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Abstract
The emission of electrostatic Langmuir waves by collisional process, termed electrostatic
bremsstrahlung emission, and the collisional damping of Langmuir waves, which can be
considered as the inverse electrostatic bremsstrahlung process, are rigorously discussed. Some
inaccuracies in the previous formalisms are also corrected. It is shown that the improved
formulae in the case of Maxwellian particle distributions are given in forms where they satisfy
Kirchhoff’s law in the balanced form.
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1. Introduction

Bremsstrahlung and its inverse process are common in
diverse physical situations, which at first glance may not
appear to be related. One application relates to the laser-
metal-plasma interaction problem, where a high intensity
laser incident on the metal target first liquifies and vaporizes
the material, forming a partially ionized high-density plasma
cloud surrounding the target. The laser ablated plasma blob
absorbs subsequently incident laser energy by collisional
damping and inverse bremsstrahlung, thus preventing further
laser-metal interaction [1, 2].

Bremsstrahlung radiation, which is known in the solar
and astrophysics community as free-free emission, plays a
pivotal role in solar x-ray emission. It is well known that
thermal electrons emit soft x-rays, which contribute to the
thermal emission spectra of the quiet Sun. The hard x-ray
emissions associated with the flare acceleration region, on the
other hand, are generated by non-thermal electron distribu-
tion. On the observational side there have been immense
developments of various aspects of solar x-ray emissions
thanks to many spacecraft missions [3].

On the theoretical side, standard emission formula
available in the literature [4, 5] are still being employed in
order to fit or interpret spacecraft data or in modeling laser-
metal-plasma interactions. The implications of using a more
rigorous approach based upon advanced plasma kinetic the-
ory has not yet been considered in the literature. In the pre-
sence of plasma, bremsstrahlung emissions become part of the
many particle interactions rather than binary collisions.
Consequently, proper description may require a self-con-
sistent theory.

The purpose of the present paper is to lay down the first
layer of a theoretical foundation towards a more rigorous
theory of plasma bremsstrahlung and its inverse process,
which requires electromagnetic treatment. In the present
paper, we instead resort to an electrostatic problem, and
consider the emission of an electrostatic plasma wave from a
binary collisional process—that is, electrostatic brems-
strahlung emission, and absorption by the same wave from
binary collisional damping. The electrostatic bremsstrahlung
and collisional damping, which can be equivalently termed
the inverse bremsstrahlung absorption rate, have been for-
mulated on the basis of rigorous plasma kinetic theory [6] and
further discussed in a couple of subsequent papers [7, 8].
However, it turns out that the previously published
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formalisms are not entirely accurate. Consequently, the pur-
pose of the present paper is to revisit the basic formulae
discussed in our earlier papers, and to improve the mathe-
matical expressions. While our theoretical approach is limited
in that we work under electrostatic approximation, a future
more complete theoretical framework can be built upon
this work.

It should be noted, however, that the classical theory of
bremsstrahlung, which assumes collisions between point-like
charged particles, has been improved along a different
direction, namely the problem of bremsstrahlung radiation
involving charged objects with internal structures. This area
of research is active and ongoing, and the subject matter is
known as polarization bremsstrahlung [9–11]. When the
bremsstrahlung from plasma is discussed in this context [10],
the effects of Debye shielding of ions are taken into account
rather than the full collective effects. In [12], the collective
effects of plasma particles on bremsstrahlung are discussed.
This reference mainly addresses the plasma effects on the
bremsstrahlung emission of electrostatic modes in plasma,
which is similar to the present work, as well as our previously
published papers [6–8]. However, the approaches taken in
[12] versus [6–8] are not entirely equivalent. Whereas [6–8]
start from generalized nonlinear kinetic theory that includes
non-eigenmode contributions and systematically deduce
terms that correspond to the collective damping term and
bremsstrahlung emission term, [12] begins the discussion
with the consideration of the dipole moment associated with
the emission of longitudinal waves as in the traditional dis-
cussions of bremsstrahlung. The bremsstrahlung emission
formula is then modified by considering the collective effects.
The equivalence of the two approaches has not been estab-
lished yet. In the present paper, we rely on the formalism
developed in [6–8].

The organization of the present paper is as follows: in
section 2 we initiate the discussion by laying out the scientific
backdrop of the present work. Then in section 3 we present
the detailed mathematical formalism. Section 4 presents
numerical analysis and the findings of the present paper are
summarized and the ramification discussed in section 5.

2. Further scientific background

The standard expression for the electron-ion collision fre-
quency νei found in the literature, known as the Spitzer
formula, is given by
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where me, e, ni, and T stand for electron mass, unit electric
charge, ion density, and plasma temperature, respectively and

Lln represents the Coulomb logarithm. The above expression
is widely used in the literature. For instance, in the laser-
plasma interaction problem [1, 2], the laser absorption is
described with the spatial damping rate ki, where the collision
frequency nei is incorporated into the spatial attenuation rate

of the incident laser light,
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Equation (2) corresponds to equation (15) of [1]. except that
we have used the collision frequency νei instead of the elec-
tron-ion collision time τei. In equation (2), ω is the frequency
of the laser light, c stands for the speed of light in vacuum,
w p= n e m4p e0

2 1 2( ) is the plasma frequency—n0 being the
ambient density –, and νei is the Spitzer collisional frequency
defined in equation (1). Consequently, in the standard
approach, the collisional damping rate of laser radiation is
associated with νei. In the solar flares context, the model that
treats x-ray generating electrons by considering only the
collisional dynamics is known as the thick target model, e.g.,
[13]. However, there are some discussions in the literature
that emphasize the importance of Langmuir wave dynamics in
that context, e.g., [14–18]. In such an approach, the colli-
sional damping of Langmuir waves is also treated in terms of
the Spitzer formula (1). This can be seen, for instance, in
equation (3) of [14] and in equation (2) of [15].

However, there are reasons to believe that formulae (1) is
not completely accurate and can be improved. This is because
the customary collisional damping frequency νei implies that
any plasma wave, regardless of its frequency (wavelength) or
polarization, will be damped at the same rate, which depends
only on macroscopic parameters, T, ne, and ni. This is con-
ceptually too simplistic. The damping of a plasma wave, such as
a Langmuir wave for example, is governed by the microscopic
wave-particle interaction, satisfying the resonance condition,
w =k v- 0· . For collision-free plasmas, such an interaction
leads to Landau damping, which depends on the velocity-space
distribution function and its slope in velocity space, ¶ ¶f v ve ( ) .
Here, f ve ( ) denotes the electron velocity distribution function.
For plasmas subject to collisions, the electron distribution f ve ( )
will be modified by electron-ion collisions, but other than that,
the damping of a plasma wave in collisional plasma is no dif-
ferent than Landau damping in a fundamental sense. The only
difference is that for collisional plasmas the particle distribution
function is modified by collisions. The correct collisional
damping formula must therefore reflect the collisional mod-
ification of the distribution, hence, the formula must be inher-
ently microscopic and also nonlinear in its character.

In [6], the correct formulation of the collisional damping
rate for an electrostatic plasma wave, including that of a
Langmuir wave, was carried out under the generalized weak
turbulence theory. According to [6] the formal (and correct)
expression for the collisional damping rate for a Langmuir
wave is given by
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where wk,( ) stands for the linear dielectric function,
w w w¶ ¶=¢k k, Re ,( ) ( ) being its derivative with

respect to angular frequency, and c w wk k, ,2
1 1 2 2( ∣ )( ) repre-

sents the (second-order) nonlinear susceptibility. Explicit
expressions for these quantities appear in section 3, where the
theoretical formulation is presented in more detail. In
equation (3) the quantity f va ( ) denotes the one-particle dis-
tribution function normalized to the ambient number density
(ò =d f nv va a( ) ). The notationP denotes the principal value.
Notice that the above expression indicates that the collisional
damping rate not only depends on the wave frequency, but is
also a function of the wave vector, which contrasts with the
standard Spitzer formula (1). Moreover, it involves the non-
linear response of the plasma. The above formula was sub-
sequently analyzed by Tigik et al [7], and it was found that
the widely used Spitzer formula for the collisional damping
rate greatly over-estimates the actual damping rate. In that
paper, however, the approximations employed for the linear
and nonlinear plasma response functions were not entirely
satisfactory, which left room for further improvements. The
present paper will address this issue and complement the
work by Tigik et al [7].

Continuing with further scientific background, in the
standard literature, whether in the context of the laser-plasma
interaction problem or in solar/astrophysics, the brems-
strahlung effects are discussed on the basis of the textbook
thermal bremsstrahlung emissivity [4, 5],
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where Ze is the atomic number of the ion, gff is known as the
Gaunt factor, which is calculated from quantum mechanics
but is set equal to unity in the classical limit, and h is the
Planck constant. For plasmas with many particle collective
interactions, the standard approach of calculating the brems-
strahlung emissivity may be insufficient. In the textbook
approach, one considers a single electron encountering an ion,
which leads to the dipole radiation. Then, the radiation
emissivity is superposed over many electrons and ions,
resulting in formula (4). In plasmas, on the other hand, first,
the single particle encounter between an electron and ion is
not common, since the Debye shielding makes such a binary
encounter rare. Second, when the radiation emission takes
place, it is reabsorbed by other electrons and re-emitted. In the
process, the particle distribution function will be modified.
This collective behavior is encapsulated in the formula
derived in [6], which for a Langmuir wave, is given by
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Note that the above formula describes the bremsstrahlung
emission of Langmuir waves, not the actual radiation. In order

to extend the formalism to radiation emission one must
generalize the theory of [6] to fully electromagnetic formal-
ism, which is yet to be done.

The correct plasma bremsstrahlung theory is not very
well developed in the literature. There are some early works,
see, e.g., [19–23]. The approach taken in [6], if generalized to
fully electromagnetic formalism, could in principle, extend to
all these prior works. In the meantime, [8] made use of the
electrostatic bremsstrahlung theory of [6] as well as the col-
lisional damping theory of [7] in order to address the origin of
suprathermal electron population, which is presumed to exist
at the base of the coronal exosphere in the Sun. The presence
of suprathermal particles is an important ingredient in the so-
called velocity filtration model of coronal heating theory [24],
but its origin is not clear. In this regard, [8] made a potentially
important contribution. Nonetheless, the electrostatic brems-
strahlung emission formula in [8], which is an approximate
version of the formal result (5), is again, not entirely satis-
factory, as with the case with collisional damping rate dis-
cussed in [7]. For this reason, modified and improved
versions of the formulae are called for. The above mentioned
issues have motivated the present paper. In the rest of this
paper, we present the derivation of improved collisional
damping rate and electrostatic bremsstrahlung emission
formula for Langmuir waves.

3. Theoretical analysis

We now discuss the use of the improved approximations for
the collisional damping rate (3) and electrostatic brems-
strahlung emission formula (5). These quantities are two
ingredients that contribute to the balance of transfer equation
for Langmuir waves, which also includes the mechanisms of
spontaneous emission and Landau damping,
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where I kL ( ) represents the electrostatic field energy density
associated with the Langmuir waves, and g kL

Landau ( ) and S kL ( )
stand for the Landau damping rate and spontaneous emission
term, respectively,
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However, before obtaining the steady state solution of
equation (6), one can investigate what would be the Langmuir
spectrum if the collisional processes could be considered as
the dominant mechanisms, by the use of the following
approximation,
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If we consider the steady state, equation (8) leads to the so-
called Kirchhoff’s law in the balanced form, namely,
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where the resulting expression for I kL ( ) should be well
defined in the mathematical sense.

To begin the detailed discussion of this approximation,
let us first make use of the following definitions relevant for
the linear dielectric response function [25]:
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for z >Im 0, σ=1 for z =Im 0, and σ=2 for z <Im 0),
is the plasma dispersion function, and wL

k represents the long-
wavelength approximation for the angular frequency of
Langmuir waves. The quantity of relevance is the second-
order nonlinear susceptibility with appropriate arguments
[25],
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which upon partial integrations can be alternatively written as
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Note that Fa represents the distribution function normalized to
unity (ò =d Fv 1a ) such that it is defined by =f n Fa a a.

Upon making use of the Langmuir wave property,
namely, w k vL

k · , we may approximate (12) by ignoring
the second and third terms within the large parenthesis in the

last line on the right-hand side,
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Henceforth we are interested in thermal distribution, hence,
the quantity of interest is
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Inserting equations (15) to (3) and (5) we obtain
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At this point, let us note that the most important
contribution to the velocity integral òdv in both
equations (16) and (17) comes from those regions where the
distribution function f va ( ) takes on the maximum value, that
is, in the vicinity of ~v 0. This means that we may simply
approximate the situation by allowing the velocity distribu-
tion f va ( ) to be replaced by a cold delta function,

d~f nv v , 18a ( ) ( ) ( )

where n=ne=ni. This reduces equations (16) and (17) to
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and trivially redefining the dummy integral variable,
¢ ¢-k k k , we may proceed to the next step. In doing so,

we also ignore the terms of order me/mi or lower. Note that
approximation (21) assumes finite Ti. Further, we also make
use of various expressions and properties of the linear di-
electric response function,
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Finally, we assume the Gaussian distribution for ¢f vb ( ),
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function Q k( ), given by
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Equations (24) and (25) constitute the major findings of
the present paper, and these formulae supersede the previous
approximate formulae adopted in [7] and [8]. With the use of
these expressions, the approximated form of the Langmuir
wave transfer equation (8) is obtained, where the collective
effects have been ignored, which leads to a steady-state level
of the collisionally excited Langmuir wave spectrum which is
given as follows,
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Of course, as mentioned previously, the steady state Lang-
muir fluctuation spectrum should include the collective
counterparts, and is given by the steady state solution of
equation (6),
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It is interesting to note that if we ignore contributions from
collisional processes altogether, then the steady state spec-
trum Langmuir wave fluctuations that arise solely from the
collective processes is given by

g p
w
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4. Numerical analysis

In the previous section we have shown that the improved
expressions for the collisional damping rate and the electro-
static bremsstrahlung emission formula for Langmuir waves
are defined by a common spectral function Q k( ) such that in
the steady state, assuming that we may ignore the contribu-
tions from collective processes, one may obtain a constant
Langmuir fluctuation intensity. In the present section, we use
numerical integration to examine the spectral profile for the
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function Q k( ) in detail. We also apply the same method to
analyze the spectra of the collisional damping rate and elec-
trostatic bremsstrahlung emission in the improved approx-
imation in order to show how the new expressions alter the
form of the steady-state spectrum of Langmuir fluctuations
when collisional effects are included in addition to collective
effects.

For the numerical analysis, equations (24) and (25) are
written in terms of suitable dimensionless quantities

w
l w
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k
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The resulting dimensionless equations for the collisional
damping and electrostatic bremsstrahlung are respectively
given by
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where the plasma parameter is redefined as =g
p ln1 2 4 De

3 2 2 3[ ( ) ], and the dimensionless linear dielectric
function has the following form
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From equations (33) and (34), one can easily identify the
normalized expression for the common spectral function
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Part of the integral in equation (36) can be carried out
analytically by using spherical coordinates, assuming azi-
muthal symmetry. Then, after integrating over the angular
variables, we obtain an equation that involves a single integral
in ¢q
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where A and B are given by
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For the numerical integration, we wrote a Fortran code, in
double precision. Equation (37) was then solved for three dif-
ferent values of the ratio between electron and ion temperatures
Te/Ti=1, Te/Ti=2 and Te/Ti=4. In figure 1 we see that the
spectral profile of Q q( ) has an inverse relation with Te/Ti, with
the most intense spectrum being the curve for Te/Ti=1. We
also can notice a ‘bump’ right after q=0.2. This is the region
where both the collisional damping and the electrostatic
bremsstrahlung suddenly change their behavior and start tend-
ing to zero, as can be seen in the two panels of figure 2.

Looking at equations (37) and (38) we notice that Q q( ),
and coefficients A and B are exactly the same as the ones that
appear in the normalized expression for the collisional
damping rate of Langmuir waves in [7]. The main difference
between the two expressions is in the quantities that multiply
the integral, with the most important change being the square
of the dispersion relation that now appears in the denomi-
nator. However, when it comes to the electrostatic brems-
strahlung equation, if we compare our expression with the
non-normalized equation appearing in [8], we notice that the
integral in the previous approximation is more complex
because, in that occasion, we did not make the cold delta
assumption (equation (18)). This assumption makes the
electrostatic bremsstrahlung equation simpler and more sui-
table for numerical analysis.

This new approach also includes improvements in the
numerical scheme. The code was rewritten using double
precision and the convergence parameter of the subroutine
that performs the numerical integration was finely adjusted in
order to resolve the region around q=0.2. This region is
prone to numerical instabilities (see [7]) due to a sudden
change in the spectrum, as can be seen in both panels of
figure 2.

Figure 1. Common spectral function Q q( ) in logarithm scale, versus
the normalized wave number q, for three different values of Te/Ti.
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With this slight change in the expression for the colli-
sional damping and the new, simpler formulation of the
electrostatic bremsstrahlung equation, we ended up showing
that both effects are inversely related to each other, with the
first one depicting an absorption process in the same wave
number region that the latter emits. Such a relation becomes
clear from the symmetry between the two panels in figure 2,
where we also see that Te/Ti, g qL ( ) and P qL ( ) have the same
behavior as dictated by the common spectral function Q q( ),
which is expected.

The normalized equation for the steady-state of Langmuir
waves is given by

g g
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In figure 3, we see that the presence of collisional pro-
cesses, in addition to collective effects, creates a plateau
region for q 0.2⪅ that is approximately three times the value
for the steady-state spectrum solved only for collective pro-
cesses, in the same region. For q 0.2⪆ , the two curves are
exactly the same, which means that, for Langmuir waves, the
action of collisional processes is limited to small values of
wave number, or large wavelengths.

5. Summary and discussion

In the present paper, we reanalyzed the problem of electro-
static bremsstrahlung emission and collisional damping of
Langmuir waves. By doing so, we have corrected some
inaccuracies in the previous formalisms [7, 8]. It is shown that
the improved formulae in the case of Maxwellian particle
distributions are given in forms where they satisfy Kirchhoff’s
law in the balanced form. The present discussion, which
pertains to electrostatic formalism, may form a foundation for

Figure 2. Solution of equations (33) and (34), for three different values of Te/Ti, with plasma parameter g=1×10−4. Panel (a) depicts the
spectral behavior associated with the collisional damping rate, and panel (b) shows the electrostatic bremsstrahlung spectrum. It is important
to emphasize here that the considerable difference in scale between both effects is due to the fact that the electrostatic bremsstrahlung is
proportional to g2, while the collisional damping rate is proportional to g.

Figure 3. Steady-state of the Langmuir wave spectrum, versus the
normalized wave number q. The red line depicts the steady-state
given by equation (39), which takes into account collective and
collisional effects. The blue dashed curve represents the steady-state
spectrum only in the presence of collective processes.
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future electromagnetic theory of plasma bremsstrahlung and
its inverse process, which are intimately associated with
fundamental processes of the laser-metal-plasma interaction
problem as well as for solar and astrophysical x-ray emission
problems.

Before we close, we consider the relationship of the
present discussion and the customary collisional damping rate
found in the literature, known as the Spitzer formula,
equation (1). For this purpose, let us examine the spectral
function Q again. It is advantageous to express the result in
dimensionless form in terms of normalized quantities,

t k l
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Without loss of generality, we may assume = kk ẑ, and after
some straightforward manipulations, it is possible to express
Q as
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where we have redefined the integral variable as k= ¢s 1 .
Considering that the s integral has an overall Gaussian
weighting factor k+ s-exp 1 3 22 2[ ( ) ], it becomes quite
reasonable to assume that the most important contribution to
the s integral arises from the vicinity around s=0. Conse-
quently, it is interesting to consider the expansion of the
integrand near s=0,
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As a result, we may perform the s integral in closed form.
This leads to the approximate form of the collisional damping
rate,
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This result is in contrast to the heuristic Spitzer collisional
damping rate,
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which in normalized form, is given by

g
w

p p- g g= ln 2 4 . 47
pe
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When compared with the approximate formula (45) the
heuristic formula (47) does contain some resemblances, in
that both are roughly proportional to g. However, while the
Spitzer formula is independent of wave number, formula (45),
although approximate, still has a weak k dependence. The
basic assumption made in the derivation of the approximate
formula (45) is that the most important contribution to the s
integral arises at the vicinity of s=0. Since s is the inverse of
¢k , this approximation implies that the most significant
contribution to collisional damping comes from short wave-
length collisional processes. This assumption is not entirely
valid for Langmuir waves in that for low values of k, the
approximate formula (45) is expected to be invalid, and
indeed, numerical comparison with figure 2 (a) does indeed
show that the approximate formula (45) grossly over-exag-
gerates the damping rate for low k regimes. Nevertheless, by
employing the approximation that led to (45) it is possible to
make some qualitative connection to the heuristic collisional
damping rate widely adopted in the literature.
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