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Abstract—Expanding abbreviations is an important text
normalization technique used for the purpose of either increasing
developer comprehension or supporting the application of
natural-language-based tools for source code identifiers. This
paper closely studies abbreviations and where their expansions
occur in different software artifacts. Without abbreviation
expansion, developers will spend more time in comprehending the
code they need to update, and tools analyzing software may obtain
weak or non-generalizable results. There are numerous techniques
for expanding abbreviations, most of which struggle to reach an
average expansion accuracy of 59-62% on general source code
identifiers. In this paper, we reveal some characteristics of
abbreviations and their expansions through an empirical study of
861 abbreviation-expansion pairs extracted from S open-source
systems in addition to analyzing previous literature. We use these
characteristics to identify how current approaches may be
complementary and how their results should be reported in the
future to help maximize both our understanding of how they
compare with other expansion techniques and their
reproducibility.

Keywords— Program Comprehension, abbreviation expansion,
software maintenance, software evolution

I. INTRODUCTION

Researchers frequently use natural language processing
techniques to analyze and normalize source code identifiers for
numerous activities including bug detection [1], mining and
analyzing  software  repositories  [2]-[5], automated
documentation [6], topic modeling [7], feature location [8] and
more. Because so many techniques rely on the quality of natural
language processing tools, and identifiers contain 70% of the
characters in source code [9], it is important that they perform
well even in the face of the often imperfect and incomplete
language used in source code [10]. However, tools for Natural
Language Processing (NLP) of source code need to be more
accurate [10]-[12].

One way to increase the accuracy of natural language
analysis techniques and improve the comprehensibility of
source code is by expanding abbreviations [13], [14]. As one
example, many research techniques use Information Retrieval
(IR) approaches to help draw conclusions about software, but
the vocabulary (including abbreviations) can vary in meaning
between software projects and even in documentation written
specifically for the codebase [13], [15]. This presents a difficult
problem for automated analysis techniques because conclusions
which leverage identifier names in multiple software projects
will only generalize under the assumption that identifier names

between these projects are normalized. Part of this normalization
step must involve expanding abbreviations correctly such that
abbreviations like cfg will be correctly expanded based on
context (e.g., to configuration or context-free grammar).

As another consequence, if abbreviations are not handled
correctly by software analysis techniques that use natural
language data, there is a real risk that these techniques will
produce non-replicable results or erroneous data points.
Jongeling [12] highlights this problem in a different context;
showing that sentiment analysis tools used in software research
produce divergent conclusions because they were not trained for
the software domain. Equivalently, if it cannot be assumed that
vocabulary between source code projects is normalized, then
any analysis leveraging that vocabulary is exposed to a large
threat.

Abbreviation expansion is also important for developers.
Previous research has shown that shorter identifiers are more
difficult for developers to comprehend [16]. Additionally, this
work compared comprehension of identifiers containing words
against identifiers containing letters and/or abbreviations. Their
results found that when identifiers contained only words instead
of abbreviations or letters, developer comprehension speed
increased by 19% on average.

Although expanding some abbreviations like num to number
is not difficult, the general case is non-trivial. For example, the
abbreviation c¢fg can have multiple possible expansions in source
code, such as configure, configuration, control flow graph, or
context-free grammar. In order to address these and other related
problems, many approaches for abbreviation expansion have
been proposed previously. Using the reported accuracy of these
expansion tools, we found that the average accuracy of their
expansion abilities lie between 59-62% [17]-[19], with the
highest reported expansion accuracy being 78% [20] on a
smaller test set than the others were evaluated on.

Abbreviation expansion tools have matured over time, but
there is significant room for improvement. While reading prior
work on abbreviation expansion, we noticed that there is a lot of
variation between techniques and how they are reported. Many
publications use a different combination of metrics to evaluate
their technique, researchers have implemented these techniques
using everything from regular expressions to language models
to string-matching approximation algorithms, and each
technique has types of abbreviations on which its performance
is strong and types on which its performance is weak. Further,
each technique uses its own mixture of software artifacts from
which expansions are gathered.
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Table 1. Syntax-Based Abbreviation Categorizations

Category Abb,?;;:tlon Definition Example
Abbreviation of a single word that is strictly a prefix of the | Pub — Public
Prefix full word; formed by dropping letters from the end of the full | Attr — Attribute
Single word Abbrev — Abbreviation
Word Abbreviation of a single word that is formed by dropping | Cfg —Configure
Dropped Letter | letters from anywhere within the full word except the first | Ln — Line
letter Tty — Teletype
Abbreviation made from the first letters of multiple words. Kv — Key value
Acronym Ip — Internet protocol
Multi Vr — Virtual reality
Word L Abbreviation made by dropping letters from multiple words | Oid — Object Identifier
Combination o
. StdDev—Standard Deviation
Multi-word .
Arg — access rights

This opens two big questions: 1) What are the
characteristics of abbreviations/expansions in software
artifacts and how much can these characteristics influence the
quality of expansion techniques? and 2) Can we use these our
data on these characteristics to improve how we conduct and
report research on expanding abbreviations in the future?
Published techniques differ in the quality of their expansion for
different types of abbreviations in different types of software
artifacts. To begin understanding why, we first have to
understand what these characteristics look like and then
compare this to the way these techniques are discussed and
reported in their original publications. By doing this, we can
reflect on how the data (or lack thereof) presented in these
publications helps, or hurts our ability to fully understand their
strengths and weaknesses. In addition, we can begin
understanding what different types of abbreviations and
expansions look like in different locations such that future
techniques can take advantage of this knowledge to improve on
prior literature.

Therefore, in this paper, we take two steps. 1) Using
characteristics of abbreviations and expansions derived from
previous literature, and a gold set of abbreviations and
expansions manually derived by the authors, we study what
typical abbreviations and expansions look like in different
software artifacts, thereby creating a ground truth. 2) Using the
ground truth from the previous step as a baseline, we examine
the evaluation methodology used by previous literature to
understand how our characteristics influence their quality and
determine whether these characteristics are properly accounted
for and reported.

Our goal is to analyze what these characteristics look like in
general and use this as a baseline to highlight strengths and
weaknesses in the way expansion techniques and the software
artifacts they use are evaluated. One of the main takeaways from
this paper is a set of characteristics that future abbreviation
expansion techniques should properly account for and report in
order to improve expansion recall/precision as well as
contextualize strengths/weaknesses of the approach. To the
authors’ knowledge, no other existing literature has performed a
similar analysis.

II. ABBREVIATIONS IN SOFTWARE

Abbreviations are sequences of characters that can be
expanded to a larger word or phrase. In this work, we define a
software artifact as any by-product of software development
including the code or any documentation which describes the

code (e.g., behavior, design, architecture) or process used to
produce the code. Developers use natural language (e.g.,
English) to convey meaning to other humans in source code. As
a developer writes code, they ultimately construct identifiers,
comments, and documentation using words that indicate the role
or behavior of a part of the software they are constructing. As
the creation of documentation and identifier names is a partially
subjective activity, developers are unrestricted in what words to
use. Some words that developers choose to use are
abbreviations.

Expanding abbreviations has been the topic of numerous
research papers [17]-[19], [20]. For example, an approach to
automatically expand abbreviations might have the following
steps: 1) detect abbreviation in an identifier; 2) look for
expansion in surrounding code, comment, documentation, or
dictionary; 3) expand abbreviation to its natural language word
or phrase.

Expanding abbreviations is typically carried out as a part of
word preprocessing alongside other steps such as splitting,
stemming, tokenization, etc. For activities that involve
information retrieval or natural language text analysis,
abbreviation expansion adds more information to the corpus;
giving these techniques more data to work with. Previous work
by Hill, et al. [19] categorizes different types of abbreviations
based solely on an abbreviation’s syntax. They broadly
categorize abbreviations as Single Word and Multi-Word
abbreviations. Each of these breaks into two additional sub-
categories. This taxonomy, and examples of each abbreviation
type, are shown in Table I. Typically, the accuracy of current
approaches to expanding abbreviations varies depending on the
type of abbreviation being expanded [17], [19], [21].

III. EXPERIMENTAL STUDY

What are the characteristics of abbreviations and expansions
found in different software artifacts? If we were expanding a
domain term, such as JSON, would it be more likely to occur in
project documentation than in the source code or comments? Or
perhaps acronym expansions occur more frequently in language
documentation than any other software artifact. To reduce false-
positive expansions and find expansions as quickly as possible,
abbreviation expansion techniques should be specialized to look
where the expansion is most likely to occur first. These kinds of
optimizations can only be done if expansion techniques
understand the characteristics of abbreviations and expansions
found in different software artifacts.



Table I1. System Statistics

System Primary Size # Unique # Uni.qu'e Comment Density (in Pl:oje?t Document
Name Language(s) | (KLOC) | Abbreviations Abbreviation- #comments per 1 Density (in #words per 1
Expansions KLOC) KLOC)
Wycheproof Java 9 126 156 134 439
Telegram Java, C 781 143 164 14 4201
OpenOffice C++, Java 4462 129 143 161 1410
Enscript C 59 132 156 77 245
KDevelop C++ 259 189 242 88 7428
Sum/Total 5570 719 861 474 13723

A. Research Methodology

To begin studying these characteristics, we divided our
methodology into four stages.

Collect a set of projects from which we will manually obtain

abbreviations and expansions.

2. Manually split and expand identifiers which contain an
abbreviation; verify the split and expansion(s).

3. Partially automated collection of Wycheproof, Telegram,
Open Office, Enscript, and KDevelop project documentation
using Unix’s wget command when required.

4. Partially automated collection of C++', Java?, and C3
language documentation using Unix’s wget command.

5. Automated search of all forms of documentation and source
code for expansions manually collected and verified by
authors.

We rely on srcML [22] for all automated collection,
grouping, and preprocessing of identifiers and comments.
srcML is a markup language that blends AST information into
source code. Thus, it allows us to find identifiers and statically
compute where these identifiers occur (e.g., in a class, function).

B. Collecting Systems and Abbreviated Identifiers

In the first step, we pick a set of 5 systems on the following
three criteria: 1) written in C++, Java, C#, or C due to our
reliance on srcML. 2) They must contain abbreviations. Our goal
was to collect at least 100 unique abbreviations per system (for
a total of 500; other abbreviation papers generally evaluate with
~200-250), so 500 is in-line with prior work. 3) We looked for
small, medium and large systems (in terms of KLOC) to see how
the size/maturity of a system affects the location of its
expansions. The sizes of the systems we selected are in Table II.
To select abbreviations to include in the study, the annotators
chose a file from each system at random and then went from the
top of the file to the bottom, collecting all abbreviations they
could find before reaching the end of the file.

To collect abbreviations from each selected file, three of the
authors separately scanned the source code manually and
collected information on identifiers that contain abbreviations.
Whenever an identifier was collected, it was manually split and
abbreviations within the identifier were expanded by hand. Each
author reviewed the expansions of the other two authors.
Abbreviations with disagreement over a split or expansion were
discussed between the authors. There were no expansions that
the authors were unable to come to an agreement on. The
manually derived data set is provided and discussed here [23].

C. Sources of possible expansions

We use different software artifacts to find expansions for the
abbreviations we collected. These sources are as follows: The
source code, comments, project documentation, programming
language documentation, a computer science dictionary [24],
and an English [25] dictionary— both used in previous literature
[17],[19].

For project-level documentation, we used any
documentation included as part of the system’s main source
code repository and any of the online documentation hosted by
the system’s governing body. For example, Telegram’s
documentation is a set of API docs available through the
webpage at [26], since there were no documents hosted in their
repository. In the case where we needed documentation from an
online source, we used the Unix command wget to crawl the
webpage for documentation. All documentation available on the
page was collected, however, there is a chance that, if some
documentation was hosted on a different domain, it was missed
since we instructed wget not to leave the domain we originally
provided it to avoid crawling unintended websites.

D. Preprocessing software artifacts and Finding Expansions

Every artifact except the Computer Science and English
dictionaries require varying amounts of preprocessing so they
can be used for analysis. The first preprocessing step is to apply
standard text normalization techniques: 1) remove all
punctuation and special characters, 2) conservatively split on
camelCase, under_scores, and numbers, and 3) convert all
characters to lower case. As discussed earlier, we use srcML and
a specialized (for srceML) version of libxm12’s SAX (Simple API
for XML) parser to collect all required information about
identifiers, comments, functions, and classes.

One problem with identifiers/comments in the source code,
and words in project/language documents is that words in a
multi-word expansion do not necessarily appear adjacent to one
another (i.e., no words between them). Take the following
example. Let us say we have an abbreviation named ‘SpecRef’,
which expands to Specification Reference. If we want to find the
expansion, we must find the word Specification and the word
Reference. Naively, we could search for the string
“Specification Reference”, but there is no reason to assume that
they occur right next (i.e., adjacent) to one another. They could
appear several words apart within a document. For example,
“This reference variable handles all access to the specification
data”. For this reason, we keep track of the position of all words
in the software artifacts so that we can determine when we have

! https://en.cppreference.com/w/

2 https://docs.oracle.com/javase/8/docs/

3 https://en.cppreference.com/w/c/language



expanded an abbreviation using terms that are adjacent or if we
have expanded an abbreviation using terms that are not adjacent.
The final step is to take the expansions and abbreviations that
were manually collected and match them in one or more of our
software artifacts. To do this, we use the following workflow:

1. Take an abbreviation and its expansion(s).

2. Scan the entire body of code for the project that corresponds
with the current abbreviation/expansion(s) and record
where we match the expansion and where we see the
abbreviation (e.g., in a method, as part of a type name, etc).

3. Check the system and language documentation position lists
and record whether we match the expansion.

4. Check the computer science and English dictionaries and
record whether we match the expansion.

IV. EXPERIMENTAL RESULTS

Using the methodology described in the previous section, we
answer our research questions (specified below) by examining
five systems and measuring three characteristics; two of which
(i.e., 1 and 3) are motivated by previous literature on expanding
abbreviations and one of which we derive from this study. These
characteristics are: 1) Distributions of expansions in different
artifacts, 2) adjacency of terms constituting multi-term
expansions (e.g., acronyms) in different artifacts, and 3)
distribution of expansions for abbreviations of different types in
different artifacts. The answers to these Research Questions are
later used in Section VI to understand how characteristics of
abbreviations/expansions in different artifacts affect techniques
that expand abbreviations. They are additionally used to
highlight what characteristics future expansion techniques
should focus on in both their implementation and in the data
reported after evaluation.

First, we provide some statistics on the data we collected for
each system. As discussed above, we manually collected and
expanded abbreviations for the five systems analyzed in our
study. Table II shows each system, the number of unique
abbreviations and the number of unique expansions. Because
each system may have different amounts of documentation and
identifiers to search for abbreviation expansions, we are careful
in drawing conclusions from raw numbers of expansions found
in each location. For example, if we find very few expansions in
comments, we might think that comments for some system are
a bad source of expansions. However, we must consider the
situation where the system has few or no comments; this would
obviously cause the number of comment-born expansions to be
low. This situation only applies to artifacts that vary in size
between systems. For this reason, we calculated comment and
project document density per 1 KLOC, presented in Table II. We
will refer to this table when such context is required to
understand the results.

A. RQI: What is the distribution of abbreviation expansions
across all artifacts?

To answer this question, we look at frequency counts for the
number of abbreviations found within each artifact. This data is
broken down per system in Table III and Table IV. Note that in
Table IV, we include counts for when we found the words in an
expansion adjacent (i.e., next to) to one another and for when we
found them either adjacent or non-adjacent (i.e., anywhere). The
values in these tables were obtained by recording every location

where we found the full expansion. For example, if the acronym
kv expands to key value, we needed to match both the words key
and value in the same place (e.g., type declaration) for it to
count. The percentage in parenthesis next to each value is
obtained by dividing the given value by the number of unique
abbreviation-expansions (Table II) for the corresponding
system. For example, the 70.6% for Open Office adjacent
comments is obtained by evaluating 101/143. Additionally, we
provide the total, mean, median, and standard deviation.

To begin, we will look at Figure 2 and Figure 1 to get a high-
level view of the data. Figure 2 shows the distribution of where
expansions were found each software artifact. All in all, 3067
non-unique expansions (i.e., one expansion can occur in
multiple artifacts) are in this set. Figure 1 shows the distribution
of unique expansions (i.c., expansions that were found in only
one artifact) of which there were 69. Figure 2 shows that the
language documentation had the highest number of expansions
followed by function body, project documentation, and the
English dictionary. If we compare this to Figure 1, we notice that
language documentation also contained the most unique
expansions. That is, it contained the most expansions that did
not appear anywhere else. The next two highest sources of
unique expansions were the project’s documentation and
function names.

The tables give a finer-grain view of the data in the figures;
we will analyze these now. We start with Table III, which
contains counts for the number of expansions found in different
parts of the source code. The first five categories present
expansions found in the:

1. Type/name of declarations (e.g., String keyMaterial;, where
String is the type and keyMaterial is the name and words in
the type and name are expansion candidates.

2. Function parameter type/names.

3. Expressions such as ctHex = ciphertext;, or doFinal(test)
where ct, hex, cipher, text, do, final, and test would be
expansion candidates.

These categories are strict in that the full expansion needed
to be found in the corresponding location (e.g., fully within the
type, fully within a declaration name). In some cases, different
parts of an expansion appeared in different locations (e.g., one
part in a type and one part in a name); these are recorded in the
last three categories: functions/methods, class name/field, or
globals, since even if one part of an expansion is in a type, and
one part is in a name, the full expansion still occurred within 1)
the body of a function, 2) the field/name of a class or 3) in global
scope. Note that if an expansion is found in a method (i.e., a
function in a class), it is not recorded as being in a class; the
function, class, and global categories are mutually exclusive.

The results in Table III show the function category
performed best in terms of consistency. This result is not
surprising; functions are where most identifiers are found so it
is natural that they have a high number of expansions compared
to finer levels of granularity (i.e., the first five categories) and
even classes/globals (recall that expansions in methods are not
counted for classes).

We now look at non-source-code artifacts. These are in
Table IV. The data shows that the language documentation has
the highest frequency of expansions most consistently. This
indicates that the language documentation tended to perform
well in all projects big or small, likely because language



Table II1. Total Number of Expansions Found per System in Source Code Identifiers.

Type Type Name Name Name Functions and Class Global
(declarations) |(parameters)| (declarations) |(parameters) (expr) Methods Name/Field
Enscript 53 (34%) 20 (12.8%) 63 (40.4%) 25 (16%) 69 (44.2%) 75 (48.1%) 49 (31.4%) | 67 (42.9%)
KDevelop 125 (51.7%) | 108 (44.6%) | 161 (66.5%) | 121 (50%) | 144 (59.5%) | 161 (66.5%) | 120 (49.6%) | 157 (64.9%)
Open Office 104 (72.7%) | 100 (69.9%) | 106 (74.1%) | 98 (68.5%) | 107 (74.8%) | 108 (75.5%) | 105 (73.4%) | 105 (73.4%)
Telegram 99 (60.4%) 75 (45.7%) | 112 (68.3%) | 103 (62.8%) | 112 (68.3%) | 122 (74.4%) | 111 (67.7%) | 102 (62.2%)
Wycheproof 30 (19.2%) 16 (10.3%) 29 (18.6%) 12 (7.7%) 13 (8.3%) 39 (25%) 17 (10.9%) 0
Total 411 319 445 359 445 505 402 434
Mean 82.20 63.80 89.00 71.80 89.00 101.00 80.40 86.80
Median 99.00 75.00 107.00 98.00 107.00 108.00 105.00 102.00
StdDev 39.26 43.57 50.13 49.62 50.13 46.40 45.04 56.80

Table IV. Total Number of Expansions

Found per System in Comments, project, language, CS, and English corpora

Comments Comments Project Project Language Language . . .
(anywhere) (adjacent) (anywhere) (adjacent) (anywhere) (adjacent) el Rl EhDIcE
Enscript 35 (22.4%) 32 (20.5%) 77 (49.4%) 67 (42.9%) | 141 (90.4%) | 129 (82.7%) |55 (35.3%)| 110 (70.5%)
KDevelop 104 (43%) 103 (42.6%) 225 (93%) 205 (84.7%) | 222 (91.7%) | 194 (80.2%) |94 (38.8%)| 171 (70.7%)
Open Office | 105 (73.4%) 101 (70.6%) 127 (88.8%) | 124 (86.7%) | 121 (84.6%) 113 (79%) |54 (37.8%)| 98 (68.5%)
Telegram 108 (65.9%) 104 (63.4%) 126 (76.8%) | 108 (65.9%) | 149 (90.9%) | 126 (76.8%) |55 (33.5%)| 110 (67.1%)
Wycheproof | 38 (24.4%) 37 (23.7%) 45 (28.8%) 39 (25%) 95 (60.9%) 69 (44.2%) |32 (20.5%)| 51 (32.7%)
Total 390 377 600 543 728 631 290 540
Mean 78.00 75.40 120.00 108.60 145.60 126.20 58.00 108.00
Median 104.00 101.00 126.00 108.00 141.00 126.00 55.00 110.00
StdDev 37.93 37.39 68.16 63.45 47.53 44.86 22.39 42.80

English Dictionary

Function Name

English Dictionary

Function Body & Params

Comments

Project Documentation

Language Documentation

Figure 1. Where Do Abbreviation Expansions Uniquely
Occur? (Total of 69)

documentation in C, C++, Java, have had a long period of time
to mature are of high quality. Turning to the CS and English
dictionaries briefly-- while many expansions are available in
these dictionaries, they suffer one major drawback: They contain
no domain/system information, which is important for
expansion [27].

These dictionaries are necessarily system and domain agnostic
(perhaps less-so for the CS dictionary), meaning that a tool that
wants to find expansions in these dictionaries may have a harder
time choosing between multiple, equally likely expansion
candidates. That is, the information surrounding potential
expansion candidates can help a tool in choosing which
expansion is appropriate and these dictionaries may lack some
of that information. Language documentation suffers some of

CS Dictionary

Function Name

15.6%

17.1%

Global
Class Name/Field

Comments

Project D

Figure 2. Where Do Abbreviation Expansions Occur?
(Total of 3067)

the same drawbacks but to a lesser extent. For example, Java’s
cryptography library documentation has domain information for
cryptography but not project-specific information.

Interestingly, there does not seem to be any clear correlation
between comment/project density (Table II) and the number of
expansions found in comments or project documents. For
example, Telegram has low comment density but more
percentage-wise comment expansions than Enscript and
KDevelop (Table IV), both of which had higher comment
density. This implies that increased comment or projects
document density does not necessarily mean more expansions
will appear; the number of expansions found may have more to
do with specific documentation and commenting practices.
More research is required to determine what these practices are.



Table V. Number of Non-Adjacent Multi-Word

Expansions
Type Type |[Name |Name | Name Total
(params) | (decls) |(decls) |(expr) |(params)
Enscript 0 3 4 3 1 11
KDevelop 5 5 8 7 7 32
Open Office 9 6 5 6 6 32
Telegram 8 9 9 8 7 41
Wycheproof] 6 6 11 2 7 32

Table VI. Total Number of Abbreviations per Category

Acronym Combo.| Prefix (Total
Wycheproof |41 (38.3%) (22 (20.6%)|3 (2.8%) | 41 (38.3%) | 107

Open Office 22 (16.7%) |34 (25.8%)| 4 (3%) | 72 (54.5%) | 132

Dropped

KDevelop | 33 (14%) |60 (25.5%) |4 (1.7%) | 138(58.7%) | 235
Telegram |38 (23.9%) (33 (20.8%)| 0 (0%) | 88 (55.3%) | 159
Enscript |23 (15.2%) |46 (30.5%)|1 (0.7%)| 81 (53.6%) | 151

The answer to RQI is that the language documentation,
project documentation, and source code contain a similar
distribution of expansions (23.9%, 19.6%, and 17.5%
respectively from Figure 2) when we are not considering
uniqueness. If we consider only expansions that occur in one
place, language documentation has the largest share of the
distribution at 69.6% (Figure 1), with project documentation
coming in second place. The distributions in these figures
highlight the importance of both source code and external
software artifacts for expanding abbreviations and give us an
idea of what the typical distribution of expansions looks like
across multiple artifacts.

B. RQ2: Do words that make up abbreviation expansions
typically occur adjacent to one another?

One aspect of finding abbreviation expansions that is not
commonly explicitly discussed is the fact that words in an
expansion do not always appear adjacent to one another. For
example, the identifier ptHex in Wycheproof expands to
plaintext hexadecimal. However, the words ‘plaintext’ and
‘hexadecimal’ do not occur next to one another in their
expanded forms; there are other words between them. The
question is whether this happens frequently or not. If it is
frequent, then approaches that automatically expand identifiers
will need to consider this when trying to find appropriate
expansion candidates.

To answer this research question, we will turn our attention
to Table IV and Table V. The only software artifacts where
adjacency is an issue are language documentation, project
documentation, comments, and source code (e.g., part of an
expansion found in type name and other part is found in
declaration name). Table IV has data about the frequency of
adjacency between terms in expansions in the project
documentation, language documentation, and comments.
Looking at language and project documentation, most multi-
word expansions were adjacent to one another overall. The
largest difference was found in Telegram and Wycheproof,
where the anywhere project documentation column matched 18
(~10%) more expansions than the adjacent in Telegram and the
anywhere language documentation column matched 25 (~16%)

more in Wycheproof. Notably, the effect of adjacency is much
less pronounced in comments.

While assuming adjacency will still allow an approach to
find most expansions, there are some expansions that may only
be reachable by considering non-adjacent words for expansions.
Therefore, to get the maximum number of expansions available,
especially in project and language documentation, we require a
technique that deals with lack of word adjacency. One issue with
considering non-adjacent words is how can we tell if two words
are related to one another (i.e., part of the same expansion) if
they are not adjacent? This is a question that will need to be
addressed when expanding using non-adjacent words. Next, we
look at Table V, which contains data about multi-word
expansions that were non-adjacent to one another in source
code. This is similar to the data in Table III but only counts
multi-word expansions, where Table III records single-word
expansions as well as multi-word. There was a total of 148
expansions found in source code that were made up of multiple
words. We define adjacency in source code slightly differently
than in free text. We consider words in an expansion adjacent in
source code if they occurred in the same location (e.g., both in a
declaration type, both in a declaration name). Adjacency is
generally limited to words occurring on the same line of code
(e.g., words that do not appear on the same line but do appear
within the same function are not considered adjacent).

If we take the number of non-adjacent multi-word
expansions and divide by the total number of expansions that
were found in source code (148/798; we get 798 by removing
expansions from non-source-code artifacts), we find that ~19%
of all abbreviation expansions are multi-word and non-adjacent.

The answer to RQ?2 is that non-adjacent expansions tend to
occur in the source code, project, and language documentation
and there is a notable lack of them in comments. From the
perspective of the code, 19% of multi-word expansions are non-
adjacent. Additionally, in project and language documentation,
considering words that are non-adjacent can increase the
number of abbreviations you are able to expand by 10-16% in
three of the five systems we studied (Table IV). Given this, it is
important to understand the effectiveness on a tool on adjacent
and non-adjacent expansions as the tools effectiveness on
different systems/software artifacts will decay if it is ineffective.

C. RQ3: Do expansions for abbreviations of varying type
occur in some artifacts more often than others?

Different types of abbreviations require different techniques
for performing the expansion. Prefix abbreviations are the
simplest to expand whereas combination multi-word is the
hardest [2]. We created a small program to automatically
categorize abbreviations as one of the four categories first
introduced in Table I. It simply looks at the form of the
abbreviation versus its expansion (i.e., the expansions we
manually obtained) to perform the categorization. We manually
checked the results of the categorization to make sure the
algorithm worked properly. We present the total number of
abbreviations in each category in Table VI. The results of the
categorization are broken down in Table VII, which contains the
results for abbreviation types found in the source code, and
Table VIII, which presents the results for abbreviation types
found in documentation.

Starting with Table VII, prefix abbreviations are the most
common everywhere within the source code. Dropped-letter



Table VII. Frequency at which Different Types of Abbreviations Occur in Different Source Code Locations

(decl:;z'];)fions) (p:g;:fls) (decﬁi?t?ons) (pIZ:;nlrfs) Name (expr) a:(;l ll:’izlt(l)ll:)sds Nar?lle?;‘sield i
Prefix 273 (65.5%) (219 (52.5%)| 314 (75.3%) |244 (58.5%)|305 (73.1%)| 335 (80.3%) |283 (67.9%) [303(72.7%)
Dropped 92 (51.1%) | 70 (38.9%) | 104 (57.8%) | 82(45.6%) | 99 (55%) | 111 (61.7%) | 84 (46.7%) |94 (52.2%)
Acronym 46 (29.3%) | 30(19.1%) | 53 (33.8%) 33 (21%) | 41(26.1%) | 59 (37.6%) | 35(22.3%) |37 (23.6%)
Combo Multi-word 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Table VIII. Frequency at which Different Types of Abbreviations Occur in Different Software Artifacts

gﬁ?ﬁiﬁg (all:;;)&llige) éﬁ;ﬁ'ﬁiﬁﬁ) ESIES English Dict.

Prefix 275 (65.9%) 351 (84.2%) 411 (98.6%) 193 (46.3%) 407 (97.6%)

Dropped 80 (44.4%) 134 (74.4%) 162 (90%) 61 (33.9%) 116 (64.4%)
Acronym 34 (21.7%) 106 (67.5%) 147 (93.6%) 34 (21.7%) 0 (0%)
Combo Multi-word 1 (8.3%) 9 (75%) 8 (66.7%) 1 (8.3%) 0 (0%)

Table IX. Techniques that Report Overall Accuracy. ** =
Technique reports combined split/expansion accuracy

Original Publication Maximun;l:ceflf:':;d el
Lawrie 2011[18] 66%
Lawrie 2007 [28] 64%
Alatawi [20] 78.%
Tidier [29] 48%
**Tris [30] 86%

Table X. Techniques that Report Accuracy per

Abbreviation Type
Prefix | Dropped | Acronym | Combo Overall
Accuracy
AMAP[19] | 79.7% | T7% 46.9% 9.2% 63%
LINSEN[17]| 86% 77.8% 36% 66.7% 62%

Table XI. Techniques that Report Overall Precision and
Recall. ** = Technique reports combined split/expansion
accuracy, N/A = Not reported

Average | Average F- Overall

Precision| Recall | Measure | Accuracy
**Tris[30] 95% 91% 92% 86%
Jiang[21] 95% 65% N/A N/A
Lingua::IdSplitter [31]| 86% 86% 89% 83%

Table XII. Techniques that Report Precision per
Abbreviation Type (did not report recall per abbrev type)

Prefix Dropped Acronym

Precision| Precision Precision
Jiang [21] Param Name 97% 79% 96%
Jiang [21] Param Type 100% N/A 98%

abbreviations are second, acronyms are third, and there were 0
combination multi-words-- it is worth noting that we collected
extremely few of these; only 12 in total across all systems. The
frequency of dropped-letter and prefix abbreviations in the code

is expected as is the relatively low number of acronyms and
combo-word abbreviations.

The more interesting patterns are found in Table VIII, where
we are looking at documentation. Prefix abbreviations are the
most popular, but by a slimmer margin. There are many more
acronyms, with the most appearing in the language documents.
Additionally, we find our multi-combination words in this table;
with the most showing up in the project and language
documents. In fact, the project and language documentation had
very similar distributions of this abbreviation type (though, of
course, we found very few multi-combination abbreviations).
There are a few takeaways we can glean from this data. The first
is that documentation will require more varied methods of
matching and filtering candidate abbreviation expansions;
especially language and project documents. The second is that
most expansions found in source code are single-word, since
prefix and dropped-letter abbreviations (which are the single-
word categories - Table I) are far more common than the others.
This means that when these approaches are using information
found in the source code, they should first assume that
abbreviations that could go either way (i.e., could be single word
or multi-word) are single-word and, if that assumption fails, then
investigate multi-word options.

To answer RQ3: Yes, different types of abbreviations and
their expansions are more likely to appear in source code versus
documentation. One takeaway for this characteristic is that tools
should give higher probability to expansions for types of
abbreviations that are more likely to appear given the artifact
being searched. For example, one should weight acronyms as
more likely in language documentation than source code. This
will cut down on false positives when choosing between multiple
candidate expansions. Additionally, knowing that certain
abbreviation types are more likely to appear in a given artifact
ahead of time allows for choosing appropriate expansion
techniques to handle increased probability of seeing those
abbreviation types and their expansions.

V. REVIEW OF ABBREVIATION EXPANSION TECHNIQUES

We reviewed previous literature on techniques that expand
abbreviations. We contextualize our review using the data from



Table XIII. Software Artifacts used in Techniques in
Literature Review

expansion [27]. Guerrouj et al. [30] also propose TRIS, an
approach which pre-compiles a set of dictionary words into a

tree representation and associates a cost to each
[30] [ [217 | (18] | [28] | [20] | [19] | [17] |[291][31]| transformation. It treats the splitting/expansion problem as
Source code slvlvlvlvlvlvlvlyl optimization problem; optimizing splitting/expansion by
identifiers treating it as a shortest path problem. They report that TRIS
is more accurate compared to other splitting/expansion
Comments VY VIV approaches [18]. However, they do not report a specific
Project Y v expansion accuracy. Instead, they report splitting accuracy
Documentation because their technique splits and, if needed, also expands
Language ¥ ¥ abbreviations. . '
Documentation Alatawi et al. [20] proposed a bigram based inference
C - model that utilizes unigram statistical properties to retrieve
omputer Science i .
e e /| v Jlvlv the orlglnal form of the words' in the' source code
data automatically. They evaluate their technique using a
English randomly selected set of 100 abbreviations and report an
L2, L. accuracy of 78% .
g;:;mnary/trammg v ViYoY VYV Jiang et al [21] propose a technique for expanding

abbreviations in parameters. Their technique works off of the

the study above to help us address the goals stated in the
Introduction.

Expanding abbreviations has been the topic of numerous
research papers [17]-[21], [28]-[31]. We summarize all of
these papers in subsection A. We analyzed each technique,
looking for: 1) Which artifacts are searched. 2) Whether they
report on the adjacency or non-adjacency of multi-term
expansions in different artifacts. And 3) the reported
effectiveness on different abbreviation types. These relate to the
three characteristics highlighted in our experimental results
(i.e., RQI, RQ2, and RQ3) above and we address themin
subsections B, C and D.

A. Previous Abbreviation Expansion Techniques

Lawrie et al. [28] proposed an expansion algorithm that uses
four lists of potential expansions. They evaluate using 64
identifiers whose abbreviations were manually expanded. Later,
Lawrie and Binkley published another expansion technique [18]
which extends work in [13] and [28]; improving the abbreviation
expansion by using word co-occurrence to determine the most
likely expansion. They report an accuracy of up to 66%.

Hill et al. [19] proposed AMAP, a tool for expanding
abbreviations. They categorize types of abbreviations found in
software and describe the challenges in automatically expanding
them. Their approach used the idea of most frequent expansion
along with levels of software dictionaries to identify expansions.
They evaluated their approach on 250 abbreviations, and the
results showed an improvement of 57% in accuracy compared
to an approach by Lawrie [28].

Corazza et al. [17] proposed an approach called LINSEN
(Linear IdeNtifier Splitting and Expansion) that is used for
identifier expansion and splitting. They evaluate their expansion
approach against AMAP [19] on 250 randomly selected
abbreviations. Results show that their approach performs better
than AMAP on some types of abbreviations, with a reported
improvement of about 5% in terms of accuracy.

Guerrouj et al. [29] proposed an approach named TIDIER
(Term IDentifier RecognlzER) for recognizing words
composing source code identifiers. Part of this tool is used for
splitting/expanding identifiers, which TIDIER successfully
accomplishes in about 48% of cases studied. They additionally
show that contextual information significantly impacts identifier

observation that abbreviations in formal parameters can often be
expanded by looking at terms contained in its corresponding
actual parameter and vice versa. They report an average
precision of 95% and an average recall of 65%.

Carvalho et al [31] propose Lingua::IdSplitter, a technique
for splitting and expanding identifiers. Their approach takes
advantage of an approach they propose, which automatically
constructs a custom dictionary constructed from several
software artifacts; providing their technique with domain-
specific information and expressions that they use to help
expand abbreviations and use term frequency similar to AMAP.

B. Software Artifacts used in Technique Evaluation.

In RQ1, we saw that the frequency of expansions is nearly
evenly split between language/project documentation and in the
function body (Figure 2). Further, we found language
documentation is the most likely source that contain expansions
that occur nowhere else (Figure 1). The idea that artifacts outside
of the code contain important expansions is not new; previous
techniques have explored this idea. However, one important
question to ask is: Which techniques use which software
artifacts? How effective are they on the software artifacts that
they use? We begin to answer these questions in Table XIII. On
the left-hand side of this table are different types of software
artifacts identified through reviewing the literature on
expansions. At the top is the citation to the paper reviewed.

Interestingly, some of the most recent techniques use little,
if any, information outside of the source code [20] [21] and
report the highest accuracy [20] and precision/recall [21]
compared to the others. This implies that using more external
information does not necessarily translate into a higher-quality
expansion technique. This also does not mean that external
documentation is not important. While Jiang et. al’s technique
[21] has 95% precision, its recall averages 65%; meaning more
data sources might be required to increase its recall.

We also notice that only three papers [18], [29], [31] report
any kind of metric (e.g., accuracy, precision, recall) of their
technique at the granularity of the individual software artifacts
used by their technique, yet most techniques do use artifacts
outside of source code identifiers. Instead, most techniques
reported overall accuracy/precision/recall of their approach by
combining data from all expansions found in any software



artifact. There is a general lack of information available about
how effectively techniques found expansions in different
software artifacts. One negative to the lack of data here is that it
is difficult to tell which software artifact(s) a technique
underperformed on or if that underperformance is due to the
technique or the quality of the artifact.

C. Reported effectiveness on non-adjacent expansions

Expansions whose terms appear non-adjacent to one another
in text is not reported in previous literature. In fact, it is generally
not possible, without an implementation available, to understand
whether a technique is effective at finding expansion terms that
appear non-adjacent in different software artifacts by just
reading the paper associated with the technique. That is, even if
a paper reports effectiveness on different abbreviation types,
based on our literature review, the papers do not report
effectiveness on non-source-code artifacts, and in general, it is
then not possible to estimate effectiveness on non-adjacent
expansion terms. As shown in our data (i.e., Table III and Table
IV) and discussed in RQ2, many multi-term expansions are
found adjacent to one another. However, there is a non-trivial
number of non-adjacent expansion terms that are missed if a
given technique is ineffective (RQ2 - Section IV.B).

D. Reported effectiveness on different abbreviation types

In RQ3, we look at where expansions for different types of
abbreviations occur and find that there is a difference in the
distribution depending on which artifact we are analyzing. It is
important to know how effective a given technique is on
different abbreviation types because each abbreviation type has
different characteristics. Acronyms, for example, are more
likely to appear in project or language documentation (Table
VIII). Terms in their expansion may also appear non-adjacent to
one another. If a technique reports effectiveness without
breaking their evaluation down by abbreviation type, it is very
difficult to understand what types of artifacts this technique will
be effective on. Additionally, without reporting results at this
granularity, it is very difficult to understand how a technique
compares to others. For example, does one technique improve
on another for particular abbreviation types, or is it
complementary?

We analyzed the papers we collected to see how they report
the results of their individual evaluations; seeking to understand
if they provide this information, or, if not, we wanted to know
what information they do provide. To help with this, we grouped
techniques by which metrics they use in their evaluation. The
first group, shown in Table IX, reports overall accuracy but do
not specify accuracy on different abbreviation types [20], [28],
[29], [32]. The second group, shown in Table X, reports
accuracy with respect to each type of abbreviation (e.g., prefix,
acronym) [17], [19]. Finally, the third group, found in Table XI,
and Table XII, reports precision/recall/accuracy [21], [30], [31],
with one of them additionally reporting precision per
abbreviation type [21]. One other technique that uses
precision/recall, Tris [30], did not explicitly report precision or
recall for abbreviation expansions. Instead, Tris reports the
accuracy of their splitting technique which also performs
expansion. We were unable to ascertain the accuracy of the
expansion part of their technique separate from the splitting
technique. For this reason, we report their splitting precision and
recall, which may not be fully reflective of expansion accuracy.

Even the most recent publications fall into different groups
[17], [20], [21], [31], which implies a difference in perspective
when it comes to how these approaches should be evaluated.
While each evaluation is valid on its own, the differences cause
problems when trying to compare works, particularly in the case
where no implementation is available for a given technique, or
the technique requires significant re-tooling (which we have
found to be unfortunately common). A consistent, holistic set of
metrics would help alleviate these problems; creating a standard
by which future techniques can be more easily compared even
absent of implementation. Besides this advantage, it would also
help us understand how different approaches to expansion are
complementary and allow users of these tools to pick the one
most suited for their data set without having to try them all.
Therefore, we make a recommendation for a set of metrics,
based on previous literature and the characteristics we study in
this paper, that can be used to ease the burden of comparing and
understanding the strengths of each technique.

1. Precision, Recall, F1, and Accuracy for each abbreviation
type

2. The types of software artifacts and Precision, Recall, F1, and
Accuracy for expansions found in each artifact

3. Precision, Recall, F1, and Accuracy for expansions where
the terms are non-adjacent.

The reason for these metrics is based on a combination of
what previous work reported. That is, we combined the groups
described above since these metrics have proven valuable in
numerous, similar evaluation tasks and give us a valuable
perspective on the data. Additionally, we advocate for reporting
these metrics for each artifact type instead of in general when
possible. The reason for this is that there is very little data on the
effectiveness of expansion techniques on individual artifacts and
so it is difficult to understand how the properties of different
software artifacts affect the quality of expansion. Finally,
reporting these metrics will help support replication. Of course,
there may be situations where some of these are not applicable.
For example, reporting for individual software artifacts is not
possible if your technique uses only source code. However, we
feel it is good to have this highlighted such that when future
researchers are developing expansion techniques, they can learn
from previous literature and make an informed decision.

VI. DISCUSSION

The empirical study provides us with a general view of how
characteristics used in previous literature manifest in general
software artifacts. These characteristics are as follows: 1) the
(unique and non-unique) distribution of expansions in different
artifacts, 2) the adjacency of expansion terms in different
artifacts, and 3) the distribution of expansions for different
abbreviations types in different artifacts. We now present a
review of previous literature, aiming to use our data as a baseline
to highlight strengths and weaknesses in the way expansion
techniques are evaluated. Studying this data helps us identify
what aspects of abbreviation expansion require more thorough
investigation. We highlight our core findings below.

Word adjacency when expanding abbreviation in
different software artifacts. Word adjacency affects how easy
it is to find candidates for multi-word expansions. The further
spread apart multiple words are in a corpus (i.e., the more words
between them), the harder it is to 1) find those words and 2) the



further apart those words are, the more likely it is that they are
unrelated and so should not be used together to form a candidate
expansion. We found that 19% of expansions in the source code
are multi-word and non-adjacent while 10-16% of expansions in
non-source-code artifacts are non-adjacent.

No paper that we studied reported effectiveness on non-
adjacent expansions. In some cases, it can be inferred that a
technique is likely ineffective on non-adjacent terms. For
example, AMAP [19] makes heavy use of regular expressions to
find expansion candidates; the regular expressions discussed in
their paper were not designed for non-adjacent terms. It is not
always easy to infer this, however; motivating our suggestion
that future techniques report precision, recall, f1, and accuracy
on this characteristic. Additionally, it is an open question how
related multiple, non-adjacent terms are to one another as the
distance between them in the text grows.

Density of different expansion types in different types of
software artifacts. Expansions for different types of
abbreviations were more likely to occur in different types of
software artifacts. While prefix and dropped remain common in
most locations in our study, acronyms and, though there were
few, combo type abbreviation expansions were much more
highly likely to appear in non-source-code artifacts. This
indicates that expansion techniques that are more effective on
acronyms will be more successful in these types of artifacts and
underscores the need for more techniques to report effectiveness
at the granularity of abbreviation expansion type. While we find
that a number of techniques do report this data, there is still
disagreement on what metrics to use. Some use only accuracy,
others used precision/recall, and there was a group that did not
report at this granularity at all. Our recommendation, based on
our study, is to encourage reporting precision, recall, fl, and
accuracy at the granularity of each different abbreviation type.

Effectiveness of including different software artifacts.
Related to the previous characteristics is how much more
effective different software artifacts made the technique. Based
on our literature review, more software artifacts does not always
mean higher quality expansions, as some of the techniques
reporting the highest accuracy/precision use few external
sources [20], [21]. This does not mean that including more
artifacts is bad, but that more insight on how much different
artifacts influence the effectiveness of individual techniques
would be valuable; it would show us how different ways of
expanding abbreviations are sensitive to different inputs. It
would also add to our understanding of how different techniques
contrast or synergize with one another.

Having completed our discussion, we now have answers to
the two questions stated in the Introduction:

1) What are the characteristics of abbreviations/expansions
in software artifacts and how much can these characteristics
influence the quality of expansion techniques? The answers are
in RQs 1-3 where we discussed how much of an affect each
characteristic has on the reachability of expansions (e.g., some
expansions only appear in specific artifacts).

2) Can we use our data on these characteristics to improve
how we conduct and report research on expanding
abbreviations in the future? In Sections V and VI we show that,
despite the characteristics we discussed having a notable impact
on what expansions a technique will be able to find, they are
not always reported and even when they are, there is

disagreement in the types of metrics to use for evaluation even
among similar studies. Our data shows that these characteristics
should be reported in order to provide a holistic view of
expansion techniques and the artifacts they use.

VII. THREATS TO VALIDITY

We selected files to collect abbreviations from at random and
went from top to bottom, collecting every abbreviation we saw,
while occasionally skipping those we had seen before. It is
possible that there were abbreviations we missed due to not
recognizing them or simply not seeing them. We tried to select
systems that were not all in the same domain, varied in size, and
were written in differing languages. However, all languages we
used were still imperative and most support some form of
object-oriented programming. For this reason, our results may
not extend to systems written in, for example, functional
languages. Our sample size is 5 systems. While these systems
vary in size, domain, and language, the sample may not
generalize. However, we think the number of systems is justified
due to the manual component of the study; collecting a large set
of abbreviations is very time consuming.

In our data set, we expand some abbreviations that may not
be considered worth expanding because their abbreviation is
more well-known than their expansion (i.e., URL). One might
question if these are worth expanding. From our perspective, this
is a good question, but deciding whether an abbreviation should
be expanded is not the goal of this paper and is also likely
subjective depending on the specific use-case of abbreviation
expansion. Therefore, we do not see it as a significant threat.
While the data set was manually curated, we had to
automatically search for expansion matches in the systems that
we studied. It is possible that our automatic splitting techniques
missed some expansions or caused some false negatives (i.c., the
split was wrong). There is also a small chance that srcML’s
mark-up was incorrect in a few cases, which may have caused
us to miss a small number of expansions.

VIII. CONCLUSIONS & FUTURE WORK

In this paper, we presented an empirical study of
abbreviations and expansions in different software artifacts. We
manually collected and expanded 861 unique abbreviation-
expansions from five different open source systems. We then
used these manually expanded abbreviations to study three
characteristics derived from previous literature. Data from this
study was used to understand how different characteristics affect
the number of expandable abbreviations and to contextualize our
literature review which analyzed how prior research evaluates
abbreviation expansion techniques and how evaluation methods
can be improved in the future.

Our hope is that this work will help spur the field to report
more about the software artifacts they study as well as provide
more granular data on the characteristics we discuss above. In
the future, we would like to study potential synergy between
differing expansion techniques as well as the use of online
sources with query mechanisms (e.g., Wikipedia) for finding
expansion candidates.
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