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Abstract
Lifted Reed Solomon Codes (Guo, Kopparty, Sudan 2013) were introduced in the context of locally
correctable and testable codes. They are multivariate polynomials whose restriction to any line
is a codeword of a Reed-Solomon code. We consider a generalization of their construction, which
we call lifted multiplicity codes. These are multivariate polynomial codes whose restriction to any
line is a codeword of a multiplicity code (Kopparty, Saraf, Yekhanin 2014). We show that lifted
multiplicity codes have a better trade-off between redundancy and a notion of locality called the
t-disjoint-repair-group property than previously known constructions. More precisely, we show that,
for t ≤

√
N , lifted multiplicity codes with length N and redundancy O(t0.585√N) have the property

that any symbol of a codeword can be reconstructed in t different ways, each using a disjoint subset
of the other coordinates. This gives the best known trade-off for this problem for any super-constant
t <
√
N . We also give an alternative analysis of lifted Reed Solomon codes using dual codes, which

may be of independent interest.
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1 Introduction

In this work we study lifted multiplicity codes, and show how they provide improved con-
structions of codes with the t-disjoint repair group property (t-DRGP), a notion of locality in
error correcting codes.

An error correcting code of length N over an alphabet Σ is a set C ⊆ ΣN . There are
several desirable properties in error correcting codes, and in this paper we study the trade-off
between two of them. The first is the size of C, which we would like to be as big as possible
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38:2 Lifted Multiplicity Codes and the Disjoint Repair Group Property

given N . The second desirable property is locality. Informally, a code C exhibits locality
if, given (noisy) access to c ∈ C, one can learn the i’th symbol ci of c in sublinear time.
As we discuss more below, locality arises in a number of areas, from distributed storage to
complexity theory.

Two constructions of codes with locality are lifted codes [6] and multiplicity codes [15]; in
fact, both of these constructions were among the first known high-rate Locally Correctable
Codes. In this work, consider a combination of the two ideas in lifted multiplicity codes, and
we show that these codes exhibit locality beyond what’s known for either lifted codes or for
multiplicity codes.

More precisely, we study a particular notion of locality called the t-disjoint-repair-group
property (t-DRGP). Informally, we say that C has the t-DRGP if any symbol ci of c ∈ C
can be obtained in t different ways, each of which involves a disjoint set of coordinates of c.
Formally, we have the following definition.

I Definition 1. A code C ⊆ ΣN has the t-disjoint repair property if for every i ∈ [N ], there
is a collection of t disjoint subsets S1, . . . , St ⊆ [N ] \ {i}, and functions f1, . . . , ft so that for
all c ∈ C and for all j ∈ [t], fj(c|Sj

) = ci. The sets S1, . . . , St are called repair groups.

As discussed more in Section 1.1 below, the t-DRGP naturally interpolates between many
different notions of locality. The t-DRGP is well-studied both when t = O(1) is small (where
it is related to Locally Repairable Codes and nearly equivalently to Private Information
Retrieval Codes) and t = Ω(N) is large (where it is equivalent to Locally Correctable Codes).
For this reason, it is natural to study the t-DRGP when t is intermediate; for example, when
t = Na for a ∈ (0, 1). In this case, it is possible for the size of the code |C| to be quite large:
more precisely, it is possible for the rate R = log|Σ| |C|

N to approach 1 (notice that we always
have |C| ≤ |Σ|N , hence we always have R ≤ 1). Thus, the goal is to understand exactly how
quickly the rate can approach 1. That is, given t, how small can the redundancy N −RN be?

Several works have tackled this question, and we illustrate previous results in Figure 1.
Our main result is that lifted multiplicity codes improve on the best-known trade-offs for all
super-constant t ≤

√
N .

Contributions

We summarize the main contributions of this work below.
1. For t ≤

√
N , we construct codes with the t-DRGP and redundancy at most

O
(
tlog2(3)−1

√
N
)
≈ O

(
t0.585

√
N
)
.

This gives the best known construction for all t so that t = ω(1) and t ≤
√
N ; the only

previous result that held non-trivially for a range of t was redundancy O(t
√
N) [4, 2, 1]

and our result also surpasses the specialized bound for t = N1/4 of [5]. Moreover, both
our argument and our construction are quite clean.

2. We give a new analysis of bivariate lifts of multiplicity codes. Both multiplicity codes and
lifted codes have been studied before (even in the context of the t-DRGP), but to the best
of our knowledge the only work to consider lifted multiplicity codes is [26]. That work
studies m-variate lifts of multiplicity codes, where m is large; its goal is to obtain new
constructions of high-rate locally correctable codes. In the context of our discussion, this
corresponds to the t-DRGP when t = N0.99. In contrast, for bivariate lifts, we are able to
obtain more refined bounds which lead to improved results for the t-DRGP when t ≤

√
N .
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Figure 1 The best trade-offs known between the number t of disjoint repair groups and the
redundancy N −RN . Blue points and lines indicate upper bounds (possibility results), and the red
line indicates our upper bound. The best lower bound (impossibility result) available is that we
must have logN ((1−R)N) ≥ 1/2 for any t ≥ 2, and this is shown as the dotted orange line.

Organization

In the remainder of the introduction, we survey related work and give an overview of our
approach. In Section 2, we give the formal definitions about polynomials and derivatives
that we need. In Section 3, we formally define lifted multiplicity codes. In Section 4, we
prove that lifted multiplicity codes have high rate, and in Section 5, we prove that they have
the t-DRGP, which gives rise to our main theorem, Theorem 2.

1.1 Background and Related Work

1.1.1 Disjoint Repair Groups

The t-DRGP and related notions have been studied both implicitly and explicitly across
several communities. When t = O(1) is small, several notions related to the t-DRGP have
been studied, motivated primarily by distributed storage. These include codes for Private
Information Retrieval (PIR) [4, 2, 1], Locally Repairable Codes (LRCs) with availability [23,
18, 21, 22], and batch codes [10, 19, 1]. In more detail, PIR codes are basically equivalent to
codes with the DRGP, with the slight difference that PIR codes generally require that every
message symbol should be recoverable by many disjoint repair groups, rather than every
codeword symbol. LRCs with availability are a slightly stronger notion where the disjoint
repair groups should additionally be small. Batch codes are also a slightly stronger notion,
where one should be able to access any t-tuple of symbols (possibly with repetition) in t
disjoint ways. We refer the reader to [20] for a survey of these notions.

To see why the t-DRGP might be relevant for distributed storage, consider a setting
where some data is encoded as c ∈ C, and then each ci is sent to a separate server. If server
i is later unavailable, we might want to reconstruct ci without contacting too many other
servers. This can be done if each symbol has one small repair group; this is the defining

APPROX/RANDOM 2019



38:4 Lifted Multiplicity Codes and the Disjoint Repair Group Property

property of LRCs. Now suppose that several (say, t− 1) servers are unavailable. If C has the
t-DRGP then all t− 1 unavailable symbols can be locally reconstructed: each node has at
least t disjoint repair groups and at most t− 1 of them have been compromised.

On the other hand, when t = Ω(N) is large, the t-DRGP has been studied in the context
of Locally Decodable Codes and Locally Correctable Codes (LDCs/LCCs). In fact, the
Ω(N)-DRGP is equivalent to a constant-query LCC, and the notion has been used to prove
impossibility results for such codes [11, 24].

Because of these motivations, there are several constructions of t-DRGP codes for a wide
range of t; we illustrate the relevant ones in Figure 1. In the context of coded PIR, [4, 2, 1]
give constructions of t-DRGP codes with redundancy O(t

√
N). This is known to be tight

for t = 2 [17, 25], but no better lower bound is known.1 When t = Ω(N) is very large,
constructing codes with the t-DRGP is equivalent to constructing constant-query LCCs, and
it is known that the rate of the code must tend to zero [24]. On the other hand, for any
ε > 0, when t = O(N1−ε) is just slightly smaller, then work on high-rate LCCs [15, 6, 8, 14]
(see also [1]) imply that there are codes with rate 0.99 (or any constant less than 1) with
the t-DRGP.2

When t =
√
N , there are a few constructions known that beat the O(t

√
N) bound

mentioned above, including difference-set codes (see, e.g., [16]) and, relevant for us, lifted
parity-check codes [6]. These constructions achieve redundancy N log4(3) ≈ N0.79 when
t =
√
N . In Appendix C, we include a new proof of the fact that the lifted codes of [6] have

this redundancy using a dual view of lifted codes.
When t <

√
N , there is only one construction known which beats the O(t

√
N) bound,

due to [5]. For the special case of t = N1/4, they give a construction based on “partially
lifted codes” which has redundancy O(N0.72) = O(t0.88

√
N).

1.1.2 Lifting and multiplicity codes
Lifted multiplicity codes are based on lifted codes and multiplicity codes, both of which have
a long history in the study of locality in error correcting codes.

1.1.2.1 Lifted Codes

Lifting was introduced by Guo, Kopparty and Sudan in [6]. The basic idea can be illustrated
by Reed-Solomon (RS) codes. An RS code of degree d over Fq is the code

RSd,q = {(f(x1), . . . , f(xq)) : f ∈ Fq[X],deg(f) < d} ,

where x1, . . . , xq are the elements of Fq. There is a natural multi-variate version of RS codes,
known as Reed-Muller codes:

RMd,q,m = {(f(x1), . . . , f(xqm)) : f ∈ Fq[X1, . . . , Xm],deg(f) < d} ,

where x1, . . . ,xqm are the elements of Fmq . Reed-Muller codes have a very nice locality
property, which is that the restriction of a RM codeword to a line in Fmq yields an RS
codeword. This fact has been taken advantage of extensively in applications like local
decoding, local list-decoding and property testing. However, RM codes have a downside,

1 When the size s of the repair groups is bounded, it is known that the redundancy must be at least
Ω(N ln(t)/s) [22].

2 In fact we may even take ε slightly sub-constant using the construction of [14].
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which is that if d < q (required for the above property to kick in), they have very low rate.
With this inspiration, we could ask for the set C which contains evaluations of all m-variate
polynomials which restrict to low-degree univariate polynomials on every line. Surprisingly,
[6] showed that this set C can be much larger than the corresponding RM code! This code C
is called a lifted Reed-Solomon code, and the main structural result of [6] is that C is the
span of the monomials whose restrictions to lines are low-degree. This property is key when
analyzing the rate of these codes. Moreover [6] showed that this is the case when we begin
with any affine-invariant code, not just RS codes.

The original motivation for lifted codes was to construct LCCs, but [6] actually also
give a code with the

√
N -DRGP, mentioned above; we give an alternate proof that this

construction has the
√
N -DRGP in Appendix C. A variant of lifting was also used in [5] to

construct N1/4-DRGP codes; however, the analysis of this construction is quite brittle and
seems difficult to extend to non-trivial constructions for t 6= N1/4.

1.1.2.2 Multiplicity Codes

Multiplicity codes were introduced by Kopparty, Saraf and Yekhanin [15] with the goal of
constructing high-rate LCCs. The basic idea of multiplicity codes is to get around the low
rate of RM codes discussed above in a different way, by appending derivative information to
allow for higher-degree polynomials. That is, it is not useful to have an RS code with degree
d > q, since xq = x for any x ∈ Fq. However, if we replace the single evaluation f(x) with
a vector of evaluations (f(x), f (1)(x), . . . , f (r−1)(x)), where f (i) denotes the i’th derivative,
then it does make sense to take d > q. The m-variate multiplicity code Multd,q,m,r of degree
d and order r over Fq is then defined similarly to RMd,q,m:

Multd,q,m,r =
{

(f (<r)(x1), . . . , f (<r)(xqm)) : f ∈ Fq[X1, . . . , Xm],deg(f) < d
}
,

where f (<r)(x) ∈ F(m+r−1
m )

q is a vector containing all of the partial derivatives of f of order
less than r, evaluated at x. Since their introduction, multiplicity codes have found several
uses beyond LCCs, including list-decoding [12, 7], and have even been used to explicitly
construct codes with the t-DRGP [1].

1.1.2.3 Lifted Multiplicity Codes

To the best of our knowledge, the only work to study lifted multiplicity codes is the work
of Wu [26]. The goal of that work is to obtain versions of multiplicity codes which are still
high-rate LCCs but which require lower-order derivatives than the construction of [15]. The
main result is that lifted multiplicity codes of rate 1 − α are LCCs with locality N ε (this
corresponds roughly to having the t-DRGP with t = O(N1−ε)). However, since the number
of variables in the lift is large, it is hard to get a very precise handle on the codimension,
and in particular the codimension of the code in that work is not shown to be o(N).

In contrast, we study bivariate lifts of multiplicity codes. By focusing only on bivariate
lifts, we are able to get a more precise handle on the codimension of lifted multiplicity codes,
which gives results for the t-DRGP for t ≤

√
N .

We note that the construction in [26] is similar to the construction presented here. Since
this construction is somewhat non-trivial (for reasons discussed below), we include the details.

APPROX/RANDOM 2019
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1.2 Our approach

We study lifted multiplicity codes to obtain improved constructions of codes with the t-DRGP.
We focus on bivariate lifts in this paper in order to obtain codes with t-DRGP for t ≤

√
N .

We expect that lifted multiplicity codes in more than two variables also give better codes for
the t-DRGP when t >

√
N .

1.2.1 Definition of lifted multiplicity codes

It is not immediately obvious how to apply lifting (and in particular, the nice characterization
of it developed in [6] as the span of “good” monomials) to univariate multiplicity codes. We
first note that the univariate multiplicity code Multd,q,1,r ⊆

(
Frq
)q does not fit the affine-

invariant framework of [6], so their results do not immediately apply. Instead, we might
try to define the bivariate lift of Multd,q,1,r as the set of vectors (f (<r)(x1), . . . , f (<r)(xq2))
for all polynomials f so that every restriction of f to a line agrees with some polynomial
of degree less than d on its first r − 1 derivatives; that is, the restriction of f is equivalent
up to order r to a polynomial of degree less than d. This almost works, but there are two
non-trivial things to deal with.
1. First, in order to get a handle on the rate of the code, as in [6] we need to characterize

the polynomials f as above as the span of “good” monomials. We show in Proposition 18
that this is possible. Thus, we can alternatively define a lifted multiplicity code as the
span of evaluations of monomials XaY b whose restrictions to lines are equivalent up to
order r to some low-degree polynomial.

2. Second, we need to take some care about what monomials we allow. With lifted RS
codes, one only allows monomials XaY b with individual degrees a, b < q; otherwise, we
could have multiple monomials which correspond to the same codeword which leads to
problems if we are counting monomials in order to understand the dimension of the code.
As we show in Lemma 14, it turns out that with multiplicity codes, we should only allow
monomials XaY b with ba/qc+ bb/qc < r; otherwise, we would have multiple monomials
the correspond to the same codeword and this would create similar problems.

Dealing with these issues leads us to the final definition, given formally in Definition 17: a
lifted multiplicity code of order r and degree d is the set of vectors (f (<r)(x1), . . . , f (<r)(xqm))
so that f is in the span of “good” monomials, where XaY b is (q, r, d)-good if ba/qc+bb/qc < r,
and if for every restriction of XaY b to a line is equivalent up to order r to some univariate
polynomial of degree less than d. We note that the work [26] considers a similar construction.

1.2.2 Lifted multiplicity codes have the t-DRGP

In Corollary 21 we give a lower bound on the number of (q, r, d)-good monomials, and this
leads to a lower bound on the dimension of the lifted multiplicity code; crucially, this can be
quite a bit bigger than the dimension of the corresponding multivariate multiplicity code.

Finally, we observe that lifted multiplicity codes have the t-DRGP for a range of values
of t. Similarly to previous constructions based on multivariate polynomial codes, the disjoint
repair groups to recover the symbol f (<r)(x) are given by disjoint collections of lines through
x. More precisely, the values f (<r)(y) for the set of y that lie on r distinct lines through x
can be used to recover f (<r)(x). Thus, the number of disjoint repair groups is q/r =

√
N/r.

By adjusting r, we obtain the trade-off shown in Figure 1. Our main theorem is as follows.
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I Theorem 2. For q = 2` and r = 2`′ with 1 ≤ `′ ≤ `, there exists a code C over F(r+1
2 )

q with
the following properties.

The length of the code is q2.
The rate of the code is at least

1− 3rlog2(8/3)qlog2(3)(
r+1

2
)
q2

,

so that the redundancy is at most

3rlog2(8/3)qlog2(3)(
r+1

2
) .

The code has the q/r-disjoint repair group property.
As a remark, our techniques can also recover any symbol from any one of its repair groups in
polynomial time. For any γ ∈ [0, 1], choosing q = 2` and r = 2`′ with γ ≈ `′/` gives a code
with length N = q2 and redundancy at most

6N log4(3)−γ(1−log4(8/3))

with the N (1−γ)/2-DRGP. This is made formal in the following corollary.

I Corollary 3. For any ε > 0, there are infinitely many N so that, for t = bN εc, there exists
a code of length N which has the t-DRGP and redundancy at most 6tlog2(3)−1

√
N.

We note that Theorem 2 also yields results for constant t, not just for t = N ε as presented
in Corollary 3. For example, by setting r = q/2 we obtain a code with the 2-DRGP and
redundancy at most 9

√
N . The constant 9 is not optimal here (the optimal constant for

t = 2 is known to be
√

2 [17]), but to the best of our knowledge, Theorem 2 does yield the
best known bounds for any super-constant t.

2 Preliminaries

In this section, we introduce the background we need on polynomials and derivatives over
finite fields. Throughout this paper, we assume that q is a power of 2. Let Fq denote the
finite field of order q, and let F∗q denote its multiplicative subgroup.

If a and b are nonnegative integers with binary representations a = a`−1 · · · a0 and
b = b`−1 · · · b0, then we write a ≤2 b if ai ≤ bi for i = 0, . . . , ` − 1. If a is an integer, let
(a mod c) denote the element of {0, . . . , c − 1} congruent to a mod c. We write a ≤`2 b if
(a mod 2`) ≤2 (b mod 2`).

As in [6], we use Lucas’s theorem.

I Proposition 4 (Lucas’s theorem). Let p be a prime and a = a`−1 · · · a0, b = b`−1 · · · b0 be
written in base p. Then

(
a

b

)
≡
`−1∏
i=0

(
ai
bi

)
mod p (1)

In particular, if p = 2, then
(
a
b

)
≡ 1 mod p if and only if a ≤2 b.

APPROX/RANDOM 2019
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2.1 Polynomials and derivatives
For a vector i = (i1, . . . , im) of nonnegative integers, its weight, denoted wt(i), equals∑m
k=1 ik. For a field F, let F[X1, . . . , Xm] = F[X] be the ring of polynomials in the variables

X1, . . . , Xm with coefficients in F. For a vector of nonnegative integers i = (i1, . . . , im) and
a vector X = (X1, . . . , Xm) of variables, let Xi denote the monomial

∏m
j=1 X

ij
j ∈ F[X], and

for a vector a = (α1, . . . , αm) ∈ Fm, let ai denote the value
∏m
j=1 α

ij
j , where 00 def= 1. For

nonnegative vectors i = (i1, . . . , im) and j = (j1, . . . , jm), we write i ≤ j if ik ≤ jk for all
k. We also write

(i+j
i
)
to denote

∏m
k=1

(
ik+jk

ik

)
. For nonnegative vector i, we let [Xi]P (X)

denote the coefficient of Xi in the polynomial P (X).
We will use Hasse derivatives, a notion of derivatives over finite fields:

I Definition 5 (Hasse derivatives). For P (X) ∈ F[X] and a nonnegative vector i, the i-
th (Hasse) derivative of P , denoted P (i)(X) or D(i)P (X), is the coefficient of Zi in the
polynomial P̃ (X,Z) def= P (X + Z) ∈ F[X,Z]. Thus,

P (X + Z) =
∑

i

P (i)(X)Zi. (2)

For x ∈ Fmq and P (X) ∈ Fq[X], we use the notation P (<r)(x) ∈ F(m+r−1
m )

q to denote the
vector containing P (i)(x) for all i so that wt(i) < r. We record a few useful (well-known)
properties of Hasse derivatives below (see [9]).

I Proposition 6 (Properties of Hasse derivatives). Let P (X), Q(X) ∈ F[X]m and let i, j be
vectors of nonnegative integers. Then
1. P (i)(X) +Q(i)(X) = (P +Q)(i)(X).
2. (P ·Q)(i)(X) =

∑
0≤e≤i P

(e)(X) ·Q(i−e)(X).
3. (P (i))(j)(X) =

(i+j
i
)
P (i+j).

Using the above, we obtain the following useful derivative computation, and we provide a
proof in Appendix A for completeness.

I Proposition 7. Let 1 ≤ r < q with q a power of 2, and let P (X) = (Xq −X)r. Then,

P (i)(X) =
{(r

i

)
(Xq −X)r−i 0 ≤ i ≤ r

0 i > r
(3)

2.2 Polynomial local recovery
A key property exploited by earlier work on multiplicity codes [15, 13] is that f (<r)(x) can be
recovered from f (<q)(y) for y that lie on a collection of lines through x. More precisely, let Lm
be the set of lines L(T ) of the form aT + b with a,b ∈ Fmq . Given a multivariate polynomial
P (X) ∈ Fq[X1, . . . , Xm], if L is the line aT + b, let PL(T ) ∈ Fq[T ] denote the univariate
polynomial P (aT + b). Let L be the set of lines in F2

q of the form L(T ) = (T, αT + β) for
α, β ∈ Fq.

For simplicity – and because it is enough for our application to the t-DRGP – we will
consider only bivariate polynomials in this paper, although (see for example [13]) the same
basic idea works for any m. We will further specialize to lines in L – that is, lines of the form
L(T ) = (T, αT + β) – because it will simplify some computations later in the paper. With
these restrictions, we can specialize Equation (4) of [13] to obtain the following relationship
between the derivatives of PL(T ) and the derivatives of P (X,Y ).
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I Lemma 8 (Follows from, e.g., [15, 13]). Suppose that L1, . . . , Lr are r lines in L all passing
through a point (γ, δ), with Lk being the line (T, αkT + βk). Then, for all polynomials
P (X,Y ) ∈ Fq[X,Y ], the following matrix equality holds for all i = 0, . . . , r − 1.

P
(i)
L1

(γ)
P

(i)
L2

(γ)
...

P
(i)
Li+1

(γ)

 =


α0

1 α1
1 · · · αi1

α0
2 α1

2 · · · αi2
...

...
. . .

...
α0
i+1 α1

i+1 · · · αii+1



P (i,0)(γ, δ)
P (i−1,1)(γ, δ)

...
P (0,i)(γ, δ)

 . (4)

When lines L1, . . . , Lk are distinct, the middle matrix in (4) is a Vandermonde matrix,
and Vandermonde matrices are invertible in polynomial time. Hence, we immediately have
the following corollary.

I Corollary 9. Suppose that L1, . . . , Lr are r distinct lines of the form Lk(T ) = (T, αkT +βk)
all passing through a point (γ, δ) ∈ F2

q. For a polynomial P (X,Y ) ∈ Fq[X,Y ], given
the polynomials PL1(T ), . . . , PLk

(T ), the derivatives P (i)(γ, δ) are uniquely determined and
computable efficiently for all i such that wt(i) < r.

3 Lifted multiplicity codes

In this section, we define lifted multiplicity codes. As noted in the introduction, we restrict
our attention to bivariate codes because this is enough for our application to the t-DRGP.
However, everything in this section extends to general m-variate codes. We define bivariate
lifted multiplicity codes as the vectors (f (<r)(x))x∈F2

q
for polynomials f(X) that live in

the span of “good” monomials. In order to define these “good” monomials, we need a few
more definitions.

3.1 Polynomial equivalence
We first define a notion of polynomial equivalence.

I Definition 10. We say that two univariate polynomials A(X), B(X) ∈ Fq[X] are equivalent
up to order r, written A ≡r B, if A(i)(γ) = B(i)(γ) for all i = 0, . . . , r − 1 and γ ∈ Fq.

It is easy to see that the above definition does in fact give an equivalence relation. There is
a simple way to characterize this equivalence.

I Lemma 11. For A(X), B(X) ∈ Fq[X] we have A(X) ≡r B(X) if and only if (Xq −
X)r|A(X)−B(X).

Proof. By considering the polynomial A(X)−B(X), it suffices to prove A(X) is equivalent to
the zero polynomial up to order r if and only if (Xq−X)r|A(X). If A(X) = (Xq−X)rC(X)
for some polynomial C(X) ∈ Fq[X], then, by part 2 of Proposition 6 and Proposition 7, for
0 ≤ i < r, we have Xq − X|A(i)(X), so A(i)(γ) = 0 for all 0 ≤ i < r and all γ ∈ Fq, so
A(X) ≡r 0.

Conversely, suppose that A(X) ≡r 0. By the definition of Hasse derivatives, we have
A(X) = A(γ + (X − γ)) =

∑
iA

(i)(γ)(X − γ)i. Since A(i)(γ) = 0 for i = 0, . . . , r − 1, we
have (X − γ)r|A(X). Thus is true for all γ, so

∏
γ(X − γ)r|A(X), so (Xq −X)r|A(X). J

Lemma 11 gives the following corollary.
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I Lemma 12. Let q be a power of 2 and r ≥ 1. For every univariate polynomial A(X),
there exists a unique degree-at-most rq − 1 polynomial B(X) such that A(X) ≡r B(X).
Furthermore, if r is a power of 2, then for all a such that degA− (qr− r) < a < qr, we have
[Xa]A(X) = [Xa]B(X).

Proof. For existence of B(X), note that, by Lemma 11, we can subtract an appropriate
multiple of (Xq − X)r from A(X) to obtain the desired B(X). For uniqueness of B(X),
suppose that B1(X) and B2(X) are equivalent to A(X) up to order r and are of degree at
most rq−1. By Lemma 11, we have (Xq−X)r|B1(X)−B2(X). Additionally, B1(X)−B2(X)
has degree at most rq − 1, so B1(X)−B2(X) = 0.

Now suppose r is a power of 2. Then (Xq −X)r = Xrq +Xr. Above, to obtain B(X)
from A(X), we need only to subtract terms of the form Xqr+Xr, Xqr+1 +Xr+1, . . . , XdegA+
XdegA−qr+r. Thus, for a such that degA− qr + r < a < qr, the coefficients of Xa in A(X)
and B(X) are equal. J

3.2 Type-r polynomials

Define the order-r evaluation map evalq,r : Fq[X,Y ]→
(
F(r+1

2 )
q

)q2

by

evalq,r(P ) := (P (<r)(x))x∈F2
q
, (5)

We will want to restrict our attention to a subset of monomials M(X,Y ) = XaY b whose
order-r evaluations evalq,r(M) form a basis for the space {evalq,r(P ) : P ∈ Fq[X,Y ]}. To
that end, we introduce the following definition.

I Definition 13 (Type-r monomials). Call a monomial XaY b type-r if ba/qc+ bb/qc ≤ r−1.
Let Fq,r be the family of polynomials P ∈ Fq[X,Y ] that are spanned by type-r monomials.

It is easy to see that Fq,r is a dimension
(
r+1

2
)
q2 vector space over Fq. We now show that

the type-r polynomials form a basis for bivariate polynomials, up to order r equivalence.

I Lemma 14. The evaluation map evalq,r : Fq,r →
(
F(r+1

2 )
q

)q2

is a bijection.

Proof of Lemma 14. Since evalq,r is a linear map and Fq,r and F(r+1
2 )q2

q have the same Fq
dimension, it suffices to prove the map has trivial kernel. We prove by induction.

Base Case: r = 1. Suppose P ∈ Fq,1 and eval1(P ) is the 0-vector. Then P (X,Y ) = 0 for
all X,Y . For any δ ∈ Fq, the polynomial P (X, δ) ∈ Fq[X] has degree at most q − 1
but has q roots, so the polynomial must be 0. Hence, (Y − δ)|P (X,Y ) for all δ, so
Y q − Y |P (X,Y ), which implies P = 0. This proves that eval1 has trivial kernel.

Inductive step. Assume r ≥ 1 and evalq,r has trivial kernel. We prove that evalr+1 has
trivial kernel.
Assume P (X,Y ) is a polynomial spanned by type-(r+1) monomials with all ith derivatives
equal to 0 for wt(i) < r + 1. Let δ ∈ Fq and Bδ(X) def= P (X, δ). Then, for 0 ≤ i < r,
we have B(i)

δ (γ) = B(i,0)(γ, δ) = 0 for all γ ∈ Fq. Hence, for all γ ∈ Fq, we have
(X − γ)r|Bδ(X). Hence, (Xq −X)r|Bδ(X). Since degBδ(X) ≤ degX P (X,Y ) < qr for
all δ, we have Bδ(X) = 0. Thus, P (X, δ) is the 0 polynomial for all δ, so Y − δ|P (X,Y )
for all δ, so Y q−Y |P (X,Y ). Hence, we may write P (X,Y ) = (Y q−Y )Q(X,Y ) for some
polynomial Q(X,Y ) ∈ Fq[X,Y ].
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As polynomial P is type-(r + 1), polynomial Q is type-r: if Q had a nonzero coefficient
for XaY b with ba/qc+ bb/qc > r− 1, then the coefficient XaY b+q is nonzero in P , which
is a contradiction. For all i, j with i ≥ 0, j ≥ 1 and i+ j ≤ r, we have

P (i,j)(X,Y ) = (Y q − Y )Q(i,j)(X,Y )−Q(i,j−1)(X,Y ). (6)

Here we applied part 2 of Proposition 6 and the r = 1 case of Proposition 7. At every
X and Y , the left side is 0 by assumption on P and the right side Q(i,j−1)(X,Y ). We
conclude that Q(i′,j′) evaluates to 0 everywhere for every nonnegative i′ and j′ satisfying
i′ + j′ ≤ r − 1. Since Q is type-r, we have Q = 0 by the induction hypothesis, so P = 0.
This completes the induction, completing the proof. J

3.3 Definition(s) of lifted multiplicity codes

Finally we are ready to define lifted multiplicity codes, which we do below in two ways. As we
will see, these two definitions are equivalent in the parameter regimes that we consider in this
work. The first, more natural definition is as the set of evaluations evalq,r(P ) of polynomials
whose restrictions to lines3 are equivalent, up to order r, to a low degree polynomial:

I Definition 15 (Lifted multiplicity codes, first definition). The (q, r, d) (bivariate) lifted
multiplicity code is a code C over alphabet Σ = F(r+1

2 )
q of length q2 given by

C =

evalq,r(P ) :
P ∈ Fq[X,Y ] and, for any L(T ) ∈ L,

P (L(T )) ≡r Q(T ) for some Q ∈ Fq[T ] of degree at
most d.


Definition 15 is natural but difficult to get a handle on directly. Following the approach

of previous work [6, 5], we will alternatively define a lifted multiplicity code as the set of
vectors evalq,r(P ) for P which lie in the span of “good” monomials, which will make it easier
to bound the rate. Informally, a monomial is (q, r, d)-good if its restriction along every line
is equivalent, up to order r, to a polynomial of degree at most d.

I Definition 16 ((q, r, d)-good polynomials). Call a monomial Ma,b(X,Y ) = XaY b ∈
Fq[X,Y ] (q, r, d)-good (or simply good, when r and d are understood) if it is type-r and for
every line (T, αT + β) ∈ L, the univariate polynomial Ma,b(T, αT + β) is equivalent, up to
order r, to polynomial of degree less than d, and call it (q, r, d)-bad otherwise.

Let Fq,r,d denote the subspace of Fq,r spanned by the (q, r, d)-good monomials. We call
the elements of Fq,r,d the (q, r, d)-good polynomials.

We then (re-)define lifted multiplicity codes as order-r evaluations of (q, r, d)-good poly-
nomials.

I Definition 17 (Lifted multiplicity codes, second definition). The (q, r, d) (bivariate) lifted
multiplicity code is a code C over alphabet Σ = F(r+1

2 )
q of length q2 given by

C = {evalq,r(P ) : P ∈ Fq,r,d}

3 To simplify calculations, we consider restrictions to lines of the form L(T ) = (T, αT + β). That is, we
do not include lines of the form L(T ) = (α, T ).
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We believe Definitions 17 and 15 are equivalent in general, and we prove they are for
the parameters relevant to this work. One direction of containment is simple, since any
P ∈ Fq,r,d satisfies the requirement of Definition 15. To show the other direction, we need to
show that any polynomial which satisfies the requirement of Definition 15 is also contained
in Fq,r,d; that is, it can be written as a linear combination of (q, r, d)-good monomials. We
show this in Proposition 25 in the Appendix. This implies the following proposition, and for
the rest of the paper we will work with Definition 17.

I Proposition 18. If q and r are powers of 2 and if d ≥ r + q − 1, Definition 17 and
Definition 15 are equivalent.

4 The rate of lifted multiplicity codes

In this section, we bound the rate (and hence, the redundancy) of lifted multiplicity codes.
Our final result on the rate is Corollary 21 below, which implies that for r, q and d of an
appropriate form, the lifted multiplicity code over order r and degree d over Fq has rate
at least

1− 6
r

(
r − d

q

)log2(4/3)
.

In the next section, we will choose d = qr−r, which will yield a code of rate 1− 6
r

(
r
q

)log2(4/3)

and will give us Theorem 2. We begin with a lemma that will be useful.

I Lemma 19. Let s = 2`s and q = 2` with `s ≤ `. The number of a1, b1 ∈ {0, 1, . . . , q − 1}
such that at least one of the following is true

q − 1− a1 ≤`2 b1

q − 2− a1 ≤`2 b1

...
...
...

q − s− a1 ≤`2 b1 (7)

is at most 2 · 3` · (4/3)`s = 2 · 3` · slog2(4/3).

Proof. Suppose we write the numbers (q−1−a1 mod q), (q−2−a1 mod q), . . . , (q−s−a1
mod q) in binary with ` digits (possibly with leading zeros). As these number span 2`s

consecutive integers mod q, when written in this binary form, their most significant `− `s
coordinates take on at most 2 values. Let a2 = b (q−1−a1 mod q)

2`s
c and b2 = b b12`s

c so that
a2, b2 ∈ {0, . . . , 2`−`s − 1}, and a2 and b2 are the most significant ` − `s coordinates of
(q − 1− a1 mod q) and b1, respectively, when written in `-digit binary. Then if one of the
equations of (7) is true, then we must have either a2 ≤2 b2 or a2 − 1 ≤2 b2. This gives at
most 2 · 3`−`s choices for the pair (a2, b2). Given a2 and b2, there are 2`s choices for each of
a1 and b1, for a total of at most 2 · 3`−`s · 4`s solutions to (7). J

I Lemma 20. Let r = 2`r , s = 2`s and q = 2` with `r, `s ∈ {1, . . . , `− 1}. The number of
(q, r, rq − s)-good monomials is at least

(
r+1

2
)
4` − 3rslog2(4/3) · 3`.

Proof. The number of type-r monomials is
(
r+1

2
)
q2 =

(
r+1

2
)
4`. A monomialMa,b is (q, r, rq−

s)-good if, for every α, β ∈ Fq, we have

Ma,b,α,β(T ) def= T a(αT + β)b =
b∑
i=0

αiβb−iT a+i
(
b

i

)
. (8)
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can be represented as a polynomial of degree less than rq − s. Next, we apply Lemma 12,
which says that there is a unique polynomial B(T ) so that deg(B) ≤ rq− 1 so that B(T ) ≡r
Ma,b,α,β(T ), and further that all of the coefficients [T c]B(T ) for deg(Ma,b,α,β)− (qr − r) <
c < qr are equal to the corresponding coefficient of B(T ). The degree of the polynomial
Ma,b,α,β is at most (r + 1)q − 2, and

((r + 1)q − 2)− (qr − r) = r + q − 2 < qr − s

for any allowed choice of q, r, s, so [T c]B(T ) = [T c]Ma,b,α,β(T ) for all c so that

qr − s ≤ c ≤ qr.

Thus, to show that B(T ) has degree less than qr − s, it suffices to show that the coefficients
of T qr−s, T qr−s+1, . . . , T qr−1 in Ma,b,α,β are all zero.

Write a = a0q + a1 and b = b0q + b1 where a0 + b0 ≤ r − 1 and 0 ≤ a1, b1 ≤ q − 1. Note
that if a0 + b0 < r− 1, then for s′ = 1, . . . , s coefficient [T rq−s′ ]Ma,b,α,β is always zero except
possibly when a0 + b0 = r − 2 and a1 + b1 ≥ 2q − s. This can happen for at most rs2

2 pairs
(a, b). Hence, for a0 + b0 < r − 1, there are ≤ rs2

2 bad monomials (a, b).
Now assume a0 + b0 = r − 1. For s′ = 1, . . . , s, the coefficient of T rq−s′ in T a(αT + β)b

is 0 if rq − s′ < a or a+ b < rq − s′. Otherwise, the coefficient is

αrq−s
′−aβb−rq+s′+a

(
b

rq − s′ − a

)
= αrq−s

′−aβb−rq+s′+a
(

b0q + b1

b0q + q − s′ − a1

)
. (9)

By Proposition 4, the binomial coefficient is nonzero (mod 2) if and only if b0q+q−s′−a1 ≤2
b0q+b1, which, as q is a power of 2, happens only if q−s′−a1 ≤`2 b1. Hence, if a0 +b0 = r−1,
the monomial Ma,b is (r, rq − s)-bad only if some s′ = 1, . . . , s satisfies q − s′ − a1 ≤`2 b1.
Hence, by Lemma 19, for a fixed a0, b0 with a0 +b0 = r−1, there are at most 2slog2(4/3)3` bad
monomials Ma,b, so there are at most r · slog2(4/3)3` bad monomials Ma,b over all a0, b0 with
a0 + b0 = r − 1. As we showed, there are at most rs2

2 bad monomials when a0 + b0 < r − 1.
Hence, there are at least

(
r+1

2
)
4` − 2rslog2(4/3)3` − rs2

2 ≥
(
r+1

2
)
q2 − 3rslog2(4/3)qlog2(3) good

monomials, as desired. J

Lemma 20 immediately implies Corollary 21, which in turn implies the informal result stated
at the beginning of the section.

I Corollary 21. Let r = 2`r , s = 2`s and q = 2` with `r, `s ∈ {1, . . . , `− 1}. A (q, r, rq − s)
lifted multiplicity code has rate at least 1− 6r−1slog2(4/3)qlog2(3/4).

I Remark 22. We apply Corollary 21 for r = s ≤ q, giving that a lifted multiplicity code
of rate at least 1− 6rlog2(2/3)qlog2(3/4). By comparison [15], a 2-variate multiplicity code of
order r evaluations of degree at most rq−r polynomials over Fq has rate

(rq−r+2
2 )

(r+1
2 )q2 ≤ 1−Ω( 1

r ),
which is smaller than the rate of lifted multiplicity codes for r � q.

5 Disjoint repair groups of lifted multiplicity codes

Finally, we prove Theorem 2, which we repeat below.

I Theorem (Theorem 2, restated). Let r = 2`r and q = 2` with `r < ` and C be the (q, r, rq−r)
lifted multiplicity code, as in Definition 17.

The length of the code is q2.
The rate of the code is at least 1− 6rlog2(2/3)qlog2(3/4).
The code has the q/r-disjoint repair group property.
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Proof. The first item follows from the definition of C, and the second item is by Corollary 21.
To see the third item, we show that, given a point (γ, δ) ∈ F2

q, lines L1, . . . , Lr passing
through (γ, δ), and P (<r)(y) at all points y on the lines L1, . . . , Lr except (γ, δ) itself, we
can (efficiently) recover P (<r)(γ, δ). This guarantees the q/r-disjoint repair group property,
because we can group the q lines of L of the form L(T ) = (T, αT + β) passing through (γ, δ)
arbitrarily into groups of r, giving q/r disjoint repair groups. For any line Lk, the polynomial
PLk

(T ) has degree at most rq−r−1, as P is (q, r, qr−r)-good. By taking linear combinations of
directional derivatives (Lemma 8), we can efficiently compute P (i)

Lk
(γ′) for every i = 0, . . . , r−1,

every k = 1, . . . , r, and every γ′ 6= γ. We can compute PLk
(T ) using a generalization of

polynomial interpolation. This can be done in O(D logD) time, where D < rq is the degree
of the polynomial (see e.g. [3]) Hence, by Corollary 9, from PL1(T ), . . . , PLk

(T ), we can
efficiently compute P (i,j)(γ, δ) for all i, j with 0 ≤ i+ j ≤ r − 1. J

6 Conclusion

We conclude with some open questions.
1. We have shown that lifted multiplicity codes with redundancy O(t0.585

√
N) have the

t-DRGP for a range of t ≤
√
N . However, we do not know of any general lower bounds

beyond the lower bound for t = 2 which implies that the redundancy must be at least
Ω(
√
N) for any t. Thus, it is an open question whether or not our bound is tight or

whether one can do better.
2. Lifted multiplicity codes display better locality for the t-DRGP problem for t ≤

√
N ; it is

a natural question to ask whether they can be used for larger t, and in particular whether
they could lead to improved constructions of locally correctable codes.
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A Proofs of polynomial facts

Proof of Proposition 7. By part 2 of Proposition 6,

P (i)(X) =
∑

j1+···+jr=i

r∏
k=1

D(jk)(Xq −X). (10)

We have D(1)(Xq −X) = 1 (the field has characteristic 2). For 2 ≤ i < q, the ith derivative
of Xq −X is

(
q
i

)
Xq−i, which is 0, as

(
q
i

)
is even by Proposition 4. The summand above is

nonzero if and only if j1, j2, . . . , jr ≤ 1. When i ≤ r, this happens when i of the jk’s are 1 and
r−i are 0, which happens for

(
r
i

)
choices of (j1, . . . , jr). This gives P (i)(X) =

(
r
i

)
(Xq−X)r−i

for 0 ≤ i ≤ r. When i > r, some jk is at least 2, in which case P (r)(X) = 0 for r < i < q. J
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Proof of Lemma 8. Let ak denote the vector (1, αk), and let bk denote the vector (0, βk).
By assumption, we have that akγ + bk = (γ, δ). By the definition of Hasse derivatives, we
have, for all k = 1, . . . , r

PLk
(T + Z) = P (akT + bk + akZ)

=
∑
i∈N2

P (i)(akT + bk) · (akZ)i

=
∑
i∈N2

P (i)(akT + bk) · ai
kZ

wt(i)

PLk
(T + Z) =

∑
i≥0

P
(i)
Lk

(T )Zi (11)

Hence, for all i ≥ 0 and k = 1, . . . , r, we have

P
(i)
Lk

(T ) =
∑

i:wt(i)=i

P (i)(akT + bk)ai
k (12)

By plugging in T = γ, we have for all i ≥ 0 and k = 1, . . . , r,

P
(i)
Lk

(γ) =
∑

i:wt(i)=i

P (i)(γ, δ)ai
k. (13)

Rewriting this in matrix form gives the desired result. J

B Proof of Proposition 18

In this appendix we prove Proposition 18 that Definitions 17 and 15 are equivalent for
parameters relevant to this work.

In Definition 16, we defined an (q, r, d)-good polynomial P ∈ Fq,r,d to be a polynomial
spanned by the (q, r, d)-good monomials. To prove Proposition 18, it suffices to show that
this definition is the same as simply looking at the restrictions of P directly. To that end, we
define (q, r, d)-good polynomials, which end up being equivalent to (q, r, d)-good polynomials
in the parameter regime of interest.

I Definition 23. Say that a polynomial P (X,Y ) ∈ Fq,r is (q, r, d)-good if for any line
L(T ) = (T, αT + β), there is some Q ∈ F[T ] of degree at most d so that P (L(T )) ≡r Q(T ).

For a, b ≥ 0 and α, β ∈ Fq, let

Ma,b,α,β(T ) def= T a(αT + β)b. (14)

By Lemma 12, for all α, β ∈ Fq and all a, b ≥ 0, there exists a unique polynomial M∗a,b,α,β(T )
with degM∗a,b,α,β(T ) ≤ rq − 1 such that the polynomial T a(αT + β)b is equivalent to
M∗a,b,α,β(T ) up to order r.

I Lemma 24. Let q and r be powers of 2, let s satisfy r+ q− 1 ≤ s ≤ rq− 1, and let XaY b

be a type-r monomial. Then [T s]M∗a,b,α,β(T ) =
(
b

s−a
)
αs−aβa+b−s.

Proof. For all type-r monomials XaY b, we have degMa,b,α,β ≤ a + b ≤ rq + q − 2, so
degMa,b,α,β − (rq − r) < s < rq. By Lemma 12, we have

[T s]M∗a,b,α,β(T ) = [T s]Ma,b,α,β(T ) =
(

b

s− a

)
αs−aβa+b−s, (15)

as desired. J
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I Proposition 25. Let q and r be powers of 2 with r ≤ q and let d ≥ r + q − 1. Let
P (X,Y ) =

∑k
i=1 ζiX

aiY bi be an (q, r, d)-good polynomial. Then, for each i, the monomial
XaiY bi is (q, r, d)-good.

Proof. For all α, β ∈ Fq, let

P ∗α,β(T ) def=
k∑
i=1

ζiM
∗
ai,bi,α,β(T ). (16)

By definition of Pα,β , we have Pα,β(T ) ≡r P ∗α,β(T ) for all α, β, and, by Lemma 12, P ∗α,β(T )
is the unique polynomial of degree at most rq − 1 with this property. Since P (X,Y ) is
(q, r, d)-good, degP ∗α,β(T ) < d for all α, β ∈ Fq. Hence, for all s with d ≤ s ≤ rq − 1 and all
α, β ∈ Fq, we have

0 = [T s]P ∗α,β(T ) =
k∑
i=1

[T s]ζiM∗ai,bi,α,β(T ) =
k∑
i=1

(
bi

s− ai

)
ζiα

s−aiβai+bi−s. (17)

where the last equality follows from Lemma 24 and that s ≥ d ≥ r+q−1. For each s, the last
sum can be viewed as a bivariate polynomial in α and β (when s− ai < 0 or ai + bi − s < 0,
the binomial

(
bi

s−ai

)
is 0, so this is indeed a polynomial). Furthermore, since this polynomial

has degree at most q− 1 in each of α and β and evaluates to 0 everywhere, this polynomial is
the zero polynomial, so

(
bi

s−ai

)
≡ 0 mod 2 for all s with d ≤ s ≤ rq − 1 and all i. Hence, by

Lemma 24, we have degM∗ai,bi,α,β
(T ) < d for all i and α, β ∈ Fq, so the monomial XaiY bi is

(q, r, d)-good for all i. J

Proposition 25 shows that any (q, r, d)-good polynomial is also (q, r, d)-good, in the sense
of Definition 17. It is clear that any (q, r, d)-good polynomial is also (q, r, d)-good. In the
language of this appendix, Definition 15 says that

C = {evalr(P ) : P ∈ Fq[X,Y ], P is (q, r, d)-good} ,

while Definition 17 says that

C = {evalr(P ) : P ∈ Fq[X,Y ], P is (q, r, d)-good } .

Thus, we have proved Proposition 18, which says that the two definitions are equivalent
provided that q and r are powers of 2 and that d ≥ r + q − 1.

C Lifted codes via dual codes

It was shown in [6] that bivariate lifted parity-check codes over Fq, where q = 2`, have
co-dimension 3`. Here, we give an alternative proof using dual codes. The techniques in this
proof are not directly related to the techniques that we used in the main body of the paper,
but we found this alternative proof illuminating so we include it.

Let q = 2`. Recall L is the set of lines expressible as L(T ) = (T, αT + β) where α, β ∈ Fq.
One way to think about codes with locality is by considering their dual code. If the code is a
subset of Fq×qq , then the dual code corresponds to lines of repair groups. Given a line L(T )
in L, define the corresponding dual codeword:

(c⊥L )ij
def=
{

1 (i, j) = L(t) for some t ∈ Fq

0 o/w
(18)
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Let

VL
def= span

{
c⊥L : L ∈ L

}
. (19)

Note that VL is spanned by 4` elements, so the trivial bound on the dimension is 4`. We
give the following improved bound, matching the analysis of [6].

I Lemma 26. The subspace VL has dimension at most 3`.

Proof. A codeword c⊥L is the evaluation of the following polynomial on Fq×qq :

PL(X,Y ) def=
∏
β 6=βL

(αLX + β − Y ). (20)

If (X,Y ) /∈ L, then the polynomial evaluates to 0 as Y − αLX 6= βL, and otherwise it
evaluates to∏

β 6=βL

(β − βL) =
∏
β∈F∗q

β = 1. (21)

For a + b ≥ q, the coefficient of XaY b in PL(X,Y ) is 0. For a + b ≤ q, the coefficient of
XaY b in PL(X,Y ) is(

a+ b

a

)
αaL(−1)b

∑
β1,...,βq−1−a−b∈Fq

distinct,6=βL

q−1−a−b∏
j=1

βj . (22)

This is because we first chose a+b terms that contain X or Y , then choose which terms are X
and which terms are Y , and this gives us a many αL’s and b many −1’s, and we sum over the
choices of the β terms that we choose. Hence, the only a, b such that [XaY b]PL(X,Y ) 6= 0
for any L are the pairs (a, b) such that a + b ≤ q − 1 and

(
a+b
a

)
≡ 1 mod 2. There are at

most 3` pairs by Proposition 4. It follows that the polynomials PL(X,Y ) are spanned by 3`
monomials XaY b with

(
a+b
a

)
≡ 1 mod 2. Hence, the vector space VL is spanned by 3` dual

codewords in Fq×qq and thus has dimension at most 3`. J
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