata* from a few sites in the mountains of central Luzon Island (Fuiten et
126 al. 2011); *S. everetti* from southwestern Mindanao Island (Inger 1954); *S. n. sp.* (“*S. cf.*
127 *everetti*”) from Negros, Masbate, and Panay islands (Sison et al. 1995; Ferner et al. 2000;
128 *S. igorota* from the Cordillera Mountain Range of Luzon Island (Taylor 1920);
129 *S. luzonensis* from throughout most islands of the Luzon PAIC (Brown et al. 2000a, 2016); *S.*
130 *sanguinea* from the Palawan PAIC landmasses (Boulenger 1894; Inger 1954; Brown 2007);
131 and *S. tipanan* from the Sierra Madre Mountain Range, of Luzon Island (Brown et al. 2000a;
132 Fuiten et al. 2011; Fig. 1).

133 Molecular phylogenetic analyses strongly support the monophyly of the group, and
134 confirm the inclusion of *S. sanguinea* as part of this genus (Bossuyt et al. 2006; Stuart 2007;
135 Wiens et al. 2009; Holder et al. 2010). However, a recent multilocus phylogenetic study
136 demonstrated that the West Visayan populations form a highly divergent, well supported clade

137 unrelated to *Sanguirana everetti*, precluding their continued identification as that taxon, and
138 necessitating this study (Brown et al. 2016).

139 In this paper we reconsider the taxonomic status of the lineage from the northeast
140 Mindanao faunal region, *S. albotuberculata* (Inger 1954), in light of genetically verified
141 species distributions (Brown et al. 2016), relevant type localities, phenotypic variation, and
142 examination of the name-bearing type specimens of these taxa. We find the substitution of *S.*
143 *mearnsi* (Stejneger 1905) for *S. albotuberculata* (Inger 1954) advisable at this time and we
144 place the latter in synonymy with the former. We also revisit the issue of the biogeographically
145 anomalous West Visayan (Negros, Masbate, and Panay islands) populations of “*Sanguirana*
146 *everetti*,” and find character-based morphometric, biogeographic, and genetic evidence for the
147 recognition of a new central Philippine endemic species.

148

149 MATERIALS AND METHODS

150

151 Morphological Character Differences

152 Specimens of all species of the genus *Sanguirana* were examined (Appendix; museum
153 institutional codes/acronyms follow Sabaj 2016) and data from types were incorporated into
154 definitions and diagnoses presented here. Specimens were examined for the presence/absence
155 of diagnostic morphological character states including color pattern, body proportions, nuptial
156 pad shape, digital characters, dermal asperities, infracloacal tubercles, dermal flanges along
157 limbs, and raised dorsolateral ridges (Taylor 1920; Inger 1954; Brown et al. 2000a; Fuiten et
158 al., 2011.)

159 Sex was determined by body size (for mature females), the presence/absence of
160 conspicuous secondary sexual characteristics (nuptial pads in males), and/or by gonadal
161 inspection in the case of specimens of intermediate sizes.

162

Vocalizations

164 Male advertisement calls and female response vocalizations were recorded with an
165 analog tape recorder (Sony WM DC6 Professional Walkman) with a directional microphone
166 (Sennheise ME80 condenser microphone, equipped with K3U power module). Calls were
167 recorded at distances of 1–3 m, after which ambient and cloacal temperatures were collected.
168 Calls were digitized and analyzed with Raven Pro 1.5 (Bioacoustics Research Group, Cornell
169 Lab of Ornithology, 2012) software set on default spectrogram parameters (256 samples and
170 50% overlap). We examined oscillograms (waveforms), audiospectrograms (sonograms) and
171 results of the Fast Fourier Transformation (FFT; power spectrum) for a series of spectral and
172 temporal call characteristics following Brown and Guttman (2002) and Brown and Gonzales
173 (2007). Calls are archived at the Cornell Laboratory of Ornithology Macaulay Library (ML)
174 under ML digital media Catalog numbers 224181 and 224348.

175

Analyses of Continuously Varying Phenotypic Variation

177 To examine *Sanguirana* populations for lineage-based structure in continuously varying
178 morphometric characters, we supplemented published morphological and mensural data for the
179 genus *Sanguirana* (Brown et al. 2000a; Fuiten et al. 2011), with new data from all species, and
180 exhaustive sampling of *Sanguirana albotuberculata* from northeast Mindanao, Leyte, and
181 Samar islands and *S. cf. everetti* from Negros, Masbate, and Panay, islands (Appendix). We

182 included all named *Sanguirana* from the oceanic Philippine islands, the West Visayan
183 population of “*S. everetti*” (the new species), and excluded only *S. sanguinea* from Palawan
184 Island, a species shown to be highly morphologically distinct from congeners (Inger 1954;
185 Brown et al. 2000a; Fuiten et al. 2011). We treated *S. luzonensis* as two putative Operational
186 Taxonomic Units (OTUs) on the basis of observed variation in phylogenetic analysis resulting
187 from mitochondrial (mtDNA) and nuclear (nDNA) DNA datasets (Brown et al. 2016). In our
188 previous study (Brown et al. 2016), we observed moderately-supported incongruence between
189 mtDNA and nDNA datasets, suggesting that *S. igorota* and *S. tipanan* may be nested within *S.*
190 *luzonensis*, with some northern Luzon Island populations of *S. luzonensis* sister to a ((*S.*
191 *igorota*, *S. tipanan*), southern *S. luzonensis*) clade. Thus, given that we did not find strong
192 support for the monophyly of all *S. luzonensis* populations, and the possibility that some
193 northern *S. luzonensis* populations could be a distinct evolutionary lineage (but see Brown et
194 al. 2016, for discussion of other possibilities), we designated the northern and southern Luzon
195 populations as two OTUs for our analysis of continuously varying morphometric variation.

196 We collected data for the following 19 mensural characters following the character
197 definitions of Brown et al. (2000a) and Fuiten et al. (2011): snout–vent length (SVL), head,
198 and snout lengths; head width, interorbital and internarial distances; eye and tympanic annulus
199 diameters; lengths of forearm, femur, tibia, tarsus, foot and hand, Finger-I, Finger-III, and Toe-
200 IV; Finger-III and Toe-IV terminal disk widths; and nuptial pad length. All measurements
201 (taken by AP and RMB only, to reduce inter-measurer bias; Hayek et al. 2001; Lee 1982,
202 1990) were measured to the nearest 0.1 mm (with digital calipers and stereomicroscope when
203 necessary) from sexually mature adult males; data were excluded to minimize the impact of

204 allometric ontogenetic variation (juveniles) and due to insufficient sample sizes among all
205 groups (females).

206 Prior to analyses, measurements were corrected for differences in ontogenetic
207 composition (Thorpe 1983a) using the following allometric equation: $X_{adj} = X - \beta(SVL -$
208 $SVL_{mean})$, where X_{adj} is the adjusted value of the morphometric variable and X is the original
209 value; SVL is the snout-vent length; SVL_{mean} is the overall mean snout-vent length; β is the
210 within-OTU (operational taxonomic unit) coefficient of the linear regression of each original
211 character value (X) against SVL (following Thorpe 1975, 1983b; Turan 1999; Chan et al. 2013).
212 Based on the values of β , a subset of 14 informative morphometric characters were selected for
213 inclusion in subsequent analyses. These characters include SVL , head and snout lengths, head
214 width, tympanic annulus diameter, forearm, femur, tibia, tarsus, foot, and hand width, Toe IV,
215 Finger III disc widths, and nuptial pad length. Because separately conducted Shapiro-wilks tests
216 indicated violations of the assumptions of normality for SVL , head width, and lengths of snout,
217 tibia, tarsus, hand, nuptial pad length and Toe IV disc width ($P_s > 0.05$) and Levene's tests of
218 homogeneity of variance indicated most were heteroscedastic, we log-transformed all data before
219 performing subsequent multivariate analyses and Analyses of Variance (ANOVAs) with *post*
220 *hoc* Tukey tests (or Tukey-Kramer tests in cases of unequal sample sizes) to identify individual
221 character differences among means of our seven designated OTUs/species.

222 A principal component analysis (PCA) was performed to find the best low-dimensional
223 representation of morphological variation in the data and to further determine whether
224 continuous morphological variation could form the basis of statistically detectable group
225 structure. Principal components with eigenvalues of 1.0 or higher were retained in accordance
226 to Kaiser's criterion (Kaiser 1960). To further characterize clustering and distance in

227 morphospace, a discriminant analysis of principal components (DAPC) was performed for all
228 congeners to find the linear combinations of morphological variables that have the largest
229 between-group variance and the smallest within-group variance. The DAPC relies on data
230 transformation using PCA as a prior step to discriminant analysis (DA), ensuring that variables
231 included in the DA are uncorrelated and number fewer than the sample size (Jombart et al.
232 2010). All analyses were implemented and visualized in the statistical software environment R
233 v3.1.2 (R Core Team 2015). The DAPC analysis was performed using the R package
234 “adegenet 2.0.0” (Jombart 2008).

235

236 Phylogenetic Evidence

237 We refer to the recently-published study of Brown et al. (2016), which included
238 sampling from 161 individuals from throughout the Philippine archipelago (47 localities),
239 and specimens of all currently recognized species of the genus *Sanguirana* (Fig. 1B). That
240 study included an analysis of 6098 nucleotides positions, from two mitochondrial gene
241 regions and six nuclear loci, and standard phylogenetic analyses using likelihood (ML) and
242 Bayesian (BA) methods. Details of PCR temperature regimes, manufacturer laboratory
243 protocols, inference of nucleotide substitution models, partitioning strategy, and details of
244 phylogenetic analyses are provided in Brown et al. (2016). For simplicity, because ML and
245 BA analyses produced identical topological estimates, we summarize here just the Bayesian
246 estimate of phylogeny and posterior probabilities of nodal support. All sequences are
247 deposited in GenBank (Brown et al. 2016: Supplemental Appendix).

248

249 Species Concept

250 We embrace the General Lineage Concept of species (de Queiroz 1998, 1999) as the
251 logical extension of the Evolutionary Species Concept (Simpson 1961; Wiley 1978), which has
252 been articulated in a manner (de Queiroz 2005, 2007) that is particularly consistent with our
253 definition of this new species. A species is the most inclusive lineage segment (ancestor–
254 descendant series of metapopulations) identified as distinct from other such lineages, within
255 which there is evidence of reproductive cohesion, for which we can infer a unique evolutionary
256 history, and predict an independent future evolutionary trajectory or “fate” (Wiley 1978; Frost
257 and Hillis 1990; Brown and Diesmos 2002). We recognize as distinct evolutionary lineages
258 those ancestor–descendent population segments that are (1) sympatric or parapatric (occur on
259 the same landmass), but with discrete, diagnostic, phenotypic and/or ecological character state
260 differences, and genetic evidence of lineage cohesion (inferred absence of reticulation or gene
261 flow with other sympatric congeners) and, thus, lineages for which the hypothesis of
262 conspecificity can be rejected; or those that are (2) allopatric or geographically isolated (i.e., as
263 insular or PAIC endemic lineages and, thus, demonstrably unique evolutionary entities) and
264 morphologically, ecologically, and/or genetically distinct.

265 For the purpose of recognizing the non-controversial evolutionary lineages of the
266 Mindanao PAIC (Brown et al. 2000, 2016), for example, criterion (1) is applicable: the
267 northeast Mindanao, Leyte, and Samar islands’ (Fig. 1) lineage now recognized as *Sanguirana*
268 *albotuberculata* was originally recognized (described as *Rana mearnsi* [Stejneger 1905]; see
269 below), was later thoroughly redescribed (Inger 1954) with an accompanying analysis of
270 intraspecific mensural and meristic data, was diagnosed as part of a polytypic taxon (Inger
271 1954) and, later, redefined as an evolutionary species (Brown et al. 2000a), distinct from the
272 parapatric southwest Mindanao Island *Sanguirana everetti* (see Brown et al. [2000a, 2016] for

273 evolutionary species definition, illustration of diagnostic characters, phylogeny and
274 biogeographical inference). Likewise, for the purpose of the new species recognized here,
275 criterion (2) is clearly applicable and the recognition of the new species is not surprising
276 because it represents a distinct evolutionary lineage on a separate geological Pleistocene island
277 bank platform and is non-controversial in that most widespread Philippine vertebrate groups
278 possess distinct species on separate PAICs (Brown and Diesmos 2002, 2009; Brown et al.
279 2000a, 2013a, 2016).

280

281 RESULTS

282 Definition of the Genus *Sanguirana* and Assignment of Taxa

283 We follow Fuiten et al.'s (2011) definition of the genus *Sanguirana* and place taxa in
284 this genus based on phylogenetic evidence (Brown et al 2016) and possession of diagnostic
285 character states. Members of the genus can be distinguished from all other Philippine ranids
286 (Inger 1954; Diesmos et al. 2015) by the following combination of shared characters: (1) thin,
287 elongate body; (2) extremely expanded terminal digital disks with circummarginal grooves; (3)
288 elongate nuptial pad, covering nearly entire medial portion of Finger II, present (most species)
289 or absent (*S. sanguinea*); (4) absence of vocal sacs; (5) posterior abdomen coarsely glandular;
290 and (6) absence of humeral glands (Boulenger 1882; Inger 1954, 1966; Taylor 1920; Brown et
291 al. 2000a; Fuiten et al. 2011).

292

293 Taxonomic Reappraisal of *Sanguirana albotuberculata* (Inger 1954), and *Rana mearnsi*

294 Stejneger 1905

295 In considering the status of West Visayan faunal region species, we clarify the
296 boundary between populations now referred to *Sanguirana everetti* (a taxon now restricted to
297 western Mindanao Island; Fig. 1A; Brown et al. 2016:fig. 1) versus its sister species *S.*
298 *albotuberculata* (Inger 1954; Brown et al. 2000a) of Leyte, Samar, and eastern Mindanao
299 islands (Diesmos et al. 2015) and the unnamed evolutionary lineage of the West Visayan
300 islands. Confusion has resulted from Taylor's (1920) referral of the Negros population to *Rana*
301 *mearnsi* Stejneger 1905, combined with Inger's placement of *Rana mearnsi* in synonymy with
302 *R. everetti everetti* Boulenger 1882. Additionally, in the same work, Inger (1954) named the
303 northeast Mindanao faunal region lineage as a new subspecies, *Rana everetti albotuberculata*.
304 We assume that the combination of these actions has resulted in an historical delay in what
305 might otherwise have been a natural reconsideration of priority with regards to available names
306 for the eastern Mindanao, Leyte, and Samar evolutionary lineage.

307 As a result of Brown et al.'s (2016) phylogenetic study, we have no doubt that
308 *Sanguirana mearnsi* Stejneger 1905 has priority over, and is thus the valid name that must be
309 substituted for (a *nomen substitutum*) the northeast Mindanao PAIC species referred to currently
310 as *S. albotuberculata* (Inger 1954; Brown et al. 2000a; Diesmos et al. 2015). We base this name
311 substitution on the chronological order of relevant publications and because several lines of
312 evidence indicate the names *Rana mearnsi* Stejneger 1905 and *R. everetti albotuberculata* Inger
313 1954 refer to the same evolutionary lineage.

314 First, the distribution of the species from the northeast Mindanao PAIC is now very well
315 documented (Fig. 1A; Brown et al. 2016:fig. 1; Sanguila et al. 2016), with genetically confirmed
316 identities of fresh samples from northern and central Samar Island, at numerous sites through
317 Leyte Island, and from sites along the northeast coastal mountains of eastern Mindanao, to the

318 southeast corner of the island (Brown et al. 2016:fig. 1). Second, the type locality of *Rana*
319 *mearnsi* Stejneger 1905 (Baganga River, Eastern Mindanao; > 300 m above sea level; Stejneger
320 1905; Cochran 1961) falls without any uncertainty within this geographical span of genetically
321 confirmed localities (Fig. 1A). Third, the distributions of *S. everetti* (southwest Mindanao) and
322 “*S. albotuberculata*” (= *S. mearnsi*) are now well circumscribed, confirmed with documented
323 genetic sampling, and demonstrably do not overlap (Fig. 1A). Fourth, the *Rana mearnsi*
324 Stejneger 1905 holotype (USNM 35258) is indistinguishable morphologically from similarly
325 sized “*S. albotuberculata*.” Finally, we note that Stejneger’s (1905) original description mentions
326 character states used by Inger (1954) to diagnose *R. e. albotuberculata* from *R. e. everetti*
327 (distinct, fleshy glandular dorsolateral folds, prominent “pustules” [termed “asperities” in Inger
328 [1954]; see Brown et al. 2000a:fig 5B; Fig. 2A] on the head, trunk, and eyelids). Admittedly, the
329 poor state of preservation of the *Rana mearnsi* holotype (USNM 35258; preserved in blackberry
330 brandy, brittle, and broken into multiple pieces; as originally reported by Stejneger [1905]) now
331 prevents evaluation of some previously emphasized character states (Taylor 1920; Inger 1954;
332 Brown et al. 2000a). These include the distribution of pustules/asperities on lateral surfaces of
333 the head, the shape of the nuptial pad, morphometric variation, and live color or dorsum, thick
334 dorsolateral folds, and infracloacal tubercles (Inger 1954; Brown et al. 2000a). However, all
335 other evidence points to a single hypothesis.

336 In summary, despite the absence of genetic material from the exact type locality, multiple
337 lines of evidence discussed above, plus examination of the relevant name-bearing types,
338 convinces us that *Rana mearnsi* Stejneger 1905 has priority over *Rana everetti albotuberculata*
339 Inger 1954, and that *Sanguirana mearnsi* (Stejneger 1905) is the first available, valid name to be
340 applied correctly to populations of the stream frog (Fig. 2) from the northeast Mindanao PAIC

341 (Leyte, Samar, eastern Mindanao, and most likely Bohol islands). In addition to *Rana everetti*
342 *albotuberculata* Inger 1954, *Rana dubita* Taylor 1920 (Type locality: Bunawan, eastern
343 Mindanao) is also hereby placed in synonymy with *Sanguirana mearnsi* (Stejneger 1905).

344 Taylor's (1920) assignment of the name *Rana mearnsi* to the West Visayan population
345 (Negros Island) clearly was in error, as noted correctly by Inger (1954). However, despite the
346 fact that he identified Taylor's *lapsus*, Inger (1954) did not formally act on the distinctiveness of
347 the new species from Negros, Masbate, and Panay islands. Given the limited appreciation of
348 among-faunal region variation at that time (most Mindanao and Negros records were referred to
349 "Rana everetti everetti," (Taylor 1922; Inger 1954) it is understandable that Inger (1954)
350 conservatively discounted the validity of *R. mearnsi*, placed it in synonymy with *R. e. everetti*,
351 and described the (same) species as *R. e. albotuberculata*.

352 Furthermore, remarking on the paucity of available specimens, Inger (1954:310) stated:
353 "The Negros specimens cannot be placed in any of the defined subspecies with any reasonable
354 degree of assurance." Acknowledging Inger's (1954) powers of observation and that his
355 conservative approach set the stage for this study, we define the unassigned population as a new
356 species, below.

357

358 Continuously Varying Morphological Variation

359 Due to the similarity between the quantitative and qualitative results for separately
360 analyzed male and female specimens, we report the details of the results for analyses of males
361 only. Although it took ten principal components to account for >95% of the total variance, the
362 first four principal components each had eigenvalues of more than 1.0 and together accounted
363 for 75% of the total variance (Table 1). The first principal component (PC1) loaded heavily on

364 the lengths of femur, tibia, tarsus, and feet, indicating that differences in lower hindlimb
365 morphology were responsible for most of the variance (29.5%). The second principle
366 component (PC2; 19.5%) loaded heavily on characters pertaining to head morphology (head
367 length, snout length, tympanic annulus diameter), whereas PC3 and PC4 (26%) had significant
368 loadings for the characters SVL, head width, forearm length, and nuptial pad lengths.
369 Ordination of the first two components showed taxon based group structure evident in partial
370 separation between *S. everetti* versus *S. igorata*, *S. tipanan*, and *S. mearnsi* along the PC1 axis.
371 The PC 2 axis exhibited separation between both *S. mearnsi* and *S. luzonensis* South from both
372 *S. everetti* and *S. igorota* (Fig. 3A); additionally, *S. tipanan* is distinct from *S. igorota* along
373 this axis. The new species clustered broadly in morphospace with *S. mearnsi*, *S. luzonensis*
374 North, and *S. tipanan* (Fig. 3A) along both axes and, to a lesser extent with *S. everetti* and *S.*
375 *luzonensis* South. The DAPC analysis discriminated between groups, as expected, and
376 supported *S. mearnsi*, *S. everetti*, *S. igorata*, and as distinct clusters, whereas the new species,
377 and *S. luzonensis* North overlapped broadly, and the new species further overlapped minimally
378 with *S. tipanan* and *S. luzonensis* South (Fig. 3B).

379 Results of ANOVAs were highly significant ($P < 0.0001$) for all 14 characters, and
380 Tukey tests (or Tukey-Kramer tests) detected statistically significant differences among means
381 of West Visayan “*S. everetti*” and others species in at least four (northern *S. luzonensis*), but as
382 many as nine (*S. tipanan*) individual characters per pairwise comparison (Table 5).

383

384 Phylogenetic Relationships

385 The available multilocus estimate of phylogeny (Fig. 1B; Brown et al. 2016) has
386 demonstrated the phylogenetic distinctiveness of the West Visayan islands (Negros,

387 Masbate, and Panay) population, which is not closely related to *S. everetti* (the species with
388 which it has long been confused). Instead this newly discovered lineage is the sister lineage
389 to a well-supported clade consisting of *S. igorota*, *S. tipanan*, and two clades referred to *S.*
390 *luzonensis* (Fig. 1B; Brown et al. 2016). This strongly supported estimate of genealogical
391 affinities bolsters the recognition of the new species as distinct from all OTUs considered
392 here, and leaves us with no doubt that that the West Visayan islands “*S. everetti*”
393 populations constitute a valid species, new to science. For reference, mitochondrial
394 uncorrected genetic distances between the new species and all congeners range from 6.4–
395 12.1 (Table 2), which are equivalent to or exceed those typically observed between
396 morphologically and acoustically well-differentiated anuran lineages (e.g., *Pulchrana*
397 *moellendorffi* vs. *P. mangyanum* [Brown and Siler, 2013]; *Sanguirana igorota* vs. *S.*
398 *luzonensis* [Brown et al. 2016]).

399
400 Justification for the Recognition of a New Lineage-based Species
401 The new species clearly is distinct in multivariate space from *S. everetti*, *S. igorata*, *S.*
402 *mearnsi* and southern populations of *S. luzonensis*. With respect to these species/OTUs,
403 continuous variation of mensural body proportions demonstrated discernable group structure
404 (which lends support to the recognition of the new taxon, emphasizing its distinctiveness from
405 most congeners). Separation was not observed between the new species and northern *S.*
406 *luzonensis* populations, or between the new species and *S. tipanan* (Fig. 3B). These allopatric
407 northern Luzon populations are, however, readily diagnosed from the new species on the basis
408 of fixed color characters (see Diagnosis and Table 3).

409 The results of our previous phylogenetic analysis (demonstrating the non-monophyly of
410 populations currently referred to *S. everetti*, and demonstrating the distinctiveness of the West
411 Visayan lineage from Luzon populations), requires the recognition of the new taxon. The fact
412 that the monophyletic West Visayan PAIC *Sanguirana* overlaps broadly in morphospace with
413 some Luzon taxa (northern populations of *S. luzonensis* and *S. tipanan*) does not deter us from
414 recognizing it as a new species. This is because it is (1) the monophyletic, strongly-supported
415 sister clade to a large clade of three or four differentiated Luzon taxa (and not closely related to
416 *S. everetti*, the species with which it has long been confused), and (2) it is isolated
417 biogeographically on the geologically separate West Visayan PAIC, which has never been
418 connected to the Luzon PAIC. Thus, even without diagnostic continuously varying
419 morphological traits that distinguish it from all congeneric populations, we are comfortable
420 recognizing this allopatric, genetically distinct evolutionary lineage as a taxon in which
421 speciation has not been accompanied by complete differentiation in continuously varying
422 morphological characters. However, in addition to the above, we have identified fixed
423 diagnostic coloration characters (Table 3) that, together with phylogenetic and biogeographic
424 evidence, support the recognition of the West Visayan PAIC (Negros, Masbate, and Panay
425 islands) populations of “*Sanguirana everetti*” as a new species, to be known as

426

427

428

Sanguirana acai sp. nov.

429

(Figs 4–7)

430 *Rana mearnsi* Stejneger 1905, Taylor (1920:251), in part.431 *Rana everetti* Boulenger 1882, Sison et al. (1995:21).

432 *Rana cf everetti* Ferner et al. (2000:12).

433 *Rana everetti everetti* Inger (1954:310–311), in part; Brown et al. (2000a:85), in part.

434 *Hylarana cf everetti* Gaulke (2011:87).

435 *Sanguirana everetti* Fuiten et al. (2011:99); Frost (2016).

436 **Holotype**.—Adult male (PNM 9800, formerly KU 326381; Field Number RMB 3249),

437 collected by RMB and V. Yngente at 1745 hr on 14 April 2001, in the Philippines, Negros

438 Island, Negros Oriental Province, Municipality of Valencia, Barangay Bongbong, below

439 “Camp Lookout,” in a forested stream (“Maite Creek”) at 500 m elevation above sea level on

440 Mt. Talinis, Cuernos de Negros Mountain Range (9.2667° N, 123.2062° E; Datum = WGS-84).

441 **Paratypes (Paratopotypes)**.—Three adult males (TNHC 62794–96), adult male and

442 female (KU 326382, 326383), all with same collection data as holotype; two adult males

443 (USNM 228387 and CM 116128), same locality, collected by C. A. Ross, 15 March 1981, and

444 10 August 1987, respectively.

445 **Other Paratypes**.—Adult female (CAS-SU 16398), collected by W. C. Brown, A. C.

446 Alcala, and D. Empeso, 15 August 1954, Negros Island, Negros Oriental Province,

447 Municipality of Valencia, 4–5 km west of Valencia town, east side Cuernos de Negros

448 Mountain Range, Maite River Gorge; adult female (CAS 131883), collected by Q. Alcala, 16

449 August 1963, same locality; five adult males (CAS 18144–48) collected by D. Empeso, 28

450 April 1957, Municipality of Dauin, 15 km north of Dauin Town, southwest side of Cuernos de

451 Negros Mountain Range; three adult males, and an adult female (TNHC 62797, 62798, KU

452 326382, and 326383), and two juveniles of undetermined sex (KU 326384, 326885), collected

453 by RMB and V. Yngente, 14 April 2001, Municipality of Valencia, Sitio Nasuji, Cuernos de

454 Negros Mountain Range, Mt. Talinis, 1150 m, PNOC/EDC watershed area; two adult males

455 (TNHC 62798, 62799), collected by RMB and V. Yngente, 2 December 2001, one adult male
456 (USNM 228440) collected by C. A. Ross, 21 March 1980, and four adult females and two
457 immature males (CAS 137498–503), collected by L. C. Alcala and party, 19–23 September
458 1972, Municipality of Sibulan, Barangay Janya-janya, Sitio Balinsasayo, Cuernos de Negros
459 Mountain Range, Mt. Talinis 850–900 m above sea level, Lake Balinsasayo; three adult males
460 (CAS 138144, 147326, 147327), collected by Q. Alcala and party, 19–20 January 1964,
461 Municipality of Palaypay, Barangay Pamplona; two immature males (CAS 147328, 147329),
462 and two adult males (CAS 147330, 147331), collected by A. C. Alcala and party, 21 December
463 1960, Pamplona town, east bank of Pinanlaya-an River; adult female (CAS-SU 19541),
464 collected by A. C. Alcala and party, 27 December 1958, Municipality of Siaton, Bantolinao, 4
465 km NW of Bondo Barrio; adult male (CAS 139275), collected by L. C. Alcala and party, 11
466 April 1962, Negros Occidental Province, Municipality of Biak na bato, 6 km. N.W. Biak na
467 Bato town, above Sition Tinago: adult and immature male (CAS 185565, 185566, collected by
468 L. C. Alcala and party, 11 April 1962, Negros Occidental Province, Municipality of Tuyom,
469 Bagtik River; three adult males and two adult females (CAS-SU 18134–38), collected by A. C.
470 Alcala and Q. Alcala, 12–21 April 1957, Municipality of Tuyom, 17 km SW of Tuyom town,
471 Bagtik River; adult female (PNM 9801, formerly KU 323855), collected by CDS, M. Yngente,
472 V. Yngente, and J. Fernandez, 16 July 2009, Municipality of Silay City, Barangay Patag, Mt.
473 Bungol; two adult males and a juvenile of undetermined sex (PNM 9802, 9803 [formerly KU
474 323860, 323862], and KU 323918); six adult males and one adult female (KU 323861, 323864,
475 323866–70), same locality and collectors, 21 July 2009; three adult males (KU 323873–75), an
476 adult male, and two juvenile of undetermined sex (PNM 9804–06 [formerly KU 323863,
477 323865, 323871]), same collectors, 24 July 2009, same locality; three adult males (PNM 9807–

478 09, formerly KU 323872, 323876, and 323886), two adult males and two adult females (KU
479 323856–59), and four adult males (KU 323877–80), same collectors, 25 July 2009, same
480 locality; two adult females and three adult males (KU 323881–85), and two adult males, and a
481 juvenile of undetermined sex (KU 323887, 323888, 323918), collectors, 26 July 2009, same
482 locality; two adult males (PNM 1372, 1373), collected by R. V. Sison, August 1991, Panay
483 Island, Aklan Province, Municipality of Libacao Nacolon, Barangay Rosal, Sitio Belen; twenty
484 two males (PNM 3800–03, 3806–15, 3817–24) collected by R. V. Sison, 27 February 1994,
485 Antique Province, Municipality of San Remigio, Barangay Aningalan, Sitio Iganyao: two adult
486 females and two adult males (KU 306863–66), collected by CDS, 13–15 March 2006, same
487 locality; adult female (PNM 3913) collected by R. V. Sison, 12 March 1994, Tipuluan
488 Mountain Range; immature female (PNM 8527), collected G. Operiano, 15 May 2004,
489 Municipality of Sebaste, Barangay Alegre; adult male (PNM 8550), collected by N. Paulino,
490 18 April 2004, Municipality of Pandan, Sito Nanling.

491 **Other referred specimens.**—Immature male (CAS 124213), collected by L. C. Alcala
492 and party, 6 May 1969, Calagna-an Island, Iloilo Province, Municipality of Carles, Barangay
493 Barangcalan: three adult males (CAS 144267, CAS 144269, and USNM 305499), collected by
494 L. C. Alcala and party, 13–14 June 1976, Masbate Island, Masbate Province, Municipality of
495 Mobo, “Mapuyo Barrio, Pulangkahoy:” two juvenile specimens of undetermined sex (FMNH
496 61530, 61531), collected by D. S. Rabor, 25 May 1949, on Negros Island.

497 **Diagnosis.**—*Sanguirana acai* differs from all other members of this Philippine
498 endemic genus by the (1) presence of dark pigmentation covering the majority of lateral head
499 surfaces (vs. absence or presence but limited to a canthal stripe); (2) absence of dark color
500 pattern on dorsum and dorsolateral body surfaces (vs. presence); (3) presence of an abrupt

501 dark-above, light-below color stratification (abrupt transition) on the flanks, the position of
502 which is marked with a dark brown line or row of dark spots (vs. absence of abrupt
503 stratification, transition gradual); (4) presence of transverse dark bars on hind limbs but
504 indistinct on forearms (vs. absence or presence on both); (5) presence of uniquely dark plantar
505 surfaces of hand and foot, with bright white subarticular and supernumerary tubercles (vs.
506 more uniformly pigmented ventral hand and foot surfaces); and (6) presence of boldly
507 patterned, contrasting dark humeral patches (vs. absence or indistinct).

508 **Comparisons.**—The critical comparisons for the diagnosis of the new species are to the
509 distantly allopatric and unrelated *Sanguirana everetti*, the taxon with which it has long been
510 confused taxonomically, and *S. luzonensis*, the species to which it is most closely related (Brown
511 et al. 2016:fig 1B), geographically most proximate, and phenotypically most similar. From *S.*
512 *everetti* the new species differs by its much smaller, non-overlapping body size (Tables 3, 4), and
513 by the absence of greatly enlarged infracloacal tubercles (vs. presence in >90% of specimens);
514 from *S. everetti* and *S. luzonensis* by the presence of abruptly stratified flank coloration (vs.
515 absence), presence of distinct white subarticular tubercles (Fig. 5A,B) on dark brown palmar and
516 plantar surfaces of the hand and foot in males (vs. tubercle color similar to palmar and plantar
517 surfaces of hands and feet), and presence of bold humeral patches (vs. diffuse, indistinct or
518 absent; Fig. 4B); from *S. tipanan*, *S. igorota*, and *S. mearnsi* by the absence of dermal asperities
519 on dorsal and lateral body surfaces (vs. presence; Brown et al. 2000a:fig. 4), the presence of
520 yellow, tan or light gray dorsal ground coloration (vs. iridescent green, with a brown reticulum in
521 *S. tipanan* [Brown et al. 2000:fig. 3C,D], vibrant dark green with large dark brown osceli or
522 purplish spots in *S. igorota* [Brown et al. 2012b:fig. 31,31], or metallic bright green with bright
523 yellow dorsolateral folds in *S. mearnsi* [Diesmos et al. 2015:fig. 39F]); from *S. mearnsi* by the

524 absence of greatly enlarged infracloacal tubercles, absence of raised, fleshy dorsolateral folds
525 (vs. presence; Diesmos et al. 2015:fig. 39H), and presence of transverse tibial bars (vs. absence;
526 Diesmos et al. 2015:fig. 39F,H); from *S. aurantipunctata* by having a pointed snout (vs. rounded;
527 Diesmos et al. 2015:fig. 39G), glandular ventral texture limited in distribution to the groin (vs.
528 spanning entire ventrum), yellow, green, tan or light gray dorsal ground coloration (vs. bright
529 green-yellow with black flecks [males] or bright orange spots (females and some males; Fuiten et
530 al. 2011:fig. 2), and purple flank coloration (vs. abruptly stratified flank coloration), and by the
531 presence of dark tibial bars (vs. absent) and dark lateral head coloration (vs. bright green), the
532 absence of enlarged infracloacal tubercles (vs. presence), and the absence of thickened postaxial
533 dermal flanges on posterior surfaces of the hind limbs (vs. presence); and from *S. sanguinea* by
534 its larger, non-overlapping body size (Tables 3, 4), by having a less pronounced sexual size
535 dimorphism (female/male SVL 1.2–1.4 [*S. acai*] vs. 1.9–2.1 [*S. sanguinea*]), having glandular
536 ventral texture around the groin (vs. smooth surfaces), and by the presence of elongate nuptial
537 pads (vs. absence).

538 **Description of holotype.**—Adult male in excellent state of preservation (Fig. 4A, B).
539 Snout pointed, but terminally rounded in dorsal profile and extending well beyond lower jaw in
540 lateral view; snout/head length = 0.45; head width narrower than body width, slightly wider
541 than long; Head width/head length = 0.76; head length/SVL = 0.41; canthus rostralis sharply
542 angular, straight in dorsal aspect; loreal region slightly concave; nares slightly protuberant
543 laterally, anterodorsal in position, visible from ventral aspect; interorbital/internal distance =
544 0.87; interorbital distance/eye diameter = 1.2; labial region thin, barely visible in dorsal aspect;
545 interorbital region flat, wider than eye diameter; rostrum flat; eyes moderate in size, oriented
546 anterolaterally beyond jaw when viewed in ventral aspect, protuberant on top of head;

547 tympanum distinct, located immediately behind eye; tympanum smaller than eye; tympanic
548 annulus/eye diameter = 0.86; supratympanic ridge slightly evident, continuous with barely
549 evident dorsolateral ridges; postrostral tubercles irregular, continuous, elongate, arching
550 ventrally, composed of enlarged fleshy tubercles.

551 Dentigerous processes oriented transversely. Vomerine teeth in row of four atop
552 dentigerous process of each vomer; dentigerous processes just posteromedial to choanae,
553 separate for a distance equal to width of one choana; choanae moderate in size, suboval, widely
554 separated, nearly obscured by maxilla when viewed from ventral aspect; premaxillary and
555 maxillary teeth present; vocal slits absent; tongue elongate (length twice that of width), free for
556 two-thirds its length, posterior margin deeply notched.

557 Skin of dorsum smooth (Fig. 4A), asperities absent; posterior two-thirds of venter
558 glandular; skin of cloacal region coarsely glandular, especially adjacent to groin; cloacal region
559 lacking prominently enlarged infracloacal tubercles; cloacal opening round, with transverse
560 supracloacal cutaneous flap.

561 Upper arm slender; humeral glands absent; forearms robust (Fig. 4A, B); forearm/hand
562 length = 0.70; forearm length/SVL = 0.24; fingers in increasing order of length II<III<V<IV
563 (II much shorter than III); Fin2L/Fin4L = 0.47; interdigital webbing absent; lateral fringes
564 present on all digits of hand, most prominent on distal portions of Fingers-III–V; terminal
565 phalanges widely dilated distally, 3–5X width of penultimate phalanges; disks with
566 circummarginal grooves; ventral pads on Fingers-III–V pointed, protruding beyond distal edge
567 of dorsal surface, visible from dorsal aspect; penultimate phalanges with rounded
568 supraarticular cutaneous flap.

569 Subarticular tubercles of hand large, raised, rounded, protuberant (Fig. 5A); digit
570 (Roman numerals) and tubercle number (Arabic numbers): II (1), III (1), IV (2), V (2);
571 supernumerary tubercles present basally on each finger, moderate in size, slightly raised,
572 elongated on Fingers IV and V, with medial constriction; thenar (inner palmar metacarpal)
573 tubercle elongate, 0.4X length of Finger-II, separate from medial and outer palmar tubercles;
574 thenar tubercle 1.3X length of large, subcircular, flat medial palmar tubercle and 2.1X length of
575 narrow, elongate outer metacarpal tubercle (Fig 4A); entire medial edge of thenar tubercle
576 covered by translucent, velvety nuptial pad; nuptial pad continuing distally to just beyond
577 articulation of penultimate and ultimate phalanges; nuptial pad wrapping around preaxial side
578 of Finger-II entirely and nearly in contact with subarticular tubercle on its anterior edge;
579 nuptial pad length/Finger I length = 0.98.

580 Hind limbs slender; tibia length/SVL = 0.66; forearm length/SVL = 0.58; forearm /tibia
581 length = 0.87; tarsus/ forearm length = 0.65; tarsus /foot length = 0.64; foot / tibia length =
582 0.88; heels overlap when thigh segment of hind limbs held at right angles to body; tibiotarsal
583 articulation of adpressed limb reaching beyond rostrum; toes long, in increasing order of length
584 I<II<III≤V<IV (III ≈ V); Toe4L/FL = 0.79; toe disks smaller than those of fingers; Toe IV
585 /Finger III disc width = 0.56; interdigital webbing of foot nearly complete (Fig 4B),
586 homogeneous, acrenulate; modal webbing formula of toes (Savage and Heyer 1969, 1997):
587 I0—0II0—½III0—1+IV1+—0V; webbing diminishing distally to form wide fringes along
588 lateral edges of distal phalanges on portions free of web; tarsal fold distinct, continuous with
589 postaxial dermal flange on edge of Toe-V; subarticular tubercles of foot large, round or
590 occasionally sub-elliptical, nearly pointed; digit (Roman numerals) and tubercle number

591 (Arabic numbers): I (1), II (1), III (2), IV (3), V (2); inner metatarsal tubercle oval, 3X longer
592 than minute, round, outer metatarsal tubercle; supernumerary tubercles absent from pes.

593 **Measurements of holotype (mm).**—SVL 52.1; head length 21.3; head width 16.1;
594 snout length 9.6; interorbital distance 5.9; internarial distance 6.8; eye diameter 5.4; tympanic
595 annulus diameter 5; head width 16.1; forearm length 12.4; femur length 30.2; tibia length 34.6;
596 tarsus length 19.6; foot length 30.5; hand length 17.6; Toe IV length 24.2; Finger I length 6.1;
597 Finger III length 12.8; Toe IV disc width 1.9; Finger III disc width 3.4; nuptial pad length 6.6.

598 **Coloration of holotype in life.**—(Based on field notes and photographs of RMB; see
599 similarly-patterned paratotype; Fig. 6A) Ground color of dorsal surfaces homogenous light
600 green; limbs slightly yellowish green with evenly distributed tiny, dark, grayish-purple spots
601 and flecks; trunk with pale yellow pigment on faint dorsolateral “folds” (=faintly raised dermal
602 ridges; Fig 5A); dark transverse bars on hind limbs (numbering four on femur, four on tibial
603 segment of limb); dorsal head color similar to body; pigment along canthus rostralis, lateral
604 head surface, pre- and post-ocular regions, and tympanum solid dark brown; labial region
605 bright pale yellow, lightening to nearly white below eye, starkly contrasting with dark brown
606 lateral surfaces of head; postrostral tubercles yellow.

607 Dorsolateral surfaces of body light green above, with sharp transition lateral
608 stratification or transition to pale yellow ventrolaterally; position of dark-above, light-below
609 flank stratification marked by fine dark greenish-brown line (Fig. 6A); lateral inguinal region
610 heavily blotched with dark gray markings on pale yellow background; tibio-tarsal articulation
611 bright white with fine gray markings; dorsal surfaces of hand and foot fade from lighter cream
612 to white on Finger-I to yellowish green on Finger-II, then to dark gray on Fingers III and IV;
613 nuptial pad velvety gray; dorsal humerus yellow between dark green transverse bands,

614 lightening to white by articulation with tiba; dorsal tibial segment nearly white between dark
615 green transverse bands; dorsal surface of foot dark green, interdigital webbing dark gray with
616 faint darker patches of pigment.

617 Ventral surfaces lighter than dorsal surfaces; throat homogeneous pale yellow; sternal
618 region white with boldly contrasting dark brown humeral patches; venter yellow anteriorly,
619 fading to cream with white glandular surfaces posteriorly.

620 Ventral surfaces of forearms white with starkly contrasting dark brown ventrolateral
621 coloration, darker distally at wrist; palmar surface of hand dark brown, with grayish purple
622 palmar and carpal tubercles and nuptial pad; ventral surfaces of fingers homogenous dark
623 brown, with bright white subarticular and supernumerary tubercles; ventral surfaces of outer
624 terminal finger discs light gray, ventral surfaces of Fingers I and II discs pale yellow; ventral
625 surfaces of femur, tibia, and shank yellow with boldly contrasting dark brown patches on
626 posterior surfaces; tarsus purple; plantar surface of foot purple with grayish-purple subarticular
627 tubercles; plantar surfaces of foot dark brown, with bright yellow to cream subarticular
628 tubercles, ventral toe discs white proximally, dark gray distally; interdigital webbing of foot
629 dark brown, boldly patterned with distinct white patches (Fig. 4B).

630 **Coloration of holotype in preservative.**—In preservative, the holotype's color pattern
631 has been retained, but ventral colors have shifted to white or pale cream (yellow lost), dark
632 brown coloration somewhat lightened. Other than loss or bright yellows and green (e.g., dorsal
633 green coloration, accent colors of the postrostral tubercles, and dorsolateral ridges), difference
634 between live and preserved coloration is minimal (Fig. 4A, B).

635 **Color variation.**—Dorsal ground surfaces of body varying shades of brown, from light
636 brown (Negros Island male KU 323885, 323887; female KU 323858; Panay Island male KU

637 306863) to dark brown (Negros Island males KU 323868, 323873, 323883, 326382; Panay
638 Island female KU 306864) immaculate or homogenous (most specimens) or with distinct
639 darker spots (Negros Island females KU 306649, 323882), or indistinct darker blotches (Panay
640 Island male KU 306863; Negros Island males KU 306437, 323675, 323866, 323869, 323880,
641 323885, 323887). Masbate Island specimens (CAS 144267, 144269) are patterned more boldly
642 and exhibit stronger contrast between light and dark pigmentation than do Negros and Panay
643 specimens.

644 Most specimens have some transvers dark bars on tibial and radio-ulnar segments of
645 fore- and hind limbs, respectively. Five specimens lack dark bars on limbs altogether (Negros
646 Island males KU 306438, 323864, 323866, 323874; Panay Island male KU 306863);
647 specimens with dark dorsal coloration have darkest transverse limb bars (Negros Island males
648 KU 323868, 323870, 323873, 323880, 323883, 326382; Panay Island male KU 306865). Most
649 remaining specimens have faint transverse limb bars on all limbs, but some specimens exhibit
650 faint tibial bars and lack forearm bars (Negros Island females KU 323858, 323859, 323881,
651 326383; Negros Island males KU 323861, 323877, 323878–79; Panay Island female KU
652 306864).

653 Ventral body surfaces range from light, immaculate cream with dark pigment absent
654 throughout (Negros Island males KU 306437, 306438, 323859, 323864, 323869, 323875,
655 323884–85, 323887) to cream with distinct dark spots scattered across all ventral surfaces, and
656 concentrated on throat and pectoral region (Negros Island males KU 323873, 323877, 323883,
657 female KU 323881). The remaining specimens have scattered light brown and indistinct
658 speckling throughout ventral surfaces (Fig. 4B), some with darker congregation of dark
659 pigment on throat (Panay Island males KU 306863, 306865–66; female KU 306864).

660 Lateral surfaces of heads grayish blue, lacking canthal stripes (most individuals) or with
661 very faint canthal stripe (KU 325898, 325905, 325912, 325916–17). Adult males lacking
662 transverse limb bars (most) or with thin, faint light gray bars (five or six) across forelimbs (KU
663 325913, 325916–17, 325923, 325926, 325944, PNM 9735); hind limbs lacking transverse bars
664 (most) or with five or six thin, light gray bars (KU 325913, 325926). Flank coloration more
665 clearly partitioned in females than in males, with sharper demarcation between dorsal grayish
666 blue and ventral grayish pink.

667 Palmar surfaces of hand range from dark gray with yellowish subarticular tubercles
668 (Panay Island female KU 306864 and males KU 306863, 306865–66; Negros males KU
669 306437, 323866, 323868, 323873, 323878, 323880, 323883, 326382), to dark brown with bold
670 white tubercles (Figs. 3A, 4A; males KU 323861, 323875, 323879, 323887) to very light gray
671 to yellowish cream with little contrast between surface of hand and subarticular tubercles (Fig
672 4A, B; Negros Island females KU 323857–59). Remaining specimens (majority) of specimens
673 have light gray palmar surface of the hand with distinguishable, brighter yellowish cream
674 subarticular tubercles. Plantar surface of the foot ranges from relatively homogeneous dark
675 gray-brown with yellowish cream subarticular tubercles (Panay Island female: KU 306864 and
676 males KU 306863, 306865–66) or dark gray tubercles (Negros Island females: KU 323858,
677 323867, 323881–82 and males KU 306437, 323866, 323868, 323870, 323873, 323877–79) to
678 homogeneous light gray with slightly lighter subarticular tubercles (Negros Island females KU
679 306649, 323856–57, 323859, 326383; males KU 306438, 323861, 323864, 323869, 323874–
680 75, 323885, 323887).

681 Infracloacal rugosity slightly variable in size and shape, with the following exceptions:
682 some possess minute tuberculation (KU 325896, 325903, 325912, 325919), whereas others

683 have enlarged and irregularly shaped glandular patches (KU 325923, 325928, PNM 9733,
684 9736).

685 **Morphometric variation.**—Summaries of variation in mensural characters in the type
686 series are presented in Table 4.

687 **Distribution.**—The new species is known from Negros, Masbate, and Panay islands in
688 the central Philippines (Fig. 1A). Other small islands of the West Visayan PAIC may also
689 harbor populations of *Sanguirana acai*, if appropriate habitat can be located (e.g., Bantayan,
690 Guimaras, Poro, San Francisco,), but we are reasonably certain that the new species does not
691 occur on Siquijor (several surveys in the last 10 years have failed to detect its presence) and
692 that it does not occur—or no longer occurs—on the heavily deforested and well-studied island
693 of Cebu (Brown and Alcala 1970, 1986). A population referred to *S. “everetti”* has been
694 reported on Bohol (Brown and Alcala 1970) but as of yet no genetic tissue samples have been
695 obtained and so its position in phylogeny (Brown et al. 2016) cannot be ascertained. We
696 would expect, based on PAIC-structured Philippine biogeography (Brown and Diesmos 2002,
697 2009), that the Bohol population should be conspecific with the species documented on Leyte,
698 Samar, and eastern Mindanao islands (*S. mearnsi*), but this expectation remains untested.
699 *Sanguirana acai* has been documented from 375 m above sea level to 1350 m on the large
700 mountains of southern Negros, northern Negros, northwest Panay, and the western coastal
701 mountains of Panay (Taylor 1922; Inger 1954; Alcala, 1962; Brown and Alcala, 1970; Ferner
702 et al. 2000; Gaulke 2011).

703 **Natural History.**—Frogs of the genus *Sanguirana* are stream breeders with indirect
704 aquatic larval development and poorly characterized larval biology (Taylor 1920, 1922; Inger
705 1954; Alcala 1962; Brown and Alcala 1982a,b; Brown et al. 2000a; Gaulke 2011). Individuals

706 of *Sanguirana acai* were found at night along forested mountain streams, or in disturbed,
707 regenerating, or second growth forest, provided that it was adjacent to primary forest. The new
708 species perches on rocky stream banks, on midstream boulders, and on rocks along lakeshores,
709 but is most frequently encountered perched on branches and leaves of streamside vegetation
710 (Inger 1954; Ferner et al. 2000; Gaulke 2008, 2011). Brown and Alcala (1955, 1961) described
711 a variety of semi-arboreal substrates for this species, including branches a few meters high in
712 trees and away from water, but emphasized that ovulating females were primarily located near
713 water (lake shores and pools of highly oxygenated streams). Eggs are not laid together in
714 masses, but are scattered and adhere to rocks, branches, pebbles, and other submerged debris
715 (Alcala 1962). Gravid females carry between 800–1000 eggs (Alcala 1962; Brown and Alcala
716 1982b). Alcala (1962) provided a full technical description of *S. acai* tadpoles including notes
717 on growth rates, morphological characteristics, diet, and behavior. Gaulke (2011) described the
718 live coloration of *S. acai* tadpoles (bronze-green, with white scattered granules; larvae have a
719 maximum body length of nearly 70 mm) and metamorphs (similar to that of adult). The new
720 species appears to have a relatively broad season of reproductive activity; newly laid eggs
721 and/or gravid females have been collected from February to December, although amplexus has
722 only been observed in April and May. Newly emerged metamorphs have been collected in
723 May, June, July and November (Alcala 1962; Gaulke 2011).

724 Species of *Sanguirana* lack vocal sacs (Inger 1954) but vocalizations have been
725 reported in breeding aggregations of *S. luzonensis* (Brown et al. 2000b) and recently
726 documented in *S. mearnsi* (RMB, personal observations). To the best of our knowledge,
727 vocalizations of *S. acai* have not been reported previously in the literature. Our recordings of
728 the new species include at least two distinct call types (see below).

729 Sympatric species of anurans, that have been recorded from at least parts of the new
730 species' range (Brown and Alcala 1955, 1961, 1964, 1970, 1982a; Gaulke 2011; Diesmos et al.
731 2015), include *Kaloula pulchra* (introduced; Diesmos et al. 2015), *K. picta* (widespread,
732 endemic) *K. conjuncta negrosensis* (West Visayan PAIC endemic), *K. cf. kalingensis* (West
733 Visayan PAIC endemic and potentially undescribed species; Blackburn et al. 2012),
734 *Platymantis dorsalis* (widespread, endemic), *P. corrugatus* (widespread, endemic), *P.*
735 *negrosensis* (West Visayan PAIC endemic), *P. hazelae* (West Visayan PAIC endemic), *P.*
736 *paengi* (northwest Panay endemic), *P. spelaeus* (southern Negros endemic), *Limnonectes*
737 *visayanus* (West Visayan PAIC and Romblon Island Group endemic), *L. leytensis* (widespread
738 endemic), *Philautus surdus* (widespread endemic), *Kurixalus appendiculatus*, *R. pardalis*
739 (widespread non-endemic natives; Brown and Alcala 1982a, 1994), and the three introduced
740 species *Hoplobatrachus rugulosus*, *Rhinella marina*, and *Hylarana erythraea* (Diesmos et al.
741 2006, 2015).

742 **Vocalizations.**—The advertisement call of *Sanguirana acai* has been recorded on two
743 occasions. The first segment (9 April 2001; ML 224181) was recorded at “Camp Lookout,”
744 500 m elevation (ambient temperature 22.9° C; cloacal temperature 24°C), Barangay
745 Bongbong, Municipality of Valencia (the type locality). The second segment (2 December
746 2001; ML 224348) was recorded at Lake Balinsasayo, 865 m elevation (ambient temperature
747 20.1°), Barangay Janya-janya, Municipality of Sibulan. Both sites are on the slopes of Mt.
748 Talinis in the Cuernos de Negros Mountain Range. In the first instance, an adult male (TNHC
749 62794; not vocalizing when first observed) captured at 8:00 pm and held in an inflated plastic
750 bag inside a tent, began calling at 3:00 am the next morning, apparently stimulated by the
751 sound of light rain striking the tent (= Type 1, a dull, amplitude modulated “rattle” call). Over a

752 six-minute period, TNHC 62794 called eight times and eventually ceased as the shower abated.
753 Twelve subsequent calls were elicited artificially by RMB by simulating the approximate
754 frequency of the rain by wrinkling paper and shaking the walls of the tent. The second
755 unvouchered recording was captured from a dugout canoe, upon approaching the lakeshore of
756 Lake Balinsasayo (20:00 hr). In this instance, two or three males were observed in close
757 proximity to a few larger females, and surrounded by an estimated > 15 additional males
758 perched in nearby shrub-layer vegetation; two distinct call types were captured. In this segment,
759 presumed advertisement calls (“rattles”) from two alternating males, are interspersed with
760 numerous high frequency, brief, tonal, frequency modulated vocalizations (Type 2, chirping
761 “peeps” and “squeaks”) from other males perched in close proximity (RMB, *personal*
762 *observation*).

763 The stereotyped presumed “advertisement call” vocalization of *S. acai* is a moderately
764 rapid, dull, amplitude modulated pulsed train, sounding to the human ear like a hollow wooden
765 rattle, initially shaken quickly, then more slowly with a gradual decline in pulse repetition rate
766 (Fig. 8). Over the course of the ~0.5–2.5 s call, call amplitude climbs with successive pulses to
767 maximum (Fig. 8C) as they simultaneously decline in pulse repetition rate (i.e., increase to
768 maximum inter-pulse interval). Calling rate ([total number of calls – 1]/time from beginning of
769 first call to beginning of last) in the unvouchered specimen at Lake Balinsasayo was 0.133
770 calls/s (in the presence of calling conspecifics) and TNHC 62794 called at 0.028 calls/s in
771 response to rain, and then 0.038 in response to an artificial stimulus. Mean calling duration
772 ranged from 0.89 ± 0.31 SD (0.57–1.79; $n=8$) in the vouchered specimen to 1.03 ± 0.48 SD
773 (0.33–2.29; $n=20$) s in TNHC 62794. Individual calls contained 8–16 ($\bar{x}=8.2 \pm 3.7$) distinct
774 pulses (Fig. 8D) in the unvouchered specimen and 4–25 ($\bar{x}=10.5 \pm 5.4$) pulses in TNHC 62794.

775 Pulse repetition rate ([total number of pulses – 1]/time from beginning of first pulse to
776 beginning of last) ranged from 0.06 to 0.09 ($\bar{x}=0.07 \pm 0.02$ SD) pulses/s in the unvouchedered
777 specimen and 0.061 to 0.122 ($\bar{x}=0.096 \pm 0.017$ SD) pulses/s in TNHC 62794. Within-call
778 declines in pulse repetition rate is reflected in increasing interpulse intervals, which were brief
779 at the start of each call (0.04–0.10; $\bar{x} = 0.07 \pm 0.02$ SD in the unvouchedered recording; 0.03–
780 0.12; $\bar{x} = 0.08 \pm 0.02$ SD in TNHC 62794), increased by a within-call average of 140% at
781 midcall (0.07–0.12; $\bar{x} = 0.10 \pm 0.02$ SD in the unvouchedered recording; 0.07–0.14; $\bar{x} = 0.12 \pm$
782 0.02 SD in TNHC 62794), and increased further to an average of 290% of the initial interpulse
783 interval at the call's terminus (0.09–0.19; $\bar{x} = 0.16 \pm 0.03$ SD in the unvouchedered recording;
784 0.13–0.21; $\bar{x} = 0.27 \pm 0.03$ SD in TNHC 62794; Fig. 8C). Spectral properties of the
785 advertisement call are structured and apparently invariant across multiple calls from a single
786 individual (Fig. 8A, B), but frequency differences are apparent between the two recorded
787 individuals. Throughout the call energy is apparent at multiple, distinct frequency components
788 (Fig. 8B), with the fundamental frequency (lowest) either the dominant (possessing the highest
789 energy of any of the call's frequency components; Fig. 8B), or apparently subequal to the
790 fourth frequency band in some calls. The call of TNHC 62794 had between three (Fig. 8A, B)
791 to seven detectable frequency components in some calls, with highest energy in the
792 fundamental, dominant frequency (relative power, in dB, included in parentheses) of 0.9 kHz
793 (78–79), 1.8 (73–74), 2.3 (72–73), 2.9 (76–78), 3.6 (64–65), 4.2 (59–62), and 5.0 (54–56) kHz.
794 The unvouchedered Lake Balinsasayo male's call had three to six distinct frequency components,
795 peaking at 0.9, 1.7, 2.6, 3.4, 4.1, and 5.9 kHz, respectively. Towards the end (the last 3–5
796 pulses) of 4/20 calls recorded for TNHC 62794, the majority of the call's energy shifted up into

797 the fourth frequency component, with energy levels that rose above the fundamental (80–82
798 dB).

799 The second call type (chirping “peeps” and “squeaks”) initially were thought to
800 represent female “response” calls until it was discovered that the originated from the large
801 group of nearby males. In this single instance RMB observed alternating calling males on
802 rocks, each facing nearby females (~10–15 cm). In the background, interspersed between and
803 overlapping rattle calls we recorded a rapid sequence of chirps. Type 2 chirping calls
804 overlapped temporally (multiple males vocalizing at the same time, temporally overlapping
805 one another and Type 1 calls), unlike the nature of the assumed Type 1 male advertisement
806 call, in which males calling in close proximity alternate and do not overlap temporally. These
807 tonal chirping vocalizations (Fig. 9) took the form of brief (0.05–0.07) frequency arcs, rising
808 from 0.6–0.7 to 1.5–1.7 kHz ($n=14$), with subsequent declines back to 0.6–0.7 kHz, constant
809 frequency tones (2.6–3.2 kHz; $n=9$) with durations of 0.09–1.1 s, followed by a steep
810 frequency sweep (terminating at 0.9–1.0 kHz), or simple frequency sweeps from 2.9–3.1 to
811 1.0–1.1 kHz over an interval of 0.04–0.06 s ($n=19$). The concordance between observed Type 2
812 vocalizations in *S. acai* and similar calls reported for *S. luzonensis* (Brown et al. 2000b)
813 suggest that calls reported previously for *S. luzonensis* were Type 2 vocalizations (also
814 observed in large aggregations of males); to date, Type 1 calls have not been observed or
815 reported in *S. luzonensis*. In contrast, both Type 1 (rattles) and Type 2 (chirps) have been
816 reported in *S. mearnsi* (Sanguila et al. 2016), although in that study it was also assumed these
817 represented male advertisement calls and female response vocalizations. Additional field work
818 on Samar and Leyte (2016) confirms our revised interpretation, namely that males of
819 *Sanguirana acai* and *S. mearnsi* both produce multiple classes of vocalizations, which we term

820 Type 1 and Type 2. Additionally, to date, only documented (vouchered) Type 2 calls (chirps)
821 have been confirmed in males of *S. luzonensis*. The advertisement calls of all other *Sanguirana*
822 species remain unknown.

823 Finally, the true social context and ultimate function of *Sanguirana* call variation
824 remains poorly understood. Type 1 rattle calls have been recorded in *S. acai* and *S. mearnsi* in
825 solitary males (suggesting advertisement, mate attraction), but also in instances of a one or few
826 males, vocalizing in close vicinity to females (suggesting courtship), and at times when nearby,
827 large aggregations of males were producing only Type 2 calls (suggesting chorusing behavior,
828 possibly longer-distance mate attraction, or even agonistic interactions). The interpretation of
829 multiple call types with functions distinct functions has been reported in other anuran
830 communication studies (Narins and Capranica 1978; Rand and Ryan 1981) and is supported by
831 one recent observation of apparent female phonotactic approach, over a five meter stretch of
832 stream, in the direction of a solitary, Type 2-calling male *S. luzonensis* (J. Binaday and RMB,
833 personal observations, January 2017, Sorsogon Province, Luzon).

834 **Etymology.**—We are pleased to name this new species for our mentor, collaborator,
835 and friend Dr. Angel C. Alcala, of the Silliman University (Dumaguete City, Negros Island), in
836 recognition of his numerous contributions to Philippine herpetology. Angel Alcala (known by
837 friends and colleagues by a nickname, derived from his initials; ACA, pronounced “Ah-Kah”)
838 is one of the Philippines’ premier biodiversity and conservation scientists, whose lifelong
839 dedication to conservation of the country’s forests and coral reefs stands as an inspiration to
840 generations of Filipinos. Alcala’s earlier fieldwork (conducted in collaboration with the late
841 Walter C. Brown; Alcala 2004) resulted in the world’s most significant collection (> 30,000
842 specimens) of Philippine herpetological diversity (deposited at CAS), which form the

843 foundation of what is known globally of the taxonomy, distribution, and conservation status of
844 the country's endemic amphibians and reptiles (Brown and Alcala 1961, 1964, 1970, 1982a,b,
845 1986; Alcala et al. 2004, 2012; Diesmos and Brown 2011; Diesmos et al. 2014, 2015). The
846 specific epithet is a patronym and a masculine noun in the genitive case. Suggested common
847 name, Alcala's West Visayan Stream Frog.

848

849 DISCUSSION

850 The recognition of the *Sanguirana mearnsi* as the valid name for the Northeast
851 Mindanao Stream Frog (Inger 1954; Brown and Alcala 1970; Sanguila et al. 2016) and the
852 recognition of the West Visayan PAIC populations as a new species (Brown et al., 2000a;
853 Fuiten et al. 2011; Gaulke et al. 2011) represent taxonomic solutions that are long overdue
854 (Brown 2007; Diesmos and Brown 2011; Diesmos et al. 2014, 2015). It is not surprising that
855 either the northeast Mindanao PAIC lineage (*S. mearnsi*) nor the West Visayan lineage (*S.*
856 *acai*) should be found to be distinct from the nominal *S. everetti* of southwest Mindanao Island
857 (Fig. 1; Brown et al. 2016). With respect to the former, the sister species pair *S. mearnsi* and *S.*
858 *everetti* are parapatric, separated by deep genetic divergence, are phenotypically distinct, and
859 show no evidence of reticulation or gene flow (Inger 1954; Brown et al. 2000a, 2016). With
860 respect to the latter, *S. acai* and *S. everetti* are distantly allopatric on separate PAICs,
861 phenotypically distinct (Fig. 3), and are distantly related (Brown et al. 2016). In contrast, as
862 might be expected, *S. acai*, actually is phenotypically most similar (Fig. 3) to its closest
863 relative, *S. luzonensis*. Previous studies have suggested that the problematic and disjunct
864 distribution of *S. everetti* warranted scrutiny (Inger 1954; Ferner et al. 2000; Fuiten et al. 2011;

865 Gaulke 2011) and we find it surprising that this unresolved biogeographic anomaly (Brown and
866 Alcala 1970; Brown and Diesmos 2009; Brown et al. 2013a) has not been addressed until now.

867 The eight recognized species of the genus *Sanguirana* form a well supported clade
868 (Bossuyt et al. 2006; Stuart 2008; Wiens et al. 2009; Holder et al. 2010; Brown et al. 2016),
869 with most taxa distinguished from congeners by diagnostic morphological character
870 differences, morphometric and body size variation, degree of sexual size dimorphism, allopatry
871 on isolated (separated by deep marine channels) island groups, and considerable genetic
872 divergence (Table 2; Brown et al. 2000a, 2016; Fuiten et al. 2011). As currently understood, no
873 other congeners occur in the West Visayan PAIC, and therefore, none occur in sympatry with
874 the biogeographically isolated *S. acai*.

875 With the resolution of this taxonomic problem, all available evidence (morphological
876 diagnosability, genetic distinctiveness, position in phylogeny, biogeography) points to a logical
877 PAIC-structured understanding of species diversity in the genus *Sanguirana* of the central and
878 southern Philippines (Brown et al. 2000a,b, 2013a, 2016; Brown and Diesmos 2002, 2009)—
879 with a few lingering minor exceptions. One remaining unanswered question is the taxonomic
880 identification of the central Bohol population of “*S. everetti*.” Given that Leyte, Samar, and
881 northeastern Mindanao populations of *Sanguirana* have all been identified convincingly as *S.*
882 *mearnsi* (Brown et al. 2000a, 2016), Bohol amphibians are most often allied with the
883 Mindanao PAIC (e.g., Brown and Alcala 1970; Brown and Siler 2013; Gonzales et al. 2014),
884 and that true *S. everetti* populations (Taylor 1920; type locality = “Zamboanga” [western
885 Mindanao]) are known now only from southwestern Mindanao (Inger 1954; Brown et al.
886 2000a, 2016), the allopatric Bohol population of *S. everetti* should be reexamined. We would

887 not be surprised if this population was identified as *S. mearnsi*, but it remains possible that it
888 may represent an additional, undescribed species.

889 Three unresolved questions still complicate our understanding of evolutionary
890 relationships and *Sanguirana* species diversity in the northern Philippines (Luzon PAIC). First,
891 *S. luzonensis*, as currently recognized, is widespread across multiple islands within the Luzon
892 PAIC, spanning numerous marine channels (Fig. 1) and known fault zones (Yumul et al. 2003,
893 2009b), all of which have been shown to be biogeographic barriers that define species
894 distributions in unrelated, codistributed groups (Brown and Diesmos 2002, 2009; Brown and
895 Guttman 2002; Welton et al. 2010; Brown and Siler 2013; Brown et al. 2013a; Gonzales et al.
896 2014). To date, systematists have not critically evaluated patterns of intraspecific variation in
897 *S. luzonensis*, nor considered whether all of the populations referred to *S. luzonensis* in this
898 region are in fact a single evolutionary lineage (species). One recent study (Brown et al. 2016)
899 has taken a first step towards this goal, finding extensive geographically structured genetic
900 variation in this species. However, because so much of Luzon remains unsurveyed, and no
901 formal species delimitation analyses were conducted, the population-level diversity within *S.*
902 *luzonensis* remains poorly understood (Fig. 1; Brown et al. 2016).

903 Second, whether *S. tipanan* (Sierra Madre of Luzon; Brown et al. 2000a,b) is a distinct
904 species relative to *S. igorota* (Central Cordillera of Luzon; Brown et al. 2016) remains an open
905 question. The phenotypic distinctiveness of these two taxa is clear at their most northern extent
906 of their ranges where they are separated by the wide, arid, environmental barrier represented by
907 the Cagayan Valley (Taylor 1922; Brown et al. 2000a). However, much like Brown and Siler's
908 (2013) recent findings from the *Pulchrana signata* Complex (see Brown and Guttman 2002:fig
909 3), variable and intermediate phenotypes have been documented in the southern extent of their

910 ranges, where the distributions of these two species abut in the Caraballo Mountains of central
911 Luzon (Fuiten et al. 2011; Brown et al. 2012b, 2013b). A recent phylogenetic analysis
912 suggested that *S. igorota* may be paraphyletic with respect to *S. tipanan*, an arrangement that
913 would require the placement of the latter species in synonymy with the former, if verified with
914 additional geographic and gene sampling (Brown et al. 2016).

915 Finally, with small islands and isolated geological components of large islands
916 increasingly appreciated for their tendency to support endemic species (Welton et al. 2010;
917 Sanguila et al. 2011, 2016; Brown et al. 2013a, 2015a), it would not be surprising if additional
918 species of *Sanguirana* were discovered in the near future. Islands like Bantayan, Basilan,
919 Biliran, Bohol, Burias, Pacijan, Ponson, Poro, Ticao, and the remaining islands of the Sulu
920 Archipelago all deserve amphibian biodiversity survey efforts if trained naturalists can be
921 provided access to the last remaining habitats on these isolated landmasses. Likewise, the
922 recent unexpected discovery of a highly distinct evolutionary lineage of *Sanguirana* in isolated
923 mountains of central Luzon (*S. aurantipunctata*; Fuiten et al. 2011) emphasizes the degree to
924 which this endemic and understudied Philippine genus is prone to differentiation in montane
925 habitats; all high elevation peaks of Luzon and Mindanao deserve particular attention by field
926 biologists (Brown 2015).

927 Conservation efforts aimed at central Philippine amphibians are plagued by near
928 complete removal of forests in the West Visayan islands of Cebu, Guimaras, Negros, Masbate,
929 and Panay (Brown and Alcala 1961, 1964, 1986; Alcala et al. 2004; Gaulke 2011; Supsup et al.
930 2016), with wholesale conversion of marginal habitats to agriculture (Brown and Alcala 1986),
931 and the archipelago wide infection of amphibian populations by chytrid fungus (Swei et al.
932 2011; Diesmos et al. 2012; Brown et al. 2012a). We find that the new species, with its forested

933 habitat severely fragmented and its patchy, but well documented, distribution tied to clean
934 water sources running within, or at the margins of, intact vegetation cover (Ferner et al. 2000;
935 Gaulke 2011; *personal observations*) qualifies for classification at a formal, elevated level of
936 conservation threat under IUCN criteria: “Vulnerable” (VU, IUCN 2010: A2ac; B2ab[iii]; D2).
937 Thus, the new species should be considered an immediate conservation concern (Diesmos et al.
938 2011, 2014).

939 Given the absence of new data on the status or distribution of *Sanguirana everetti* on
940 central and southern Mindanao Island (Diesmos and Brown 2011; Diesmos et al. 2014, 2015),
941 the conservation status of true *S. everetti* remains “Data Deficient” (IUCN 2016). Studies of
942 the remaining populations of *S. everetti* (southwestern Mindanao Island) and *S. acai* (West
943 Visayan PAIC) are pressing challenges for future field surveys and conservation research
944 (Brown et al. 2012a). Both *S. tipanan* and *S. igorota* are classified by IUCN (2016) at elevated
945 conservation threat levels, although new survey data suggest both species are more widely
946 distributed than previously thought, and appear tolerant to some level of disturbance (Siler et
947 al. 2011; Brown et al. 2000a, 2000b, 2012b, 2013b), suggesting that their status needs to be
948 reconsidered and revised (Diesmos et al. 2014). The unexpected discovery of so many new
949 amphibian species on larger islands (Fuiten et al. 2011; Siler et al. 2011; Brown 2015; Brown
950 et al. 2015b) emphasizes the need for an accelerated pace of faunal inventories and field-based
951 assessment of species boundaries, informed with basic natural history data. These and other
952 unexpected discoveries of evolutionarily distinctive species of endemic Philippine amphibians
953 (e.g., Sanguila et al. 2011; Blackburn et al. 2010, 2013; Brown and Siler 2013; Brown 2015;
954 Brown et al. 2015a) remind us that the only way to solve persistent taxonomic and
955 conservation status questions of this kind is to encourage and support faunal survey activities—

956 necessarily including the collection of properly preserved voucher specimens (Rocha et al.
957 2014), advertisement calls, and genetic samples—in both the unexplored, and previously
958 surveyed (yet still poorly understood), islands of the Philippines (Brown et al. 2013a, 2016).

959

960 **Acknowledgments.**—The Biodiversity Management Bureau (BMB) of the Philippine
961 Department of Environment and Natural Resources (DENR) facilitated research (MOAs
962 KU2005, KU2009, KU2015) and collection permits (GP 171, 185, 187, 201, 212, 221, 246,
963 258) necessary for this and related studies; and the University of Kansas' Animal Use
964 Committee approved and administered RMB's IACUC authorization (185-04). For the loans of
965 specimens, photographs, or assistance visiting collections, we thank D. Blackburn (UF), D.
966 Blackburn, J. Vindum, and A. Leviton (CAS), A. C. Diesmos, R. Sison (PNM), J. Ferner
967 (CMNH), A. Resetar, R. Inger, and H. Voris (FMNH), K. de Queiroz, A. Wynn, and R.
968 Crombie (USNM), J. Hanken and J. Rosado (MCZ), T. LaDuc and D. Cannatella (TNHC), S.
969 Rogers and J. Padial (CM). Financial support for fieldwork was provided by an NSF Doctoral
970 Dissertation Improvement Grant (DEB 0073199) and a Biotic Surveys and Inventories grant
971 (DEB 0743491) to RMB; and Fulbright and Fulbright-Hayes funding and an NSF DDIG (DEB
972 0804115) to CDS. Archival deposition and digitization of RMB's analog media collection was
973 supported by a grant from NSF's Advancing Digitization of Biological Collections Thematic
974 Collections Network program (DEB 1304585) to RMB. During the preparation of this
975 manuscript AP was supported by funding from the U. S. National Institute of Health, Research
976 Initiative for Scientific Enhancement (RISE) program. We thank V. Yngente, J. Fernandez, and
977 A. C. Diesmos for collaboration in fieldwork, anonymous reviewers for critical reviews of the
978 manuscript, and our friend and mentor Angel C. Alcala for many years of generous support and

979 patient guidance over the course of our fruitful international collaboration.

980

981 LITERATURE CITED

982 Alcala, A.C. 1962. Breeding behavior and early development of frogs of Negros, Philippines
983 Islands. *Copeia* 1962:679–726.

984 Alcala, A.C. 2004. A life of service to science: a tribute to Walter Creighton Brown 1913–
985 2002. *Silliman Journal* 45:258–262.

986 Alcala, A.C., A. Bucol, A.C. Diesmos and R.M. Brown. 2012. Vulnerability of Philippine
987 amphibians to climate change. *Philippine Journal of Science* 141:77–87.

988 Alcala, E.L., A.C. Alcala and C.N. Dolino. 2004. Amphibians and reptiles in tropical rainforest
989 fragments on Negros Island, the Philippines. *Environmental Conservation* 31:254–261.

990 Arifin, U., D.T. Iskandar, D.P. Bickford, R.M. Brown, R. Meier and S.N. Kutti. 2011.
991 Phylogenetic relationship within the genus *Staurois* (Amphibia, Ranidae) based on 16S
992 rRNA sequences. *Zootaxa*. 2733:39–52. DOI:
993 <http://dx.doi.org/10.1111/zootaxa.2733.4.1>

994 Aurelio, M.A., R.E. Peña and K.J.L. Taguibao. 2013. Sculpting the Philippine archipelago since
995 the Cretaceous through rifting, oceanic spreading, subduction, obduction, collision and
996 strike-slip faulting: Contribution to IGMA5000. *Journal of Asian Earth Sciences* 72:102–
997 107.

998 Blackburn, D.C., D.P. Bickford, A.C. Diesmos, D.T. Iskandar and R.M. Brown. 2010. An
999 ancient origin for the enigmatic flat-headed frogs (Bombinatoridae: *Barbourula*) from the

1000 islands of Southeast Asia. PLOS ONE 5:e12090.

1001 <http://dx.doi.org/10.1371/journal.pone.0012090>

1002 Blackburn, D.C, C.D. Siler, A.C. Diesmos, J.A. McGuire, D.C. Cannatella and R.M. Brown.

1003 2013. An adaptive radiation of frogs in a Southeast Asian island archipelago. *Evolution*

1004 67:2631–2646.

1005 Bossuyt, F., R.M. Brown, D.M. Hillis, D.C. Cannatella and M.C. Milinkovitch. 2006. Late

1006 Cretaceous diversification resulted in continent-scale regionalism in the cosmopolitan

1007 frog family Ranidae. *Systematic Biology* 55:579–594.

1008 Boulenger, G.A. 1882. Catalogue of the Batrachia Salientia s. Ecaudata in the Collection of the

1009 British Museum, 2nd ed. Taylor and Francis, UK.

1010 Boulenger, G.A. 1894. On the herpetological fauna of Palawan and Balabac. *Annals and*

1011 *Magazine of Natural History Series 6*, 14:81–90.

1012 Brown, R.M. 2007. Introduction to Robert F. Inger's Systematics and Zoogeography of

1013 Philippine Amphibia. Pp. 1–17 in *Systematics and Zoogeography of Philippine Amphibia*

1014 (R.F. Inger, ed.). Natural History Publications, Malaysia.

1015 Brown, R.M. 2009. Frogs. Pp. 723–732 in *Encyclopedia of Islands* (R. Gillespie and D. Clague,

1016 eds.). University of California Press, USA.

1017 Brown, R.M. 2015. A new species of stream frog (genus *Hylarana*) from the mountains of

1018 southern Mindanao Island, Philippines. *Herpetologica* 71:223–233.

1019 Brown, R.M., and A.C. Diesmos. 2002. Application of lineage-based species concepts to

1020 oceanic island frog populations: the effects of differing taxonomic philosophies on the

1021 estimation of Philippine biodiversity. *The Silliman Journal* 42:133–162.

1022 Brown, R.M., and A.C. Diesmos. 2009. Philippines, biology. Pp. 723–732 in Encyclopedia of
1023 Islands (R. Gillespie and D. Clague, eds.). University of California Press, USA.

1024 Brown, R.M., and J.C. Gonzalez. 2007. A new forest frog of the genus *Platymantis* (Amphibia;
1025 Anura: Ranidae) from the Bicol Peninsula of Luzon Island, Philippines. *Copeia*
1026 2007:251–266.

1027 Brown, R.M., and S.I. Guttman. 2002. Phylogenetic systematics of the *Rana signata* complex
1028 of Philippine and Bornean stream frogs: reconsideration of Huxley's modification of
1029 Wallace's Line at the Oriental-Australian faunal zone interface. *Biological Journal of the*
1030 *Linnean Society* 76:393–461.

1031 Brown, R.M., and C.D. Siler. 2013. Spotted stream frog diversification at the Australasian
1032 faunal zone interface, mainland versus island comparisons, and a test of the Philippine
1033 'dual-umbilicus' hypothesis. *Journal of Biogeography* 41:182–195.

1034 Brown, R.M., and B.L. Stuart. 2012. Patterns of biodiversity discovery through time: an
1035 historical analysis of amphibian species discoveries in the Southeast Asian mainland and
1036 island archipelagos. Pp 348–389. *In* Gower, D. J., K. G. Johnson, J. E. Richardson, B. R.
1037 Rosen, L. Rüber and S. T. Williams (Eds.) *Biotic Evolution and Environmental Change*
1038 *in Southeast Asia*. Cambridge University Press, UK.

1039 Brown, R.M., A.C. Diesmos and A.C. Alcala. 2008. Philippine amphibian biodiversity is
1040 increasing in leaps and bounds. Pp. 82–83 in *Threatened Amphibians of the World* (S.N.
1041 Stuart, M. Hoffmann, J.S. Chanson, N.A Cox, R. Berridge, P. Ramani and B.E. Young,
1042 eds.). Lynx Ediciones, Spain; IUCN - The World Conservation Union, Switzerland; and
1043 Conservation International, USA.

1044 Brown, R.M., J.A. McGuire and A.C. Diesmos. 2000a. Status of some Philippine frogs related
1045 to *Rana everetti* (Anura: Ranidae), description of a new species, and resurrection of *Rana*
1046 *igorota* Taylor 1922. *Herpetologica* 56:81–104.

1047 Brown, R.M., J.A. McGuire, J.W. Ferner, N. Icarangal, Jr. and R.S. Kennedy. 2000b.
1048 Amphibians and reptiles of Luzon Island, II: preliminary report on the herpetofauna of
1049 Aurora Memorial National Park, Philippines. *Hamadryad* 25:175–195.

1050 Brown, R.M., A.C. Diesmos, M.B. Sanguila, C.D. Siler, M.L.D. Diesmos and A.C. Alcala.
1051 2012a. Amphibian conservation in the Philippines. *FrogLog* 104:40–43.

1052 Brown, R.M., C.H. Oliveros, C.D. Siler, J.B. Fernandez, L.J. Welton, P.A.C. Buenavente,
1053 M.L.D. Diesmos and A.C. Diesmos. 2012b. Amphibians and Reptiles of Luzon Island
1054 (Philippines), VII: Herpetofauna of Ilocos Norte Province, Northern Cordillera Mountain
1055 Range. *Check List* 8:469–490.

1056 Brown, R.M., C.D. Siler, C.H. Oliveros, J.A. Esselstyn, A.C. Diesmos, P.A. Hosner, C.W.
1057 Linkem, A.J. Barley, J.R. Oaks, M.B. Sanguila, L.J. Welton, D.S. Blackburn, R.G.
1058 Moyle, A.T. Peterson and A.C. Alcala. 2013a. Evolutionary processes of diversification in
1059 a model island archipelago. *Annual Review of Ecology, Evolution, and Systematics*
1060 44:411–435.

1061 Brown, R.M., C.D. Siler, C.H. Oliveros, L.J. Welton, A. Rock, J. Swab, M. Van Weerd, J. van
1062 Beijnen, E. Jose, D. Rodriguez, E. Jose and A.C. Diesmos. 2013b. The amphibians and
1063 reptiles of Luzon Island, Philippines, VIII: the herpetofauna of Cagayan and Isabela
1064 Provinces, northern Sierra Madre Mountain Range. *Zookeys* 266:1–120.

1065 Brown, R.M., L.A. de Layola, A. Lorenzo II, M.L.L. Diesmos and A.C. Diesmos. 2015b. A
1066 new species of limestone karst inhabiting forest frog, genus *Platymantis* (Amphibia:

1067 Anura: Ceratobatrachidae: subgenus *Lupacolus*) from southern Luzon Island, Philippines.

1068 Zootaxa 4048:191–210. <http://dx.doi.org/10.11646/zootaxa.4048.2.3>

1069 Brown, R.M., C.D. Siler, S. Richards, A.C. Diesmos and D.C. Cannatella. 2015a. Multilocus

1070 phylogeny and a new classification for Southeast Asian and Melanesian forest frogs

1071 (family Ceratobatrachidae). *Zoological Journal of the Linnaean Society* 174:130–168.

1072 Brown, R.M., Y.-C. Su., B. Barger, C.D. Siler, M.B. Sanguila, A.C. Diesmos and D.C.

1073 Blackburn. 2016. Phylogeny of the island archipelago frog genus *Sanguirana*: another

1074 endemic Philippine radiation that diversified ‘Out-of-Palawan.’ *Molecular Phylogeny and*

1075 *Evolution* 91:531–536.

1076 Brown, W.C., and A.C. Alcala. 1955. Observations on amphibians of the Mount Halcon and

1077 Canlaon areas, Philippine Islands. *Silliman Journal* 2:93–102.

1078 Brown, W.C., and A.C. Alcala. 1961. Populations of amphibians and reptiles in the

1079 submontane and montane forests of Cuernos de Negros, Philippine Islands. *Ecology*

1080 42:628–636.

1081 Brown, W.C., and A.C. Alcala. 1964. Relationship of the herpetofaunas of the non-dipterocarp

1082 communities to that of the dipterocarp forest on southern Negros Island, Philippines.

1083 *Senckenbergiana Biologie* 45:591–611.

1084 Brown, W.C., and A.C. Alcala. 1970. The Zoogeography of the herpetofauna of the Philippine

1085 Islands, a fringing archipelago. *Proceedings of the California Academy of Sciences*

1086 38:105–130.

1087 Brown, W.C., and A.C. Alcala. 1982a. Reproductive biology of some species of *Philautus*

1088 (Rhacophoridae) and other Philippine anurans. *Kalikasan, Philippine Journal of Biology*

1089 11:203–226.

1090 Brown, W.C., and A.C. Alcala. 1982b. Modes of reproduction of Philippine anurans. Pp. 416–
1091 428 in Advances in Herpetology and Evolutionary Biology (A.G.J. Rodin and K. Miyata,
1092 eds.). Museum of Comparative Biology, USA.

1093 Brown, W.C., and A.C. Alcala. 1986. Comparison of the herpetofaunal species richness on
1094 Negros and Cebu Islands, Philippines. *Silliman Journal* 33:74–86.

1095 Chan, K.O., D.C. Blackburn, R.W. Murphy, B.L. Stuart, D.A. Emmett, C.T. Ho and R.M.
1096 Brown. 2013. A new species of narrow-mouthed frog of the genus *Kaloula* from eastern
1097 Indochina. *Herpetologica* 69:329–341.

1098 Cochran, D.M. 1961. Type specimens of reptiles and amphibians in the U.S. National
1099 Museum. *Bulletin of the United States National Museum* 220:1–289.

1100 Darriba D., G.L. Taboada, R. Doallo and D. Posada. 2012. jModelTest 2: more models, new
1101 heuristics and parallel computing. *Nature Methods* 9:772.

1102 de Queiroz, K. 1998. The general lineage concept of species, species criteria, and the process
1103 of speciation. Pp. 57–75 in *Endless Forms: Species and Speciation* (D.J. Howard and
1104 S.H. Berlocher, eds.). Oxford University Press, USA.

1105 de Queiroz, K. 1999. The general lineage concept of species and the defining properties of the
1106 species category. Pp. 49–89, in *Species: New Interdisciplinary Essays* (R.A. Wilson, ed.).
1107 Massachusetts Institute of Technology Press, USA.

1108 De Queiroz, K. 2005. A Unified concept of species and its consequences for the future of
1109 taxonomy. *Proceedings of the California Academy of Sciences* 56:196–215.

1110 de Queiroz, K. 2007. Species concepts and species delimitation. *Systematic Biology* 56:879–
1111 886.

1112 Diesmos, A.C., and R.M. Brown. 2011. Diversity, Biogeography, and Conservation of
1113 Philippine Amphibians. Pp. 26–49 in Biology and Conservation of Tropical Asian
1114 Amphibians (I. Das, A. Haas and A.A. Tuen, eds.), Proceedings of the Conference
1115 “Biology of the Amphibians in the Sunda Region, South-east Asia.” Institute of
1116 Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, Malaysia.

1117 Diesmos, A.C., A.C. Alcala, C.D. Siler and R.M. Brown. 2014. Status and conservation of
1118 Philippine amphibians. Pp. 310–336 In Conservation Biology of Amphibians of Asia.
1119 Status of Conservation and Decline of Amphibians: Eastern Hemisphere (H. Heatwole
1120 and I. Das, eds.). Natural History Publications, Malaysia.

1121 Diesmos, A.C., M.L. Diesmos and R.M. Brown. 2006. Status and distribution of alien invasive
1122 frogs in the Philippines. Journal of Environmental Science and Management, Philippines
1123 9:41–53.

1124 Diesmos, A.C., J.L. Watters, N.A. Huron, D.R. Davis, A.C. Alcala, R.I. Crombie, L.E. Afuang,
1125 G. Gee-Das, R.V. Sison, M.B. Sanguila, M.L. Penrod, M.J. Labonte, C.S. Davey, E.A.
1126 Leone, M.L. Diesmos, E.Y. Sy, L.J. Welton, R.M. Brown and C.D. Siler. 2015.
1127 Amphibians of the Philippines, part I: checklist of the species. Proceedings of the
1128 California Academy of Sciences 62:451–531.

1129 Diesmos, M.L.D., A.C. Diesmos, C.D. Siler, V.T. Vredenburg and R.M. Brown. 2012.
1130 Detecting the distribution of chytrid fungus in the Philippines. FrogLog 104:48–49.

1131 Dubois, A. 1992. Notes sur la classification des Ranidae (Amphibiens anoures). Bulletin
1132 Mensuel de la Société Linnéenne de Lyon 61:305–352.

1133 EsSELSTYN, J.A., H.J.D. Garcia, M.G. Saulog and L.R. Heaney. 2008. A new species of
1134 *Desmalopex* (Pteropodidae) from the Philippines, with a phylogenetic analysis of the
1135 Pteropodini. *Journal of Mammalogy* 89:815–825.

1136 Evans, B.J., R.M. Brown, J.A. McGuire, J. Supriatna, N. Andayani, A.C. Diesmos, D.T.
1137 Iskandar, D.J. Melnick and D.C. Cannatella. 2003 Phylogenetics of fanged frogs: testing
1138 biogeographical hypotheses at the interface of the Asian and Australian faunal zones.
1139 *Systematic Biology* 52:794–819.

1140 FERNER, J.W., R.M. Brown, R.V. Sison and R.S. Kennedy. 2000. The amphibians and reptiles of
1141 Panay Island, Philippines. *Asiatic Herpetological Research* 9:34–70.

1142 FROST, D.R. and D.M. Hillis. 1990. Species in concept and practice: Herpetological
1143 applications. *Herpetologica* 46:87–104.

1144 FROST, D.R. 2016. Amphibian species of the world: an online reference, version 6.0. Available at
1145 <http://research.amnh.org/herpetology/amphibia/index.html>. Archived by WebCite at
1146 <http://www.webcitation.org/6pEYp6iN9>.

1147 FUITEN, A., A.C. Diesmos, L.J. Welton, A. Barley, B. Oberheide, E.L.B. Rico and R.M. Brown.
1148 2011. New species of stream frog from the mountains of Luzon Island, Philippines.
1149 *Herpetologica* 67:89–103.

1150 GAULKE, M., I. Frank and B. Tacud. 2008. Zur Farbvariabilität und Brutbiologie einiger
1151 philippinischer Anuren. *Sauria* 30:11–21.

1152 GAULKE, M. 2011. The Herpetofauna of Panay Island, Philippines. Edition Chimaira, Germany.

1153 GONZALES, P., Y.-C. Su, C.D. Siler, A. Barley, M.B. Sanguila, A.C. Diesmos and R.M. Brown.
1154 2014. Archipelago colonization by ecologically dissimilar amphibians: evaluating the

1155 expectation of common evolutionary history of geographical diffusion in co-distributed
1156 rainforest tree frogs in islands of Southeast Asia. *Molecular Phylogenetics and Evolution*
1157 72:35–41.

1158 Guindon, S. and O. Gascuel. 2003. A simple, fast and accurate method to estimate large
1159 phylogenies by maximum-likelihood. *Systematic Biology* 52:696–704.

1160 Hall, R. 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific:
1161 computer-based reconstructions, model and animations. *Journal of Asian Earth Sciences*
1162 20:353–431.

1163 Hayek, L.-A.C., W.R. Heyer and C. Gascon. 2001. Frog morphometrics: a cautionary tale.
1164 *Alytes* 18:153–177.

1165 Holder, M.T., J.A. Sukamaran and R.M. Brown. 2010. Bayesian approaches to phylogenetic
1166 analysis. Pp 1–39 in *Bayesian Modeling in Bioinformatics* (D.K. Dey, S. Ghosh and B.K.
1167 Mallick, eds.). Chapman & Hall/CRC, Taylor & Francis Group, USA.

1168 Kaiser, H.F. 1960. The application of electronic computers to factor analysis. *Educational and*
1169 *Psychological Measurement* 20:141–51.

1170 Inger, R.F. 1954. Systematics and zoogeography of Philippine Amphibia. *Fieldiana* 33:1–531.

1171 Inger, R.F. 1999. Distribution of amphibians in Southern Asia and adjacent islands. Pp. 445–
1172 482 in *Patterns of Distribution of Amphibians* (W.E. Duellman, ed.). John Hopkins
1173 University Press, USA.

1174 International Union for the Conservation of Nature (IUCN). 2010. Guidelines for using the
1175 IUCN redlist categories and criteria, version 8.1. Available at
1176 <http://intranet.iucn.org/webfiles/doc/SSC/RedList/RedListGuidelines.pdf>. Archived by

1177 WebCite at <http://www.webcitation.org/6YZVTeL9Z> on 16 May 2015.

1178 International Union for the Conservation of Nature (IUCN). 2015. IUCN Red List of Threatened
1179 Species. Version 2013.2. Available at: www.iucnredlist.org. Archived by WebCite at
1180 <http://www.webcitation.org/6YZVxdVsE> on 16 May 2015.

1181 Jombart, T. 2008. adegenet: a R package for the multivariate analysis of genetic markers.
1182 *Bioinformatics* 24:1403–1405.

1183 Jombart, T., S. Devillard and F. Balloux. 2010. Discriminant analysis of principal components:
1184 a new method for the analysis of genetically structured populations. *BMC Genetics*
1185 11:94.

1186 Lee, J.C. 1982. Accuracy and precision in anuran morphometrics: artifacts of preservation.
1187 *Systematic Zoology* 31:266–281.

1188 Lee, J.C. 1990. Sources of extraneous variation in the study of meristic characters: the effect of
1189 size and inter-observer variability. *Systematic Zoology* 39:31–39.

1190 Narins, P.M., and R.R. Capranica. 1978. Communicative significance of two-note calls of the
1191 tree frog *Eleutherodactylus coqui*. *Journal of Comparative Physiology* 127:1–9.

1192 Oliver, L., E. Prendini, F. Kraus and C.J. Raxworthy. 2015. Systematics and biogeography of
1193 the *Hylarana* frog (Anura: Ranidae) radiation across tropical Australasia, Southeast Asia,
1194 and Africa. *Molecular Phylogenetics and Evolution* 90:176–192.

1195 Rand, A.S., and M.J. Ryan. 1981. The adaptive significance of a complex vocal repertoire in a
1196 neotropical frog. *Zeitschrift für Tierpsychologie* 57:209–214.

1197 Rocha, L.A., A. Aleixo, G. Allen, ... C.C. Witt. 2014. Specimen collection: An essential tool.
1198 *Science* 344:814–815.

1199 Sabaj, M.H. 2016. Standard symbolic codes for institutional resource collections in herpetology

1200 and ichthyology: an online reference. Version 6.5. American Society of Ichthyologists and
1201 Herpetologists, U.S.A. Available at <http://www.asih.org/>. Archived by WebCite at
1202 <http://www.webcitation.org/6otYSPsdM> on 9 March 2017.

1203 Sanguila, M.B., C.D. Siler, A.C. Diesmos, O. Nuñez, and R.M. Brown. 2011. Phylogeography
1204 and conservation implications of geographic structure of genetic variation and potential
1205 species boundaries in Philippine slender toads. *Molecular Phylogenetics and Evolution*
1206 61:333–350.

1207 Sanguila, M.B., K.A. Cobb, C.D. Siler, A.C. Diesmos, A.C. Alcala, and R.M. Brown. 2016. The
1208 amphibians and reptiles of Mindanao Island, southern Philippines, II: the herpetofauna of
1209 northeast Mindanao and adjacent islands. *Zookeys* 624:1–132.

1210 Setiadi, M.I., J.A. McGuire, R.M. Brown, M. Zubairi, D.T. Iskandar, N. Andayani, J. Supriatna
1211 and B.J. Evans. 2011. Adaptive radiation and ecological opportunity in Sulawesi and
1212 Philippine fanged frog (*Limnonectes*) communities. *American Naturalist* 178:221–240.

1213 Siler, C.D., A.C. Diesmos, C.W. Linkem, M.L. Diesmos, and R.M. Brown. 2010. A new
1214 species of limestone-forest frog, genus *Platymantis* (Amphibia: Anura:
1215 Ceratobatrachidae) from central Luzon Island, Philippines. *Zootaxa* 2482:49–63.
1216 <http://dx.doi.org/10.11646/zootaxa.4048.2.3>

1217 Siler, C.D., J.D. McVay, A.C. Diesmos, and R.M. Brown. 2009. A new species of fanged frog,
1218 genus *Limnonectes* (Amphibia: Anura: Dicroglossidae) from southeast Mindanao Island,
1219 Philippines. *Herpetologica* 65:105–114.

1220 Siler, C.D., J.R. Oaks, L.K. Welton, C.W. Linkem, J. Swab, A.C. Diesmos, and R.M. Brown.
1221 2012. Did geckos ride the Palawan raft to the Philippines? *Journal of Biogeography*
1222 39:1217–34.

1223 Siler, C.D., L.J. Welton, J.M. Siler, J. Brown, A. Bucol, A.C. Diesmos and R.M. Brown. 2011.

1224 Amphibians and Reptiles, Luzon Island, Aurora Province and Aurora Memorial National

1225 Park, Northern Philippines: New island distribution records. Check List 7:182–195.

1226 Simpson, G.G. 1961. Principles of Animal Taxonomy. Columbia University Press, New York,

1227 USA.

1228 Sison, R.V., P.C. Gonzales and J.W. Ferner. 1995. New records from Panay, Philippines.

1229 Herpetological Review 26:48–49.

1230 Stejneger, L. 1905. Three new frogs and one new gecko from the Philippine Islands.

1231 Proceedings of the United States National Museum 28:343–348.

1232 Stuart, B. L. 2008. The phylogenetic problem of *Huia* (Amphibia: Ranidae). Molecular

1233 Phylogenetics and Evolution 46:49–60.

1234 Supsup, C., N.M. Puna, A.A. Asis, B.R. Redoblado, M.F.G. Panaguinit, F.M. Guinto, E.B.

1235 Rico, A.C. Diesmos, R.M. Brown and N.A. Mallari. 2016. Amphibians and reptiles of

1236 Cebu, Philippines: the poorly understood herpetofauna of an island with very little

1237 remaining natural habitat. Asian Herpetological Research 7:151–179.

1238 Swei, A., J.J.L. Rowley, D. Rödder, ... V.T. Vredenburg. 2011. Is chytridiomycosis an

1239 emerging disease in Asia? PLOS ONE 6:e23179.

1240 Taylor, E.H. 1920. Philippine Amphibia. Philippine Journal of Science 16:213–359.

1241 Taylor, E.H. 1922 Additions to the herpetological fauna of the Philippine Islands. II. Philippine

1242 Journal of Science 21:257–303.

1243 Thorpe, R.S. 1975. Quantitative handling of characters useful in snake systematics with

1244 particular reference to intraspecific variation in the Ringed Snakes *Natrix*

1245 *natrix* (L.). Biological Journal of the Linnean Society 7:27–43.

1246 Thorpe, R.S. 1983a. A review of the numerical methods for recognizing and analyzing racial
1247 differentiation. Pp. 404–423 in Numerical Taxonomy: Proceedings of a NATO Advanced
1248 Studies Institute NATO ASI series, Vo. G1 (J. Felsenstein, ed.). Springer Verlag, Germany.

1249 Thorpe, R.S. 1983b. A biometric study of the effects of growth on the analysis of geographic
1250 variation: tooth number in green geckos (Reptilia: *Phelsuma*). Journal of Zoology 201:13–
1251 26.

1252 Turan, C. 1999. A note on the examination of morphometric differentiation among fish
1253 populations: the Truss System. Turkish Journal of Zoology 23:259–263.

1254 Voris, H.K. 2000. Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems,
1255 time durations. Journal of Biogeography 27:1153–1167.

1256 Welton, L.J., C.D. Siler, D. Bent, A. C. Diesmos, M.R. Duya, R. Dugay, E.L. Rico, M. van
1257 Weerd and R.M. Brown. 2010. A spectacular new Philippine monitor lizard reveals a
1258 hidden biogeographic boundary and a novel flagship species for conservation. Biology
1259 Letters 6:654–658.

1260 Wiens, J.J., J.S. Sukumaran, R.A. Pyron and R.M. Brown. 2009. Evolutionary and
1261 biogeographic origins of high tropical diversity in old world frogs (Ranidae). Evolution
1262 64:1558–5646.

1263 Wiley, E.O. 1978. The evolutionary species concept reconsidered. Systematic Zoology 21:17–
1264 26.

1265 Wilgenbusch, J.C., D.L. Warren and D.L. Swofford. 2004. AWTY: a system for graphical
1266 exploration of MCMC convergence in Bayesian phylogenetic inference. Available at:
1267 <http://ceb.csit.fsu.edu/awty>. Archived by WebCite at
1268 <http://www.webcitation.org/6otYrampQ> on 11 March 2017.

1269 Yumul, G.P. Jr., C.B. Dimalanta, R.A. Tamayo Jr. and R.C. Maury. 2003. Collision,
1270 subduction and accretion events in the Philippines: A synthesis. *The Island Arc* 12:77–91.

1271 Yumul, G.P. Jr., C.B. Dimalanta, E.J. Marquez and K.L. Queaño. 2009a. Onland signatures of
1272 the Palawan microcontinental block and Philippine mobile belt collision and crustal
1273 growth process: a review. *Journal of Asian Earth Sciences* 34:610–623.

1274 Yumul, G., C.B. Dimalanta, K.L. Queaño and E.J. Marquez. 2009b. Philippines, geology. Pp.
1275 732–738 in *Encyclopedia of Islands* (R. Gillespie and D. Clague, eds.). University of
1276 California Press, USA.

1277 Zamoros, L.R., M.G.A. Montes, K.L. Queaño, E.J. Marquez, C.B. Dimalanta, J.A.S. Gabo and
1278 G.P. Yumul Jr. 2008. Buruanga peninsula and Antique Range: two contrasting terranes in
1279 Northwest Panay, Philippines featuring an arc–continent collision zone. *Island Arc*
1280 17:443–457.

1281

1282

APPENDIX

1283

Specimens Examined

1284

All specimens are from the Philippines.

1285

Sanguirana acai.—See holotype and paratypes sections.

1286

Sanguirana aurantipunctata.—LUZON ISLAND, NUEVA VIZCAYA PROVINCE,

1287

Municipality of Quezon, Barangay Maddiangat, Sitio Parola (16°26'16.8" N, 121°13'30.0" E;

1288

WGS-84): PNM 9727 (holotype), PNM 9728–45, KU 325894–932, 325934–45, 329950–51,

1289

308655, 308665, 308667, 308687, 308705, 308706, 308712, 308775, 308776 (Paratopotypes);

1290

AURORA PROVINCE, *Municipality of San Luis*, Barangay Real, Sitio Minoli: KU 322548,

1291

322549 (paratypes); *Municipality of Dingalan*, Mt. Mingan: MVD 066, 068, 069, and 074,

1292

DSB 3728 and 3745 (six uncataloged specimens, deposited at PNM)

1293

Sanguirana everetti.—MINDANAO, LANAو DEL SUR PROVINCE, *Lake Lanaو*, Camp

1294

Keithley: CAS-SU 2141; ZAMBOANGA: CAS 61872; SOUTH COTOBATO PROVINCE, “near Saub,”

1295

MCZ 14083–84; *Municipality of Tupi*, Barangay Kablon, Masbang creek: PNM 469;

1296

Municipality of Tiboli, Barangay Salacafe, Lake Parker: PNM 3002–07, 3009–12., 3018–19,

1297

3059, 3073; *Municipality of Tampakan*, Barangay Tablu, Sitio Datal Mangisi: KU 327523,

1298

327527, 327529; Sitio Tukuymal: KU 327525, 327526, 327528.

1299

Sanguirana igorota.—LUZON ISLAND: KALINGA–APAYAO PROVINCE, KALINGA

1300

SUBPROVINCE, *Municipality of Balbalan*, Barangay Balbalan: CAS 61484 (EHT F789; holotype

1301

of *Rana igorota*); CAS 61483, 61485–89, MCZ 14096–98 (paratypes of *Rana igorota*); NUEVA

1302

VIZCAYA PROVINCE, *Municipality of Quezon*, Barangay Maddiangat, Mt. Palali: KU 308688,

1303

308707–11, 325843–93; Benguet Province, *Municipality of Kabayan*, Barangay Apunan: PNM

1304 158, 162; IFUGAO PROVINCE, *Municipality of Banaue*, Barangay Bayninan, PNM 741, 742;

1305 ILOCOS PROVINCE, *Municipality of Adams*, Barangay Adams, Mt. Pao: KU 329824-89.

1306 *Sanguirana luzonensis*.—LUZON ISLAND, AURORA PROVINCE, *Municipality of*

1307 *Carmen*, Aurora National Park: PNM 5742-5765; CMNH 5605-11; 5612-30; *Municipality of*

1308 *Maria Aurora*, Aurora Memorial National Park “tower site”, KU 322566-67; Barangay Villa

1309 Aurora, Sitio Dimani, Aurora Memorial National Park: KU 322568-87; Barangay Villa

1310 Aurora, Aurora Memorial National Park, Mt. Dayap, area known locally as “Siete:” KU

1311 322588-90; *Municipality of Baler*, Barangay Zabali, Aurora State College of Technology

1312 (ASCOT): KU 322591-619; *Municipality of San Luis*, Barangay Real, Sitio Minoli: KU

1313 322620-28, 322520-39, 322540-47; Barangay Lipimental: KU 322550-65, 322503-19;

1314 MOUNTAIN PROVINCE, *Municipality of Bontoc*: MCZ 10556; LAGUNA PROVINCE, *Municipality*

1315 *of Los Baños*, Mt. Makiling: MCZ 23178-79, 14142-45; ZAMBALES PROVINCE: *Municipality*

1316 *of Masinloc*, Barangay Coto: CMNH 4171-72, 4279-85; PNM 2371, 2378-84, 2496-98;

1317 TRAIL BETWEEN FAMY (LAGUNA PROV.) AND INFANTA (TAYABAS PROV.): CAS 61819

1318 (holotype of *R. tafti*); BANGUET PROVINCE, *Municipality of Baguio*, Baguio City: CM 3271,

1319 3273-78, 3280-81, 3283, MCZ 10482-84 (topotypes of *R. guerreroi*); QUEZON PROVINCE,

1320 *Municipality of Polillo*, Barangay Pinaglubayan: KU 302380, 307649-51; Barangay Salipsip,

1321 Sition Kapilijan: KU 307652-60; QUEZON PROVINCE: 303561-63; CATANDUANES,

1322 *Municipality of San Miguel*, Sulong: KU 308067, 308090-98; *Municipality of Gigmoto*,

1323 Barangay San Pedro: KU 308121, 308139, 308158-69; CAMARINES DEL SUR PROVINCE:

1324 *Municipality of Tabaco*, Barangay Comon: KU 306495-98, 306503-06; CAMARINES DEL

1325 NORTE PROVINCE, *Municipality of Labo*, Barangay Tulay na Lupa: KU 306499-502, 306507-

1326 306509; ISABELA PROVINCE, *Municipality of Cabagan*, Barangay Garita, Mitra Ranch: KU

1327 307636; NUEVA VIZCAYA PROVINCE, *Municipality of Quezon*, Barangay Maddiangat, Mt.

1328 Palali: KU 308655, 308665, 308667, 308687, 308705–06, 308712, 308774–76, 308835–36,

1329 325501–40; CAMARINES NORTE PROVINCE: *Municipality of Labo*, Barangay Tulay Na Lupa:

1330 KU 313647–313681; POLILLO ISLAND: POLILLO PROVINCE, *Burdeos*: CAS 62448 (holotype

1331 of *R. merrilli*).

1332 *Sanguirana mearnsi*.—MINDANAO ISLAND: DAVAO ORIENTAL PROVINCE,

1333 *Municipality of Baganga*, “Baganga River, east coast mountain range, 300–1,500 m above sea

1334 level:” USNM 35258 (holotype of *Rana mearnsi*); AGUSAN DEL NORTE PROVINCE: *Tagibo and*

1335 *Daydayan rivers*: S. side of Mt. Hilong-hilong: CAS 13922–25, 137533–34; *Municipality of*

1336 *Remedios T. Romualdez*, Eye Falls, intersection of Dayhopan and Agan Rivers, Mt. Hilong-

1337 hilong: KU 332972–007; *Municipality of Cabadbaran*, Barangay Tag-Ibo, Dalaydayan River:

1338 USNM 305594–97; MISAMIS ORIENTAL PROVINCE, *Municipality of Gingoog City*, Barangay

1339 Lumotan, Sitio San Isidro, Mt. Balatukan: KU 319777–82; Barangay Lawan, Sitio Kibuko, Mt.

1340 Lumot: KU 333014–67; DAVAO DEL NORTE PROVINCE, *Municipality of New Bataan*, Sitio

1341 Liboton, Mt. Puting Bato (Malaya River drainage): CMNH 5603–04; DAVAO CITY PROVINCE,

1342 *Municipality of Paquibato*, Barangay Malambuon, Mt. Makaayat: PNM 2880–81; DAVAO DEL

1343 SUR PROVINCE, *Mt. Apo*: KU 327521; SAMAR ISLAND: NORTHERN SAMAR PROVINCE:

1344 *Municipality of San Isidro*: Barangay Matuquinao: CAS-SU 18160, 18167–69, 18172–73;

1345 EASTERN SAMAR PROVINCE: *Municipality of Taft*, Barangay San Rafael: KU 338613–34,

1346 338648–61, 310697–98; WESTERN SAMAR PROVINCE: *Municipality of San Jose de Buan*;

1347 Barangay Uno, Mt. Huraw: KU 338021, 338635–45; LEYTE ISLAND: CABALIAN: MCZ A-

1348 23190 (holotype of *Rana everetti albotuberculata*), A-23188–89, A-132410–14, A-132416–19

1349 (topotypes *Rana everetti albotuberculata*); BOHOL ISLAND, BOHOL PROVINCE, *Municipality*
1350 *of Cantub*, Sierra Bullones: CAS 137028.

1351 *Sanguirana sanguinea*.—PALAWAN ISLAND: CMNH 3700–01, 3733, 3737;

1352 PALAWAN PROVINCE, *Puerto Princesa City*, Barangay Irawan: KU 308987, 309016, 309019–
1353 21, 309023–24, 309026, 309027–31, 309033, 309037, 309094; *Municipality of Rizal*, Mt.

1354 Bintangor: KU 311312; *Municipality of Brooke's Point*, Barangay Mainit, Mainit Falls: KU
1355 309570; Barangay Samarinana, Mt. Mantalingajan, area known locally as “Pitang:” KU
1356 309577, 309578, 309587.

1357 *Sanguirana tipanan*.—LUZON ISLAND, AURORA PROVINCE, *Municipality of San*
1358 *Luis*, Barangay Villa Aurora, Aurora National Park: PNM 5727 (holotype of *Rana tipanan*),
1359 CMNH 5579–86, 5588, 5590–99, PNM 5720–26, 5728–36, 5738–41 (paratypes of *Rana*
1360 *tipanan*); *Municipality of Maria Aurora*: Aurora Memorial National Park: KU 322755–66;
1361 Barangay Villa Aurora, Aurora Memorial National Park, Mt. Dayap, area known locally as
1362 “Siete:” KU 322767–94; *Municipality of San Luis*: Barangay Lipimental: KU 322795–805,
1363 322808–58, 323013; Barangay Real, Sitio Minoli: 322806–07, 323014.

1364

1365 TABLE 1.—Character loadings for principal components analysis of 14 continuously varying morphometric characters, selected
 1366 (from 19 total) on the basis of each variable's within-species/OTU regression coefficient (regressed against SVL). Heavily
 1367 loading characters in PCs 1 (lower limb dimensions) and 2 (head shape), contributing disproportionately to group structure (see
 1368 Fig. 1A), are bolded for emphasis.

1369

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9
SVL	0.172	-0.088	-0.434	0.058	-0.378	0.3934	-0.320	0.428	-0.324
Head length	0.202	-0.417	0.182	0.340	0.186	0.1077	-0.053	0.024	0.113
Snout length	0.231	-0.423	0.138	0.084	0.148	0.2394	0.257	0.078	0.270
Tympanic annulus diameter	0.126	-0.475	-0.224	0.204	-0.068	-0.0116	-0.119	-0.050	0.160
Head width	0.133	0.160	0.423	0.359	0.201	-0.0735	-0.100	0.451	-0.44
Forearm length	-0.028	-0.358	0.392	-0.008	-0.261	-0.2412	-0.032	-0.250	-0.431
Femur length	0.419	0.065	0.099	-0.327	0.090	0.0724	-0.100	-0.188	-0.209
Tibia length	0.416	-0.118	-0.085	-0.232	-0.017	-0.087	-0.127	-0.374	-0.254
Tarsus length	0.380	0.078	-0.066	0.015	0.000	-0.7022	-0.230	0.310	0.317
Foot length	0.422	0.172	-0.127	-0.064	-0.084	0.055	0.072	-0.048	0.136

Hand length	0.311	0.179	-0.235	0.226	0.172	0.005	0.693	-0.007	-0.251
Nuptial pad length	0.156	0.068	0.406	-0.126	-0.705	0.089	0.319	0.189	0.224
Toe 4 disc width	0.212	0.283	0.345	-0.051	0.229	0.443	-0.334	-0.078	0.240
Finger 3 disc width	0.064	0.299	-0.035	0.685	-0.306	-0.004	-0.167	-0.476	0.078
Eigenvalue	4.089	2.729	2.580	1.145	0.681	0.499	0.466	0.444	0.412
Standard deviation	2.02	1.65	1.61	1.07	0.83	0.71	0.68	0.67	0.64
Proportion	0.292	0.195	0.184	0.082	0.049	0.036	0.039	0.032	0.029
Cumulative	0.292	0.487	0.671	0.753	0.802	0.837	0.870	0.901	0.931

1371 TABLE 2.—Uncorrected percent sequence divergence for mitochondrial data (12S–16S) among species of the genus
 1372 *Sanguirana*. Intraspecific mitochondrial sequence divergences along the diagonal are bolded for emphasis; note intraspecific
 1373 divergence within *S. acai* (Negros vs Panay populations).

	<i>S. acai</i>	<i>S. mearnsi</i>	<i>S. aurantipunctata</i>	<i>S. everetti</i>	<i>S. igorota</i>	<i>S. luzonensis</i>	<i>S. sanguinea</i>	<i>S. tipanan</i>
<i>S. acai</i>	0.0–6.3							
<i>S. mearnsi</i>	6.8–9.9	0.1–1.8						
<i>S. aurantipunctata</i>	9.0–10.9	6.7–9.0	4.5					
<i>S. everetti</i>	8.0–9.1	4.0–5.9	8.4–9.3	0.1–0.6				
<i>S. igorota</i>	6.4–7.8	6.4–8.7	9.0–10.3	7.3–8.2	0.9			
<i>S. luzonensis</i>	6.0–7.3	5.3–8.3	8.6–9.7	7.0–7.7	4.1–5.0	0.6–3.5		
<i>S. sanguinea</i>	10.8–12.1	10.3–12.1	12.2–13.1	10.6–11.5	11.3–12.0	10.8–11.2	5.8	
<i>S. tipanan</i>	6.8–7.8	5.6–8.4	9.1–10.1	7.7–8.3	1.6–1.9	4.1–5.3	11.7–12.0	0.3

1374

375 TABLE 3.—Distribution of selected diagnostic color and dermal characters in *Sanguirana acai*, and all known congeners (+ present, – absent, –/+
 376 variable). General geographic range and male body size (SVL in mm) are included for reference.

	<i>S. acai</i>	<i>S. everetti</i>	<i>S. luzonensis</i>	<i>S. aurantipunctata</i>	<i>S. tipanan</i>	<i>S. igorota</i>	<i>S. mearnsi</i>	<i>S. sanguinea</i>
Range	Negros, Masbate, Panay	W. Mindanao	Luzon PAIC	Montane central Luzon	NE Luzon	NW Luzon	E. Mindanao, Samar, Leyte	Palawan PAIC
SVL (male)	45.8–57.6	61.7–79.5	43.4–67.1	47.3–53.7	46.0–53.5	49.6–58.3	58.3–68.6	36.3–42.8
Flank coloration	Sharp dark-light stratification	Dark-light gradient	Dark-light gradient	Green-purple stratification	Green with brown reticulum	Green with brown blotches	Green-yellow gradient	Light to dark brown
Dorsal asperities	–	–	–	–	+, fine	+, fine	+, coarse	–
Dark pectoral patches	+	–	–/+	–	–	–	–	–
Infra- cloacal tubercles	–	+	–	+	+	+	+	–
Dorsal color	Yellow, green, tan, or light gray	Light green	Brown, yellow,	Bright green-yellow with black flecks or	Iridescent green or	Bright green with dark	Dark green with yellow dorsolateral	Tan, reddish- orange, or

			green, tan, or light gray	orange spots	golden, with brown reticulum	spots	tubercles	brown
Tympanum translucent	—	—	—	—	+	—/+	—	—
Tibial bars	+	—/+	+	—	+	+	—	+
Forearm bars	—	+	+	—	+	+	—	+
Large dark dorsal spots	—	—/+	—	—	—/+	—/+	—	—
Dark lateral head color	+	Canthal stripe	Canthal stripe	—	Canthal stripe	Canthal stripe	Canthal stripe	Canthal stripe
Snout	Rounded	Rounded	Pointed	Rounded	Rounded	Squarish	Rounded	Pointed
Ventrum tuberculate	Limited to groin	Groin	Groin	Throughout	Groin	Groin	Groin	—
Dorsolateral ridges	Thin to indistinct	Indistinct	Indistinct	Indistinct to moderate	Indistinct to moderate	Moderate	Thick, fleshy	Moderate
Subarticular tubercles	Light on dark plantar foot surface	Variable on dark	Variable on dark	Light on light	Light on light	Light on light	Light on light	Light on light
F:M range, $\bar{x} \pm$ standard	1.3–1.4	1.2	1.3–1.4	1.3–1.4	1.3–1.5	1.10–1.1	1.1–1.2	1.8–2.1

deviation

 1.4 ± 0.02

—

 1.3 ± 0.05 1.3 ± 0.01 1.4 ± 0.06 1.1 ± 0.01 1.2 ± 0.01 2.0 ± 0.5

TABLE 4.—Continuously varying morphometric variation in adult males of *Sanguirana acai*, n. sp., and all known congeners. Table entries include sample size (*n*), $\bar{x} \pm 1$ standard deviation, and range (below; in mm).

	<i>S. acai</i>	<i>everetti</i>	<i>luzonensis</i>	<i>aurantipunctata</i>	<i>tipanan</i>	<i>igorota</i>	<i>mearnsi</i>	<i>sanguinea</i>
<i>n</i>	28	7	42	34	41	46	26	22
SVL	53.0 ± 3.7 45.8–57.6	70.9 ± 6.1 61.7–79.5	52.8 ± 6.7 43.4–67.1	50.8 ± 1.8 47.3–53.7	49.6 ± 1.9 46.0–53.5	52.9 ± 2.2 49.6–58.3	64.2 ± 3.0 58.3–68.6	30.7 ± 1.7 36.3–42.8
Head length	20.7 ± 1.2 18.5–22.6	27.2 ± 2.5 22.8–30.3	20.8 ± 2.0 17.8–24.8	18.7 ± 0.4 16.0–19.2	20.4 ± 0.8 18.0–22.1	20.1 ± 0.8 19.1–21.6	24.4 ± 1.2 22.4–26.7	16.2 ± 0.3 15.8–16.8
Snout length	9.4 ± 0.5 8.7–10.4	12.3 ± 1.1 10.3–13.3	9.5 ± 1.1 8.0–11.8	8.4 ± 0.4 7.3–9.0	9.0 ± 0.5 8.1–10.1	8.7 ± 0.4 7.9–9.3	10.8 ± 0.4 10.2–11.6	7.1 ± 0.4 6.5–7.7
Inter-orbital distance	5.2 ± 0.2 5.0–5.5	7.4 ± 0.3 6.9–7.9	5.0 ± 0.7 4.0–6.9	5.9 ± 0.4 5.5–6.9	5.2 ± 0.4 4.6–6.2	4.5 ± 0.4 3.8–5.1	6.9 ± 0.6 5.3–7.8	3.3 ± 0.3 2.9–3.8
Inter-narial distance	5.2 ± 0.2 4.9–5.7	7.0 ± 0.6 5.8–7.7	9.7 ± 0.6 3.9–5.9	5.2 ± 0.2 4.9–6.3	5.6 ± 0.3 5.0–6.2	5.2 ± 0.4 4.7–6.5	6.2 ± 0.6 5.7–7.8	3.7 ± 0.2 3.4–4.0
Eye diameter	6.3 ± 0.5 5.4–7.3	7.2 ± 0.7 6.0–8.5	6.7 ± 0.6 5.5–8.0	5.5 ± 0.5 4.3–6.0	6.9 ± 0.4 6.2–7.8	6.6 ± 0.4 6.1–7.5	6.8 ± 0.4 6.2–7.5	5.1 ± 0.4 4.4–5.8
Tympanic annulus diameter	4.8 ± 0.5 3.9–5.3	7.3 ± 0.9 5.7–8.5	4.7 ± 0.4 4.0–5.6	3.9 ± 0.3 3.4–4.4	4.4 ± 0.3 3.7–5.1	3.8 ± 0.5 3.0–5.4	5.7 ± 0.3 4.9–6.1	3.9 ± 0.3 3.5–4.4
Head width	15.6 ± 1.1 13.9–17.1	22.7 ± 2.1 19.5–25.5	17.0 ± 1.9 14.1–21.3	17.7 ± 0.7 16.4–18.5	16.6 ± 0.7 14.8–17.8	17.5 ± 0.6 16.6–18.9	20.3 ± 1.1 18.2–22.1	12.5 ± 0.6 11.7–13.4

Forearm length	11.9 ± 1.2 9.8–13.3	14.1 ± 1.9 12.4–18.6	10.9 ± 1.4 8.8–14.1	10.9 ± 0.4 10.4–11.5	11.8 ± 0.6 10.4–12.6	11.0 ± 0.6 10.1–11.9	12.8 ± 0.7 11.6–13.7
							8.3 ± 0.6 7.6–9.6
Femur length	29.0 ± 1.8 26.6–31.8	39.7 ± 3.3 34.5–44.2	27.8 ± 3.1 22.6–34.0	26.2 ± 0.8 23.0–27.5	26.5 ± 1.1 24.0–29.2	28.5 ± 1.1 26.3–30.3	34.5 ± 1.7 30.9–37.2
							22.0 ± 1.1 20.4–23.7
Tibia length	32.4 ± 2.2 29.0–34.9	43.4 ± 3.5 36.8–47.7	30.6 ± 3.4 25.1–37.6	27.6 ± 0.7 26.3–28.6	28.87 ± 1.3 25.6–31.8	30.2 ± 1.0 28.7–31.6	37.0 ± 2.1 32.5–40.4
							24.9 ± 1.5 23.1–27.2
Tarsus length	16.7 ± 1.2 15.0–18.2	24.0 ± 1.8 20.7–26.5	17.5 ± 2.0 14.0–21.3	16.0 ± 0.8 13.4–16.9	15.7 ± 0.8 14.0–17.2	17.2 ± 0.7 16.1–18.5	20.6 ± 1.0 18.6–22.7
							13.8 ± 0.7 12.9–15.0
Foot length	26.6 ± 1.5 24.3–28.8	40.3 ± 3.6 33.9–46.6	27.7 ± 3.6 22.6–34.9	26.0 ± 1.1 21.5–27.7	24.5 ± 1.4 21.1–26.6	27.7 ± 1.2 25.6–30.2	34.7 ± 1.8 32.0–38.1
							22.1 ± 0.8 20.7–23.1
Hand length	17.3 ± 1.0 15.6–18.9	24.8 ± 2.0 21.8–27.8	17.3 ± 2.0 14.1–22.0	19.2 ± 0.7 18.0–20.1	15.8 ± 0.8 14.2–18.4	17.0 ± 0.8 16.0–18.2	23.1 ± 1.4 20.9–25.7
							10.9 ± 0.4 10.1–11.5
Toe IV length	25.9 ± 2.9 20.9–26.6	39.4 ± 0.6 38.7–39.9	27.8 ± 2.2 22.9–32.6	22.0 ± 1.5 18.5–25.6	22.3 ± 1.3 19.0–24.3	23.8 ± 1.5 20.8–26.8	27.7 ± 4.0 22.9–32.1
							19.9 ± 1.2 18.3–21.4
Finger III length	11.9 ± 0.8 10.4–12.9	19.4 ± 1.8 17.1–20.3	13.2 ± 0.9 11.4–14.7	12.8 ± 0.9 11.0–15.1	11.8 ± 0.8 10.4–13.5	12.0 ± 1.0 10.6–13.5	16.5 ± 1.0 14.2–18.8
							7.1 ± 0.3 6.6–7.7
Nuptial pad length	7.0 ± 0.5 6.0–7.9	9.5 ± 1.4 8.0–12.4	7.9 ± 1.1 6.4–10.3	7.4 ± 0.6 5.9–8.2	7.2 ± 0.4 6.3–7.8	8.0 ± 0.5 7.3–8.9	9.3 ± 0.6 8.2–10.1
							6.7 ± 0.4 5.9–7.2
Toe IV Disc width	1.6 ± 0.3 0.9–2.1	2.5 ± 0.2 2.1–2.8	1.9 ± 0.3 1.4–2.6	1.8 ± 0.1 1.7–1.9	1.7 ± 0.2 1.3–2.1	2.0 ± 0.2 1.6–2.4	2.2 ± 0.2 1.5–2.5
							1.5 ± 0.2 1.2–1.9
Finger III Disc width	2.8 ± 0.5 2.0–3.4	4.0 ± 0.5 3.3–4.6	3.1 ± 0.5 2.0–4.3	3.8 ± 0.2 3.5–4.3	2.8 ± 0.2 2.2–3.2	3.3 ± 0.3 2.7–3.8	4.5 ± 0.3 3.9–5.1
							1.2 ± 0.2 1.0–1.5

1381

1382

FIGURE CAPTIONS

1383 FIG. 1—(A) Distributions of the eight species of the Philippine endemic genus *Sanguirana*
1384 with vouchered localities indicated with symbols colored when corresponding to genetic samples;
1385 white in cases were no genetic data are available; “m” = type locality of *Rana mearnsi* (Baganga
1386 River); “a” = type locality of *Rana everetti albotuberculata* (Cabalian); Pleistocene Aggregate
1387 Island Complexes (PAICs; Brown and Diesmos, 2009) indicated with incremental gray shading
1388 (key). (B) Multilocus Bayesian phylogenetic estimate of evolutionary relationships in the genus
1389 *Sanguirana* (from Brown et al. 2016); Black dots at nodes indicate strongly supported clades
1390 (Likelihood bootstraps $\geq 70\%$; posterior probabilities ≥ 0.95); gray node moderately supported,
1391 ($<70\% >0.90$); symbols at branch tips correspond to those plotted on map (A) and question marks
1392 at tree tips indicate populations of uncertain taxonomic status. See text and Brown et al. (2016) for
1393 additional details.

1394

1395 FIG. 2—Live male (A) and female (B) *Sanguirana mearnsi* (formerly *S. albotuberculata*
1396 [Inger 1954; Brown et al. 2000a, 2016]) from the municipalities of (A) Burauen, Leyte Island,
1397 Leyte Province (deposited at KU: RMB Field No. 21807; Photo: J. Fernandez) and (B) Gingoog
1398 City, Mindanao Island, Misamis Oriental Province (KU 333014; Photo: RMB). Note thickened,
1399 dorsolateral dermal folds and rugose texture of skin (the result of densely distributed keratinized
1400 asperities) in males (both character states reduced in female) and the distribution of green pigment
1401 throughout dorsal surfaces of males (limited to ventrolateral surfaces in females).

1402

1403 FIG. 3—Bivariate ordination of a first two components from a principal components
1404 analysis (PCA; A) and subsequent discriminant analysis of principal components (DAPC; B) for
1405 14 continuously varying morphometric variables (males only) selected by each variable’s within-
1406 species/OTU linear coefficient when regressed against SVL. Character loadings (Table 1) indicate
1407 that distal limb dimensions contributed disproportionately to PC 1, whereas dimensions related to

1408 head length contributed heavily to dispersion along PC 2. See text for character definitions; pale
1409 polygon encompassing *S. acai* points added to the PCA plot (A) for emphasis; inertia ellipses
1410 included in the DAPC plot (B) for emphasis.

1411

1412 FIG. 4—Adult male *Sanguirana acai*, sp. nov., (holotype PNM 9800), and female
1413 (paratotype KU 326383) in dorsal (A) and ventral (B) views. Scale bars = 5mm.

1414

1415 FIG. 5—Details of the palmar surfaces of the hand in *Sanguirana acai*, sp. nov. (A: male
1416 holotype PNM 9800; B: female paratotype KU 326383), and plantar surface of foot (C, D, same
1417 specimens). Scale bars = 5mm.

1418

1419 FIG. 6—*Sanguirana acai*, sp. nov., in life (from the Municipality of Valencia, southern
1420 Negros Island): (A) adult male holotype (PNM 9800); (B) adult female paratotype (KU
1421 326383).

1422

1423 FIG. 7—*Sanguirana acai*, sp. nov., in life, photographed in the Municipality of Sebaste,
1424 Antique Province, Panay Island (specimen not collected) in the species' typical, stream-side
1425 vegetation perch microhabitat.

1426

1427 FIG. 8—Male advertisement call (Type 1, rattle call) of *Sanguirana acai*, sp. nov. (male
1428 paratype TNHC 62794; ML 224181), recorded from the type locality, Barangay Bongbong, the
1429 Municipality of Valencia, southern Negros Island (9 April 2001; body temperature 24° C). An
1430 expanded sonogram (A: frequency in kHz versus time in ms) and waveform (relative amplitude vs.
1431 time in ms) of two notes from mid-call, and relative power spectrum (B; from a Fast Fourier
1432 Transformation, relative amplitude vs. frequency in kHz) and a full call as depicted in an 1.8 s
1433 oscillogram (C: relative amplitude vs. time in s) and corresponding audiospectrogram (D:
1434 frequency in kHz vs. time in s) of a typical 18-note call.

1435

1436 FIG. 9—Audiospectrogram of the complex acoustic repertoires of *Sanguirana mearnsi* (A,
1437 B; from Municipality of Burauen, northern Leyte Island; KU XXX; ML XXX) and *Sanguirana*
1438 (*acai*, (C; from Lake Balinsasayo, Cuernos de Negros Mountain Range, southern Negros Island;
1439 voucher not collected, ML 224348). In both species, structured, presumably advertisement “rattle”
1440 vocalizations (Type 1 calls) differ from “chirping” frequency arcs and sweeps (Type 2 calls) of
1441 unknown function. A third vocalization, “quacks” have only been recorded in *S. mearnsi* (B); in
1442 the lower panel calls of orthopterans overlap vocalization of *S. acai* at 2.2 and 4.7 kHz.

1443