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Abstract—Detection of impending front-induced ramp events
is studied as a new class of change detection problem - change
detection for multiple time series with spatial dependency. A
critical step to ramp event detection is to capture the spatial
dependency between neighbor turbines’ power output. To this
end, a graphical model is utilized to model the dependency of
turbine-level ramp events. Then, change point detection is carried
out for the time series of individual turbines’ power output,
by using the belief from neighbor turbines in the dependency
graph. Once an impending ramp is detected, the magnitude of
ramp is then forecasted by using current measurement data. A
key observation is that due to the movement of front, the best
predictors for individual turbines’ power output vary across three
different regions of the wind farm. With this insight, different
predictive models are adopted for forecasting power output
from each region. Through numerical experiments, the proposed
detection-based wind power forecasting method is proven to
outperform conventional methods for wind power ramps.

Index Terms—Ramp events, short-term wind power forecast-
ing, wind farm.

I. INTRODUCTION

With an objective to build a sustainable energy infrastruc-
ture, many states in the U.S. have adopted renewable portfolio
standards (RPS) [1] that specify the anticipated penetration
levels of renewable energy. A critical aspect in meeting these
goals is the integration of wind power generation the bulk
power grids. Particularly, wind power is expected to consti-
tute a significant portion of all renewable generation being
integrated to the bulk power grids of U.S. [2]. Specifically,
U.S. Department of Energy has envisaged that the wind power
will contribute to more than 20% percent of U.S. electricity
demand by 2030 [3]. With increasing penetration into bulk
power systems, wind power generation has posed significant
challenges for power reliability [4], [5]. Unlike conventional
energy resources, wind power generation is non-dispatchable,
in the sense that wind energy could be not harvested simply
by request. Further, wind power generation highly depends on
geographical and meteorological conditions and thus exhibits
greater variability across all timescales, which makes it chal-
lenging for system operators to obtain accurate knowledge of
future wind power generation. Typically, power system oper-
ators will maintain an adequate amount of back up generation
capacity or battery storage as reserves to compensate for small
variations of wind power [6]. However, disruptive events -
extreme wind power ramp could have significant impact on
the availability of wind power, as well as the reliability and
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stability of power grid. As the bulk of wind energy sources,
the reliable power out from wind farms is of paramount
significance to power grids. It is therefore of great interest to
investigate the use of real-time measurements collected from
widely dispersed sensors deployed at wind farms, together
with state-of-the-art data analytics tools, for securing wind
farm against disruptive events.

The rest of the paper is organized as follows. Background
on wind power ramp and key observations from real-world
data of wind farm are given in Section II. Section III presents
the proposed approach to wind power ramp detection and fore-
casting. Numerical experiments are carried out in Section IV.
Finally, conclusions are given in Section V.

II. WIND POWER RAMP AND KEY OBSERVATIONS FROM
WIND FARM REAL-WORLD DATA

A. Wind Power Ramp

Wind power ramp refers to the sudden and significant
change in the aggregate power output of a wind farm [7].
Reference [8] formally defines wind power ramp as follows:
Definition - A wind power ramp is considered to occur at time
instant t, if the change in the aggregate power output P,g of
a wind farm over a time interval §t, with regard to the wind
farm’s rated capacity P,g, is greater than a threshold r;h:
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Based on [9], a change by over 20% of the rated capac-
ity of wind farm in 10 minutes, i.e., r4;=0.2 and § t=10
min, is referred to as an extreme ramp. Generally, a ramp
can be either an up-ramp (upward change) or a down-ramp
(downward change). However, it is of greater interest to study
down-ramps. This is because that to accommodate an up-
ramp, wind power producers can curtail the aggregate power
output of wind farms as needed; when down-ramps occur,
battery storage and/or operating reserves has to be utilized,
at additional cost, to compensate the energy supply deficit.

B. Extreme wind power ramps are low-probability high-
impact events

By using historical measurement data collected from a large
wind farm in western U.S. during the years 2009-2012, which
has a rated capacity of 300.5 MW and 273 turbines, we apply
extreme value analysis to study daily largest ramp. Figure 1
illustrates the generalized extreme value distribution fitted to
the data of daily largest down-ramps, which is a Frechet
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Fig. 1. Generalized extreme value distribution of daily largestdown-ramp.

distribution with shape parameter of 0.20, scale parameter of
13.36 MW and location parameter of 24.83 MW. It is observed
from the Fig. 1 that an extreme down-ramp occurs daily with
a probability of as low as 0.113.

State-of-the-art short-term wind power ramp forecasting
approaches are not developed for extreme ramp events. Short-
term wind power ramp forecasting aims to detect and quantify
the impending ramp in a small lead time (5-15 min). The com-
prehensive literature survey [10] summarizes the approaches
[8], [9], [11], which utilize historical aggregate wind power
measurements and machine learning algorithms to induce a
predictive model, as statistical-based short-term wind power
ramp forecast approaches. Particularly, literature [11] applies
data mining tools (boosting trees) and discoveries that the
10-min wind power ramps calculated from aggregate power
measurements during the most recent 1 hour are the most
significant predictors for short-term wind power ramp forecast-
ing. Reference [8] develops a hidden Markov model for wind
power ramp, with parameters estimated from historical data.
The state-of-the-art statistical-based approaches can achieve
reasonably high forecasting accuracy, when tested on a large
data set by using mean absolute error as performance metric.
However, it is noted from the above analysis and Fig. 1 that
extreme ramps are rare events. Thus, data traces that consist
of an extreme ramp event are usually treated as outliers when
used to induce statistical-based predictive models. An example
is illustrated in Fig. 2. The wind power generation during
the 1-hour window before an extreme down-ramp on Aug
19th, 2012 is plotted. Another 201 wind power series are
also plotted, which are “similar” to the extreme down-ramp
in the sense that, the wind power at each time instant of the
1-hour forecasting window is different from that of the trace
of the extreme wind power ramp by no greater than 5%. It is
thus clear from Fig. 2 that statistical-based wind ramp forecast
approaches would not work for extreme wind power ramps.

One key observation that motivates the proposed research
is that, with new sensory data on turbine-level power mea-
surements, extreme ramp events could be detected in advance
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Fig. 2. An extreme down-ramp and “similar” series.

and accurately quantified. Wind power ramps are usually
caused by sudden changes in weather conditions [12]-[14],
including the passage of fronts, thunderstorms, and turbine
shutdown due to gust or icing. The passages of fronts are
results of the horizontal movement of large-scale weather
systems or mesoscale/local circulations, after which the wind
speed changes dramatically. By using turbine-level power
measurements, Fig. 3 explains how the same extreme wind
power ramp in Fig. 2 developed as the passage of a front. It is
observed from Fig. 3 that a northwest weather front passed the
wind farm, and induced an extreme down-ramp. As illustrated
in Fig. 3(a) which was 20 min before the down-ramp, part
of the turbines in the northwest area of the wind farm have
less power output (denoted by yellow or green circles) than the
rest turbines. Ten minutes later, as illustrated in Fig. 3(b), more
turbines in the northwest area of the wind farm encountered
significant drop in their power outputs. Finally, the wind
behind the front, which has a less speed as illustrated in
Fig. 3(d), covered the entire wind farm and induced an extreme
down-ramp. From Fig. 3, we have two key observations:
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Fig. 3. A front-induced down-ramp (note: Each turbine is represented by a colored circle; the darker the color is, the higher the power output of the turbine
is; the geographical information of each turbine is given in x-axis (longitude e) and y-axis (latitude)).

1) By using turbine-level power measurements, together with
geographical information of turbines, front-induced extreme
wind power ramps can be detected in advance, as suggested
from development in Fig. 3(a) to Fig. 3(b) of the above
example. Further, the moving direction and speed could also
be estimated. Specifically, the moving direction could be
determined from vector that is perpendicular to the boundary
between wind turbines with power drop and the rest; and
moving speed can be estimated from the turbines behind
the front by using speed-to-power curves. 2) Wind speed
measurement at a meteorological tower of wind farm is not
sufficient for detection of front-induced ramps, as shown in the
case of Fig. 3(d). Depending on the location of meteorological
tower and the direction of front, the wind speed drop may

occur simultaneously with or even after wind power ramp

III. DETECTION OF IMPENDING FRONT-INDUCED RAMPS

The proposed approach for data analytics of wind power
ramps is comprised of three main steps. First, detection of
impending front-induced ramps is formulated as a new class
of change detection problem with spatial dependencies. Then,
a support vector machine is utilized to classify turbines by
using turbines’ geographical information and corresponding
turbine-level power ramp indicators, from which the moving
direction and speed of front can be estimated. Finally, based
on the results from the previous two steps, wind farm is
partitioned into three regions, and magnitude of impending



ramp is obtained from short-term wind power forecast of each
region.

A. Detection of Impending Wind Power Ramp

1) Spatial Dependency Modeling: 1t is naturally to infer
wind power ramp over the entire wind farm by observing the
wind power ramp of individual turbines. Along this venue, a
key observation is the turbine-level wind power ramp events
are not independent, as illustrated in Fig. 3 of previous section.
Since the movement of front is a spatio-temporal process, the
turbine-level wind power ramp events have a specific spatial
dependency structure. Intuitively, when all neighbors of a
turbine encounter wind power reduction, it is highly likely
the turbine also has a wind power down-ramp. In order to
capture this spatial dependency, a Markov random field model
is utilized.

Define the turbine-level power ramp indicator at time instant
n as follows:

o =

Since the random field x is a binary vector, the following
logistic model [15] is utilized:
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where A(6) is the log partition function, and m is the number
of turbines. By following the log determinant relaxation ap-
proach in [16], the parameter of the above Markov random
field is estimated by exactly solving the following sparse
maximum likelihood problem:

Posace = axgmas - (R(0), R(%)) ~ A(6) - Alell, @&
where A is the regularization coefficient used to penalize the
l; norm of solution, X is from historical data, and R(6) is
a matrix constructed by using the elements of 6. For the
wind farm considered in previous examples, the solution to the
above problems characterizes a sparse matrix R(f), together
with a spatial dependency graph of turbine-level wind power
ramp indicators x, as illustrated in Fig. 4. It can be seen that
most neighbor nodes in the dependency graph are turbines in
vicinity to each other, with few exception (possibly due to
different local terrain conditions).

2) Turbine-level Wind Power Change Detection: Once the
spatial dependency is characterized, turbine-level wind power
ramp events can be detected by examining the posterior as
below:

m
p (%, 1P) o< p (x) [ [ p (milx) p (Plu) , (5)

i=1
in which recall that x is the vector of turbine-level power
ramp indicators, P; is an observation on the wind power
of turbine ¢ during the detection window, and u; parame-
terizes the distribution on P;. In the above posterior, it is
assumed that conditioned on turbine-level ramp indicators x,
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Fig. 4. Dependency graph of turbine-level wind power ramps.

u; (¢ = 1, 2,---, m) are independent of each other. This
assumption is adopted to account for the possible different
types of wind turbines on the same wind farm. Specifically, the
turbine-level ramp indicators could be highly correlated, but
the absolute change in wind power varies depending on turbine
type, hub height, and local terrain conditions. Further, it has
been noted that extreme wind power ramps are “outliers,” and
thus a fixed prior on u; is not appropriate. Instead, a Bayesian
non-parametric approach [17] is adopted here. Specifically, the
parameter u; can be regularized by using Dirichlet priors or
Pitman-Yor priors [17]. Finally, variational methods [18] or
Markov chain Monte Carlo methods [17] could be utilized for
model parameter learning from historical data.

B. Estimation of Front Moving Direction and Speed

By using the turbine-level power ramp indicators x, together
with the geographical information (latitude and longitude) of
turbines, denoted by c, the movement of front can be estimated
by applying a linear classifier to (¢, x). Let vector W denote
the front moving direction. Intuitively, during a ramp event,
the moving direction of the front would be perpendicular to
the boundary between the region with mostly +1 (down-ramp)
indicators and the rest of the wind farm. Thus motivated, the
direction vector w can be found by solving the following soft-
margin support vector machine problem:

~2
min —||d||" +C & 6)
in, Sl +C3
s. L. x; (We; —b) >1—¢;,Vi=1,---,m @)

An example of detected front with its moving direction is illus-
trated in Fig. 5. Specifically, the solid line clearly differentiates
turbines with reduced power outputs from the rest. Then, the
moving speed of the front can be obtained by estimated wind
speeds at the support vector turbines that lie behind the front
(e.g., the upstream region in Fig. 5).
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C. Quantification of Impending Wind Power Ramp

According to the detected location and estimated movement
of front from the previous step, the wind farm is partitioned
into the following three disjoint regions: 1) ramp region - the
region of wind farm which is expected to be passed through
by front (e.g., the region between the solid line and the dashed
line in Fig. 5); 2) upstream region - the region of wind farm
which lies behind the current front (e.g., the region behind the
solid line against the moving direction); and 3) Downstream
region - the region of wind farm which would not be covered
by the front in the next time slot (e.g., the region in front of
the dashed line along the moving direction in Fig. 5).

Wind power outputs from the three disjoint regions have
different predictors, which motivates the partition into three
regions before carrying out short-term wind power forecasting.
Specifically, wind turbines in ramp region will be driven by
totally different wind in the next timeslot, as can be seen from
Fig. 5 or the example in Fig. 3. Therefore, the present and
recent power measurements of ramp region cannot be used as
predictors for wind power forecast of ramp region. However,
it is noted that the present turbine-level power outputs in
upstream region could be used as the predictors for future
wind power output of turbines in ramp region, since they are
or will be driven by the same wind. Further, it is easy to
see that the all previous aggregate wind power generation in
downstream region could be used as predictors for itself (i.e.,
auto-regression); while for upstream region, only the present
aggregate wind power generation could be utilized, due to the
passage of front. Accordingly, different forecasting models are
applied for the three disjoint regions.

Ramp region forecasting: due to wake effect [19] (i.e.,
the effect of wind speed reduction when passing through a
turbine) and turbine types, the power outputs of the turbines
in ramp region and the upstream turbines may not have
linear correlations. Therefore, non-linear regression models
[20] are used for short-term forecasting for ramp region. It is

worth noting that non-linear regression models are dependent
on front moving direction w. Further, a non-linear regres-
sion model is constructed for each turbine in ramp region,
since not all turbine-level wind power measurements from
upstream region would contain valuable information. To this
end, optimal predictor would be discovered through correlation
analysis or predictor important raking techniques (e.g., the
regression tree and boosting tree methods used in [11]), by also
taking into account turbines’ locational information. Upstream
region forecasting: since only the present aggregate wind
power measurements could be utilized as predictors, first-order
Markov chain models developed by the authors in reference
[21] are applied to the present power output of the upstream
region to provide short-term forecasts. Downstream region
forecasting: since all previous measurement data can be used
as predictors, high-order auto-regressive (AR) models with
parameters obtained by recursive least square estimation [22],
[23] is utilized.

IV. NUMERICAL EXPERIMENTS
A. Forecasting Models and Test Data

Two methods from literature are used as benchmark for
performance evaluation and comparison. The first one is an
autoregressive model that uses the measurement of actual wind
power production from previous time. It is worth mentioning
that for very-short-term wind power forecasting, autoregressive
model is proven to be very effective to capture the variation in
wind power [10]. Particularly, a class of adaptive-order autore-
gressive models are used to account for the different length
of memory and dependency in the wind power time series, as
well as to avoid possible over-fitting due to unnecessarily large
orders. with their orders. The adaptive orders are determined
by using the Box-Jenkins approach [24] through partial auto-
correlation analysis. Basically, the Box-Jenkins approach can
be regarded as to select the necessary number of predictors
(from its past measurements) which would otherwise cause
AR models to over-fit. The other benchmark approach is the
data mining-based wind power ramp predictor developed in
reference [25], which utilizes a set of recent wind power data
as inputs to the trained support vector machines to categorize
wind power ramp events into classes.

The historical data collected from the wind farm stated in
Section ILLA is used for numerical experiment. It is worth
noting that the data mining-based benchmark approach [25]
requires a large amount of training data, whereas the autore-
gressive model and the proposed approach requires only im-
mediate recent wind power measurements. Therefore, among
the four years of available data, data of the first two years
is used to train the data mining-based benchmark approach,
and those of the subsequent two years are used for testing
of all approaches. Further, since the proposed approach is
developed for wind power ramp only, the test data is then
refined by picking the wind power ramp events. Specifically,
wind power down ramps with r;,=0.2 and § t=10 min, i.e.,
wind power production reduces by over 20% in a 10-min
interval are chosen as the refined test cases. Here, it is worth



mentioning that compared with up-ramp events, down-ramp
events is of much more concern to wind power producers
and power system operators [26]. Therefore, only wind power
down ramps are tested here.

B. Performance Evaluation

Forecasting performance of the proposed approach and the
benchmark approaches is quantified by using the mean abso-
lute error (MAE), mean absolute percentage error (MAPE),
and root mean square error (RMSE). Detailed definition of
these metrics can be found in [21].

The performance of all approaches are measured by using
test data, and these metrics are calculated, as shown in Table. 1.
It is observed that the proposed approach outperforms both
the benchmark approaches. The data mining-based approach
[25] works better than the autoregressive model, because its
predictors are designed to classify wind power ramp levels
and are trained by using extensive historical data. Further, for
extreme ramps which are essentially rare events, historical data
could be irrelevant, as illustrated in Fig. 2. Therefore, the data
mining models built from these irrelevant historical data can
fail to predict extreme ramps. On the other hand, since the
proposed approach incorporates a step of extreme wind power
ramp, and use differentiated forecasting models for separate
wind farm regions, and is thus more accurate than generic
data-mining approaches.

TABLE I
PERFORMANCE EVALUATION
Error MAE MAPE RMSE
Proposed 10.86 MW | 10.25 % | 16.91 MW
AR 18.34 MW | 16.86 % | 30.42 MW
SVM [25] | 14.81 MW | 13.79 % | 24.64 MW

V. CONCLUSION

This paper presents a novel approach for wind power ramp
forecasting on a wind-farm level. The developed approach
is comprised of a detection step followed by differentiated
forecasting models for three disjoint regions of wind farm
under wind power ramp events. The event detection-based
approach requires little training data for operations, and is thus
amenable for online applications. The more detailed charac-
terization of wind power ramp events and more supplicated
treatment for wind power forecasting per regions makes the
proposed approach more accurate than state-of-the-art methods
that using generic time-series, statistical, and data mining
models. Finally, it is worth noting that the developed approach
is exclusively developed for extreme wind power ramp events,
and thus cannot replace general very-short-term wind power
forecasting models for normal variational conditions of wind
power.
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