
https://www.tandfonline.com/action/journalInformation?journalCode=rjpa20
https://www.tandfonline.com/loi/rjpa20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/01944363.2019.1647446
https://doi.org/10.1080/01944363.2019.1647446
https://www.tandfonline.com/doi/suppl/10.1080/01944363.2019.1647446
https://www.tandfonline.com/doi/suppl/10.1080/01944363.2019.1647446
https://www.tandfonline.com/action/authorSubmission?journalCode=rjpa20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=rjpa20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/01944363.2019.1647446
https://www.tandfonline.com/doi/mlt/10.1080/01944363.2019.1647446
http://crossmark.crossref.org/dialog/?doi=10.1080/01944363.2019.1647446&domain=pdf&date_stamp=2019-09-17
http://crossmark.crossref.org/dialog/?doi=10.1080/01944363.2019.1647446&domain=pdf&date_stamp=2019-09-17


Energy Cost Burdens for Low-
Income and Minority Households
Evidence From Energy Benchmarking and Audit Data in Five
U.S. Cities

Constantine E. Kontokosta Vincent J. Reina Bartosz Bonczak

ABSTRACT
Problem, research strategy, and findings: Of the three primary components of housing affordability
measures—rent, transportation, and utilities—utility costs are the least understood yet are the one area
where the cost burden can be reduced without household relocation. Existing data sources to estimate
energy costs are limited to surveys with small samples and low spatial and temporal resolution, such as
the American Housing Survey and the Residential Energy Consumption Survey. In this study, we present
a new method for small-area estimates of household energy cost burdens (ECBs) that leverages actual
building energy use data for approximately 13,000 multifamily properties across five U.S. cities and links
energy costs to savings opportunities by analyzing 3,000 energy audit reports. We examine differentials in
cost burdens across household demographic and socioeconomic characteristics and analyze spatial,
regional, and building-level variations in energy use and expenditures. Our results show the average low-
income household has an ECB of 7%, whereas higher income households have an average burden of 2%.
Notably, even within defined income bands, minority households experience higher ECBs than non-
Hispanic White households. For lower income households, low-cost energy improvements could reduce
energy costs by as much as $1,500 per year.

Takeaway for practice: In this study we attempt to shift the focus of energy efficiency investments to
their impact on household cost burdens and overall housing affordability. Our analysis explores new and
unique data generated from measurement-driven urban energy policies and shows low-income house-
holds disproportionately bear the burden of poor-quality and energy-inefficient housing. Cities can use
these new data resources and methods to develop equity-based energy policies that treat energy effi-
ciency and climate mitigation as issues of environmental justice and that apply data-driven, targeted poli-
cies to improve quality of life for the most vulnerable urban residents.

Keywords: big data, energy cost burden, energy efficiency, environmental justice, housing affordability

Of the three primary components of housing
affordability—rent, transportation, and
utilities—utility costs are the least under-
stood, despite representing a significant

opportunity to improve overall affordability without the
need for household relocation (Stone, 2006). Excessive
utility expenditures fall disproportionately to the lowest
income households, who are least able to make energy
efficiency investments, thus raising important social and
environmental justice concerns that require policy-
makers and planners to act (Jenkins, McCauley, Heffron,
Stephan, & Rehner, 2016). The slow pace of energy
retrofits in existing multifamily buildings highlights
the systemic investment constraints that result in an
underallocation of energy-efficient technologies in

housing (Pivo, 2014). Beyond the potential financial ben-
efits for low-income households, energy-efficient invest-
ments can reduce carbon emissions and improve
occupant health while achieving long-term sustainabil-
ity goals (Nevin & Jacobs, 2006; Pearsall & Pierce, 2010).
Researchers have made important strides in quantifying
the magnitude of energy cost burdens (ECBs) on
macro and regional levels, but policymakers and plan-
ners lack the granular, high-spatial- and temporal-reso-
lution data needed to develop targeted and proactive
policies and programs to directly address this issue.
Such policies include incentives and mandates for
energy efficiency improvements based on measured
energy performance, subsidies for specific energy retro-
fits tied to building characteristics, and affordable
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housing programs that integrate rental subsidy
amounts with ECB estimates.

In this study we present a new methodology to
model household ECBs based on actual energy use data
for individual buildings across five major U.S. cities and
link energy costs to savings opportunities based on spe-
cific residential building types and characteristics.
Specifically, we a) use high-resolution data to develop
small-area estimates (at the level of individual buildings)
of ECBs, b) analyze how ECBs vary by building across
demographic and income groups, and c) assess the
implications of energy retrofit investments on housing
affordability. We examine differentials in ECBs across
neighborhoods and socioeconomic groups, comparing
lower income and wealthier neighborhoods and analyz-
ing racial disparities within income groups. The data we
use in this study consist of actual annual building
energy consumption for approximately 13,000 multi-
family buildings in New York City (NY), Boston (MA),
Cambridge (MA), Seattle (WA), and Washington (DC)
reported through city energy disclosure laws. We inte-
grate these data with building and land use characteris-
tics, housing subsidy program information, and
socioeconomic characteristics to develop a comprehen-
sive building-level data set of energy use and resident
attributes. To analyze the potential financial implications
of energy retrofit investments for low-income house-
holds, we use a unique data set of energy audit reports
for approximately 3,000 residential buildings in New
York City to estimate economically and technically feas-
ible energy retrofit opportunities and their impact on
ECBs. Although the data we use in this study represent
a nonrandom sample of buildings and cities, they none-
theless provide a unique opportunity to develop and
demonstrate a new method for planners to leverage
large energy data sets to more fully understand house-
hold cost burdens at higher spatial and temporal resolu-
tions than are currently possible.

Housing Affordability and
Energy Efficiency
There is an abundance of evidence demonstrating a
growing national housing affordability crisis, yet little
attention is given to one of its main components:
energy costs (Rohe, 2017; Routhier, 2018). Most studies
that report on housing affordability measures do not
account for energy costs at all in their cost burden
measurements because actual utility consumption and
associated expenses are difficult to estimate (Haffner &
Boumeester, 2015). In the context of rising energy costs
and growing calls for climate action, this lack of data
represents a key challenge for planners looking to

create programs that address the ECBs that dispropor-
tionately fall on low-income households.

The U.S. Department of Housing and Urban
Development considers a household rent burdened if
more than 30% of gross income is spent on rent
(Collinson, 2011). Rent increases drastically outpaced
income growth in almost all of the 238 largest metro-
politan statistical areas (MSAs) between 2000 and 2010
(Schwartz et al., 2016), and the resulting rent burdens
have failed to decline since then, particularly for the
lowest income households (Turner, 2018). Of the 44 mil-
lion renter households in the United States, 47% are
rent burdened (Landis & Reina, 2019). Of greater con-
cern, 89% of households with incomes less than
$20,000 are rent burdened (Landis & Reina, 2019). One
limitation of the studies documenting this steady
increase in rent burdens is the research rarely disaggre-
gates energy and housing costs and thus obscures the
complete picture of rent burdens. Where utility costs
are included in rents because a unit is master metered
(meaning the landlord, not the tenant, pays the utility
bills), these costs could be an important factor contribu-
ting to increasing rents. More commonly, utility costs
are not included in the rents for low-income house-
holds, which means existing rent estimates represent a
lower bound of housing-related cost burdens.

Energy Justice
Previous research demonstrates ECBs disproportionately
affect lower income households, largely because they
are most at risk for living in substandard and inefficient
housing (Hern�andez & Phillips, 2015). From the widely
held concept of filtering in housing markets, low-
income households are more likely to rent units of
lower quality in less accessible areas because these
units become the only affordable option (Baer &
Williamson, 1988; Galster & Rothenberg, 1991; Ohls,
1975). As a result, low-income households will typically
inhabit the poorest quality housing units, which are
often in the least efficient buildings (Lowry, 1960; Reina
& Kontokosta, 2017). This means that even with behav-
ioral adjustments to reduce energy consumption, low-
income households typically face higher utility costs to
achieve a basic comfort level in their homes.

There is evidence that even affordable units devel-
oped through low-income housing programs, which
theoretically should have a higher level of quality due
to government supervision and subsidy, are less energy
efficient than similar unsubsidized properties (Dastrup,
McDonnell, & Reina, 2012; Pazuniak, Reina, & Willis, 2015;
Reina & Kontokosta, 2017). Despite the potential to
reduce energy use through better quality housing and
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by retrofitting the existing stock (Dall’O, Galante, &
Pasetti, 2012; Hsu, Meng, Han, & Suh, 2017), lower
income households continue to face the economic and
health impacts associated with poorly constructed and
managed buildings with little recourse from landlords,
which further compounds inequality and injustice (Jain,
Moura, & Kontokosta, 2014; Kheirbek et al., 2014; Walker,
2015). Energy costs highlight persistent racial injustice in
housing markets, with evidence that minority house-
holds may experience greater ECBs (Bednar, Reames, &
Keoleian, 2017; Reames, 2016). This is particularly con-
cerning when placed in the context of the long history
of discriminatory housing policies, lending practices,
and owner behaviors that have systemically limited
housing options, neighborhood access, and ownership
and wealth-building opportunities for minority house-
holds across the United States. Although residential
heating and cooling demand is steadily increasing
regardless of housing quality (Hern�andez, 2016), under-
standing how these increases affect households differ-
ently and vary with housing quality and household
socioeconomic characteristics is important for more
effective and equitable housing policy. For instance,
qualitative studies show that low-income households
are sometimes forced to make a tradeoff between
energy use at home and other basic needs (Hern�andez,
2016), and households with high ECBs are more likely to
report issues of food insecurity and housing instability
(Hern�andez & Bird, 2010). Despite the implications of
utility costs on housing affordability and household out-
comes, the levels, drivers, and variation of these burdens
across income and racial groups is not well understood.
Such knowledge is particularly important for planners
seeking to address housing affordability challenges and
those concerned with how energy cost savings can be
leveraged to develop equity-based programs that simul-
taneously reduce greenhouse gas emissions and
housing cost burdens.

Only a few studies attempt to quantify utility cost
levels and burdens, and fewer still estimate energy cost
differentials for minority households. One national study
finds households that made $15,000 or less per year on
average spent 21% of their income on utilities (Carliner,
2013). In New York State, low-income households face
average ECBs of 12.9% (New York State Energy Research
and Development Authority, 2017). A report by the
American Council for an Energy-Efficient Economy illus-
trates that low-income households, measured as those
earning less than 80% of area median income, have a
median ECB of 7.2%, with some households paying up
to 25% of their annual gross income on utilities
(Drehobl & Ross, 2016). It also finds African American
and Latino households face higher energy costs, on

average, than White households, but the study does not
control for income differences between racial groups.

These estimates are valuable but are constrained by
the reliance on U.S. Census American Housing Survey
(AHS) and U.S. Department of Energy Residential Energy
Consumption Survey (RECS) data. The AHS collects data
on household energy use and self-reported measures of
cost, but these data are available only at the MSA or
regional/national geographies (U.S. Census Bureau
2018a). The self-reported nature of the survey is prob-
lematic (Dastrup et al., 2012; Drehobl & Ross, 2016). One
concern is reported data represent a smoothed esti-
mate and are likely rounded and approximated by the
households reporting them. Therefore, a small over- or
underestimation of monthly costs is magnified when
looking at annual costs. More important, self-reported
estimates for the lowest income households could
reflect how much they actually paid, rather than a larger
amount that was due on their bill (Hern�andez, 2016).

RECS reports detailed energy use and building
characteristics information for a selected sample of resi-
dential buildings across the United States; however, it
consisted of only 5,686 housing units in 2015, which
represents a negligible fraction of the more than 130
million housing units nationwide, even after accounting
for survey weights. Although these data provide useful
reference points for energy use and expenditures, the
surveys rely on aggregated measures that limit their
application for targeted, local policymaking (Pivo, 2014).
The small sample size results in higher standard errors
that undermine confidence in the resulting estimates,
an error that increases with geographic resolution. Data
on energy conservation measures or retrofit savings
opportunities for specific building types and individual
buildings are also limited, which prevents any connec-
tion between reported energy use, retrofit costs, and
potential savings. Combined, this means current meth-
ods to understand household cost burdens are limited
in their temporal and spatial granularity, which under-
mines policymakers’ access to localized estimates and
the ability to understand social–spatial variations within
cities and across neighborhoods.

Data and Methods
In this study we analyze the spatial and socioeconomic
patterns, by building and census block group geogra-
phies, of ECBs in multifamily housing across five major
cities in the United States using a unique set of build-
ing-level consumption data for almost 13,000 buildings
and completed energy audit reports for approximately
3,000 buildings. Specifically, we a) analyze the distribu-
tion and magnitude of the burden for individual
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households by building, b) identify spatial clusters of
energy cost–burdened buildings and their relationship
to low-income and minority communities, and c) evalu-
ate the financial impact of energy retrofit investments in
energy-inefficient buildings where residents face high
cost burdens. Our goal with this analysis is to enable
more informed and effective government interventions
that specifically address the implications of energy costs
on the welfare of low-income households.

High-Resolution Data to Estimate
Localized ECBs
We extracted the primary data from publicly available
energy disclosure, or benchmarking, policies from the cit-
ies of Boston (MA), Cambridge (MA), New York City (NY),
Seattle (WA), and Washington (DC). Disclosure laws require
buildings of certain size thresholds to report their energy
consumption and other relevant building attributes each
year (Hsu, 2015; Kontokosta, 2013, 2015; Kontokosta,
Bonczak, & Duer-Balkind, 2016; Palmer & Walls, 2017). More
than 20 cities and 10 states have adopted some form of
energy disclosure, and these data have been well studied
within specific cities, particularly New York City (Hsu, 2015;
Institute for Market Transformation, 2017; Kontokosta &
Jain, 2015; Kontokosta & Tull, 2017; Marasco & Kontokosta,
2016; Papadopoulos, Bonczak, & Kontokosta, 2017, 2018).
Although similar, each city has developed its own policy
requirements (as shown in Table 1) to reflect the nature of
the local building stock and the political context (and
appetite) for the adoption of mandatory reporting. We
selected these five cities based on the availability of public

disclosure data on multifamily buildings that also con-
tained information on relevant building attributes, such as
building size, energy consumption by fuel type, and prop-
erty geolocation. The analysis period is calendar year 2015,
when consistent data were available from each of the
selected cities. We generated disclosure data sets using
the Energy Star Portfolio Manager tool, which ensures the
reported data are in a relatively standardized format,
although data cleaning remains an important data proc-
essing step (ENERGY STAR, 2018; Institute for Market
Transformation, 2018). Energy use is measured as
weather-normalized site energy use intensity (EUI) in
thousands of British thermal units (kBtu) per square foot.
The weather normalization process accounts for
variations in regional climate based on differences in
measured heating degree days and cooling degree days
(Eto, 1988).

Energy disclosure data are integrated with city-
specific administrative records for parcel-level land use
and property characteristics (City of Boston, 2018c; City
of Cambridge, 2018c; City of New York, 2018d; City of
Seattle, 2018c; Washington, DC, 2018b) and building
footprints (City of Boston, 2018b; City of Cambridge,
2018b; City of New York, 2018b; City of Seattle, 2018a;
Washington, DC, 2018a). These data are publicly avail-
able through the respective city’s official open data por-
tal and contain information on the specific location and
geometry of each property and its footprint, as well as
land use type, floor area, number of units, building age,
height, shape, and land/building value, among other
features. Details on each of the data sets used are pre-
sented in Table A-1 of the Technical Appendix.

Table 1

Summary of disclosure ordinances and data.

City Year of adoptiona Building sizea No. buildings reportedb Total floor area (ft2)

Boston (MA) 2013 �50 units 365 64,571,156

Cambridge (MA) 2014 �50 units 362 46,927,944

New York City (NY) 2009 �50,000 ft2 9,104 1,279,586,655

Seattle (WA) 2012 �20,000 ft2 2,413 185,786,358

Washington (DC) 2008 �50,000 ft2 461 75,633,051

Notes:
a. Source: Institute for Market Transformation, 2018.
b. Sources: City of Boston, 2018a; City of Cambridge, 2018a; City of New York, 2018a; City of Seattle, 2018b; Washington, DC,
Department of Energy & Environment, 2018.
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We use the U.S. Census American Community
Survey data (ACS), specifically TIGER/Line with the
Selected Demographic and Economic Data product
(U.S. Census Bureau, 2018c), to measure local demo-
graphic and socioeconomic characteristics. These data
contain sampled information on population demo-
graphics, employment, education, household income,
and housing expenditures. The analysis is at the census
block group (CBG) level because it is the smallest areal
unit for which the U.S. Census Bureau publishes survey
data to maximize spatial granularity. ACS data are also
used to estimate median household income for the
principal city in each MSA represented in the study.

Electricity and natural gas prices data are extracted
from the U.S. Energy Information Administration (EIA),
which is responsible for publishing national energy sta-
tistics. We use the average annual residential energy
prices for 2015 for each state for electricity (EIA, 2018a)
and natural gas (EIA, 2018b).

We investigate the potential household financial
impact of energy retrofit investments in buildings with
high ECBs. To do so, we incorporate New York City’s Local
Law 87 Energy Audit data (LL87), provided by the New
York City Mayor’s Office of Sustainability (City of New York,
2018c), and subsidized housing data maintained by the
NYU Furman Center for Real Estate and Urban Policy. LL87
requires all properties covered by New York City’s energy
disclosure ordinance (locally called LL84) to conduct an
energy audit once every 10 years and report the findings.
In addition to energy consumption data, energy audits
collect detailed information on building systems, energy
end uses, and metering configuration, as well as provide
recommendations for potential energy conservation
measures (ECMs) and their associated energy and cost
savings. The 2015 LL87 data consist of completed audit
reports for more than 3,000 properties, accounting for
approximately 20,000 individual ECMs. The subsidized
housing database combines more than 50 government
databases and provides detailed information on the char-
acteristics of nearly 235,000 units of privately owned and
publicly subsidized properties in New York City.

Methodology for Estimating
Household ECBs
Estimating ECBs for households in individual multifamily
buildings requires significant data processing as illus-
trated by the methodology flowchart shown in
Figure A-1 in the Technical Appendix. In the first step,
disclosure data for each city are standardized by 1) filter-
ing for only residential properties, 2) creating common
field definitions for variable inputs across all city
data sets, 3) converting units as needed (e.g., from

kilowatt-hours into thousands of British thermal units),
and 4) removing or converting nonnumeric values to
numeric values as needed. We then georeferenced the
data to spatially join individual buildings with adminis-
trative (parcel and building footprint) records and socio-
demographic (ACS) data. The final, clean data set
consists of a total of 7,841 properties across the five
studied cities. A summary of the cleaning steps is pre-
sented in Table A-3 of the Technical Appendix.

Equation 1 presents the calculation for the average
household ECB for each individual building in the sam-
ple.1 We extract building-level annual energy consump-
tion data by energy source (natural gas, G, and
electricity, E, because these were consistently reported
in all of the studied cities and represent most total
energy use) and apply the regional retail cost per
energy unit (bg and be, respectively) to calculate the
total annual energy cost for the whole building. We div-
ide this figure by the number of units in the building
(U) to estimate the annual household energy cost. ECB
is then calculated as the total household energy cost
divided by the median household income (Inc) for the
CBG in which the household and building are located.

We merged both the LL87 energy audit and subsi-
dized housing data with the cleaned New York City dis-
closure data set (LL84) based on the unique borough-
block-lot parcel identifier for the retrofit and cost savings
analysis. The merged disclosure and audit data consist of
approximately 1,000 properties, including 85 subsidized
buildings. These properties account for more than 6,000
ECM recommendations in total. We estimated the aggre-
gate potential cost savings for each ECM, grouped by
expected payback period, based on the audit-reported val-
ues for annual energy savings of electricity and natural gas.

Results
The building stock we analyzed in each city varies signifi-
cantly, which is a function not only of topological, eco-
nomic, and regulatory differences of the studied cities
but also of the specific requirements of their respective
disclosure laws. Figure 1 illustrates median values for sev-
eral building characteristics by city.2 The Seattle sample
contains the smallest buildings, with an average size of
48,863 ft2, and the most efficient properties, with median
site EUI of 31 kBtu/ft2 and median Energy Star Score of
74. New York City has the largest household size (on aver-
age 2.35 persons) compared with the lowest of 1.83 in
Seattle. There is also an observable trend where house-
hold size is negatively correlated with median household
income, as in DC, which has relatively small households
with a high median income of $84,000.
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Figure 1. Radar plots of housing, energy efficiency, and socioeconomic characteristics by city (median values), 2015.
Note: Income is household income for 2015.
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Household Characteristics by Income
Energy costs are a function of housing quality (energy-
efficient design and systems) and consumption behav-
ior (occupant usage patterns and building management
quality). A lower household income is associated with
living in poor-quality, less energy-efficient housing,
which has implications for energy use behaviors
(Abrahamse & Steg, 2011; Poortinga, Steg, & Vlek, 2004).
Because ECBs are a function of consumption levels and
household income, a poor household will face a higher
ECB, holding energy consumption constant.

As expected, we find higher income households
tend to occupy newer properties with larger units.3 On
average, unit sizes for higher income households are
13% larger than those of the lowest income households
(1,125 ft2 versus 995 ft2). At the same time, the highest
income households consist of only 2.0 persons on aver-
age, whereas households earning up to 120% of area
median income (AMI) have, on average, 2.3 persons.
Both of these characteristics directly affect household-
level energy consumption.

Using EUI as a proxy for a property’s energy perform-
ance, we find a quadratic relationship between EUI and
income, where the lowest and highest income house-
holds exhibit the highest EUIs. We use a pairwise non-
parametric Mann-Whitney U test (Mann & Whitney, 1947)
to statistically compare the distributions of EUI values for
each income band. Consistent with the observational
assessment above, the middle income ranges differ sig-
nificantly from the lowest and the highest income house-
holds, whereas there is no significant difference found
between the latter two groups. The lowest and highest
income groups are shown to have higher total consump-
tion levels by housing unit than do households with
incomes between 50% and 150% of AMI. For the lowest
income households, higher consumption can be attrib-
uted, in part, to higher occupant densities and equip-
ment and systems inefficiencies. Consumption by high-
income households can be explained by larger unit sizes,
as well as occupant behavior (for example, more amen-
ities or additional plug loads from personal electronics).
Confirmation of both trends is found in the Energy Star
Score estimates, which are derived from a linear regres-
sion model that attempts to normalize energy use by
controlling for selected building characteristics and wea-
ther conditions (although this approach is not without its
statistical limitations; see Hsu, 2015; Kontokosta, 2015;
Papadopoulos & Kontokosta, 2019).

ECB Analysis
Figure 2 illustrates the median values of energy cost per
square foot (expressed in dollars per square foot) and

ECBs by income band for each city. Seattle, which has
both the most energy-efficient properties and the low-
est electricity prices (and relatively limited use of natural
gas), has the lowest energy costs, estimated below
$1.00 per square foot. On the other hand, Boston and
Cambridge have median energy costs between $1.50
and $2.00 per square foot. These costs can be partially
attributed to the significantly higher prices of electricity
and natural gas recorded in Massachusetts in 2015,
which were 36% and 16% higher, respectively, than the
average of the other study cities. At the same time, we
observe multiple examples of properties where energy
costs exceed $5.00 per square foot, mostly in New
York City.

ECBs follow a decreasing exponential function as
shown in Figure 2. As expected, lower income house-
holds are the most exposed to high ECBs, which reach,
on average, approximately 10% of gross income and up
to 20% for some households. The ECBs for all other
income bands in the analyzed population do not
exceed 10% of annual gross income and typically range
between 1.5% and 3% of annual gross household
income. Variations in ECBs across cities reflect differen-
ces in energy prices and socioeconomic diversity. The
lowest ECBs can be observed among the wealthiest
households in Seattle and DC, where energy costs are
less than 5% of annual household income.

We find significant differences in ECBs by race and
ethnicity when comparing within specific household
income bands. As shown in Table 2, each property is
assigned to its respective CBG, which is then classified
as “predominantly minority” if the proportion of non-
Hispanic White population in the CBG is lower than the
citywide average. Buildings in the five cities span a total
of 3,122 CBGs, of which 42% are classified as predomin-
antly minority neighborhoods. For the three lowest
income groups (�50%, 51%–80%, and 81%–120% AMI),
we find statistically significant differences in ECBs
between the two neighborhood classifications based
on the results of t tests between the two neighborhood
types stratified by income. Very-low-income residents
(�50% AMI) in predominantly minority neighborhoods
experience a 1.56-percentage-point higher ECB than do
low-income residents in predominantly non-Hispanic
White communities, which equates to a 27% greater
ECB on average. This difference persists in the two other
lower income groups (51%–80% AMI and 81%–120%
AMI), and although the magnitude of the gap falls to
approximately 0.60 percentage points, this reflects as
much as a 24% greater ECB in minority neighborhoods.
Why minority communities experience higher ECBs,
after accounting for income differentials, is unclear, but
our finding provides additional evidence for the
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growing concern for equity and fairness in the distribu-
tion of energy-efficient and better quality housing.

Given the potential geospatial relationships
between income, race, and energy efficiency, we exam-
ine the extent of spatial clustering of buildings by ECBs
because this information can be used to develop inte-
grated place- and need-based energy policies. The visu-
alizations in Figure 3 show the locations of all analyzed
properties across the five cities. Each dot represents a
specific property, with shaded areas indicating predom-
inantly minority census block groups. Concentrations of
high ECBs by building are shown as a heat map overlay.
The results of a Moran’s I test for global spatial autocor-
relation (Mitchell, 2005) show that properties in all cities
except Cambridge are not randomly distributed within
the city boundaries but rather are defined by spatial
clusters. Given that energy disclosure laws cover larger,
higher density, multifamily properties, we observe con-
centrations around the city center (Boston) and along
major boulevards (New York City, Seattle). CBGs with

minority population higher than the city average are
represented by highlighted areas, revealing associations
between higher ECBs and neighborhoods identified as
predominantly minority.

Energy Cost Savings Potential by Income
and Building Characteristics
Building on the analysis of the localized spatial and soci-
oeconomic patterns of ECBs, we seek to understand the
potential of building energy retrofits to reduce these
burdens for lower income households. New York City’s
LL87 energy audit data set provides a comprehensive
resource to identify economically and technically feas-
ible energy retrofit opportunities at the building scale.
After significant data cleaning and preprocessing, we
link energy audit data with energy consumption data to
estimate the impact of ECMs on energy costs and
cost burdens.4

Figure 2. Bar plots of median annual energy cost per square foot and energy cost burden by city and income band, 2015.
Note: Income percentiles are based on median household income for 2015. Bars indicate one standard deviation.
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Table 3 presents the 10 most common ECM recom-
mendations we identified by analyzing individual audit
reports for all multifamily properties contained in the
LL87 data. Approximately 40% of all recommendations
are related to lighting, particularly upgrading existing
lamps to light-emitting diode (LED; 1,321 occurrences),
which tends to have a short payback period. Although
lighting upgrades are relatively high-return investments,
their annual cost savings potential is modest, ranging
on average between $8 and $50 per housing unit per
year when accounting for improvements to building
common areas only. Retrofits related to domestic hot
water (DHW) systems, such as installing low-flow

aerators or separating DHW from the heating system,
constitute approximately 10% of all ECMs and have an
average cost savings ranging from $47 to $117 per unit
per year. The most cost-effective ECM opportunity,
based on the analyzed data, is installing a building man-
agement system, with an average cost savings reaching
$118 per unit. It is important to note these recommen-
dations relate to central systems or, as in the case of
lighting, common areas only. Therefore, these cost sav-
ings estimates represent a lower bound of savings
potential.

Table 4 presents the potential aggregate energy
cost savings per household for all audit-recommended

Table 2

ECBs by income group and neighborhood racial/ethnic composition.

Median ECB

Minority £50% 51%–80% 81%–120% 121%–150% >150%

City CBG n n ECB n ECB n ECB n ECB n ECB

Boston No 161 23 6.50 22 3.52 23 3.15�� 13 4.36 80 2.31

Yes 93 40 4.83 29 4.24 22 4.43�� 1 2.17 1 2.09

Cambridge No 58 1 2.76 8 3.58 20 1.70 10 20.38 19 1.63

Yes 176 108 5.05 4 2.42 43 1.84 21 0.92

New York City No 2,898 135 7.13��� 320 4.19��� 612 2.92��� 406 2.27� 1425 1.96�

Yes 2,012 532 9.33��� 772 5.02��� 535 3.18��� 135 2.5� 38 1.74�

Seattle No 1,178 71 2.11��� 214 1.34��� 463 0.99��� 271 0.79�� 159 0.84���

Yes 965 217 2.67��� 415 1.62��� 219 1.07��� 82 0.7�� 32 0.66���

Washington, DC No 175 2 6.11 16 2.44�� 42 1.88 58 1.38 57 1.17

Yes 64 15 5.69 38 2.97�� 9 2.13 2 1.59

Total No 4,470 232 5.87��� 580 3.22��� 1,160 2.08��� 758 1.74 1,740 1.82���

Yes 3,310 912 7.43��� 1,258 3.78��� 828 2.73��� 241 1.68 71 1.23���

Note: Statistical significance of group differences based on independent samples t tests: �p < .05; ��p < .01; ���p < .001.
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Figure 3. Spatial dispersion of energy cost burdens (blue heat map), properties (in black), and neighborhood classification (predom-
inantly minority census block groups in red) in selected cities, 2015. (Color version of figure available online.)
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ECMs with payback periods of less than 2, 5, and
10 years, respectively, based on specific building types
and characteristics. The potential energy cost reduc-
tions for ECMs with the shortest payback period fall
between approximately $32 (first quartile) and $266
(third quartile) per unit per year, with a median of
$112 and reaching as high as $800 per unit per year.
Including ECMs with longer payback periods results in
higher potential cost savings, with median values

increasing to $298 for upgrades with a 10-year pay-
back. Of course, longer payback periods equate to a
lower expected return on investment; therefore, the
financial viability of longer payback period investments
may be a constraint for building owners without sub-
sidies to reduce initial costs or other incentives to
reduce energy use.

Figure 4 shows the potential impact of adopting
ECMs with each payback period duration on the

Table 3

Most common ECM recommendations and expected cost savings.

Category Measure

ECM
occurrence

Median annual
cost savingsa ($)

2-Year
payback

5-Year
payback

10-Year
payback Total

Whole
building Per unit

Lighting Upgrade to LED 608 547 166 1,321 2,655.39 23.14

DHW Install low-flow
aerators

159 120 94 373 5,138.66 46.99

Distribution system Insulate pipes 159 129 71 359 1,184.63 14.85

Lighting Upgrade to fluorescent 149 102 61 312 1,533.32 17.31

HVAC controls and
sensors

Install or upgrade
energy management
system (EMS)/
building
management
system (BMS)

113 65 86 264 11,601.33 118.33

DHW Separate DHW
from heating

25 90 137 252 15,738.41 116.52

Lighting Other 45 129 52 226 5,691.10 49.57

Lighting Upgrade
exterior lighting

95 68 59 222 1,568.82 8.74

Envelope Sealing: door 87 70 44 201 1,276.56 14.90

Lighting Install occupancy/
vacancy sensors

40 51 50 141 1,308.74 15.12

Note: DHW = domestic hot water; EMS = emergency management system; HVAC = heating, ventilation, and air conditioning;
LED = light-emitting diode.
a. ECM estimations provided for central systems or common areas only.
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estimated ECB for households by income range. Box
plots labeled “None” represent the “business-as-usual”
scenario, whereas the others show the expected ECB
after implementation of the recommended retrofits by
payback period. ECM adoption for low- and
very-low-income households demonstrates nontrivial
reductions in cost burdens of 2% of annual household
income, on average.

To highlight the opportunity for cost savings in
subsidized properties in New York City, Figure 5

illustrates the potential ECB reductions after implemen-
tation of all ECMs with a 10-year (or less) payback period
specifically in government-subsidized buildings. The
average savings is estimated to be approximately 2%,
and the savings potential in several buildings exceeds
5% of annual household income.

Discussion and Implications for Planning
Housing affordability measures have consistently omit-
ted utility and energy expenses in overall household
cost burden calculations, thereby underestimating the
significance of energy costs for lower income house-
holds. Using newly available energy data for individual
residential buildings in five cities, combined with prop-
erty characteristics, energy audit reports, and socioeco-
nomic data, we develop small-area estimates of ECBs
for households in multifamily buildings within and
across neighborhoods. High energy costs caused by
inefficient housing disproportionately affect low-income
households. ECBs approach 7%, on average, for very-
low-income households, but this figure can reach as
high as 20% of annual household income. Because
these costs are largely driven by housing quality, cost
burdens can only be meaningfully reduced by improv-
ing the efficiency of the building and housing unit.
Although upper income households also experience
significant energy costs, with energy expenditures per
square foot of approximately $1.80, this does not create
a high burden because of their income level. In add-
ition, energy costs for higher income households are
driven in part by high-intensity energy use behaviors,
which means modifying consumption behavior alone
can meaningfully reduce energy costs for this group.
There is also significant variation in ECBs across cities
and regions. Boston and New York City exhibit the high-
est average burden of approximately 3%, whereas the

Table 4

Potential reductions of annual energy costs after
implementation of ECMs with different pay-
back periods.

Measure

ECM payback period

2 Years 5 Years 10 Years

Count 742 948 976

Mean $225.36 $361.52 $426.94

SD $364.09 $455.87 $490.82

25th $32.53 $97.91 $139.20

50th $112.44 $235.62 $298.64

75th $266.66 $447.30 $525.82

95th $804.99 $1,114.05 $1,197.83

Figure 4. Energy cost burdens after implementation of ECMs by payback period.
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typical household in Seattle and Washington (DC) pays
less than 2% of gross income for energy. This range is
driven by differences in the efficiency of the local hous-
ing stock, the distribution of household income in each
city, and regional energy prices.

Our findings largely confirm what other aggregate
studies of energy costs have shown, which is an import-
ant validation of this method to generate small-area
estimates of housing cost burdens. These data and
building-level energy cost estimates allow planners to
leverage more frequently updated information at
smaller geographies, particularly when compared with
current survey alternatives such as AHS and RECS, and
highlight the applications of expanding energy disclos-
ure mandates across additional cities and regions.

In addition to providing high-frequency, small-area
estimates of ECBs, the method we describe here ena-
bles the study of energy efficiency from a social justice
perspective. Specifically, we analyze the distribution of
energy costs for racial and ethnic minority groups. ECBs
for households in “predominantly minority” neighbor-
hoods (defined here as those CBGs where the percent-
age of non-Hispanic White population is less than the
respective citywide average) are higher for all low-
income groups—by as much as 27%—than for house-
holds with similar incomes in predominantly non-
Hispanic White communities. This sociodemographic
analysis does have a number of constraints, including
the lack of building- and household-specific demo-
graphic data and the unavailability of utility subsidy pro-
gram data at the building level. However, our findings
highlight significant variations in cost burdens across
low-income households that raise new concerns about
energy justice and warrant further exploration.

The potential benefits of energy-efficient investments
for low-income, cost-burdened households are a viable
pathway to reduce overall housing affordability challenges.

On average, energy retrofits with payback periods of less
than 2 years could result in an annual savings of approxi-
mately $112 per household. By including ECMs with pay-
back periods of up to 10 years, the estimated annual
household savings could increase to almost $300 per year
and, in some cases, as much as $1,200 per year. These sav-
ings figures represent lower bound estimates because
reported energy audit ECM recommendations focus on
“whole building” efficiency opportunities rather than indi-
vidual apartments, and thus the financial implications for
low-income households could be even greater.

Given the significance of energy costs for the over-
all welfare of low-income households and the favorable
rates of return for building energy efficiency invest-
ments, planners can use these findings and data to jus-
tify both incentives and mandates for energy upgrades
in energy-inefficient buildings housing low-income resi-
dents. Building on existing energy disclosure policies
enacted in our study cities, the next step is to develop
effective peer performance measures to openly and
rigorously compare the energy use profiles of similar
buildings (Burr, Keicher, & Lawrence, 2013;
Papadopoulos & Kontokosta, 2019). This can be opera-
tionalized as a building energy “grade,” similar to what
has been adopted for fuel efficiency in the auto industry
and cleanliness scores in the food service industry.
Although Energy Star and, to a lesser extent, the U.S.
Green Building Council Leadership in Energy and
Environmental Design (LEED) rating systems attempt to
provide such a measure, these labels have been
criticized for relying on misspecified models, small-
sample data, and lack of transparency. City-specific ini-
tiatives, such as new building energy grading laws
adopted in Chicago (IL) and New York, create localized
performance measures that can more reliably account
for regional variations in building stock, household
behavior, and weather.

Figure 5. Potential energy cost burden reductions in subsidized properties in New York City after implementation of recommended
energy conservation measures.
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These grading systems, however, are essentially
“need blind.” Cities have limited resources, whether in
financial or political capital, to motivate building owners
to reduce their energy consumption. Thus, targeting
the allocation of these resources to those most in need
should be the foundation for city energy policy.
Planners can identify buildings where residents experi-
ence high ECBs and the specific, economically viable
energy upgrades that can reduce these costs by using
the method we present here. In particular, by linking
subsidized housing data with energy performance data,
cities can both identify high-need buildings and
develop tools to support cost-effective energy retrofits
in these properties. These data could be coupled with
existing programs, such as the U.S. Department of
Health and Human Services’ Low Income Home Energy
Assistance Program, to identify retrofit opportunities
and promote investments that enable Low Income
Home Energy Assistance Program resources to be more
efficiently and equitably allocated.

Planners should expand the data collection efforts of
current energy disclosure ordinances to improve house-
hold cost burden estimates and provide a foundation for
need-based energy incentives and performance stand-
ards. These ordinances, including LL84 in New York City,
are generating significant new streams of data to allow
for peer-to-peer building comparisons, longitudinal stud-
ies of energy use, and empirical evaluations of energy
efficiency and carbon reduction policies. However, the
data reporting requirements currently focus on physical
aspects of the building and its energy use profile.
Household income or demographic data, aggregated to
the whole building to protect confidentiality, could be a
valuable resource for research at the intersection of
energy efficiency, behavioral economics, and urban plan-
ning. This information would also complement census
data by generating an annual source of high-spatial-reso-
lution socioeconomic data. Given that tenant rental appli-
cations for multifamily buildings typically require income
reporting, it would be possible for building owners to
aggregate these data and report medians and averages
for buildings of certain size and unit number thresholds.
Although there are significant privacy concerns to con-
sider, the implications of such data disclosure would be
an important resource for researchers and policymakers,
and energy reporting mandates provide a viable mechan-
ism for additional data collection at the building level
that could support a variety of policy goals.

Conclusion
Energy efficiency and urban climate action have taken
on a new significance with the growing recognition

that cities must take the lead in reducing consumption
and carbon emissions. Although the building sector has
been the primary focus of urban sustainability initiatives,
attention has been focused on the physical asset rather
than the household. Our study shifts the focus of energy
efficiency investment to its impact on household cost
burdens and overall housing affordability. We use new
and unique data generated from measurement-driven
urban energy policies and find low-income households
disproportionately bear the burden of poor-quality and
energy-inefficient housing. This translates to ECBs for
the lowest income households of more than three
times those of higher income households. Households
in predominantly minority communities face even
higher cost burdens, even after accounting for income
differences. Cost-effective ECMs have the potential to
reduce this cost burden by as much as half for low-
income households, representing a potentially signifi-
cant reduction in overall housing cost burdens without
the need to relocate. In this study we validate small-
area estimates against currently available regional and
national data and highlight how cities can use new
localized data resources and methods to develop
place-based and equity-focused energy policies.
Our research demonstrates that building energy
efficiency and climate mitigation should be considered
issues of environmental justice and that data-driven
approaches can be leveraged to improve housing
affordability and quality of life for the most vulnerable
urban residents.
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NOTES
1. The formula is ECB ¼ E�be þG�bg

U � Inc:

2. Figure 1 illustrates median values for several building
characteristics by city. Disclosure data provide information on
gross floor area, age, and number of units, which we supplement
with calculations of average unit size.

3. Income group thresholds are defined by percentage AMI for
each MSA. This commonly used normalization approach allows
for direct comparison across different regions (Linneman &
Megbolugbe, 1992; U.S. Census Bureau 2018b).

4. The payback period is calculated by dividing the
implementation (first) cost of the ECM by its expected annual
cost savings. Although other investment metrics, such as net
present value and internal rate of return, provide risk-adjusted
measures of financial returns, the payback period method is a
widely used approach for comparing alternative investments and
identifying higher-return ECMs. We focus on audit-recommended
energy conservation measures with payback periods less than
10 years.
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