
Bandgap-Dependent Electronic Compressibility of Carbon Nanotubes in the Wigner Crystal 

Regime 

Neda Lotfizadeh1, Brian Skinner2, Daniel R. McCulley3, Mitchell J. Senger 3, Han Fu4, Ethan D. 

Minot 3 and Vikram V. Deshpande1*  

1Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, USA.  

2 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 

3Department of Physics, Oregon State University, Corvallis, OR 97331, USA.  

4James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA 

*Correspondence to: vdesh@physics.utah.edu.  

Electronic compressibility, the second derivative of ground state energy with respect to total 

electron number, is a measurable quantity that reveals the interaction strength of a system 

and can be used to characterize the orderly crystalline lattice of electrons known as the 

Wigner crystal.  Here, we measure the electronic compressibility of individual suspended 

ultraclean carbon nanotubes in the low-density, Wigner crystal regime. Using low-

temperature quantum transport measurements, we determine the compressibility as a 

function of carrier number in nanotubes with varying bandgaps. We observe two 

qualitatively different trends in compressibility versus carrier number, both of which can be 

explained using a theoretical model of a Wigner crystal that accounts for both the band gap 

and the confining potential experienced by charge carriers. We extract the interaction 

strength as a function of carrier number for individual nanotubes and show that the 

compressibility can be used to distinguish between strongly- and weakly- interacting 

regimes. 



The Wigner crystal, an ordered crystalline lattice of electrons with extremely strong interactions, 

is one of the most fascinating regimes of solid-state physics [1]. One of the observables of this 

regime is the electronic compressibility	𝜅, which is a reflection of the many-body interactions of 

the target system and can be obtained from 𝜅 = (𝑑&𝐸/𝑑𝑁&)+, = (𝑑𝜇/𝑑𝑁)+,, where E is the 

ground state energy, N is the total electron number and 𝜇 = 𝑑𝐸/𝑑𝑁 is the chemical potential of 

the system. The inverse compressibility 𝜅+,, in particular, corresponds to the amount by which 

the chemical potential must be raised in order to add an electron; small 𝜅+, indicates that the 

system easily accommodates additional electrons. Various studies have been conducted on 

compressibility (and quantum capacitance, which is directly proportional to compressibility) of 

quantum structures such as quantum wires, two-dimensional electron systems, mono- and bilayer 

graphene, etc. to explore the interactions in these systems  [2–6]. When the density of states is 

constant and electron-electron (e-e) interactions are relatively weak, the compressibility of an 

electronic system is independent of the charge carrier density. These assumptions are violated, 

however, in the low-density regime, and the compressibility varies strongly with density. In 

particular, in the Wigner crystal regime strong correlations between electrons are predicted to lead 

to a sharp decrease in 𝜅+, with decreasing density  [2,7,8].  Previous studies have indeed observed 

a reduction in 𝜅+, at low densities in macroscopic (i.e. laterally unconfined) structures  [9–13]; 

this trend has been attributed to strong screening effects from a nearby metal gate, the presence of 

disorder in the system, or contributions from the exchange interaction. Unfortunately, for meso- 

or nano-scale systems the downward trend in 𝜅+, is easily reversed by the effect of an electrostatic 

confining potential produced by gate and source/drain electrodes, which tends to push electrons 

into an even smaller spatial region as their density is reduced. To our best knowledge, suppression 

in 𝜅+, at low densities has never been reported in laterally confined quantum structures.  



Suspended carbon nanotubes (CNTs) are a promising platform for investigating the effects of 

strong electronic correlations in one dimension. As a clean, interacting quantum system, electrons 

in a suspended CNT at low density  [14] may be described as a Wigner crystal  [15]. Indeed, 

experimental studies have confirmed fascinating magnetic and electronic properties of the Wigner 

crystal phase, such as their exponentially suppressed exchange energy  [16], absence of excited 

energy states  [17] and giant orbital magnetic moment  [18]. These observations indicate that 

despite more than a decade of studies on the 1D Wigner crystal, improvement in device fabrication 

and higher quality carbon nanotubes lead to the discovery of novel signatures that have not been 

revealed before. Very recently, Shapir et al.  [19] have developed a technique to observe the 

Wigner crystal directly by imaging the charge density of the system in real space. Providing 

detailed theoretical calculations, they showed that the Wigner crystal regime has one of the 

strongest e-e interactions in the solid state. The strength of interactions is usually parameterized 

by 𝑟/, defined as the ratio of the Coulomb interaction between electrons separated by a distance r, 

e2/r, to their typical kinetic energy ℎ&/(𝑚∗𝑟&). The interaction strength can be written in terms of 

the effective Bohr radius 𝑎4 as 𝑟/ ≈ 1/(𝑛𝑎4), where n is the one-dimensional electron density. 

The effective mass m* is proportional to the CNT bandgap, ∆, (with ∆= 2𝑚∗𝑣&, where v is the 

Fermi velocity), so that increasing ∆ leads to a larger 𝑟/, and a stronger role for interactions. 

Previous studies of the addition energy spectrum, capacitance and compressibility of CNTs have 

mostly focused on non-interacting physics and the weak-interaction regime  [14,20–22]. But the 

effect of bandgap on these quantities in the Wigner crystal regime has not yet been considered. 

In this work, we have studied one-dimensional systems with different e-e interaction strengths, 

using long suspended CNTs of various bandgaps. We report two contrasting trends of 

enhancement and suppression of 𝜅+,. In CNTs with very large bandgaps, we observe suppression 



of 𝜅+, at low densities, and we provide a theory to show how this trend can be produced by a 

Wigner crystal. Using this theory, we show that compressibility is sensitive to both bandgap and 

confining potential of the nanotube, which provides insight into the electronic interactions in these 

materials.  

Our CNTs are grown using chemical vapor deposition across a ~2 µm wide trench on prefabricated 

substrates to eliminate disorder effects (see Supplemental Material for more details)  [23]. A pair 

of gate electrodes is at the bottom of the trench and ~750 nm below the contact electrodes. Fig. 1a 

shows a schematic of the device. 

We focus on the low-density regime of electrons or holes in clean CNTs, which clearly exhibits 

single-electron/hole conductance peaks in the Coulomb blockade (CB) regime, down to the last 

electron/hole at the conduction/valence band edge. The charge carrier density of CNTs can be 

modulated using electrostatic gating. A high-resolution map of the differential conductance dI/dV 

as a function of gate voltage Vg and source-drain bias voltage Vsd is shown in in Fig. 1b for T = 1.5 

K, and illustrates CB diamonds and a bandgap of D ~ 25 meV in CN1. Fig. 1c plots the 

conductance of CN1 as a function of Vg. The regularity of CB peaks in our data indicates that our 

devices are high-quality and defect-free. In Fig. 1c, the CB peaks get closer going from low to 

high carrier number. Figure 1d shows similar data from another device (CN2, with D ~ 165 meV); 

the CB peaks in CN2 show the opposite behavior, i.e. the CB peaks spread further apart with 

increasing carrier number. 

The compressibility of the nanotube can be obtained from gate voltage spacing between the 

neighboring CB peaks in the transport data converted to energy: 𝛿< = 𝐸<=,−2𝐸< + 𝐸<+, = 𝜅+,		 

see e.g.  [24,25], using 𝜇 = 𝛼𝑒𝑉C, where gate voltage lever arm 𝛼 = 𝑉D/𝑉C, and Vc is the height of 



rhombic pattern in the G(Vg, Vsd) diagram  [26]. Figures 1e and 1f plot the extracted value of 𝜅+, 

as a function of carrier number for CN1 and CN2. The alternating pattern in some parts of the plots 

arises from filling the subsequent orbital states with two electrons having opposite spins  [14,20]. 

In CN1 (D ~ 25 meV), 𝜅+, is higher at low densities. This trend of addition energy has been 

reported previously and explained using a single-particle picture  [14,20,21]. Due to the small 

effective mass of CN1, the energetics in this device has been considered to be dominated by a 

classical charging energy and the quantum kinetic energy. It is worth noting that the device imaged 

by Shapir et al. [19] with D = 45 meV has similar energetics to CN1 and was found to be a Wigner 

crystal. On the other hand, we observe the opposite trend in CN2 with D ~ 165 meV; in this device 

𝜅+,	is suppressed at low densities.  In contrast to CN1, the effective mass of CN2 is large and the 

energetics are more likely to be dominated by Coulomb interactions. Correspondingly, the 

electronic compressibility of a Wigner crystal may follow a different trend in samples with such 

large gaps. 

 



Fig. 1: Transport data in Coulomb blockade regime. (a) Schematic diagram of the device 

geometry. Carbon nanotube is suspended over a 2 µm-wide trench. The vertical spacing between 

trench and contact electrodes is d = 760 nm. (b) Color scale plot of differential conductance versus 

gate voltage Vg and source-drain bias Vsd in CN1. Conductance G versus carrier number in (c) CN1 

and (d) CN2. (e,f) Inverse compressibility as a function of carrier number for the related device. 

 

It is desirable to vary the bandgap parameter to study its effect on 𝜅+,. One way to do this in a 

continuous manner is by applying an external magnetic field (B) parallel to the axis of the 

tube  [27–29].  This is particularly applicable to CN1 which has a small bandgap at B = 0 and can 

display field-dependent energetics. Figure 2 shows 𝜅+,	 in CN1 as the magnetic field is varied 

from B = 0.4 T, to B = 4 T. The minimum band gap, ∆EFG, is obtained at 0.4 T and at higher fields 

the gap increases at a rate of ~2.5 meV/T. As the band gap is increased, 𝜅+, is observed to decrease 

at lowest densities. 

 

Fig. 2: (Color online)  Effect of magnetic field on 𝜅+,	 of CN1 for a range of magnetic fields, from 

B= 0.4 T, where the bandgap reaches its minimum, to 4 T. Inset: Comparison of theoretical (solid 

line) and experimental (dots) results of 𝜅+,	 as a function of carrier number for CN1. 



To study the suppression in 𝜅+,	at low densities, similar to CN2, we examine a range of different 

samples with appropriately large bandgaps. Fig. 3a shows the measured 𝜅+, as a function of carrier 

number in five devices (CN2-CN6) with bandgaps ≥ 150 meV. In all these samples, we observe 

the same trend as in CN2, meaning that in these tubes 𝜅+, is suppressed by going to low densities. 

 

Fig. 3. Effect of bandgap on compressibility in CNTs. Experimental data (a) and theoretical 

results (b) of inverse compressibility as a function of carrier number (N) for nanotubes with 

different bandgaps (CN2-CN6). (c) Experimental (Left) and theoretical (Right) results converted 

to inverse compressibility times effective length as a function of charge density. 

 



To understand the range of behaviors of 𝜅+, at low densities, we propose an interacting model in 

which we calculate the ground state energy E of a system having N electrons using the Hamiltonian 

𝐻 = ∑ 𝐾F + ∑ 𝑉L𝑟FMN + ∑ 𝑈(𝑟F)FFPMF , where Ki is the kinetic energy operator for electron i, 𝑉(𝑟FM) 

is the interaction energy between two electrons separated by a distance 𝑟FM, and U(x) is the potential 

energy of an electron at position x due to an external electric potential. In the case of 𝑈(x) ≡ 0 

electrons are arranged with a uniform (voltage-dependent) density n along a line of length Leff, so 

that the total number of electrons in the system is N = nLeff. In the Wigner crystal limit, the 

electrostatic energy Eel of the system can be approximated by that of a classical collection of point 

charges with regular spacing 1/n.  In the limit where Leff is much longer than the distance d to the 

gate electrode, 𝐸TU = 𝑁∑ 𝑉(𝑖/𝑛)W
, , where the interaction energy V(r) is given by the gate-screened 

Coulomb repulsion 𝑉(𝑟) = TX

YZ[\
],
^
− ,

_^X=(&`)X
a.		At low electron densities 𝑛𝑑 ≪ 1, the typical 

interaction energy becomes that of a dipole-dipole interaction, 𝑉 d,
G
e~𝑒&𝑛g𝑑&/(4𝜋𝜀k).  This rapid 

vanishing of V with n at low density implies that the electrostatic cost of inserting an additional 

energy decreases with decreasing concentration in cases where the electron density is uniform. 

In the limit where e-e Coulomb interactions dominate over the quantum kinetic energy of electrons 

and system adopts a Wigner crystal-like arrangement, the kinetic energy can be treated as a 

perturbation. In this situation, electron wave functions have little spatial overlap with each other 

and one can approximate the kinetic energy via a description where each electron is confined into 

a box of width 1/n, such that neighboring electrons have no wave function overlap. The total kinetic 

energy of this system is therefore given by the number of electrons multiplied by the ground state 

energy of a 1D particle in a box.  We describe the kinetic energy of an electron via the relativistic 

dispersion relation 𝜀(𝑝) = _(𝑣𝑝)& + (Δ/2)& − Δ/2, where v is the Fermi velocity, p is the 



electron momentum and the bandgap is ∆= 2𝑚∗𝑣&. Note that at low electron densities with small 

p, 𝜀(𝑝) reduces to the familiar form of 𝜀(𝑝) ≅ 𝑝&/(2𝑚). Our approximation of a Coulomb-

dominated electron state is justified when the typical interaction energy scale V(1/n) is much larger 

than the typical kinetic energy scale 𝜀(𝑝 = 𝜋ℏ𝑛).  At low electron densities this inequality is 

satisfied in the usual limit of large rs, 𝑛𝑎4 ≪ 1.  In our experiments 𝑎4 is no larger than ~ 15 nm, 

while our CNT lengths are of order 2 µm, so our approximation is justified when there are fewer 

than ~ 100 electrons in the system. The inverse compressibility is then got from the relation: 𝜅+, =

L1/𝐿TqqN𝑑𝜇/𝑑𝑛. A detailed expression for 𝜇 is given in the Supplemental Material. Our theoretical 

results for 𝜅+,, illustrated in Fig. 3b, have the same trend and magnitude as our transport data for 

CN2-CN6. These modeling results demonstrate that our theory achieves an expected explanation 

for the behavior of 𝜅+,	in the large bandgap devices.  

In addition to the Coulomb interactions between electrons, the electric potential difference between 

the gate and source/drain electrodes creates an external potential that may significantly affect the 

compressibility of the system. To model this effect, we assume that electrons reside in the 

minimum of a potential well described generically by 𝑈(𝑥) = TX

YZ[\
(s

X

tuv
+ sw

tXx
). The position x is 

defined with respect to the location of the potential minimum, and the value of the electrostatic 

potential at this minimum can be set to zero.  The length scales D1 and D2 define the strength of 

the potential. In the presence of such a confining potential the electron density varies with position 

x, with electrons being more densely spaced at x = 0 and more sparsely spaced at larger distances 

from the minimum of confining potential  [7].  

Fig. 2 inset compares the result of our theoretical calculation (solid line) and the measured data 

(dots) for CN1. Our fitted parameters D1 and D2 agree with the estimated value from electrostatic 



calculations in ref  [7]. It can be seen that the theory matches very well with the experiment, 

implying that the confining potential plays an important role in the enhancement of  at low 

density for this tube. The larger values of  with decreasing N suggest that electrons are pushed 

together by the confining potential, so that the effective length of the device increases with 

increasing N. We have also calculated  in the presence of magnetic field by adding a field-

tunable gap  [27]  to the non-vanishing gap , and in the presence of a confining potential, 

we are able to derive a change in  as a function of B that is qualitatively similar to our 

experimental results (see Fig. S1). The opposite trend of  observed in the larger bandgap 

devices (CN2-CN6) suggests that the confining potential plays a weaker role in those devices, 

compared to CN1.  

Obtained values of Leff for individual tubes are presented in Table1.  Since Leff is density dependent 

in the presence of a confining potential, we do not list Leff for CN1. Leff is smaller in tubes with 

larger bandgaps. The interaction strength can be estimated from average carrier spacing divided 

by effective Bohr radius, . Calculated values of  from our theory are included in 

Table 1. The values of  range from ∼ 3 (for small bandgap and large N) to ∼ 450 (for large 

bandgap and small N).  Large  is consistent with our initial assumption of the Wigner crystal 

regime [19] and justify our estimate that contact interactions are negligible [31] in our large 

bandgap tubes. 

 25 150 165 260 375 500 

 - 1232 1151 1085 932 681 

 15 2.56 2.32 1.47 1.03 0.77 

Table1. Calculated Bohr radius  and effective length  for tubes with different bandgaps. In 

tube with , depends on the electron density. 



Interactions in the low-density regime are stronger in tubes with larger ∆ ∙ 𝐿���. In order to eliminate 

the effect of 𝐿���	and present compressibility dependence on bandgap of CNTs, results of Fig. 3a 

and b are illustrated in Fig. 3c in terms of  𝜅+, ∙ 𝐿��� as a function of density. Levitov and 

Tsvelik  [8] had previously theorized that large bandgap tubes with slowly increasing 𝜅+, (with 

increasing density) are more strongly interacting. According to our measurements and calculations 

in Fig. 3c, our tubes with larger bandgap reach the constant 𝜅+, regime slower than CNTs with 

smaller bandgap, which is consistent with ref  [8]. Overall, our devices show the same behavior as 

our model, indicating that e-e interactions are stronger in low density regime of nanotubes with 

larger bandgaps, causing the inverse compressibility to grow with density.  

We note that the observed compressibility behavior by itself is not proof of a Wigner crystal. 

Previous works had explained a similar suppression of compressibility as a function of density, 

though not in a laterally confined structure, based on the exchange interaction in a uniform gas 

(𝑟/ = 0) model  [10,12]. The observed behavior in our devices could also be described using the 

simple model of a uniform electron gas with exchange interaction, which is presented in the 

Supplemental Material. However, given the overwhelming evidence for Wigner crystallization 

from other experiments  [16–19] in the parameter space of our devices, we can safely suggest our 

observed compressibility behavior as a probe of interaction strength of 1D Wigner crystals.  

In summary, we studied the effect of interactions on electronic compressibility of carbon 

nanotubes with different bandgaps. We showed that contact interactions are not negligible in tubes 

with smaller bandgaps and their compressibility can be tuned by applying external magnetic field. 

For stronger (weaker) interactions, inverse compressibility decreases (increases) in the limit of low 

density in the Wigner crystal regime.  In devices with addition energy suppression at low density, 

tubes with larger bandgaps reach the noninteracting regime at larger densities compare to tubes 



with smaller bandgaps. Our theoretical modeling suggests that we are in a regime of relatively 

large 𝑟/, and our data is consistent with a theoretical model of a Wigner crystal in a soft confining 

potential. Future studies will incorporate independent control of bandgap and confining potential. 
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