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Abstract—Expanding abbreviations is an important text 
normalization technique used for the purpose of either increasing 
developer comprehension or supporting the application of 
natural-language-based tools for source code identifiers. This 
paper closely studies abbreviations and where their expansions 
occur in different software artifacts. Without abbreviation 
expansion, developers will spend more time in comprehending the 
code they need to update, and tools analyzing software may obtain 
weak or non-generalizable results. There are numerous techniques 
for expanding abbreviations, most of which struggle to reach an 
average expansion accuracy of 59-62% on general source code 
identifiers. In this paper, we reveal some characteristics of 
abbreviations and their expansions through an empirical study of 
861 abbreviation-expansion pairs extracted from 5 open-source 
systems in addition to analyzing previous literature. We use these 
characteristics to identify how current approaches may be 
complementary and how their results should be reported in the 
future to help maximize both our understanding of how they 
compare with other expansion techniques and their 
reproducibility. 
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I. INTRODUCTION 
Researchers frequently use natural language processing 

techniques to analyze and normalize source code identifiers for 
numerous activities including bug detection [1], mining and 
analyzing software repositories [2]–[5], automated 
documentation [6], topic modeling [7], feature location [8] and 
more. Because so many techniques rely on the quality of natural 
language processing tools, and identifiers contain 70% of the 
characters in source code [9], it is important that they perform 
well even in the face of the often imperfect and incomplete 
language used in source code [10]. However, tools for Natural 
Language Processing (NLP) of source code need to be more 
accurate [10]–[12]. 

One way to increase the accuracy of natural language 
analysis techniques and improve the comprehensibility of 
source code is by expanding abbreviations [13], [14]. As one 
example, many research techniques use Information Retrieval 
(IR) approaches to help draw conclusions about software, but 
the vocabulary (including abbreviations) can vary in meaning 
between software projects and even in documentation written 
specifically for the codebase [13], [15]. This presents a difficult 
problem for automated analysis techniques because conclusions 
which leverage identifier names in multiple software projects 
will only generalize under the assumption that identifier names 

between these projects are normalized. Part of this normalization 
step must involve expanding abbreviations correctly such that 
abbreviations like cfg will be correctly expanded based on 
context (e.g., to configuration or context-free grammar). 

As another consequence, if abbreviations are not handled 
correctly by software analysis techniques that use natural 
language data, there is a real risk that these techniques will 
produce non-replicable results or erroneous data points. 
Jongeling [12] highlights this problem in a different context; 
showing that sentiment analysis tools used in software research 
produce divergent conclusions because they were not trained for 
the software domain. Equivalently, if it cannot be assumed that 
vocabulary between source code projects is normalized, then 
any analysis leveraging that vocabulary is exposed to a large 
threat. 

Abbreviation expansion is also important for developers. 
Previous research has shown that shorter identifiers are more 
difficult for developers to comprehend [16]. Additionally, this 
work compared comprehension of identifiers containing words 
against identifiers containing letters and/or abbreviations. Their 
results found that when identifiers contained only words instead 
of abbreviations or letters, developer comprehension speed 
increased by 19% on average. 

Although expanding some abbreviations like num to number 
is not difficult, the general case is non-trivial.  For example, the 
abbreviation cfg can have multiple possible expansions in source 
code, such as configure, configuration, control flow graph, or 
context-free grammar. In order to address these and other related 
problems, many approaches for abbreviation expansion have 
been proposed previously. Using the reported accuracy of these 
expansion tools, we found that the average accuracy of their 
expansion abilities lie between 59-62% [17]–[19], with the 
highest reported expansion accuracy being 78% [20] on a 
smaller test set than the others were evaluated on.  

Abbreviation expansion tools have matured over time, but 
there is significant room for improvement. While reading prior 
work on abbreviation expansion, we noticed that there is a lot of 
variation between techniques and how they are reported. Many 
publications use a different combination of metrics to evaluate 
their technique, researchers have implemented these techniques 
using everything from regular expressions to language models 
to string-matching approximation algorithms, and each 
technique has types of abbreviations on which its performance 
is strong and types on which its performance is weak. Further, 
each technique uses its own mixture of software artifacts from 
which expansions are gathered.  
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Table I. Syntax-Based Abbreviation Categorizations 

This opens two big questions: 1) What are the 
characteristics of abbreviations/expansions in software 
artifacts and how much can these characteristics influence the 
quality of expansion techniques? and 2) Can we use these our 
data on these characteristics to improve how we conduct and 
report research on expanding abbreviations in the future? 
Published techniques differ in the quality of their expansion for 
different types of abbreviations in different types of software 
artifacts. To begin understanding why, we first have to 
understand what these characteristics look like and then 
compare this to the way these techniques are discussed and 
reported in their original publications. By doing this, we can 
reflect on how the data (or lack thereof) presented in these 
publications helps, or hurts our ability to fully understand their 
strengths and weaknesses. In addition, we can begin 
understanding what different types of abbreviations and 
expansions look like in different locations such that future 
techniques can take advantage of this knowledge to improve on 
prior literature.  

Therefore, in this paper, we take two steps. 1) Using 
characteristics of abbreviations and expansions derived from 
previous literature, and a gold set of abbreviations and 
expansions manually derived by the authors, we study what 
typical abbreviations and expansions look like in different 
software artifacts, thereby creating a ground truth. 2) Using the 
ground truth from the previous step as a baseline, we examine 
the evaluation methodology used by previous literature to 
understand how our characteristics influence their quality and 
determine whether these characteristics are properly accounted 
for and reported.  

Our goal is to analyze what these characteristics look like in 
general and use this as a baseline to highlight strengths and 
weaknesses in the way expansion techniques and the software 
artifacts they use are evaluated. One of the main takeaways from 
this paper is a set of characteristics that future abbreviation 
expansion techniques should properly account for and report in 
order to improve expansion recall/precision as well as 
contextualize strengths/weaknesses of the approach. To the 
authors’ knowledge, no other existing literature has performed a 
similar analysis.  

II. ABBREVIATIONS IN SOFTWARE 
Abbreviations are sequences of characters that can be 

expanded to a larger word or phrase. In this work, we define a 
software artifact as any by-product of software development 
including the code or any documentation which describes the 

code (e.g., behavior, design, architecture) or process used to 
produce the code. Developers use natural language (e.g., 
English) to convey meaning to other humans in source code. As 
a developer writes code, they ultimately construct identifiers, 
comments, and documentation using words that indicate the role 
or behavior of a part of the software they are constructing. As 
the creation of documentation and identifier names is a partially 
subjective activity, developers are unrestricted in what words to 
use. Some words that developers choose to use are 
abbreviations. 

Expanding abbreviations has been the topic of numerous 
research papers [17]–[19], [20]. For example, an approach to 
automatically expand abbreviations might have the following 
steps: 1) detect abbreviation in an identifier; 2) look for 
expansion in surrounding code, comment, documentation, or 
dictionary; 3) expand abbreviation to its natural language word 
or phrase. 

Expanding abbreviations is typically carried out as a part of 
word preprocessing alongside other steps such as splitting, 
stemming, tokenization, etc. For activities that involve 
information retrieval or natural language text analysis, 
abbreviation expansion adds more information to the corpus; 
giving these techniques more data to work with. Previous work 
by Hill, et al. [19] categorizes different types of abbreviations 
based solely on an abbreviation’s syntax. They broadly 
categorize abbreviations as Single Word and Multi-Word 
abbreviations. Each of these breaks into two additional sub-
categories. This taxonomy, and examples of each abbreviation 
type, are shown in Table I. Typically, the accuracy of current 
approaches to expanding abbreviations varies depending on the 
type of abbreviation being expanded [17], [19], [21].  

III. EXPERIMENTAL STUDY 
What are the characteristics of abbreviations and expansions 

found in different software artifacts? If we were expanding a 
domain term, such as JSON, would it be more likely to occur in 
project documentation than in the source code or comments? Or 
perhaps acronym expansions occur more frequently in language 
documentation than any other software artifact. To reduce false-
positive expansions and find expansions as quickly as possible, 
abbreviation expansion techniques should be specialized to look 
where the expansion is most likely to occur first. These kinds of 
optimizations can only be done if expansion techniques 
understand the characteristics of abbreviations and expansions 
found in different software artifacts. 

Category Abbreviation 
Type Definition Example 

Single 
Word 

Prefix 
Abbreviation of a single word that is strictly a prefix of the 
full word; formed by dropping letters from the end of the full 
word 

Pub → Public 
Attr → Attribute 
Abbrev → Abbreviation 

Dropped Letter 
Abbreviation of a single word that is formed by dropping 
letters from anywhere within the full word except the first 
letter 

Cfg →Configure 
Ln → Line 
Tty → Teletype 

Multi 
Word 

Acronym 
Abbreviation made from the first letters of multiple words. Kv → Key value 

Ip → Internet protocol 
Vr → Virtual reality 

Combination 
Multi-word 

Abbreviation made by dropping letters from multiple words Oid → Object Identifier 
StdDev→Standard Deviation 
Arg → access rights 



Table II. System Statistics 

A. Research Methodology 
To begin studying these characteristics, we divided our 

methodology into four stages. 
1. Collect a set of projects from which we will manually obtain 

abbreviations and expansions. 
2. Manually split and expand identifiers which contain an 

abbreviation; verify the split and expansion(s). 
3. Partially automated collection of Wycheproof, Telegram, 

Open Office, Enscript, and KDevelop project documentation 
using Unix’s wget command when required.  

4. Partially automated collection of C++ 1 , Java 2 , and C 3 
language documentation using Unix’s wget command.  

5. Automated search of all forms of documentation and source 
code for expansions manually collected and verified by 
authors. 
We rely on srcML [22] for all automated collection, 

grouping, and preprocessing of identifiers and comments. 
srcML is a markup language that blends AST information into 
source code. Thus, it allows us to find identifiers and statically 
compute where these identifiers occur (e.g., in a class, function). 

B.  Collecting Systems and Abbreviated Identifiers 
In the first step, we pick a set of 5 systems on the following 

three criteria: 1) written in C++, Java, C#, or C due to our 
reliance on srcML. 2) They must contain abbreviations. Our goal 
was to collect at least 100 unique abbreviations per system (for 
a total of 500; other abbreviation papers generally evaluate with 
~200-250), so 500 is in-line with prior work. 3) We looked for 
small, medium and large systems (in terms of KLOC) to see how 
the size/maturity of a system affects the location of its 
expansions. The sizes of the systems we selected are in Table II. 
To select abbreviations to include in the study, the annotators 
chose a file from each system at random and then went from the 
top of the file to the bottom, collecting all abbreviations they 
could find before reaching the end of the file. 

To collect abbreviations from each selected file, three of the 
authors separately scanned the source code manually and 
collected information on identifiers that contain abbreviations. 
Whenever an identifier was collected, it was manually split and 
abbreviations within the identifier were expanded by hand. Each 
author reviewed the expansions of the other two authors. 
Abbreviations with disagreement over a split or expansion were 
discussed between the authors. There were no expansions that 
the authors were unable to come to an agreement on. The 
manually derived data set is provided and discussed here [23]. 

 
1 https://en.cppreference.com/w/ 
2 https://docs.oracle.com/javase/8/docs/ 

C. Sources of possible expansions 
We use different software artifacts to find expansions for the 

abbreviations we collected. These sources are as follows: The 
source code, comments, project documentation, programming 
language documentation, a computer science dictionary [24], 
and an English [25] dictionary— both used in previous literature 
[17], [19]. 

For project-level documentation, we used any 
documentation included as part of the system’s main source 
code repository and any of the online documentation hosted by 
the system’s governing body. For example, Telegram’s 
documentation is a set of API docs available through the 
webpage at [26], since there were no documents hosted in their 
repository. In the case where we needed documentation from an 
online source, we used the Unix command wget to crawl the 
webpage for documentation. All documentation available on the 
page was collected, however, there is a chance that, if some 
documentation was hosted on a different domain, it was missed 
since we instructed wget not to leave the domain we originally 
provided it to avoid crawling unintended websites. 

D. Preprocessing software artifacts and Finding Expansions 
Every artifact except the Computer Science and English 

dictionaries require varying amounts of preprocessing so they 
can be used for analysis. The first preprocessing step is to apply 
standard text normalization techniques: 1) remove all 
punctuation and special characters, 2) conservatively split on 
camelCase, under_scores, and numbers, and 3) convert all  
characters to lower case. As discussed earlier, we use srcML and 
a specialized (for srcML) version of libxml2’s SAX (Simple API 
for XML) parser to collect all required information about 
identifiers, comments, functions, and classes. 

One problem with identifiers/comments in the source code, 
and words in project/language documents is that words in a 
multi-word expansion do not necessarily appear adjacent to one 
another (i.e., no words between them). Take the following 
example. Let us say we have an abbreviation named ‘SpecRef’, 
which expands to Specification Reference. If we want to find the 
expansion, we must find the word Specification and the word 
Reference. Naively, we could search for the string 
“Specification Reference”, but there is no reason to assume that 
they occur right next (i.e., adjacent) to one another. They could 
appear several words apart within a document. For example, 
“This reference variable handles all access to the specification 
data”. For this reason, we keep track of the position of all words 
in the software artifacts so that we can determine when we have 

3 https://en.cppreference.com/w/c/language 

System 
Name 

Primary 
Language(s) 

Size 
(KLOC) 

# Unique 
Abbreviations 

# Unique 
Abbreviation-

Expansions 

Comment Density (in 
#comments per 1 

KLOC) 

Project Document 
Density (in #words per 1 

KLOC) 
Wycheproof Java 9 126 156 134 439 

Telegram Java, C 781 143 164 14 4201 
OpenOffice C++, Java 4462 129 143 161 1410 

Enscript C 59 132 156 77 245 
KDevelop C++ 259 189 242 88 7428 

Sum/Total 5570 719 861 474 13723 



expanded an abbreviation using terms that are adjacent or if we 
have expanded an abbreviation using terms that are not adjacent. 

The final step is to take the expansions and abbreviations that 
were manually collected and match them in one or more of our 
software artifacts. To do this, we use the following workflow: 
1. Take an abbreviation and its expansion(s). 
2.  Scan the entire body of code for the project that corresponds 

with the current abbreviation/expansion(s) and record 
where we match the expansion and where we see the 
abbreviation (e.g., in a method, as part of a type name, etc). 

3. Check the system and language documentation position lists 
and record whether we match the expansion. 

4. Check the computer science and English dictionaries and 
record whether we match the expansion. 

IV.  EXPERIMENTAL RESULTS 
Using the methodology described in the previous section, we 

answer our research questions (specified below) by examining 
five systems and measuring three characteristics; two of which 
(i.e., 1 and 3) are motivated by previous literature on expanding 
abbreviations and one of which we derive from this study. These 
characteristics are: 1) Distributions of expansions in different 
artifacts, 2) adjacency of terms constituting multi-term 
expansions (e.g., acronyms) in different artifacts, and 3) 
distribution of expansions for abbreviations of different types in 
different artifacts. The answers to these Research Questions are 
later used in Section VI to understand how characteristics of 
abbreviations/expansions in different artifacts affect techniques 
that expand abbreviations. They are additionally used to 
highlight what characteristics future expansion techniques 
should focus on in both their implementation and in the data 
reported after evaluation. 

First, we provide some statistics on the data we collected for 
each system. As discussed above, we manually collected and 
expanded abbreviations for the five systems analyzed in our 
study. Table II shows each system, the number of unique 
abbreviations and the number of unique expansions. Because 
each system may have different amounts of documentation and 
identifiers to search for abbreviation expansions, we are careful 
in drawing conclusions from raw numbers of expansions found 
in each location. For example, if we find very few expansions in 
comments, we might think that comments for some system are 
a bad source of expansions. However, we must consider the 
situation where the system has few or no comments; this would 
obviously cause the number of comment-born expansions to be 
low. This situation only applies to artifacts that vary in size 
between systems. For this reason, we calculated comment and 
project document density per 1 KLOC, presented in Table II. We 
will refer to this table when such context is required to 
understand the results. 

A.  RQ1: What is the distribution of abbreviation expansions 
across all artifacts? 
To answer this question, we look at frequency counts for the 

number of abbreviations found within each artifact. This data is 
broken down per system in Table III and Table IV. Note that in 
Table IV, we include counts for when we found the words in an 
expansion adjacent (i.e., next to) to one another and for when we 
found them either adjacent or non-adjacent (i.e., anywhere). The 
values in these tables were obtained by recording every location 

where we found the full expansion. For example, if the acronym 
kv expands to key value, we needed to match both the words key 
and value in the same place (e.g., type declaration) for it to 
count. The percentage in parenthesis next to each value is 
obtained by dividing the given value by the number of unique 
abbreviation-expansions (Table II) for the corresponding 
system. For example, the 70.6% for Open Office adjacent 
comments is obtained by evaluating 101/143. Additionally, we 
provide the total, mean, median, and standard deviation. 

To begin, we will look at Figure 2 and Figure 1 to get a high-
level view of the data. Figure 2 shows the distribution of where 
expansions were found each software artifact. All in all, 3067 
non-unique expansions (i.e., one expansion can occur in 
multiple artifacts) are in this set. Figure 1 shows the distribution 
of unique expansions (i.e., expansions that were found in only 
one artifact) of which there were 69. Figure 2 shows that the 
language documentation had the highest number of expansions 
followed by function body, project documentation, and the 
English dictionary. If we compare this to Figure 1, we notice that 
language documentation also contained the most unique 
expansions. That is, it contained the most expansions that did 
not appear anywhere else. The next two highest sources of 
unique expansions were the project’s documentation and 
function names. 

The tables give a finer-grain view of the data in the figures; 
we will analyze these now. We start with Table III, which 
contains counts for the number of expansions found in different 
parts of the source code. The first five categories present 
expansions found in the: 
1. Type/name of declarations (e.g., String keyMaterial; where 

String is the type and keyMaterial is the name and words in 
the type and name are expansion candidates. 

2. Function parameter type/names. 
3. Expressions such as ctHex = ciphertext; or doFinal(test) 

where ct, hex, cipher, text, do, final, and test would be 
expansion candidates. 

These categories are strict in that the full expansion needed 
to be found in the corresponding location (e.g., fully within the 
type, fully within a declaration name). In some cases, different 
parts of an expansion appeared in different locations (e.g., one 
part in a type and one part in a name); these are recorded in the 
last three categories: functions/methods, class name/field, or 
globals, since even if one part of an expansion is in a type, and 
one part is in a name, the full expansion still occurred within 1) 
the body of a function, 2) the field/name of a class or 3) in global 
scope. Note that if an expansion is found in a method (i.e., a 
function in a class), it is not recorded as being in a class; the 
function, class, and global categories are mutually exclusive.  

The results in Table III show the function category 
performed best in terms of consistency. This result is not 
surprising; functions are where most identifiers are found so it 
is natural that they have a high number of expansions compared 
to finer levels of granularity (i.e., the first five categories) and 
even classes/globals (recall that expansions in methods are not 
counted for classes).  

We now look at non-source-code artifacts. These are in 
Table IV. The data shows that the language documentation has 
the highest frequency of expansions most consistently. This 
indicates that the language documentation tended to perform 
well in all projects big or small, likely because language 



Table III. Total Number of Expansions Found per System in Source Code Identifiers. 
 Type 

(declarations) 
Type 

(parameters) 
Name 

(declarations) 
Name 

(parameters) 
Name  
(expr) 

Functions and 
Methods 

Class 
Name/Field  Global 

Enscript 53 (34%) 20 (12.8%) 63 (40.4%) 25 (16%) 69 (44.2%) 75 (48.1%) 49 (31.4%) 67 (42.9%) 

KDevelop 125 (51.7%) 108 (44.6%) 161 (66.5%) 121 (50%) 144 (59.5%) 161 (66.5%) 120 (49.6%) 157 (64.9%) 

Open Office 104 (72.7%) 100 (69.9%) 106 (74.1%) 98 (68.5%) 107 (74.8%) 108 (75.5%) 105 (73.4%) 105 (73.4%) 

Telegram 99 (60.4%) 75 (45.7%) 112 (68.3%) 103 (62.8%) 112 (68.3%) 122 (74.4%) 111 (67.7%) 102 (62.2%) 

Wycheproof 30 (19.2%) 16 (10.3%) 29 (18.6%) 12 (7.7%) 13 (8.3%) 39 (25%) 17 (10.9%) 0 
Total 411 319 445 359 445 505 402 434 
Mean 82.20 63.80 89.00 71.80 89.00 101.00 80.40 86.80 

Median 99.00 75.00 107.00 98.00 107.00 108.00 105.00 102.00 

StdDev 39.26 43.57 50.13 49.62 50.13 46.40 45.04 56.80 

Table IV. Total Number of Expansions Found per System in Comments, project, language, CS, and English corpora 

 

documentation in C, C++, Java, have had a long period of time 
to mature are of high quality. Turning to the CS and English 
dictionaries briefly-- while many expansions are available in 
these dictionaries, they suffer one major drawback: They contain 
no domain/system information, which is important for 
expansion [27].  
These dictionaries are necessarily system and domain agnostic 
(perhaps less-so for the CS dictionary), meaning that a tool that 
wants to find expansions in these dictionaries may have a harder 
time choosing between multiple, equally likely expansion 
candidates. That is, the information surrounding potential 
expansion candidates can help a tool in choosing which 
expansion is appropriate and these dictionaries may lack some 
of that information. Language documentation suffers some of 

the same drawbacks but to a lesser extent. For example, Java’s 
cryptography library documentation has domain information for 
cryptography but not project-specific information. 

Interestingly, there does not seem to be any clear correlation 
between comment/project density (Table II) and the number of 
expansions found in comments or project documents. For 
example, Telegram has low comment density but more 
percentage-wise comment expansions than Enscript and 
KDevelop (Table IV), both of which had higher comment 
density. This implies that increased comment or projects 
document density does not necessarily mean more expansions 
will appear; the number of expansions found may have more to 
do with specific documentation and commenting practices. 
More research is required to determine what these practices are. 

 Comments 
(anywhere) 

Comments 
(adjacent) 

Project 
(anywhere) 

Project 
(adjacent) 

Language 
(anywhere) 

Language 
(adjacent) CS Dict. English Dict. 

Enscript 35 (22.4%) 32 (20.5%) 77 (49.4%) 67 (42.9%) 141 (90.4%) 129 (82.7%) 55 (35.3%) 110 (70.5%) 

KDevelop 104 (43%) 103 (42.6%) 225 (93%) 205 (84.7%) 222 (91.7%) 194 (80.2%) 94 (38.8%) 171 (70.7%) 

Open Office 105 (73.4%) 101 (70.6%) 127 (88.8%) 124 (86.7%) 121 (84.6%) 113 (79%) 54 (37.8%) 98 (68.5%) 

Telegram 108 (65.9%) 104 (63.4%) 126 (76.8%) 108 (65.9%) 149 (90.9%) 126 (76.8%) 55 (33.5%) 110 (67.1%) 

Wycheproof 38 (24.4%) 37 (23.7%) 45 (28.8%) 39 (25%) 95 (60.9%) 69 (44.2%) 32 (20.5%) 51 (32.7%) 
Total 390 377 600 543 728 631 290 540 
Mean 78.00 75.40 120.00 108.60 145.60 126.20 58.00 108.00 

Median 104.00 101.00 126.00 108.00 141.00 126.00 55.00 110.00 
StdDev 37.93 37.39 68.16 63.45 47.53 44.86 22.39 42.80 

Figure 2. Where Do Abbreviation Expansions Occur?  
(Total of 3067) Figure 1. Where Do Abbreviation Expansions Uniquely 

Occur? (Total of 69) 



Table V. Number of Non-Adjacent Multi-Word 
Expansions 

Table VI. Total Number of Abbreviations per Category 

The answer to RQ1 is that the language documentation, 
project documentation, and source code contain a similar 
distribution of expansions (23.9%, 19.6%, and 17.5% 
respectively from Figure 2) when we are not considering 
uniqueness. If we consider only expansions that occur in one 
place, language documentation has the largest share of the 
distribution at 69.6% (Figure 1), with project documentation 
coming in second place. The distributions in these figures 
highlight the importance of both source code and external 
software artifacts for expanding abbreviations and give us an 
idea of what the typical distribution of expansions looks like 
across multiple artifacts. 

B. RQ2: Do words that make up abbreviation expansions 
typically occur adjacent to one another? 
One aspect of finding abbreviation expansions that is not 

commonly explicitly discussed is the fact that words in an 
expansion do not always appear adjacent to one another. For 
example, the identifier ptHex in Wycheproof expands to 
plaintext hexadecimal. However, the words ‘plaintext’ and 
‘hexadecimal’ do not occur next to one another in their 
expanded forms; there are other words between them. The 
question is whether this happens frequently or not. If it is 
frequent, then approaches that automatically expand identifiers 
will need to consider this when trying to find appropriate 
expansion candidates.  

To answer this research question, we will turn our attention 
to Table IV and Table V. The only software artifacts where 
adjacency is an issue are language documentation, project 
documentation, comments, and source code (e.g., part of an 
expansion found in type name and other part is found in 
declaration name). Table IV has data about the frequency of 
adjacency between terms in expansions in the project 
documentation, language documentation, and comments. 
Looking at language and project documentation, most multi-
word expansions were adjacent to one another overall. The 
largest difference was found in Telegram and Wycheproof, 
where the anywhere project documentation column matched 18 
(~10%) more expansions than the adjacent in Telegram and the 
anywhere language documentation column matched 25 (~16%) 

more in Wycheproof. Notably, the effect of adjacency is much 
less pronounced in comments. 

While assuming adjacency will still allow an approach to 
find most expansions, there are some expansions that may only 
be reachable by considering non-adjacent words for expansions. 
Therefore, to get the maximum number of expansions available, 
especially in project and language documentation, we require a 
technique that deals with lack of word adjacency. One issue with 
considering non-adjacent words is how can we tell if two words 
are related to one another (i.e., part of the same expansion) if 
they are not adjacent? This is a question that will need to be 
addressed when expanding using non-adjacent words. Next, we 
look at Table V, which contains data about multi-word 
expansions that were non-adjacent to one another in source 
code. This is similar to the data in Table III but only counts 
multi-word expansions, where Table III records single-word 
expansions as well as multi-word. There was a total of 148 
expansions found in source code that were made up of multiple 
words. We define adjacency in source code slightly differently 
than in free text. We consider words in an expansion adjacent in 
source code if they occurred in the same location (e.g., both in a 
declaration type, both in a declaration name). Adjacency is 
generally limited to words occurring on the same line of code 
(e.g., words that do not appear on the same line but do appear 
within the same function are not considered adjacent). 

If we take the number of non-adjacent multi-word 
expansions and divide by the total number of expansions that 
were found in source code (148/798; we get 798 by removing 
expansions from non-source-code artifacts), we find that ~19% 
of all abbreviation expansions are multi-word and non-adjacent.  

The answer to RQ2 is that non-adjacent expansions tend to 
occur in the source code, project, and language documentation 
and there is a notable lack of them in comments. From the 
perspective of the code, 19% of multi-word expansions are non-
adjacent. Additionally, in project and language documentation, 
considering words that are non-adjacent can increase the 
number of abbreviations you are able to expand by 10-16% in 
three of the five systems we studied (Table IV). Given this, it is 
important to understand the effectiveness on a tool on adjacent 
and non-adjacent expansions as the tools effectiveness on 
different systems/software artifacts will decay if it is ineffective. 

C. RQ3: Do expansions for abbreviations of varying type 
occur in some artifacts more often than others? 
Different types of abbreviations require different techniques 

for performing the expansion. Prefix abbreviations are the 
simplest to expand whereas combination multi-word is the 
hardest [2]. We created a small program to automatically 
categorize abbreviations as one of the four categories first 
introduced in Table I. It simply looks at the form of the 
abbreviation versus its expansion (i.e., the expansions we 
manually obtained) to perform the categorization. We manually 
checked the results of the categorization to make sure the 
algorithm worked properly. We present the total number of 
abbreviations in each category in Table VI. The results of the 
categorization are broken down in Table VII, which contains the 
results for abbreviation types found in the source code, and 
Table VIII, which presents the results for abbreviation types 
found in documentation.  

Starting with Table VII, prefix abbreviations are the most 
common everywhere within the source code. Dropped-letter 

 Type 
(params) 

Type 
(decls) 

Name 
(decls) 

Name 
(expr) 

Name 
(params) Total 

Enscript 0 3 4 3 1 11 
KDevelop 5 5 8 7 7 32 

Open Office 9 6 5 6 6 32 
Telegram 8 9 9 8 7 41 

Wycheproof 6 6 11 2 7 32 

 Acronym Dropped Combo. Prefix Total 

Wycheproof 41 (38.3%) 22 (20.6%) 3 (2.8%) 41 (38.3%) 107 

Open Office 22 (16.7%) 34 (25.8%) 4 (3%) 72 (54.5%) 132 

KDevelop 33 (14%) 60 (25.5%) 4 (1.7%) 138(58.7%) 235 

Telegram 38 (23.9%) 33 (20.8%) 0 (0%) 88 (55.3%) 159 

Enscript 23 (15.2%) 46 (30.5%) 1 (0.7%) 81 (53.6%) 151 



Table VII. Frequency at which Different Types of Abbreviations Occur in Different Source Code Locations 

Table VIII. Frequency at which Different Types of Abbreviations Occur in Different Software Artifacts 

 
Table IX. Techniques that Report Overall Accuracy. ** = 

Technique reports combined split/expansion accuracy 

Table X. Techniques that Report Accuracy per 
Abbreviation Type 

Table XI. Techniques that Report Overall Precision and 
Recall. ** = Technique reports combined split/expansion 

accuracy, N/A = Not reported 

Table XII. Techniques that Report Precision per 
Abbreviation Type (did not report recall per abbrev type) 

 Prefix 
Precision 

Dropped 
Precision 

Acronym 
Precision 

Jiang [21] Param Name 97% 79% 96% 
Jiang [21] Param Type 100% N/A 98% 

abbreviations are second, acronyms are third, and there were 0 
combination multi-words-- it is worth noting that we collected 
extremely few of these; only 12 in total across all systems. The 
frequency of dropped-letter and prefix abbreviations in the code 

is expected as is the relatively low number of acronyms and 
combo-word abbreviations. 

The more interesting patterns are found in Table VIII, where 
we are looking at documentation. Prefix abbreviations are the 
most popular, but by a slimmer margin. There are many more 
acronyms, with the most appearing in the language documents. 
Additionally, we find our multi-combination words in this table; 
with the most showing up in the project and language 
documents. In fact, the project and language documentation had 
very similar distributions of this abbreviation type (though, of 
course, we found very few multi-combination abbreviations). 
There are a few takeaways we can glean from this data. The first 
is that documentation will require more varied methods of 
matching and filtering candidate abbreviation expansions; 
especially language and project documents. The second is that 
most expansions found in source code are single-word, since 
prefix and dropped-letter abbreviations (which are the single-
word categories - Table I) are far more common than the others. 
This means that when these approaches are using information 
found in the source code, they should first assume that 
abbreviations that could go either way (i.e., could be single word 
or multi-word) are single-word and, if that assumption fails, then 
investigate multi-word options. 

To answer RQ3: Yes, different types of abbreviations and 
their expansions are more likely to appear in source code versus 
documentation. One takeaway for this characteristic is that tools 
should give higher probability to expansions for types of 
abbreviations that are more likely to appear given the artifact 
being searched. For example, one should weight acronyms as 
more likely in language documentation than source code. This 
will cut down on false positives when choosing between multiple 
candidate expansions. Additionally, knowing that certain 
abbreviation types are more likely to appear in a given artifact 
ahead of time allows for choosing appropriate expansion 
techniques to handle increased probability of seeing those 
abbreviation types and their expansions. 

V. REVIEW OF ABBREVIATION EXPANSION TECHNIQUES 
We reviewed previous literature on techniques that expand 

abbreviations. We contextualize our review using the data from 

 Type 
(declarations) 

Type 
(params) 

Name 
(declarations) 

Name 
(params) Name (expr) Functions 

and Methods 
Class 

Name/Field Global 

Prefix 273 (65.5%) 219 (52.5%) 314 (75.3%) 244 (58.5%) 305 (73.1%) 335 (80.3%) 283 (67.9%) 303(72.7%) 

Dropped 92 (51.1%) 70 (38.9%) 104 (57.8%) 82 (45.6%) 99 (55%) 111 (61.7%) 84 (46.7%) 94 (52.2%) 

Acronym 46 (29.3%) 30 (19.1%) 53 (33.8%) 33 (21%) 41 (26.1%) 59 (37.6%) 35 (22.3%) 37 (23.6%) 

Combo Multi-word 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

 Comments 
(anywhere) 

Project 
(anywhere) 

Language 
(anywhere) CS Dict. English Dict. 

Prefix 275 (65.9%) 351 (84.2%) 411 (98.6%) 193 (46.3%) 407 (97.6%) 

Dropped 80 (44.4%) 134 (74.4%) 162 (90%) 61 (33.9%) 116 (64.4%) 

Acronym 34 (21.7%) 106 (67.5%) 147 (93.6%) 34 (21.7%) 0 (0%) 

Combo Multi-word 1 (8.3%) 9 (75%) 8 (66.7%) 1 (8.3%) 0 (0%) 

Original Publication Maximum Reported Overall 
Accuracy 

Lawrie 2011[18] 66% 
Lawrie 2007 [28] 64% 

Alatawi [20] 78.% 
Tidier [29] 48% 
**Tris [30] 86% 

 Prefix Dropped Acronym Combo Overall 
Accuracy 

AMAP[19] 79.7% 77% 46.9% 9.2% 63% 
LINSEN[17] 86% 77.8% 36% 66.7% 62% 

 Average 
Precision 

Average 
Recall 

F-
Measure 

Overall 
Accuracy 

**Tris[30] 95% 91% 92% 86% 
Jiang[21] 95% 65% N/A N/A 

Lingua::IdSplitter [31] 86% 86% 89% 83% 



Table XIII. Software Artifacts used in Techniques in 
Literature Review 

the study above to help us address the goals stated in the 
Introduction. 

Expanding abbreviations has been the topic of numerous 
research papers [17]–[21], [28]–[31]. We summarize all of 
these papers in subsection A. We analyzed each technique, 
looking for: 1) Which artifacts are searched. 2) Whether they 
report on the adjacency or non-adjacency of multi-term 
expansions in different artifacts. And 3) the reported 
effectiveness on different abbreviation types. These relate to the 
three characteristics highlighted in our experimental results 
(i.e., RQ1, RQ2, and RQ3) above and we address themin 
subsections B, C and D. 

A. Previous Abbreviation Expansion Techniques 
Lawrie et al. [28] proposed an expansion algorithm that uses 

four lists of potential expansions. They evaluate using 64 
identifiers whose abbreviations were manually expanded. Later, 
Lawrie and Binkley published another expansion technique [18] 
which extends work in [13] and [28]; improving the abbreviation 
expansion by using word co-occurrence to determine the most 
likely expansion. They report an accuracy of up to 66%. 

Hill et al. [19] proposed AMAP, a tool for expanding 
abbreviations. They categorize types of abbreviations found in 
software and describe the challenges in automatically expanding 
them. Their approach used the idea of most frequent expansion 
along with levels of software dictionaries to identify expansions. 
They evaluated their approach on 250 abbreviations, and the 
results showed an improvement of 57% in accuracy compared 
to an approach by Lawrie [28]. 

Corazza et al. [17] proposed an approach called LINSEN 
(Linear IdeNtifier Splitting and Expansion) that is used for 
identifier expansion and splitting. They evaluate their expansion 
approach against AMAP [19] on 250 randomly selected 
abbreviations. Results show that their approach performs better 
than AMAP on some types of abbreviations, with a reported 
improvement of about 5% in terms of accuracy. 

Guerrouj et al. [29] proposed an approach named TIDIER 
(Term IDentifier RecognIzER) for recognizing words 
composing source code identifiers. Part of this tool is used for 
splitting/expanding identifiers, which TIDIER successfully 
accomplishes in about 48% of cases studied. They additionally 
show that contextual information significantly impacts identifier 

expansion [27]. Guerrouj et al. [30] also propose TRIS, an 
approach which pre-compiles a set of dictionary words into a 

tree representation and associates a cost to each 
transformation. It treats the splitting/expansion problem as 
an optimization problem; optimizing splitting/expansion by 
treating it as a shortest path problem. They report that TRIS 
is more accurate compared to other splitting/expansion 
approaches [18]. However, they do not report a specific 
expansion accuracy. Instead, they report splitting accuracy 
because their technique splits and, if needed, also expands 
abbreviations. 

Alatawi et al. [20] proposed a bigram based inference 
model that utilizes unigram statistical properties to retrieve 
the original form of the words in the source code 
automatically. They evaluate their technique using a 
randomly selected set of 100 abbreviations and report an 
accuracy of 78% . 

Jiang et al [21] propose a technique for expanding 
abbreviations in parameters. Their technique works off of the 

observation that abbreviations in formal parameters can often be 
expanded by looking at terms contained in its corresponding 
actual parameter and vice versa. They report an average 
precision of 95% and an average recall of 65%. 

Carvalho et al [31] propose Lingua::IdSplitter, a technique 
for splitting and expanding identifiers. Their approach takes 
advantage of an approach they propose, which automatically 
constructs a custom dictionary constructed from several 
software artifacts; providing their technique with domain-
specific information and expressions that they use to help 
expand abbreviations and use term frequency similar to AMAP. 

B. Software Artifacts used in Technique Evaluation. 
In RQ1, we saw that the frequency of expansions is nearly 

evenly split between language/project documentation and in the 
function body (Figure 2). Further, we found language 
documentation is the most likely source that contain expansions 
that occur nowhere else (Figure 1). The idea that artifacts outside 
of the code contain important expansions is not new; previous 
techniques have explored this idea. However, one important 
question to ask is: Which techniques use which software 
artifacts? How effective are they on the software artifacts that 
they use? We begin to answer these questions in Table XIII. On 
the left-hand side of this table are different types of software 
artifacts identified through reviewing the literature on 
expansions. At the top is the citation to the paper reviewed.  

Interestingly, some of the most recent techniques use little, 
if any, information outside of the source code [20] [21] and 
report the highest accuracy [20] and precision/recall [21] 
compared to the others. This implies that using more external 
information does not necessarily translate into a higher-quality 
expansion technique. This also does not mean that external 
documentation is not important. While Jiang et. al’s technique 
[21] has 95% precision, its recall averages 65%; meaning more 
data sources might be required to increase its recall.  

We also notice that only three papers [18], [29], [31] report 
any kind of metric (e.g., accuracy, precision, recall) of their 
technique at the granularity of the individual software artifacts 
used by their technique, yet most techniques do use artifacts 
outside of source code identifiers. Instead, most techniques 
reported overall accuracy/precision/recall of their approach by 
combining data from all expansions found in any software 

 [30] [21] [18] [28] [20] [19] [17] [29] [31] 
Source code 
identifiers ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Comments   ✓ ✓  ✓ ✓ ✓ ✓ 

Project 
Documentation   ✓      ✓ 

Language 
Documentation ✓       ✓  

Computer Science 
Dictionary/training 
data 

✓ ✓     ✓ ✓ ✓ 

English 
Dictionary/training 
data 

✓  ✓ ✓ ✓  ✓ ✓ ✓ 



artifact. There is a general lack of information available about 
how effectively techniques found expansions in different 
software artifacts. One negative to the lack of data here is that it 
is difficult to tell which software artifact(s) a technique 
underperformed on or if that underperformance is due to the 
technique or the quality of the artifact. 

C.  Reported effectiveness on non-adjacent expansions 
Expansions whose terms appear non-adjacent to one another 

in text is not reported in previous literature. In fact, it is generally 
not possible, without an implementation available, to understand 
whether a technique is effective at finding expansion terms that 
appear non-adjacent in different software artifacts by just 
reading the paper associated with the technique. That is, even if 
a paper reports effectiveness on different abbreviation types, 
based on our literature review, the papers do not report 
effectiveness on non-source-code artifacts, and in general, it is 
then not possible to estimate effectiveness on non-adjacent 
expansion terms. As shown in our data (i.e., Table III and Table 
IV) and discussed in RQ2, many multi-term expansions are 
found adjacent to one another. However, there is a non-trivial 
number of non-adjacent expansion terms that are missed if a 
given technique is ineffective (RQ2 - Section IV.B). 

D. Reported effectiveness on different abbreviation types 
In RQ3, we look at where expansions for different types of 

abbreviations occur and find that there is a difference in the 
distribution depending on which artifact we are analyzing. It is 
important to know how effective a given technique is on 
different abbreviation types because each abbreviation type has 
different characteristics. Acronyms, for example, are more 
likely to appear in project or language documentation (Table 
VIII). Terms in their expansion may also appear non-adjacent to 
one another. If a technique reports effectiveness without 
breaking their evaluation down by abbreviation type, it is very 
difficult to understand what types of artifacts this technique will 
be effective on. Additionally, without reporting results at this 
granularity, it is very difficult to understand how a technique 
compares to others. For example, does one technique improve 
on another for particular abbreviation types, or is it 
complementary? 

We analyzed the papers we collected to see how they report 
the results of their individual evaluations; seeking to understand 
if they provide this information, or, if not, we wanted to know 
what information they do provide. To help with this, we grouped 
techniques by which metrics they use in their evaluation. The 
first group, shown in Table IX, reports overall accuracy but do 
not specify accuracy on different abbreviation types [20], [28], 
[29], [32]. The second group, shown in Table X, reports 
accuracy with respect to each type of abbreviation (e.g., prefix, 
acronym) [17], [19]. Finally, the third group, found in Table XI, 
and Table XII, reports precision/recall/accuracy [21], [30], [31], 
with one of them additionally reporting precision per 
abbreviation type [21]. One other technique that uses 
precision/recall, Tris [30], did not explicitly report precision or 
recall for abbreviation expansions. Instead, Tris reports the 
accuracy of their splitting technique which also performs 
expansion. We were unable to ascertain the accuracy of the 
expansion part of their technique separate from the splitting 
technique. For this reason, we report their splitting precision and 
recall, which may not be fully reflective of expansion accuracy. 

Even the most recent publications fall into different groups 
[17], [20], [21], [31], which implies a difference in perspective 
when it comes to how these approaches should be evaluated. 
While each evaluation is valid on its own, the differences cause 
problems when trying to compare works, particularly in the case 
where no implementation is available for a given technique, or 
the technique requires significant re-tooling (which we have 
found to be unfortunately common). A consistent, holistic set of 
metrics would help alleviate these problems; creating a standard 
by which future techniques can be more easily compared even 
absent of implementation. Besides this advantage, it would also 
help us understand how different approaches to expansion are 
complementary and allow users of these tools to pick the one 
most suited for their data set without having to try them all. 
Therefore, we make a recommendation for a set of metrics, 
based on previous literature and the characteristics we study in 
this paper, that can be used to ease the burden of comparing and 
understanding the strengths of each technique. 
1. Precision, Recall, F1, and Accuracy for each abbreviation 

type 
2. The types of software artifacts and Precision, Recall, F1, and 

Accuracy for expansions found in each artifact 
3. Precision, Recall, F1, and Accuracy for expansions where 

the terms are non-adjacent.  
The reason for these metrics is based on a combination of 

what previous work reported. That is, we combined the groups 
described above since these metrics have proven valuable in 
numerous, similar evaluation tasks and give us a valuable 
perspective on the data. Additionally, we advocate for reporting 
these metrics for each artifact type instead of in general when 
possible. The reason for this is that there is very little data on the 
effectiveness of expansion techniques on individual artifacts and 
so it is difficult to understand how the properties of different 
software artifacts affect the quality of expansion. Finally, 
reporting these metrics will help support replication. Of course, 
there may be situations where some of these are not applicable. 
For example, reporting for individual software artifacts is not 
possible if your technique uses only source code. However, we 
feel it is good to have this highlighted such that when future 
researchers are developing expansion techniques, they can learn 
from previous literature and make an informed decision. 

VI. DISCUSSION 
The empirical study provides us with a general view of how 

characteristics used in previous literature manifest in general 
software artifacts. These characteristics are as follows: 1) the 
(unique and non-unique) distribution of expansions in different 
artifacts, 2) the adjacency of expansion terms in different 
artifacts, and 3) the distribution of expansions for different 
abbreviations types in different artifacts. We now present a 
review of previous literature, aiming to use our data as a baseline 
to highlight strengths and weaknesses in the way expansion 
techniques are evaluated. Studying this data helps us identify 
what aspects of abbreviation expansion require more thorough 
investigation. We highlight our core findings below. 

Word adjacency when expanding abbreviation in 
different software artifacts. Word adjacency affects how easy 
it is to find candidates for multi-word expansions. The further 
spread apart multiple words are in a corpus (i.e., the more words 
between them), the harder it is to 1) find those words and 2) the 



further apart those words are, the more likely it is that they are 
unrelated and so should not be used together to form a candidate 
expansion. We found that 19% of expansions in the source code 
are multi-word and non-adjacent while 10-16% of expansions in 
non-source-code artifacts are non-adjacent. 

No paper that we studied reported effectiveness on non-
adjacent expansions. In some cases, it can be inferred that a 
technique is likely ineffective on non-adjacent terms. For 
example, AMAP [19] makes heavy use of regular expressions to 
find expansion candidates; the regular expressions discussed in 
their paper were not designed for non-adjacent terms. It is not 
always easy to infer this, however; motivating our suggestion 
that future techniques report precision, recall, f1, and accuracy 
on this characteristic. Additionally, it is an open question how 
related multiple, non-adjacent terms are to one another as the 
distance between them in the text grows. 

Density of different expansion types in different types of 
software artifacts. Expansions for different types of 
abbreviations were more likely to occur in different types of 
software artifacts. While prefix and dropped remain common in 
most locations in our study, acronyms and, though there were 
few, combo type abbreviation expansions were much more 
highly likely to appear in non-source-code artifacts. This 
indicates that expansion techniques that are more effective on 
acronyms will be more successful in these types of artifacts and 
underscores the need for more techniques to report effectiveness 
at the granularity of abbreviation expansion type. While we find 
that a number of techniques do report this data, there is still 
disagreement on what metrics to use. Some use only accuracy, 
others used precision/recall, and there was a group that did not 
report at this granularity at all. Our recommendation, based on 
our study, is to encourage reporting precision, recall, f1, and 
accuracy at the granularity of each different abbreviation type. 

Effectiveness of including different software artifacts. 
Related to the previous characteristics is how much more 
effective different software artifacts made the technique. Based 
on our literature review, more software artifacts does not always 
mean higher quality expansions, as some of the techniques 
reporting the highest accuracy/precision use few external 
sources [20], [21]. This does not mean that including more 
artifacts is bad, but that more insight on how much different 
artifacts influence the effectiveness of individual techniques 
would be valuable; it would show us how different ways of 
expanding abbreviations are sensitive to different inputs. It 
would also add to our understanding of how different techniques 
contrast or synergize with one another. 

Having completed our discussion, we now have answers to 
the two questions stated in the Introduction: 

1) What are the characteristics of abbreviations/expansions 
in software artifacts and how much can these characteristics 
influence the quality of expansion techniques? The answers are 
in RQs 1-3 where we discussed how much of an affect each 
characteristic has on the reachability of expansions (e.g., some 
expansions only appear in specific artifacts). 
 2) Can we use our data on these characteristics to improve 
how we conduct and report research on expanding 
abbreviations in the future? In Sections V and VI we show that, 
despite the characteristics we discussed having a notable impact 
on what expansions a technique will be able to find, they are 
not always reported and even when they are, there is 

disagreement in the types of metrics to use for evaluation even 
among similar studies. Our data shows that these characteristics 
should be reported in order to provide a holistic view of 
expansion techniques and the artifacts they use. 

VII. THREATS TO VALIDITY 
We selected files to collect abbreviations from at random and 

went from top to bottom, collecting every abbreviation we saw, 
while occasionally skipping those we had seen before. It is 
possible that there were abbreviations we missed due to not 
recognizing them or simply not seeing them. We tried to select 
systems that were not all in the same domain, varied in size, and 
were written in differing languages. However, all languages we 
used were still imperative and most support some form of 
object-oriented programming. For this reason, our results may 
not extend to systems written in, for example, functional 
languages. Our sample size is 5 systems. While these systems 
vary in size, domain, and language, the sample may not 
generalize. However, we think the number of systems is justified 
due to the manual component of the study; collecting a large set 
of abbreviations is very time consuming. 

In our data set, we expand some abbreviations that may not 
be considered worth expanding because their abbreviation is 
more well-known than their expansion (i.e., URL). One might 
question if these are worth expanding. From our perspective, this 
is a good question, but deciding whether an abbreviation should 
be expanded is not the goal of this paper and is also likely 
subjective depending on the specific use-case of abbreviation 
expansion. Therefore, we do not see it as a significant threat. 
While the data set was manually curated, we had to 
automatically search for expansion matches in the systems that 
we studied. It is possible that our automatic splitting techniques 
missed some expansions or caused some false negatives (i.e., the 
split was wrong). There is also a small chance that srcML’s 
mark-up was incorrect in a few cases, which may have caused 
us to miss a small number of expansions. 

VIII. CONCLUSIONS & FUTURE WORK 
In this paper, we presented an empirical study of 

abbreviations and expansions in different software artifacts. We 
manually collected and expanded 861 unique abbreviation-
expansions from five different open source systems. We then 
used these manually expanded abbreviations to study three 
characteristics derived from previous literature. Data from this 
study was used to understand how different characteristics affect 
the number of expandable abbreviations and to contextualize our 
literature review which analyzed how prior research evaluates 
abbreviation expansion techniques and how evaluation methods 
can be improved in the future. 

Our hope is that this work will help spur the field to report 
more about the software artifacts they study as well as provide 
more granular data on the characteristics we discuss above. In 
the future, we would like to study potential synergy between 
differing expansion techniques as well as the use of online 
sources with query mechanisms (e.g., Wikipedia) for finding 
expansion candidates. 
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