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Electronic compressibility, the second derivative of ground state energy with respect to total
electron number, is a measurable quantity that reveals the interaction strength of a system
and can be used to characterize the orderly crystalline lattice of electrons known as the
Wigner crystal. Here, we measure the electronic compressibility of individual suspended
ultraclean carbon nanotubes in the low-density, Wigner crystal regime. Using low-
temperature quantum transport measurements, we determine the compressibility as a
function of carrier number in nanotubes with varying bandgaps. We observe two
qualitatively different trends in compressibility versus carrier number, both of which can be
explained using a theoretical model of a Wigner crystal that accounts for both the band gap
and the confining potential experienced by charge carriers. We extract the interaction
strength as a function of carrier number for individual nanotubes and show that the
compressibility can be used to distinguish between strongly- and weakly- interacting

regimes.



The Wigner crystal, an ordered crystalline lattice of electrons with extremely strong interactions,
is one of the most fascinating regimes of solid-state physics [1]. One of the observables of this
regime is the electronic compressibility k, which is a reflection of the many-body interactions of
the target system and can be obtained from k = (d?E/dN?)™1 = (du/dN)™t, where E is the
ground state energy, N is the total electron number and u = dE/dN is the chemical potential of

1, in particular, corresponds to the amount by which

the system. The inverse compressibility x~
the chemical potential must be raised in order to add an electron; small k=1 indicates that the
system easily accommodates additional electrons. Various studies have been conducted on
compressibility (and quantum capacitance, which is directly proportional to compressibility) of
quantum structures such as quantum wires, two-dimensional electron systems, mono- and bilayer
graphene, etc. to explore the interactions in these systems [2—6]. When the density of states is
constant and electron-electron (e-e) interactions are relatively weak, the compressibility of an
electronic system is independent of the charge carrier density. These assumptions are violated,
however, in the low-density regime, and the compressibility varies strongly with density. In
particular, in the Wigner crystal regime strong correlations between electrons are predicted to lead
to a sharp decrease in k! with decreasing density [2,7,8]. Previous studies have indeed observed
a reduction in k~1 at low densities in macroscopic (i.e. laterally unconfined) structures [9-13];
this trend has been attributed to strong screening effects from a nearby metal gate, the presence of
disorder in the system, or contributions from the exchange interaction. Unfortunately, for meso-
or nano-scale systems the downward trend in k™1 is easily reversed by the effect of an electrostatic
confining potential produced by gate and source/drain electrodes, which tends to push electrons

into an even smaller spatial region as their density is reduced. To our best knowledge, suppression

in k! at low densities has never been reported in laterally confined quantum structures.



Suspended carbon nanotubes (CNTs) are a promising platform for investigating the effects of
strong electronic correlations in one dimension. As a clean, interacting quantum system, electrons
in a suspended CNT at low density [14] may be described as a Wigner crystal [15]. Indeed,
experimental studies have confirmed fascinating magnetic and electronic properties of the Wigner
crystal phase, such as their exponentially suppressed exchange energy [16], absence of excited
energy states [17] and giant orbital magnetic moment [18]. These observations indicate that
despite more than a decade of studies on the 1D Wigner crystal, improvement in device fabrication
and higher quality carbon nanotubes lead to the discovery of novel signatures that have not been
revealed before. Very recently, Shapir et al. [19] have developed a technique to observe the
Wigner crystal directly by imaging the charge density of the system in real space. Providing
detailed theoretical calculations, they showed that the Wigner crystal regime has one of the
strongest e-e interactions in the solid state. The strength of interactions is usually parameterized
by 75, defined as the ratio of the Coulomb interaction between electrons separated by a distance 7,
e*/r, to their typical kinetic energy h? /(m*r?). The interaction strength can be written in terms of
the effective Bohr radius ag as 1y, ® 1/(nag), where n is the one-dimensional electron density.
The effective mass m* is proportional to the CNT bandgap, A, (with A= 2m*v?, where v is the
Fermi velocity), so that increasing A leads to a larger 7y, and a stronger role for interactions.
Previous studies of the addition energy spectrum, capacitance and compressibility of CNTs have
mostly focused on non-interacting physics and the weak-interaction regime [14,20-22]. But the

effect of bandgap on these quantities in the Wigner crystal regime has not yet been considered.

In this work, we have studied one-dimensional systems with different e-e interaction strengths,
using long suspended CNTs of various bandgaps. We report two contrasting trends of

enhancement and suppression of k1. In CNTs with very large bandgaps, we observe suppression



of k71

at low densities, and we provide a theory to show how this trend can be produced by a
Wigner crystal. Using this theory, we show that compressibility is sensitive to both bandgap and

confining potential of the nanotube, which provides insight into the electronic interactions in these

materials.

Our CNTs are grown using chemical vapor deposition across a ~2 um wide trench on prefabricated
substrates to eliminate disorder effects (see Supplemental Material for more details) [23]. A pair
of gate electrodes is at the bottom of the trench and ~750 nm below the contact electrodes. Fig. 1a

shows a schematic of the device.

We focus on the low-density regime of electrons or holes in clean CNTs, which clearly exhibits
single-electron/hole conductance peaks in the Coulomb blockade (CB) regime, down to the last
electron/hole at the conduction/valence band edge. The charge carrier density of CNTs can be
modulated using electrostatic gating. A high-resolution map of the differential conductance dlI/dV
as a function of gate voltage V', and source-drain bias voltage Vsq is shown in in Fig. 1b for T = 1.5
K, and illustrates CB diamonds and a bandgap of A~25 meV in CNI. Fig. 1lc plots the
conductance of CN1 as a function of V. The regularity of CB peaks in our data indicates that our
devices are high-quality and defect-free. In Fig. lc, the CB peaks get closer going from low to
high carrier number. Figure 1d shows similar data from another device (CN2, with A ~ 165 meV);
the CB peaks in CN2 show the opposite behavior, i.e. the CB peaks spread further apart with

increasing carrier number.

The compressibility of the nanotube can be obtained from gate voltage spacing between the

neighboring CB peaks in the transport data converted to energy: 8y = Ey,1—2Ey + Ey_; = k71

see e.g. [24,25], using u = ael;, where gate voltage lever arm a = V. /V,, and V= is the height of



rhombic pattern in the G(Vg, Vsa) diagram [26]. Figures le and 1f plot the extracted value of k™1

as a function of carrier number for CN1 and CN2. The alternating pattern in some parts of the plots
arises from filling the subsequent orbital states with two electrons having opposite spins [14,20].
In CN1 (A ~25 meV), k™! is higher at low densities. This trend of addition energy has been
reported previously and explained using a single-particle picture [14,20,21]. Due to the small
effective mass of CNI1, the energetics in this device has been considered to be dominated by a
classical charging energy and the quantum kinetic energy. It is worth noting that the device imaged
by Shapir et al. [19] with A =45 meV has similar energetics to CN1 and was found to be a Wigner
crystal. On the other hand, we observe the opposite trend in CN2 with A ~ 165 meV; in this device
k™1 is suppressed at low densities. In contrast to CN1, the effective mass of CN2 is large and the
energetics are more likely to be dominated by Coulomb interactions. Correspondingly, the
electronic compressibility of a Wigner crystal may follow a different trend in samples with such

large gaps.
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Fig. 1: Transport data in Coulomb blockade regime. (a) Schematic diagram of the device
geometry. Carbon nanotube is suspended over a 2 um-wide trench. The vertical spacing between
trench and contact electrodes is d = 760 nm. (b) Color scale plot of differential conductance versus
gate voltage V; and source-drain bias Vsq in CN1. Conductance G versus carrier number in (c) CN1

and (d) CN2. (e,f) Inverse compressibility as a function of carrier number for the related device.

It is desirable to vary the bandgap parameter to study its effect on x~1. One way to do this in a
continuous manner is by applying an external magnetic field (B) parallel to the axis of the
tube [27-29]. This is particularly applicable to CN1 which has a small bandgap at B = 0 and can
display field-dependent energetics. Figure 2 shows k™1 in CNI as the magnetic field is varied
from B=0.4 T, to B=4 T. The minimum band gap, A,,;,, is obtained at 0.4 T and at higher fields
the gap increases at a rate of ~2.5 meV/T. As the band gap is increased, k! is observed to decrease

at lowest densities.
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Fig. 2: (Color online) Effect of magnetic field on k=1 of CN1 for a range of magnetic fields, from

B=0.4 T, where the bandgap reaches its minimum, to 4 T. Inset: Comparison of theoretical (solid

1

line) and experimental (dots) results of k™" as a function of carrier number for CN1.



To study the suppression in k! at low densities, similar to CN2, we examine a range of different
samples with appropriately large bandgaps. Fig. 3a shows the measured k™! as a function of carrier
number in five devices (CN2-CN6) with bandgaps = 150 meV. In all these samples, we observe

the same trend as in CN2, meaning that in these tubes k! is suppressed by going to low densities.
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Fig. 3. Effect of bandgap on compressibility in CNTs. Experimental data (a) and theoretical
results (b) of inverse compressibility as a function of carrier number (N) for nanotubes with
different bandgaps (CN2-CN6). (c) Experimental (Left) and theoretical (Right) results converted

to inverse compressibility times effective length as a function of charge density.



To understand the range of behaviors of k™1 at low densities, we propose an interacting model in
which we calculate the ground state energy £ of a system having N electrons using the Hamiltonian
H =YK+ X V(ri j) + X U(1;), where K is the kinetic energy operator for electron i, V (7;;)
is the interaction energy between two electrons separated by a distance 7;;, and U(x) is the potential
energy of an electron at position x due to an external electric potential. In the case of U(x) = 0
electrons are arranged with a uniform (voltage-dependent) density #n along a line of length Lesr, so
that the total number of electrons in the system is N = nLes. In the Wigner crystal limit, the
electrostatic energy Eel of the system can be approximated by that of a classical collection of point
charges with regular spacing 1/n. In the limit where Lefr is much longer than the distance d to the

gate electrode, E,; = N Y7 V(i/n), where the interaction energy V() is given by the gate-screened

2
Coulomb repulsion V(r) = 4; (% — M) At low electron densities nd « 1, the typical
0

interaction energy becomes that of a dipole-dipole interaction, V (%) ~e?n3d?/(4mey). Thisrapid

vanishing of V" with n at low density implies that the electrostatic cost of inserting an additional

energy decreases with decreasing concentration in cases where the electron density is uniform.

In the limit where e-e Coulomb interactions dominate over the quantum kinetic energy of electrons
and system adopts a Wigner crystal-like arrangement, the kinetic energy can be treated as a
perturbation. In this situation, electron wave functions have little spatial overlap with each other
and one can approximate the kinetic energy via a description where each electron is confined into
a box of width 1/n, such that neighboring electrons have no wave function overlap. The total kinetic
energy of this system is therefore given by the number of electrons multiplied by the ground state

energy of a 1D particle in a box. We describe the kinetic energy of an electron via the relativistic

dispersion relation £(p) = /(vp)? + (A/2)2 — A/2, where v is the Fermi velocity, p is the



electron momentum and the bandgap is A= 2m*v?. Note that at low electron densities with small
p, £(p) reduces to the familiar form of &(p) = p?/(2m). Our approximation of a Coulomb-
dominated electron state is justified when the typical interaction energy scale V(1/n) is much larger
than the typical kinetic energy scale e(p = mwhn). At low electron densities this inequality is
satisfied in the usual limit of large 7y, nap < 1. In our experiments ap is no larger than ~ 15 nm,

while our CNT lengths are of order 2 um, so our approximation is justified when there are fewer

than ~ 100 electrons in the system. The inverse compressibility is then got from the relation: k™1 =

(1 [Les f) du/dn. A detailed expression for u is given in the Supplemental Material. Our theoretical

results for k1

, illustrated in Fig. 3b, have the same trend and magnitude as our transport data for
CN2-CN6. These modeling results demonstrate that our theory achieves an expected explanation

for the behavior of k™! in the large bandgap devices.

In addition to the Coulomb interactions between electrons, the electric potential difference between
the gate and source/drain electrodes creates an external potential that may significantly affect the

compressibility of the system. To model this effect, we assume that electrons reside in the

e?  x?
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minimum of a potential well described generically by U(x) = + ;—é.,). The position x is

defined with respect to the location of the potential minimum, and the value of the electrostatic
potential at this minimum can be set to zero. The length scales D1 and D> define the strength of
the potential. In the presence of such a confining potential the electron density varies with position
x, with electrons being more densely spaced at x = 0 and more sparsely spaced at larger distances

from the minimum of confining potential [7].

Fig. 2 inset compares the result of our theoretical calculation (solid line) and the measured data

(dots) for CN1. Our fitted parameters D1 and D> agree with the estimated value from electrostatic



calculations in ref [7]. It can be seen that the theory matches very well with the experiment,

1 at low

implying that the confining potential plays an important role in the enhancement of k™~
density for this tube. The larger values of k=1 with decreasing N suggest that electrons are pushed
together by the confining potential, so that the effective length of the device increases with

1

increasing N. We have also calculated k™" in the presence of magnetic field by adding a field-

tunable gap [27] Ap to the non-vanishing gap A,,;,, and in the presence of a confining potential,

1

we are able to derive a change in k™ as a function of B that is qualitatively similar to our

1 observed in the larger bandgap

experimental results (see Fig. S1). The opposite trend of k™
devices (CN2-CN6) suggests that the confining potential plays a weaker role in those devices,

compared to CN1.

Obtained values of Lefr for individual tubes are presented in Tablel. Since Lefr is density dependent
in the presence of a confining potential, we do not list Lesr for CN1. Lesr is smaller in tubes with
larger bandgaps. The interaction strength can be estimated from average carrier spacing divided
by effective Bohr radius, 7y ® 1/(nag). Calculated values of ag from our theory are included in
Table 1. The values of ry range from ~ 3 (for small bandgap and large N) to ~ 450 (for large
bandgap and small N). Large 7 is consistent with our initial assumption of the Wigner crystal

regime [19] and justify our estimate that contact interactions are negligible [31] in our large

bandgap tubes.
A (meV) 25 150 165 260 375 500
Less (M) - 1232 1151 1085 932 681
ag ( m) 15 2.56 2.32 1.47 1.03 0.77

Tablel. Calculated Bohr radius ag and effective length L for tubes with different bandgaps. In

tube with A= 25 meV, L. depends on the electron density.



Interactions in the low-density regime are stronger in tubes with larger A - Legr. In order to eliminate
the effect of L.g and present compressibility dependence on bandgap of CNTs, results of Fig. 3a
and b are illustrated in Fig. 3¢ in terms of k~1- Ly as a function of density. Levitov and
Tsvelik [8] had previously theorized that large bandgap tubes with slowly increasing k™1 (with
increasing density) are more strongly interacting. According to our measurements and calculations
in Fig. 3¢, our tubes with larger bandgap reach the constant k! regime slower than CNTs with
smaller bandgap, which is consistent with ref [8]. Overall, our devices show the same behavior as
our model, indicating that e-e interactions are stronger in low density regime of nanotubes with

larger bandgaps, causing the inverse compressibility to grow with density.

We note that the observed compressibility behavior by itself is not proof of a Wigner crystal.
Previous works had explained a similar suppression of compressibility as a function of density,
though not in a laterally confined structure, based on the exchange interaction in a uniform gas
(r; = 0) model [10,12]. The observed behavior in our devices could also be described using the
simple model of a uniform electron gas with exchange interaction, which is presented in the
Supplemental Material. However, given the overwhelming evidence for Wigner crystallization
from other experiments [16—19] in the parameter space of our devices, we can safely suggest our

observed compressibility behavior as a probe of interaction strength of 1D Wigner crystals.

In summary, we studied the effect of interactions on electronic compressibility of carbon
nanotubes with different bandgaps. We showed that contact interactions are not negligible in tubes
with smaller bandgaps and their compressibility can be tuned by applying external magnetic field.
For stronger (weaker) interactions, inverse compressibility decreases (increases) in the limit of low
density in the Wigner crystal regime. In devices with addition energy suppression at low density,

tubes with larger bandgaps reach the noninteracting regime at larger densities compare to tubes



with smaller bandgaps. Our theoretical modeling suggests that we are in a regime of relatively
large 7, and our data is consistent with a theoretical model of a Wigner crystal in a soft confining

potential. Future studies will incorporate independent control of bandgap and confining potential.
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