Quantification of Energetic Electron Precipitation Driven by Plume Whistler Mode Waves, Plasmaspheric Hiss, and Exohiss

3

1

2

- 4 Li, W.¹, X.-C. Shen¹, Q. Ma^{2, 1}, L. Capannolo¹, R. Shi¹, R. J. Redmon³, J. V. Rodriguez^{3,4},
- 5 G. D. Reeves⁵, C. A. Kletzing⁶, W. S. Kurth⁶, and G. B. Hospodarsky⁶
- ¹Center for Space Physics, Boston University, Boston, Massachusetts, USA.
- ²Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles,
- 8 California, USA.
- ³National Centers for Environmental Information, NOAA, Boulder, Colorado, USA.
- ⁴Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder,
- 11 Boulder, CO, USA.
- ⁵Space Science and Applications Group, Los Alamos National Laboratory, Los Alamos, New
- 13 Mexico, USA.
- ⁶Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa, USA.

1516

17

19

20

Corresponding author: Wen Li (wenli77@bu.edu)

18 **Key Points:**

- Three types of whistler mode waves are observed during conjunction events between Van Allen Probes and POES/MetOp.
- These whistler mode waves include plume whistler mode waves, plasmaspheric hiss, and exohiss.
- Plume whistler mode waves are very effective in producing energetic electron precipitation (from 10s to 100s keV).

25

Abstract

Whistler mode waves are important for precipitating energetic electrons into Earth's upper atmosphere, while the quantitative effect of each type of whistler mode wave on electron precipitation is not well understood. In this letter, we evaluate energetic electron precipitation driven by three types of whistler mode waves: plume whistler mode waves, plasmaspheric hiss, and exohiss observed outside the plasmapause. By quantitatively analyzing three conjunction events between Van Allen Probes and POES/MetOp satellites, together with quasi-linear calculation, we found that plume whistler mode waves are most effective in pitch angle scattering loss, particularly for the electrons from 10s to 100s keV. Our new finding provides the first direct evidence of effective pitch angle scattering driven by plume whistler mode waves and is critical for understanding energetic electron loss process in the inner magnetosphere. We suggest the effect of plume whistler mode waves be accurately incorporated into future radiation belt modeling.

Plain Language Summary

Electron precipitation into Earth's upper atmosphere is an important loss mechanism of energetic electrons trapped in the inner magnetosphere. Although whistler mode waves are known to be effective in producing electron precipitation through pitch angle scattering, the relative roles of various whistler mode waves that play in electron losses are unclear. In this letter, we quantitatively analyze conjunction events, where Van Allen Probes observed various whistler mode waves near the equator and Low-Earth-Orbiting satellites detected electron precipitation approximately along the same magnetic field line but at low altitudes. By combining the satellite data analysis and quasi-linear theory, we found that whistler mode waves observed in plumes are very effective in scattering energetic electrons, which are ultimately lost through interacting with the neutral atmosphere. Our new finding provides the direct evidence that plume whistler mode waves play an important role in energetic electron precipitation, which is crucial for understanding energetic electron loss process in the Earth's inner magnetosphere.

1 Introduction

Various types of whistler mode waves are present in the Earth's inner magnetosphere, including hiss observed inside the plasmasphere (e.g., Thorne et al., 1973), whistler mode waves in plasmaspheric plumes (called plume whistler mode waves hereafter) (Chan and Holzer, 1976; Woodroffe et al., 2017; Su et al., 2018), chorus waves observed outside the plasmapause (e.g., Burtis and Helliwell, 1969; Koons and Roeder, 1990), and exohiss observed in the plasmatrough (Thorne et al., 1973; Zhu et al., 2015). Typical properties and generation mechanisms of plasmaspheric hiss, chorus, and exohiss, as well as their scattering effects on energetic electrons have been extensively studied over the past several decades (e.g., Thorne et al., 1973; Santolik et al., 2003; Horne et al., 2005; Bortnik et al., 2008a; Omura et al., 2008; Li et al., 2013a; Thorne et al., 2013; Zhu et al., 2015), while our understanding of plume whistler mode waves is rather limited.

Plasmaspheric plumes consist of plasma being drained from the reservoir of plasmaspheric plasma and extending into the more tenuous outer magnetosphere (Grebowsky, 1970; Chen and Wolf, 1972; Carpenter et al., 1993; Elphic et al., 1996; Weiss et al., 1997; Goldstein et al., 2004), and are often associated with large density fluctuations (Spasojevic et al.,

2003; Goldstein et al., 2004; Moldwin et al., 2004; Borovsky and Denton, 2008). Plasma waves in plumes are particularly interesting, because a plume is a unique region where total plasma density is typically high, but energetic particles (>10s keV) are accessible, thus providing favorable conditions for various types of wave generation (Chan and Holzer, 1976; Hayakawa et al., 1986; Usanova et al., 2013; Ma et al., 2014; Tsurutani et al., 2015; Woodroffe et al., 2017). Recently, plume whistler mode waves are found to sometimes exhibit discrete rising tones (e.g., Su et al., 2018), which are somewhat similar to typical chorus waves (Santolik et al., 2003; Li et al., 2011). This discrete feature is different from typical plasmaspheric hiss that exhibits incoherent broadband emissions (e.g., Thorne et al., 1973; Santolik et al., 2001; Bortnik et al., 2008a), and could potentially lead to nonlinear interactions between waves and electrons (e.g., Albert, 2002; Bortnik et al., 2008b; Tao et al., 2014). Moreover, Su et al. (2018) reported that plume whistler mode waves could have an unexpectedly large amplitude (~1.5 nT) and suggested that these waves were locally generated probably through a combination of linear and nonlinear instabilities of hot electrons.

Plasmaspheric plumes are found to be favorable for enhancing pitch angle scattering of radiation belt electrons, thus leading to electron precipitation into the upper atmosphere (Summers et al., 2008; Borovsky et al., 2014; Zhang et al., 2018). Borovsky and Steinberg (2006) found that relativistic electron dropouts at geosynchronous orbit often coincided with the presence of plasmaspheric plumes, suggesting the potential loss of energetic electrons due to interactions with the enhanced plasma waves in plumes. Furthermore, Summers et al. (2008) evaluated electron precipitation loss due to plume whistler mode waves by analyzing 14 representative plumes and found that pitch angle scattering by plume whistler mode waves can be efficient for inducing precipitation loss of radiation belt electrons with energy from 100 keV to 1 MeV, though the loss rates are highly dependent on wave power, *L* shell, and electron energy.

Despite the potential importance of plume whistler mode waves in electron scattering, the direct evidence showing energetic electron precipitation driven by plume whistler mode waves is still lacking. In this letter, by analyzing fortuitous conjunction events between near-equatorial satellites (Van Allen Probes) and Low-Earth-Orbiting satellites (POES/MetOp), we quantitatively evaluate and compare the energetic electron precipitation driven by three types of whistler mode waves: (1) plume whistler mode waves, (2) plasmaspheric hiss, and (3) exohiss. Moreover, using quasi-linear theory we estimate electron precipitations caused by these three types of whistler mode waves based on the observed wave and plasma properties, and compare them with the POES/MetOp measurements.

2 Overview of Conjunction Events Between Van Allen Probes and POES/MetOp

Figures 1–3 show an overview of conjunction events between the twin Van Allen Probes orbiting near the equator (Mauk et al., 2013) and POES/MetOp orbiting at a low altitude of ~800 km approximately along the same magnetic field line (Evans and Greer, 2004). This event occurred during a relatively quiet period (2 September 2013), when Sym-H remained above -30 nT over the preceding 2 days, but there was a modest substorm over 16–20 UT with a minimum AL index of ~-400 nT (not shown). Figure 1 shows the total electron density and wave observation from Van Allen Probe A (left) and B (right) measured by the EMFISIS Waves instrument (Kletzing et al., 2013) onboard Van Allen Probes. Total electron density (Figures 1a and 1h) was inferred from the upper hybrid resonance line (Kurth et al., 2015), and was used to

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

identify various regions: (1) plume (magenta); (2) plasmasphere (blue); and (3) plasmatrough (green). A plasmapause location (indicated by the vertical black line in Figure 1) is defined as the innermost steep density gradient; more specifically, a factor of ~5 drop within 0.5 L (Moldwin et al., 2002). After a plasmapause is identified, a plume is defined in a region outside the plasmapause, where plasma density is considerably larger than the plasmatrough density at lower L shells. Based on the plasma density and wave polarization properties (Figures 1d, 1e, 1k and 11), five different types of plasma waves were identified (see the detailed criteria in Table S1 in Supporting Information) with the wave flag shown in Figures 1f and 1m; namely, plasmaspheric hiss (yellow), exohiss (green), plume whistler mode wave (orange), chorus (cyan), and magnetosonic waves (red). Over 15:30-20:30 UT, Van Allen Probe A (Figures 1b-1f) first observed magnetosonic waves and weak exohiss in the plasmatrough (15:30–16:00 UT), strong whistler mode waves in plasmaspheric plumes (16:00-18:30 UT), magnetosonic waves in the plasmatrough again (18:30–19:00 UT), and hiss inside the plasmasphere (after ~19 UT). Simultaneously, Van Allen Probe B (Figures 1i-1m) detected hiss inside the plasmasphere (before ~16:30 UT), as well as weak exohiss below 1 kHz and very weak chorus waves with frequencies near 0.5 f_{ce} in the plasmatrough region (~16:30–19:00 UT), without detecting any plumes. Since exohiss is suggested to be formed due to the leakage of plasmaspheric hiss (Thorne et al., 1973; Zhu et al., 2015), its amplitude is typically weaker than that of plasmaspheric hiss. After ~19 UT quasi-parallel chorus waves with modest wave amplitudes (from ~ 16 to ~ 42 pT) were detected at L shells above ~ 6.2 . It is worthwhile to note that we adopted the L shell based on the T01 magnetic field model (Tsyganenko, 2002), since the in situ magnetic field measurements from Van Allen Probes were closest to the magnetic field values from the T01 magnetic field model among all available Tsyganenko magnetic field models. Figure 2 illustrates the trajectories of Van Allen Probe A and B over 15:30-20:30 UT on 2 September 2013 color coded for the different regions. The structure of the plasmasphere and plume regions is depicted based on the plasma density observation from Van Allen Probes. It is important to note that Van Allen Probe B, which did not detect any plume features, was travelling in an earlier magnetic local time (over 13-18 MLT) than Van Allen Probe A (over ~18–22 MLT), which clearly detected a plume. Interestingly, the observed plume whistler mode waves (Figures 1b and 1c) were intense (~120 pT) and exhibited strong modulation, probably due to the modulating plasma density (e.g., Chen et al., 2012). High resolution waveform data were available for the observed plume whistler mode waves during several short intervals (6 seconds) over the period of 16:00-18:30 UT, and they all exhibited broadband hiss-like emissions rather than discrete rising or falling tone elements (not shown). It is also worth noting that electromagnetic ion cyclotron (EMIC) waves, which are sometimes observed in plumes (e.g., Usanova et al., 2013), were not detected by Van Allen Probe A or B over the entire time period of 15:30–20:30 UT (Figures 1g and 1n).

Around Times 1, 2, and 3, as marked by the vertical lines in Figure 1, POES/MetOp satellites passed through the magnetically conjugate region at a low altitude (~800 km). Figure 3 shows the electron flux observation from POES/MetOp around the conjunction Times 1, 2, and 3. The particle detector onboard POES/MetOp has two telescopes with the 0° (90°) telescope measuring precipitating (trapped or quasi-trapped) electrons at various energies of >~30 keV, >~100 keV, and >~300 keV (Evans and Greer, 2004; Green, 2013). A proton channel (>~6.9 MeV) mainly detects electrons above >~700 keV, and thus can be used to monitor highly relativistic electrons (Rodger et al., 2010; Yando et al., 2011; Green, 2013). Proton contamination at >~30 keV, >~100 keV, and >~300 keV channels was removed using the

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201202

method described in Peck et al. (2015). During Time 1 (~18:07 UT, Figures 3a-3b), MetOp-01 traversed through ~20.8 MLT, and detected strong electron precipitation in energy channels of $\sim 30 \text{ keV}$, $\sim 100 \text{ keV}$, and $\sim \sim 300 \text{ keV}$ over L shells of 6.8–7.5 (6.1–6.6) based on the T01 (IGRF) magnetic field model, where the precipitating electron flux was close to the trapped value. The gray-shaded region in Figure 3b, also marked with the gray star symbol in Figure 2, is roughly in the conjugate location with the region where plume whistler mode waves were detected by Van Allen Probe A (marked with the black star symbol in Figure 2). During Time 2 (\sim 19:47 UT, Figures 3c–3d), \sim 100 minutes after Time 1, MetOp-01 passed through the same L shell range at ~20.8 MLT again. In particular, near the conjunction region (gray-shaded region in Figure 3d) with Van Allen Probe A, MetOp-01 detected modest electron precipitation at >~30 keV and $>\sim 100$ keV. The strong electron precipitation at $>\sim 30$ keV and $>\sim 100$ keV at L(T01) >7.9 and L(IGRF) > 6.9 in Figure 3d at ~19:46 UT might still be caused by the plume whistler mode waves, which may have lasted for at least a few hours, although the conjugate wave measurements near the equator were not available to verify it. This feature of long-lasting plume whistler mode waves is also supported by the fact that NOAA-16 also observed very similar electron precipitation (not shown) to that by MetOp-01 (Figure 3b) but at ~18:52 UT, which occurred between Time 1 and Time 2 at a slightly earlier MLT (~20.4). During Time 3 (~18:23 UT, Figures 3e-3f), NOAA-15 passed through the L shell from 9 to 4 at \sim 17 MLT. Near the conjugate region (gray shaded region in Figure 3f) with Van Allen Probe B, which observed very weak exohiss, NOAA-15 detected little electron precipitation at all energy channels (>~30 keV, >~100 keV, >~300 keV, and >~700 keV). The relatively strong electron precipitation near $L(T01) \sim 6.6$ and $L(T01) \sim 7.2$ (magenta dotted vertical lines) might be caused by chorus waves, since modest chorus waves were present at L(T01) > 6, as observed by Van Allen Probe B, but after ~19:30 UT (~1 hour later). It is worth noting that there was no clear correlation between the observed electron and proton precipitation at Times 1, 2, and 3 (not shown), supporting that the observed electron precipitations near conjunction were not caused by EMIC waves. The electron observations at Times 1, 2, and 3 indicate that the relatively strong plume whistler mode waves led to the observed strong electron precipitation at Time 1, the modest plasmaspheric hiss drove the modest electron precipitation at Time 2, and the weak exohiss caused little electron precipitation at Time 3. The quantitative calculation of electron precipitation driven by the above three types of whistler mode waves is discussed in Section 3.

3 Calculation of Electron Precipitation Based on Quasi-Linear Theory

We used quasi-linear theory to calculate the electron precipitation driven by plume whistler mode waves, plasmaspheric hiss, and exohiss. The Full Diffusion Code (Ni et al., 2008) is used to calculate bounce-averaged pitch angle diffusion coefficients of three types of whistler mode waves based on the observed wave and plasma properties, as listed in Table S2 in Supporting Information. We adopted the observed wave frequency spectra for each type of whistler mode waves to calculate diffusion coefficients by including Landau resonance and cyclotron resonances with resonance harmonics from -10 to +10. Wave normal angles of plume whistler mode waves, plasmaspheric hiss, and exohiss are assumed to be quasi-parallel near the equator, which is consistent with the in situ Van Allen Probes observation (Figures 1e and 1l), and become more oblique with increasing magnetic latitudes (Ni et al., 2013).

Figure 4 (top) shows the bounce-averaged pitch angle diffusion coefficients for the plume whistler mode waves observed at Time 1, plasmaspheric hiss detected at Time 2, and exohiss

measured at Time 3. The amplitude of the plume whistler mode wave is the strongest (120 pT). plasmaspheric hiss is modestly strong (74 pT), but exohiss is very weak (9 pT). As a consequence, pitch angle diffusion coefficients of plume whistler mode waves are largest on a timescale down to ~10 minutes at ~10 keV, whereas pitch angle diffusion coefficients of exohiss are extremely small on a timescale of tens of hours at ~10 keV. The ratio between the plasma frequency and electron cyclotron frequency (f_{pe}/f_{ce}) is largest for plume whistler mode waves (28.1), modest for plasmaspheric hiss (\sim 19.7), and smallest for exohiss (\sim 8.8). As a consequence, the energy of electrons (Figures 4a–4c), which are subject to strongest pitch angle scattering near the loss cone, tends to increase with decreasing f_{pe}/f_{ce} (<10 keV for plume whistler mode waves, ~25 keV for plasmaspheirc hiss, and ~100 keV for exohiss). Figures 4d–4f show the direct comparison between pitch angle diffusion coefficients near the loss cone $(D_{\alpha\alpha}|_{LC})$ and strong diffusion limit (D_{SD}) (Summers and Thorne, 2003) for three types of whistler mode waves respectively. $D_{\alpha\alpha}|_{LC}$ is closest to D_{SD} for plume whistler mode waves (particularly at a few tens of keV), while $D_{\alpha\alpha}|_{LC}$ is more than an (two) order(s) of magnitude smaller than D_{SD} for plasmaspheric hiss (exohiss). Moreover, we use the pitch angle diffusion coefficients to infer the electron pitch angle distributions in a quasi-equilibrium state (Kennel and Petschek, 1966; Theodoridis and Paolini, 1967; Li et al., 2013b; Ni et al., 2014). This approach is reasonable to estimate wave-driven electron precipitations, since these whistler mode waves typically last longer than several minutes (as an example shown in Figure 1) and the 1D Fokker-Planck simulation result (not shown) indicates that electron pitch angle distribution near the loss cone (equatorial pitch angles over 0-10°) reaches a quasi-steady state within a few minutes after interacting with these whistler mode waves. The bottom panels in Figure 4 show the normalized electron flux (to the flux value at 90° pitch angle) as a function of equatorial pitch angle color coded for various energies. Among three types of whistler mode waves, the loss cone is most filled for the plume whistler mode waves, modestly filled for the plasmaspheric hiss, but mostly empty for the exohiss. The trend shown in Figures 4d-4i is consistent with the POES/MetOp observation, where the ratio of precipitating-to-trapped electrons is highest for plume whistler mode waves, modest for plasmaspheric hiss, and lowest for exohiss.

4 Summary and Discussion

203204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220221

222

223

224

225

226227

228

229

230

231

232

233

234235

236

237

238

239

240241

242

In this letter, we report fortuitous conjunction events between Van Allen Probes and POES/MetOp satellites, and quantitatively evaluate and directly compare energetic electron precipitation driven by plume whistler mode waves, plasmaspheric hiss, and exohiss. Most importantly, we provide the first direct evidence of efficient electron precipitation from 10s to 100s keV driven by plume whistler mode waves. The principal findings of this study are summarized below.

- 1. During a modest substorm activity, a plasmaspheric plume was present over the dusk-to-premidnight sector. Van Allen Probe A, which traversed the post-dusk sector, observed whistler mode waves in plumes and hiss inside the plasmasphere, whereas Van Allen Probe B, which traveled through the pre-dusk sector, observed exohiss outside the plasmapause and chorus at high *L* shells (>6.2) without detecting any plume features.
- 243 2. In these conjunction events, plume whistler mode waves were strongest (~120 pT), plasmaspheric hiss was modestly strong (~74 pT), and exohiss was very weak (~9 pT). The wave normal angles of all three types of whistler mode waves were quasi-parallel near the

- equator. Moreover, during the entire conjunction interval EMIC waves were not detected by Van Allen Probes.
- 3. In the conjugate location at low altitudes, POES/MetOp detected strongest electron precipitation at >~30 keV, >~100 keV, and >~300 keV in association with the plume whistler mode waves, modest electron precipitation at >~30 keV and >~100 keV in association with the plasmaspheric hiss, but little electron precipitation corresponding to the exohiss.
- 4. The trend of the estimated electron precipitation using quasi-linear theory based on the observed wave and plasma parameters is consistent with the POES/MetOp observation, clearly indicating that plume whistler mode waves are most effective in producing energetic electron precipitation from 10s to 100s keV compared to the plasmaspheric hiss and the exohiss in this event.

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282283

284

285

286

287

288

This letter presents a pilot study showing the direct evidence of efficient pitch angle scattering driven by plume whistler mode waves through analyzing fortuitous conjunction events, where plume whistler mode waves were observed to be strong (~120 pT) in association with a modest substorm activity and exhibit hiss-like emissions. A recent study by Shi et al. (2019) analyzed several years of Van Allen Probes wave data and found that plume whistler mode waves are typically stronger (up to a few hundred pT) than plasmaspheric hiss, and their occurrence rate could be up to a few tens of %, particularly during geomagnetically active periods. However, the detailed emission structures were not analyzed systematically in Shi et al. (2019), since they used the survey-mode wave data. Moreover, Su et al. (2018) reported plume whistler mode waves with very large amplitudes (~1.5 nT) and rising tone elements embedded on top of hiss-like emissions. It would be very interesting to understand how the detailed emission structures of plume whistler mode waves (rising/falling tones or hiss-like emissions) vary under various geomagnetic activities. A more systematic study through analyzing a sufficient number of high resolution waveform data for plume whistler mode waves, although beyond the scope of the present pilot study, is needed to address this interesting question and is left for future investigations.

Our new findings on the efficient pitch angle scattering caused by plume whistler mode waves, together with their relatively strong wave amplitudes compared to plasmaspheric hiss from the statistical results by Shi et al. (2019), indicate their potential importance in the loss process of energetic electrons in the Earth's inner magnetosphere. It is worthwhile to note that plume whistler mode waves are typically observed in the region with relatively high values of $f_{\rm pe}/f_{\rm ce}$, thus are particularly effective in driving pitch angle scattering loss of electrons with lower energy compared to plasmaspheric hiss and exohiss. Summers et al. (2008) found that hundreds of keV seed electron population, which can be further accelerated to MeV electrons (Horne et al., 2005; Thorne et al., 2013), is subject to rapid precipitation loss due to scattering by plume whistler mode waves, thus reducing the effect of MeV electron acceleration. In addition, plume whistler mode waves are found to be capable of causing losses of energetic electrons with pitch angles closer to 90° (e.g., Li et al., 2007), which is a core population of energetic electrons in the radiation belts but is difficult to be scattered towards the loss cone by EMIC waves alone (Kersten et al., 2014; Usanova et al., 2014). In spite of the importance of plume whistler mode waves, it is crucial to note that the effects of plume whistler mode waves have not been accurately incorporated into most global radiation belt modeling yet (e.g., Albert et al., 2009;

- 289 Glauert et al., 2014; Tu et al., 2014; Li et al., 2016; Ma et al., 2018). Therefore, we suggest that
- 290 future radiation belt modeling efforts address the quantitative effects of plume whistler mode
- 291 waves, as well as their combined scattering effects due to coexisting other types of
- magnetospheric waves, on the global evolution of energetic electron dynamics in the Earth's
- 293 outer radiation belt.

294 Acknowledgments and Data

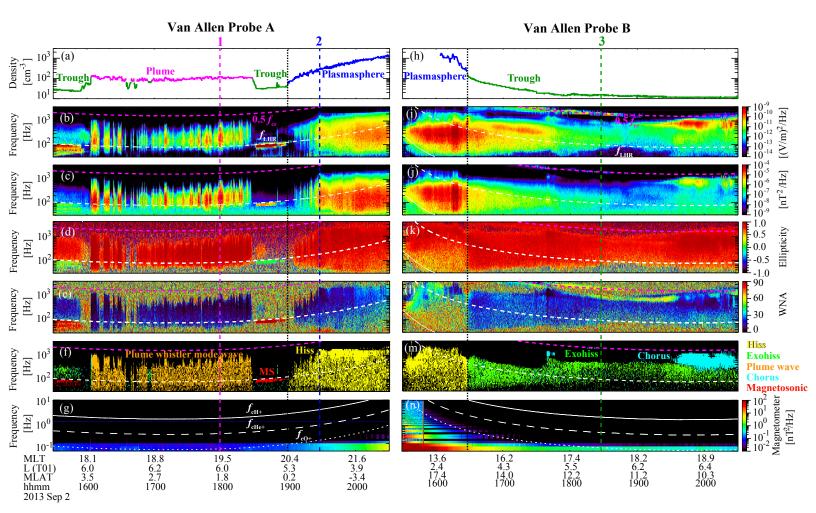
- 295 This research is supported by the NSF grants AGS-1723588 and AGS-1847818, the NASA
- grants NNX17AD15G, NNX17AG07G, the AFOSR grant FA9550-15-1-0158, and the Alfred P.
- 297 Sloan Research Fellowship FG-2018-10936. The research at The University of Iowa was
- supported by JHU/APL contract no. 921647 under NASA Prime contract no. NAS5-01072. The
- 299 POES and MetOp data were obtained from https://www.ngdc.noaa.gov/stp/satellite/poes/. The
- 300 Van Allen probes data from the EMFISIS instrument were obtained from
- http://emfisis.physics.uiowa.edu/Flight/. The Sym-H and AL indices were obtained from the
- OMNI dataset (https://omniweb.gsfc.nasa.gov/ow.html).

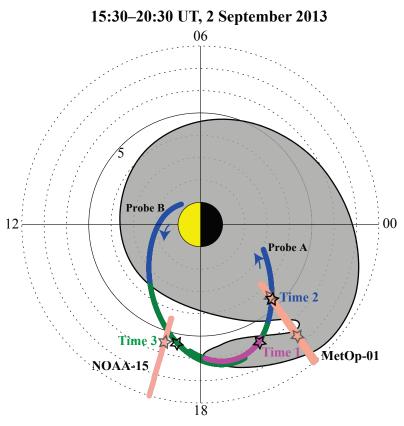
References

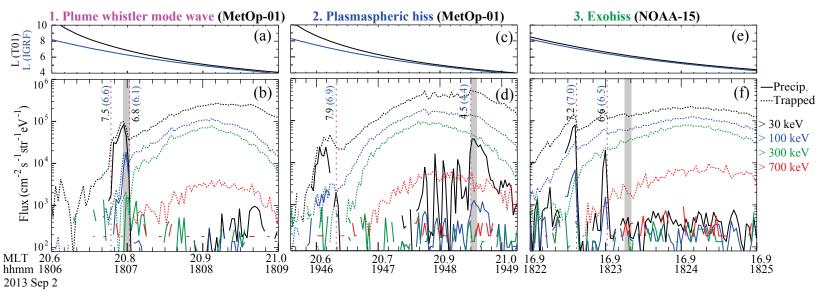
303

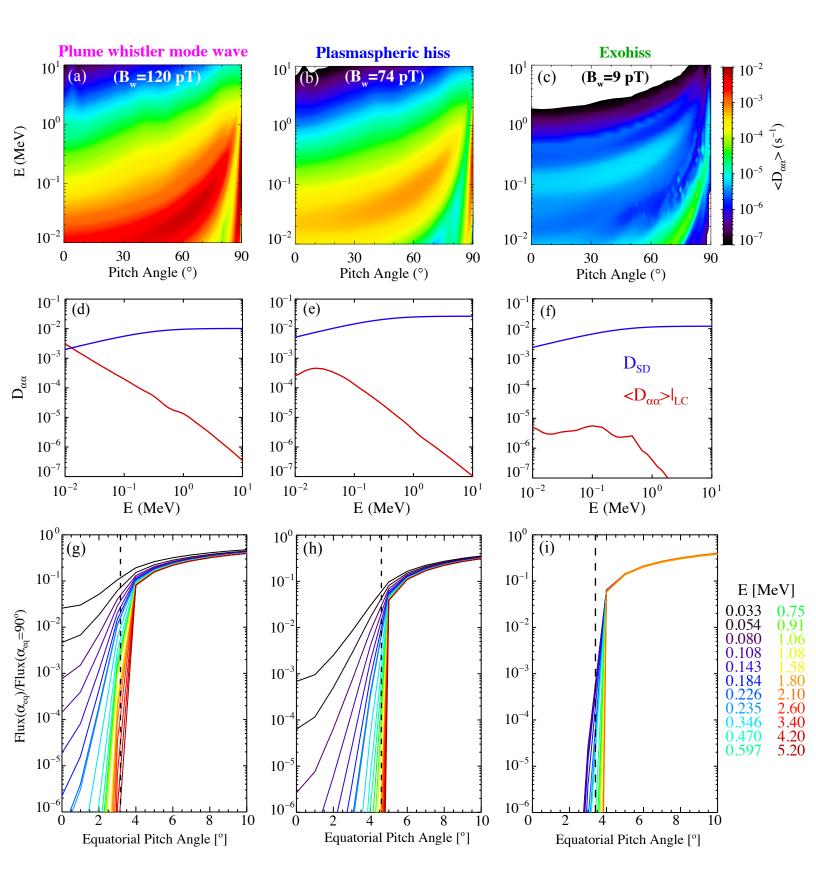
- Albert, J. M. (2002), Nonlinear interaction of outer zone electrons with VLF waves, *Geopys*.
- 305 Res. Lett., 29(8), doi:10.1029/2001GL013941.
- Albert, J. M., N. P. Meredith, and R. B. Horne (2009), Three-dimensional diffusion simulation of
- outer radiation belt electrons during the 9 October 1990 magnetic storm, J. Geophys. Res.,
- 308 114, A09214, doi:10.1029/2009JA014336.
- Borovsky, J. E., and J. T. Steinberg (2006), The "calm before the storm" in CIR/magnetosphere
- interactions: Occurrence statistics, solar wind statistics, and magnetospheric preconditioning,
- J. Geophys. Res., 111, A07S10, doi:10.1029/2005JA011397.
- Borovsky, J. E., and M. H. Denton (2008), A statistical look at plasmaspheric drainage plumes, J.
- Geophys. Res., 113, A09221, doi:10.1029/2007JA012994.
- Borovsky, J. E., D. T. Welling, M. F. Thomsen, and M. H. Denton (2014), Long-lived
- plasmaspheric drainage plumes: Where does the plasma come from?, J. Geophys. Res. Space
- Physics, 119, 6496–6520, doi:10.1002/2014JA020228.
- Bortnik, J., R. M. Thorne, and N. P. Meredith (2008a), The unexpected origin of plasmaspheric
- hiss from discrete chorus emissions, *Nature*, 452(7183), 62–66.
- Bortnik, J., R. M. Thorne, and U. S. Inan (2008b), Nonlinear interaction of energetic electrons
- with large amplitude chorus, *Geophys. Res. Lett.*, 35, L21102, doi: 10.1029/2008GL035500.
- Burtis, W. J., and R. A. Helliwell (1969), Banded Chorus—A New Type of VLF Radiation
- Observed in the Magnetosphere by OGO 1 and OGO 3, J. Geophys. Res., 74(11), 3002–
- 323 3010.
- Carpenter, D. L., B. L. Giles, C. R. Chappell, P. M. E. Décréau, R. R. Anderson, A. M.
- Persoon, A. J. Smith, Y. Corcuff, and P. Canu (1993), Plasmasphere dynamics in the
- duskside bulge region: A new look at an old topic, J. Geophys. Res., 98(A11), 19243–19271,
- doi:10.1029/93JA00922.

- Chan, K.-W., and R. E. Holzer (1976), ELF hiss associated with plasma density enhancements in
- the outer magnetosphere, *J. Geophys. Res.*, 81(13), 2267–2274,
- doi: 10.1029/JA081i013p02267.
- Chen, A. J. and Wolf, R. A. (1972), Effects on the plasmasphere of a timevarying convection electric field, Planet. Space Sci., 20, 483–509.
- Chen, L., R. M. Thorne, W. Li, J. Bortnik, D. Turner, and V. Angelopoulos (2012), Modulation of plasmaspheric hiss intensity by thermal plasma density structure, *Geophys. Res. Lett.*, 39,
- 335 L14103, doi:10.1029/2012GL052308.
- Elphic, R. C., L. A. Weiss, M. F. Thomsen, D. J. McComas, and M. B. Moldwin (1996),
- Evolution of plasmaspheric ions at geosynchronous orbit during times of high geomagnetic
- activity, Geophys. Res. Lett., 23 (16), 2189–2192; doi:10.1029/96GL02085.
- Evans, D. S., and M. S. Greer (2004). Polar Orbiting Environmental Satellite Space Environment
- Monitor-2: Instrument Descriptions and Archive Data Documentation Archive Data
- Documentation. *NOAA Tech. Mem. 93*, Version 1.4. Space Weather Predict. Cent., Boulder, Colo.
- Glauert, S. A., R. B. Horne, and N. P. Meredith (2014), Three-dimensional electron radiation belt
- simulations using the BAS Radiation Belt Model with new diffusion models for chorus,
- plasmaspheric hiss, and lightning-generated whistlers, *J. Geophys. Res. Space Physics*, 119,
- 346 268–289, doi:10.1002/2013JA019281.
- Goldstein, J., B. R. Sandel, M. F. Thomsen, M. Spasojevic, and P. H. Reiff (2004), Simultaneous
- remote sensing and in situ observations of plasmaspheric drainage plumes, J. Geophys. Res.,
- 109, A03202, doi:10.1029/2003JA010281.
- 350 Grebowsky, J. M. (1970), Model study of plasmapause motion, *J. Geophys. Res.*, 75(22), 4329–351 4333, doi:10.1029/JA075i022p04329.
- Green, J. C. (2013), MEPED Telescope Data Processing Algorithm Theoretical Basis Document,
 Natl. Oceanic and Atmos. Admin. National Geophysical Data Center, Boulder, Colo.
- Havakawa, M. Y., S. S. Tanaka, T. O. Sazhin, and K. Kurita (1986), Characteristics of dawnside
- mid-latitude VLF emissions associated with substorms as deduced from the two-stationed
- direction finding measurement, Planet. Space Sci., 24, 225–243.
- Horne, R. B., R. M. Thorne, Y. Y. Shprits, N. P. Meredith, S. A. Glauert, A. J. Smith, S. G.
- Kanekal, D. N. Baker, M. J. Engebretson, J. L. Posch, M. Spasojevic, U. S. Inan, J. S.
- Pickett, P. M. E. Decreau (2005), Wave acceleration of electrons in the Van Allen radiation
- belts, *Nature*, 437, 227–230, doi:10.1038/nature03939.
- Kennel, C. F., and H. E. Petschek (1966), Limit on stably trapped particle fluxes, J. Geophys.
- Res., 71(1), 1–28, doi:10.1029/JZ071i001p00001.
- Kersten, T., R. B. Horne, S. A. Glauert, N. P. Meredith, B. J. Fraser, and R. S.
- Grew (2014), Electron losses from the radiation belts caused by EMIC waves, J. Geophys.
- Res. Space Physics, 119, 8820–8837, doi:10.1002/2014JA020366.
- Kletzing, C. A. et al. (2013), The Electric and Magnetic Field Instrument Suite and Integrated
- 367 Science (EMFISIS) on RBSP, *Space Sci. Rev.*, doi:10.1007/s11214-013-9993-6.
- Koons, H. C., and J. L. Roeder (1990), A survey of equatorial magnetospheric wave activity
- between 5 and 8 *R_E*, *Planet. Space Sci.*, *38*(10), 1335–1341.


- Kurth, W. S., De Pascuale, S., Faden, J. B., Kletzing, C. A., Hospodarsky, G. B., Thaller, S. and
- Wygant, J. R. (2015), Electron densities inferred from plasma wave spectra obtained by the
- Waves instrument on Van Allen Probes. *J. Geophys. Res. Space Physics*, 120: 904–914.
- doi: 10.1002/2014JA020857.
- Li, W., Y. Y. Shprits, and R. M. Thorne (2007), Dynamic evolution of energetic outer zone
- electrons due to wave-particle interactions during storms, J. Geophys. Res., 112, A10220,
- doi: 10.1029/2007JA012368.
- Li, W., R. M. Thorne, J. Bortnik, Y. Y. Shprits, Y. Nishimura, V. Angelopoulos, C. C. Chaston,
- O. LeContel, J. W. Bonnell (2011), Typical properties of rising and falling tone chorus
- waves, Geophys. Res. Lett., 38, L14103, doi:10.1029/2011GL047925.
- Li, W. et al., (2013a), An unusual enhancement of low-frequency plasmaspheric hiss in the outer
- plasmasphere associated with substorm-injected electrons, Geophys. Res. Lett., 40, 3798–
- 382 3803, doi:10.1002/grl.50787.
- Li, W., B. Ni, R. M. Thorne, J. Bortnik, J. C. Green, C. A. Kletzing, W. S. Kurth, and G. B.
- Hospodarsky (2013b), Constructing the global distribution of chorus wave intensity using
- measurements of electrons by the POES satellites and waves by the Van Allen Probes,
- Geophys. Res. Lett., 40, 4526–4532, doi:10.1002/grl.50920.
- Li, W. et al. (2016), Radiation belt electron acceleration during the 17 March 2015 geomagnetic
- storm: Observations and simulations, J. Geophys. Res. Space Physics, 121, 5520–5536,
- doi:10.1002/2016JA022400.
- Ma, Q., W. Li, L. Chen, R. M. Thorne, and V. Angelopoulos (2014), Magnetosonic wave
- excitation by ion ring distributions in the Earth's inner magnetosphere, *J. Geophys. Res.*
- 392 Space Physics, 119, 844–852, doi:10.1002/2013JA019591.
- Ma, Q., Li, W., Bortnik, J., Thorne, R. M., Chu, X., Ozeke, L. G. et al. (2018). Quantitative
- evaluation of radial diffusion and local acceleration processes during GEM challenge
- events. Journal of Geophysical Research: Space Physics, 123, 1938-
- 396 1952. https://doi.org/10.1002/2017JA025114.
- Mauk, B. H., N. J. Fox, S. G. Kanekal, R. L. Kessel, D. G. Sibeck, and A. Ukhorskiy (2013),
- Science Objectives and Rationale for the Radiation Belt Storm Probes Mission, *Space Sci.*
- 399 Rev., pp. 1–15, doi:10.1007/s11214-012-9908-v.
- 400 Moldwin, M. B., L. Downward, H. K. Rassoul, R. Amin, and R. R. Anderson (2002), A new
- 401 model of the location of the plasmapause: CRRES results, J. Geophys. Res., 107(A11), 1339,
- doi:10.1029/2001JA009211.
- 403 Moldwin, M. B., J. Howard, J. Sanny, J. D. Bocchicchio, H. K. Rassoul, and R. R. Anderson
- 404 (2004), Plasmaspheric plumes: CRRES observations of enhanced density beyond the
- plasmapause, J. Geophys. Res., 109, A05202, doi: 10.1029/2003JA010320.
- Ni, B., R. M. Thorne, Y. Y. Shprits, and J. Bortnik (2008), Resonant scattering of plasma sheet
- electrons by whistler-mode chorus: Contribution to diffuse auroral precipitation, *Geophys*.
- 408 Res. Lett., 35, L11106, doi:10.1029/2008GL034032.
- Ni, B., J. Bortnik, R. M. Thorne, Q. Ma, and L. Chen (2013), Resonant scattering and resultant
- pitch angle evolution of relativistic electrons by plasmaspheric hiss, J. Geophys. Res. Space
- *Physics*, 118, 7740–7751, doi:10.1002/2013JA019260.


- Ni, B., W. Li, R. M. Thorne, J. Bortnik, J. C. Green, C. A. Kletzing, W. S. Kurth, G. B.
- Hospodarsky, and M. de Soria-Santacruz Pich (2014), A novel technique to construct the
- global distribution of whistler mode chorus wave intensity using low-altitude POES electron
- data, J. Geophys. Res. Space Physics, 119, 5685–5699, doi:10.1002/2014JA019935.
- Omura, Y., Y. Katoh, and D. Summers (2008), Theory and simulation of the generation of whistler-mode chorus, *J. Geophys. Res.*, 113, A04223, doi:10.1029/2007JA012622.
- Peck, E. D., C. E. Randall, J. C. Green, J. V. Rodriguez, and C. J. Rodger (2015), POES MEPED differential flux retrievals and electron channel contamination correction. *J. Geophys. Res. Space Physics*, 120, 4596–4612. doi: 10.1002/2014JA020817.
- Rodger, C. J., M. A. Clilverd, J. C. Green, and M. M. Lam (2010), Use of POES SEM-2
- observations to examine radiation belt dynamics and energetic electron precipitation into the atmosphere, *J. Geophys. Res.*, 115, A04202, doi:10.1029/2008JA014023.
- Santolik, O., M. Parrot, L. R. O. Storey, J. S. Pickett, and D. A. Gurnett (2001), Propagation
- analysis of plasmaspheric hiss using Polar PWI measurements, Geophys. Res. Lett., 28,
- 426 1127–1130, doi:10.1029/2000GL012239.
- Santolík, O., D. A. Gurnett, J. S. Pickett, M. Parrot, and N. Cornilleau-Wehrlin, Spatio-temporal structure of storm-time chorus (2003), J. Geophys. Res., 108(A7), 1278, doi:10.1029/2002JA009791.
- Shi, R., Li, W., Ma, Q., Green, A., Kletzing, C. A., Kurth, W. S., et al (2019). Properties of whistler mode waves in Earth's plasmasphere and plumes. *Journal of Geophysical Research:*Space Physics, 124. https://doi.org/10.1029/2018JA026041
- Spasojević, M., J. Goldstein, D. L. Carpenter, U. S. Inan, B. R. Sandel, M. B. Moldwin, and B. W. Reinisch (2003), Global response of the plasmasphere to a geomagnetic disturbance, J. Geophys. Res., 108(A9), 1340, doi:10.1029/2003JA009987.
- Su, Z., Liu, N., Zheng, H., Wang, Y., & Wang, S. (2018). Large-amplitude extremely low frequency hiss waves in plasmaspheric plumes. *Geophysical Research Letters*, 45, 565–577. https://doi.org/10.1002/2017GL076754
- Summers, D., and R. M. Thorne (2003), Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms, *J. Geophys. Res.*, 108, 1143, doi:10.1029/2002JA009489, A4.
- Summers, D., B. Ni, N. P. Meredith, R. B. Horne, R. M. Thorne, M. B. Moldwin, and R. R. Anderson (2008), Electron scattering by whistler-mode ELF hiss in plasmaspheric plumes, J. Geophys. Res., 113, A04219, doi:10.1029/2007JA012678.
- Tao, X., J. Bortnik, J. M. Albert, R. M. Thorne, and W. Li (2014), Effects of discreteness of chorus waves on quasilinear diffusion-based modeling of energetic electron dynamics, *J. Geophys. Res. Space Physics*, 119, 8848–8857, doi:10.1002/2014JA020022.
- Theodoridis, G. C., and F. R. Paolini (1967), Pitch angle diffusion of relativistic outer belt electrons, Ann. Geophys., 23, 375.
- Thorne, R. M., E. J. Smith, R. K. Burton, and R. E. Holzer (1973), Plasmaspheric hiss, J.
 Geophys. Res., 78, 1581–1596, doi:10.1029/JA078i010p01581.
- Thorne, R. M. et al. (2013), Evolution and slow decay of an unusual narrow ring of relativistic electrons near $L \sim 3.2$ following the September 2012 magnetic storm, *Geophys. Res. Lett.*, 40,


- 454 3507–3511, doi:10.1002/grl.50627.
- Tsurutani, B. T., B. J. Falkowski, J. S. Pickett, O. Santolik, and G. S. Lakhina (2015),
- Plasmaspheric hiss properties: Observations from Polar, J. Geophys. Res. Space Physics,
- 457 120, 414–431, doi:10.1002/2014JA020518.
- Tsyganenko, N. A. (2002), A model of the near magnetosphere with a dawn-dusk asymmetry, 2,
- Parameterization and fitting to observations, *J. Geophys. Res.*, 107(A8),
- doi:10.1029/2001JA000220.
- Tu, W., G. S. Cunningham, Y. Chen, S. K. Morley, G. D. Reeves, J. B. Blake, D. N. Baker,
- and H. Spence (2014), Event-specific chorus wave and electron seed population models in
- DREAM3D using the Van Allen Probes, Geophys. Res. Lett., 41, 1359–1366,
- doi:10.1002/2013GL058819.
- Usanova, M. E., F. Darrouzet, I. R. Mann, and J. Bortnik (2013), Statistical analysis of EMIC
- 466 waves in plasmaspheric plumes from Cluster observations, J. Geophys. Res. Space
- *Physics*, 118, 4946–4951, doi:10.1002/jgra.50464.
- Usanova, M. E., et al. (2014), Effect of EMIC waves on relativistic and ultrarelativistic electron
- populations: Ground-based and Van Allen Probes observations, Geophys. Res.
- 470 Lett., 41, 1375–1381, doi:10.1002/2013GL059024.
- Weiss, L., R. Lambour, R. Elphic, and M. Thomsen (1997), Study of plasmaspheric evolution
- using geosynchronous observations and global modeling, *Geophys. Res. Lett.*, 24, 599–602,
- 473 doi:10.1029/97GL00351.
- Woodroffe, J. R., V. K. Jordanova, H. O. Funsten, A. V. Streltsov, M. T. Bengtson, C. A.
- Kletzing, J. R. Wygant, S. A. Thaller, and A. W. Breneman (2017), Van Allen Probes
- observations of structured whistler mode activity and coincident electron Landau acceleration
- inside a remnant plasmaspheric plume, *J. Geophys. Res. Space Physics*, 122, 3073–3086,
- 478 doi:10.1002/2015JA022219.


- Yando, K., R. M. Millan, J. C. Green, and D. S. Evans (2011), A Monte Carlo simulation of the
- NOAA POES Medium Energy Proton and Electron Detector instrument, Journal of
- 481 Geophysics Research, 116, A10231, doi:10.1029/2011JA016671.
- Zhang, W., Fu, S., Gu, X., Ni, B., Xiang, Z., Summers, D., et al. (2018). Electron scattering by
- plasmaspheric hiss in a nightside plume. Geophysical Research Letters, 45, 4618–
- 484 4627. https://doi.org/10.1029/2018GL077212
- Zhu, H., Su, Z., Xiao, F., Zheng, H., Wang, Y., Shen, C., Xian, T., Wang, S., Kletzing, C. A.,
- Kurth, W. S., Hospodarsky, G. B., Spence, H. E., Reeves, G. D., Funsten, H. O., Blake, J. B.
- and Baker, D. N. (2015), Plasmatrough exohiss waves observed by Van Allen Probes:
- Evidence for leakage from plasmasphere and resonant scattering of radiation belt
- electrons. *Geophys. Res. Lett.*, 42: 1012–1019. doi: 10.1002/2014GL062964.
- Figure 1. Overview of the observation from Van Allen Probe A and B on 2 September 2013. (a)
- Total electron density inferred from the upper hybrid resonance line, where the magenta, blue,
- and green lines represent the regions of plume, plasmasphere, and plasmatrough respectively. (b)
- 494 Frequency-time spectrogram of electric spectral density, (c) magnetic spectral density, (d)
- ellipticity, (e) wave normal angle (WNA), and (f) wave flag color-coded for different types of

- magnetospheric waves. In panels (b)–(f), the magenta (white) dashed line represents 0.5 f_{ce} (f_{LHR}), where f_{ce} (f_{LHR}) is electron cyclotron frequency (lower hybrid resonance frequency). (g) Frequency-time spectrogram of magnetic spectral density from the magnetometer data, where the solid, dashed, and dotted lines indicate proton, helium, and oxygen cyclotron frequency. (h)–(n) Similar to panels (a)–(g) but observed by Van Allen Probe B over the same time period. The black dotted vertical lines at ~19 UT on the left panels and ~16:30 UT on the right panels
- represent the plasmapause crossing. The magenta (Time 1), blue (Time 2) and green vertical lines (Time 3) indicate the conjunction time with POES/MetOp.
- Figure 2. A cartoon illustrating the trajectories of Van Allen Probes and NOAA/MetOp satellites over 15:30–20:30 UT on 2 September 2013. The gray-shaded region represents the plasmasphere and plume with the black solid line indicating the boundary. The color-coded curves along the Van Allen Probes trajectory indicate plasmasphere (blue), plasmatrough (green), and plume (magenta). The light red lines represent the trajectories of NOAA-15 and MetOp-01. The gray (black) star symbol indicates the location of POES/MetOp (Van Allen Probes) when the conjunction occurred at Time 1, Time 2, and Time 3.
- Figure 3. POES/MetOp observation of energetic electron precipitation during the three 511 conjunction intervals (Time 1: plume whistler mode waves; Time 2: plasmaspheric hiss; Time 3: 512 exohiss). (a) L shells of MetOp-01 based on the T01 (black) and IGRF (blue) magnetic field 513 514 model during Time 1. (b) Precipitating (solid lines) and trapped or quasi-trapped (dotted lines) electron fluxes at >~30 keV (black), >~100 keV (blue), >~300 keV (green), and >~700 keV 515 516 (red). In panel (b), the gray-shaded region represents the L shell range of the rough conjunction with Van Allen Probe A, and the magenta dotted vertical lines indicate the precipitation 517 boundaries, where the corresponding L shell from the T01 (IGRF) magnetic field model is 518 indicated with the black (blue) text. (c) and (d) Similar to (a) and (b), but at ~19:47 UT (~100 519 minutes later) observed by MetOp-01. (e) and (f) Similar to (a) and (b), but at ~18:23 UT 520 observed by NOAA-15. 521
- Figure 4. Calculated electron precipitation based on quasi-linear theory driven by plume whistler 522 mode waves (left), plasmaspheric hiss (middle), and exohiss (right). Bounce-averaged pitch 523 angle diffusion coefficients as a function of equatorial pitch angle and energy due to plume 524 whistler mode waves (Figure 4a), plasmaspheric hiss (Figure 4b), and exohiss (Figure 4c). The 525 526 comparison between pitch angle diffusion coefficients near the loss cone (red lines) and strong diffusion limit (blue lines) at the location where plume whistler mode waves (Figure 4d), 527 plasmaspheric hiss (Figure 4e), and exohiss (Figure 4f) were observed. Normalized electron flux 528 to the 90° value as a function of equatorial pitch angle color-coded for various energies from ~30 529 keV to 5.2 MeV driven by plume whistler mode waves (Figure 4g), plasmaspheric hiss (Figure 530 4h), and exohiss (Figure 4i). The black vertical dashed lines on the bottom panels represent the 531 532 corresponding equatorial bounce loss cone.

