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Key Points: 18 

 Three types of whistler mode waves are observed during conjunction events between Van 19 
Allen Probes and POES/MetOp. 20 

 These whistler mode waves include plume whistler mode waves, plasmaspheric hiss, and 21 
exohiss. 22 

 Plume whistler mode waves are very effective in producing energetic electron 23 
precipitation (from 10s to 100s keV). 24 
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Abstract 26 

Whistler mode waves are important for precipitating energetic electrons into Earth’s upper 27 
atmosphere, while the quantitative effect of each type of whistler mode wave on electron 28 
precipitation is not well understood. In this letter, we evaluate energetic electron precipitation 29 
driven by three types of whistler mode waves: plume whistler mode waves, plasmaspheric hiss, 30 
and exohiss observed outside the plasmapause. By quantitatively analyzing three conjunction 31 
events between Van Allen Probes and POES/MetOp satellites, together with quasi-linear 32 
calculation, we found that plume whistler mode waves are most effective in pitch angle 33 
scattering loss, particularly for the electrons from 10s to 100s keV. Our new finding provides the 34 
first direct evidence of effective pitch angle scattering driven by plume whistler mode waves and 35 
is critical for understanding energetic electron loss process in the inner magnetosphere. We 36 
suggest the effect of plume whistler mode waves be accurately incorporated into future radiation 37 
belt modeling. 38 

 39 

Plain Language Summary 40 

Electron precipitation into Earth’s upper atmosphere is an important loss mechanism of energetic 41 
electrons trapped in the inner magnetosphere. Although whistler mode waves are known to be 42 
effective in producing electron precipitation through pitch angle scattering, the relative roles of 43 
various whistler mode waves that play in electron losses are unclear. In this letter, we 44 
quantitatively analyze conjunction events, where Van Allen Probes observed various whistler 45 
mode waves near the equator and Low-Earth-Orbiting satellites detected electron precipitation 46 
approximately along the same magnetic field line but at low altitudes. By combining the satellite 47 
data analysis and quasi-linear theory, we found that whistler mode waves observed in plumes are 48 
very effective in scattering energetic electrons, which are ultimately lost through interacting with 49 
the neutral atmosphere. Our new finding provides the direct evidence that plume whistler mode 50 
waves play an important role in energetic electron precipitation, which is crucial for 51 
understanding energetic electron loss process in the Earth’s inner magnetosphere.  52 

1 Introduction 53 

Various types of whistler mode waves are present in the Earth’s inner magnetosphere, 54 
including hiss observed inside the plasmasphere (e.g., Thorne et al., 1973), whistler mode waves 55 
in plasmaspheric plumes (called plume whistler mode waves hereafter) (Chan and Holzer, 1976; 56 
Woodroffe et al., 2017; Su et al., 2018), chorus waves observed outside the plasmapause (e.g., 57 
Burtis and Helliwell, 1969; Koons and Roeder, 1990), and exohiss observed in the plasmatrough 58 
(Thorne et al., 1973; Zhu et al., 2015). Typical properties and generation mechanisms of 59 
plasmaspheric hiss, chorus, and exohiss, as well as their scattering effects on energetic electrons 60 
have been extensively studied over the past several decades (e.g., Thorne et al., 1973; Santolik et 61 
al., 2003; Horne et al., 2005; Bortnik et al., 2008a; Omura et al., 2008; Li et al., 2013a; Thorne et 62 
al., 2013; Zhu et al., 2015), while our understanding of plume whistler mode waves is rather 63 
limited.  64 

Plasmaspheric plumes consist of plasma being drained from the reservoir of 65 
plasmaspheric plasma and extending into the more tenuous outer magnetosphere (Grebowsky, 66 
1970; Chen and Wolf, 1972; Carpenter et al., 1993; Elphic et al., 1996; Weiss et al., 1997; 67 
Goldstein et al., 2004), and are often associated with large density fluctuations (Spasojevic et al., 68 
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2003; Goldstein et al., 2004; Moldwin et al., 2004; Borovsky and Denton, 2008). Plasma waves 69 
in plumes are particularly interesting, because a plume is a unique region where total plasma 70 
density is typically high, but energetic particles (>10s keV) are accessible, thus providing 71 
favorable conditions for various types of wave generation (Chan and Holzer, 1976; Hayakawa et 72 
al., 1986; Usanova et al., 2013; Ma et al., 2014; Tsurutani et al., 2015; Woodroffe et al., 2017). 73 
Recently, plume whistler mode waves are found to sometimes exhibit discrete rising tones (e.g., 74 
Su et al., 2018), which are somewhat similar to typical chorus waves (Santolik et al., 2003; Li et 75 
al., 2011). This discrete feature is different from typical plasmaspheric hiss that exhibits 76 
incoherent broadband emissions (e.g., Thorne et al., 1973; Santolik et al., 2001; Bortnik et al., 77 
2008a), and could potentially lead to nonlinear interactions between waves and electrons (e.g., 78 
Albert, 2002; Bortnik et al., 2008b; Tao et al., 2014). Moreover, Su et al. (2018) reported that 79 
plume whistler mode waves could have an unexpectedly large amplitude (~1.5 nT) and 80 
suggested that these waves were locally generated probably through a combination of linear and 81 
nonlinear instabilities of hot electrons. 82 

Plasmaspheric plumes are found to be favorable for enhancing pitch angle scattering of 83 
radiation belt electrons, thus leading to electron precipitation into the upper atmosphere 84 
(Summers et al., 2008; Borovsky et al., 2014; Zhang et al., 2018). Borovsky and Steinberg 85 
(2006) found that relativistic electron dropouts at geosynchronous orbit often coincided with the 86 
presence of plasmaspheric plumes, suggesting the potential loss of energetic electrons due to 87 
interactions with the enhanced plasma waves in plumes. Furthermore, Summers et al. (2008) 88 
evaluated electron precipitation loss due to plume whistler mode waves by analyzing 14 89 
representative plumes and found that pitch angle scattering by plume whistler mode waves can 90 
be efficient for inducing precipitation loss of radiation belt electrons with energy from 100 keV 91 
to 1 MeV, though the loss rates are highly dependent on wave power, L shell, and electron 92 
energy.  93 

Despite the potential importance of plume whistler mode waves in electron scattering, the 94 
direct evidence showing energetic electron precipitation driven by plume whistler mode waves is 95 
still lacking. In this letter, by analyzing fortuitous conjunction events between near-equatorial 96 
satellites (Van Allen Probes) and Low-Earth-Orbiting satellites (POES/MetOp), we 97 
quantitatively evaluate and compare the energetic electron precipitation driven by three types of 98 
whistler mode waves: (1) plume whistler mode waves, (2) plasmaspheric hiss, and (3) exohiss. 99 
Moreover, using quasi-linear theory we estimate electron precipitations caused by these three 100 
types of whistler mode waves based on the observed wave and plasma properties, and compare 101 
them with the POES/MetOp measurements.  102 

2 Overview of Conjunction Events Between Van Allen Probes and POES/MetOp 103 

 Figures 1–3 show an overview of conjunction events between the twin Van Allen Probes 104 
orbiting near the equator (Mauk et al., 2013) and POES/MetOp orbiting at a low altitude of ~800 105 
km approximately along the same magnetic field line (Evans and Greer, 2004). This event 106 
occurred during a relatively quiet period (2 September 2013), when Sym-H remained above -30 107 
nT over the preceding 2 days, but there was a modest substorm over 16–20 UT with a minimum 108 
AL index of ~-400 nT (not shown). Figure 1 shows the total electron density and wave 109 
observation from Van Allen Probe A (left) and B (right) measured by the EMFISIS Waves 110 
instrument (Kletzing et al., 2013) onboard Van Allen Probes. Total electron density (Figures 1a 111 
and 1h) was inferred from the upper hybrid resonance line (Kurth et al., 2015), and was used to 112 
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identify various regions: (1) plume (magenta); (2) plasmasphere (blue); and (3) plasmatrough 113 
(green). A plasmapause location (indicated by the vertical black line in Figure 1) is defined as 114 
the innermost steep density gradient; more specifically, a factor of ~5 drop within 0.5 L 115 
(Moldwin et al., 2002). After a plasmapause is identified, a plume is defined in a region outside 116 
the plasmapause, where plasma density is considerably larger than the plasmatrough density at 117 
lower L shells. Based on the plasma density and wave polarization properties (Figures 1d, 1e, 1k 118 
and 1l), five different types of plasma waves were identified (see the detailed criteria in Table S1 119 
in Supporting Information) with the wave flag shown in Figures 1f and 1m; namely, 120 
plasmaspheric hiss (yellow), exohiss (green), plume whistler mode wave (orange), chorus (cyan), 121 
and magnetosonic waves (red). Over 15:30–20:30 UT, Van Allen Probe A (Figures 1b–1f) first 122 
observed magnetosonic waves and weak exohiss in the plasmatrough (15:30–16:00 UT), strong 123 
whistler mode waves in plasmaspheric plumes (16:00–18:30 UT), magnetosonic waves in the 124 
plasmatrough again (18:30–19:00 UT), and hiss inside the plasmasphere (after ~19 UT). 125 
Simultaneously, Van Allen Probe B (Figures 1i–1m) detected hiss inside the plasmasphere 126 
(before ~16:30 UT), as well as weak exohiss below 1 kHz and very weak chorus waves with 127 
frequencies near 0.5 fce in the plasmatrough region (~16:30–19:00 UT), without detecting any 128 
plumes. Since exohiss is suggested to be formed due to the leakage of plasmaspheric hiss 129 
(Thorne et al., 1973; Zhu et al., 2015), its amplitude is typically weaker than that of 130 
plasmaspheric hiss. After ~19 UT quasi-parallel chorus waves with modest wave amplitudes 131 
(from ~16 to ~42 pT) were detected at L shells above ~6.2. It is worthwhile to note that we 132 
adopted the L shell based on the T01 magnetic field model (Tsyganenko, 2002), since the in situ 133 
magnetic field measurements from Van Allen Probes were closest to the magnetic field values 134 
from the T01 magnetic field model among all available Tsyganenko magnetic field models. 135 
Figure 2 illustrates the trajectories of Van Allen Probe A and B over 15:30–20:30 UT on 2 136 
September 2013 color coded for the different regions. The structure of the plasmasphere and 137 
plume regions is depicted based on the plasma density observation from Van Allen Probes. It is 138 
important to note that Van Allen Probe B, which did not detect any plume features, was 139 
travelling in an earlier magnetic local time (over 13–18 MLT) than Van Allen Probe A (over 140 
~18–22 MLT), which clearly detected a plume. Interestingly, the observed plume whistler mode 141 
waves (Figures 1b and 1c) were intense (~120 pT) and exhibited strong modulation, probably 142 
due to the modulating plasma density (e.g., Chen et al., 2012). High resolution waveform data 143 
were available for the observed plume whistler mode waves during several short intervals (6 144 
seconds) over the period of 16:00–18:30 UT, and they all exhibited broadband hiss-like 145 
emissions rather than discrete rising or falling tone elements (not shown). It is also worth noting 146 
that electromagnetic ion cyclotron (EMIC) waves, which are sometimes observed in plumes 147 
(e.g., Usanova et al., 2013), were not detected by Van Allen Probe A or B over the entire time 148 
period of 15:30–20:30 UT (Figures 1g and 1n).  149 

Around Times 1, 2, and 3, as marked by the vertical lines in Figure 1, POES/MetOp 150 
satellites passed through the magnetically conjugate region at a low altitude (~800 km). Figure 3 151 
shows the electron flux observation from POES/MetOp around the conjunction Times 1, 2, and 152 
3. The particle detector onboard POES/MetOp has two telescopes with the 0° (90°) telescope 153 
measuring precipitating (trapped or quasi-trapped) electrons at various energies of >~30 keV, 154 
>~100 keV, and >~300 keV (Evans and Greer, 2004; Green, 2013). A proton channel (>~6.9 155 
MeV) mainly detects electrons above >~700 keV, and thus can be used to monitor highly 156 
relativistic electrons (Rodger et al., 2010; Yando et al., 2011; Green, 2013).  Proton 157 
contamination at >~30 keV, >~100 keV, and >~300 keV channels was removed using the 158 
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method described in Peck et al. (2015).  During Time 1 (~18:07 UT, Figures 3a–3b), MetOp-01 159 
traversed through ~20.8 MLT, and detected strong electron precipitation in energy channels of 160 
>~30 keV, >~100 keV, and ~>~300 keV over L shells of 6.8–7.5 (6.1–6.6) based on the T01 161 
(IGRF) magnetic field model, where the precipitating electron flux was close to the trapped 162 
value. The gray-shaded region in Figure 3b, also marked with the gray star symbol in Figure 2, is 163 
roughly in the conjugate location with the region where plume whistler mode waves were 164 
detected by Van Allen Probe A (marked with the black star symbol in Figure 2). During Time 2 165 
(~19:47 UT, Figures 3c–3d), ~100 minutes after Time 1, MetOp-01 passed through the same L 166 
shell range at ~20.8 MLT again. In particular, near the conjunction region (gray-shaded region in 167 
Figure 3d) with Van Allen Probe A, MetOp-01 detected modest electron precipitation at >~30 168 
keV and >~100 keV. The strong electron precipitation at >~30 keV and >~100 keV at L(T01) > 169 
7.9 and L(IGRF) > 6.9 in Figure 3d at ~19:46 UT might still be caused by the plume whistler 170 
mode waves, which may have lasted for at least a few hours, although the conjugate wave 171 
measurements near the equator were not available to verify it. This feature of long-lasting plume 172 
whistler mode waves is also supported by the fact that NOAA-16 also observed very similar 173 
electron precipitation (not shown) to that by MetOp-01 (Figure 3b) but at ~18:52 UT, which 174 
occurred between Time 1 and Time 2 at a slightly earlier MLT (~20.4). During Time 3 (~18:23 175 
UT, Figures 3e–3f), NOAA-15 passed through the L shell from 9 to 4 at ~17 MLT. Near the 176 
conjugate region (gray shaded region in Figure 3f) with Van Allen Probe B, which observed very 177 
weak exohiss, NOAA-15 detected little electron precipitation at all energy channels (>~30 keV, 178 
>~100 keV, >~300 keV, and >~700 keV). The relatively strong electron precipitation near 179 
L(T01) ~ 6.6 and L(T01) ~ 7.2 (magenta dotted vertical lines) might be caused by chorus waves, 180 
since modest chorus waves were present at L(T01) > 6, as observed by Van Allen Probe B, but 181 
after ~19:30 UT (~1 hour later). It is worth noting that there was no clear correlation between the 182 
observed electron and proton precipitation at Times 1, 2, and 3 (not shown), supporting that the 183 
observed electron precipitations near conjunction were not caused by EMIC waves. The electron 184 
observations at Times 1, 2, and 3 indicate that the relatively strong plume whistler mode waves 185 
led to the observed strong electron precipitation at Time 1, the modest plasmaspheric hiss drove 186 
the modest electron precipitation at Time 2, and the weak exohiss caused little electron 187 
precipitation at Time 3. The quantitative calculation of electron precipitation driven by the above 188 
three types of whistler mode waves is discussed in Section 3. 189 

3 Calculation of Electron Precipitation Based on Quasi-Linear Theory 190 

 We used quasi-linear theory to calculate the electron precipitation driven by plume 191 
whistler mode waves, plasmaspheric hiss, and exohiss. The Full Diffusion Code (Ni et al., 2008) 192 
is used to calculate bounce-averaged pitch angle diffusion coefficients of three types of whistler 193 
mode waves based on the observed wave and plasma properties, as listed in Table S2 in 194 
Supporting Information. We adopted the observed wave frequency spectra for each type of 195 
whistler mode waves to calculate diffusion coefficients by including Landau resonance and 196 
cyclotron resonances with resonance harmonics from -10 to +10. Wave normal angles of plume 197 
whistler mode waves, plasmaspheric hiss, and exohiss are assumed to be quasi-parallel near the 198 
equator, which is consistent with the in situ Van Allen Probes observation (Figures 1e and 1l), 199 
and become more oblique with increasing magnetic latitudes (Ni et al., 2013). 200 

 Figure 4 (top) shows the bounce-averaged pitch angle diffusion coefficients for the plume 201 
whistler mode waves observed at Time 1, plasmaspheric hiss detected at Time 2, and exohiss 202 
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measured at Time 3. The amplitude of the plume whistler mode wave is the strongest (120 pT), 203 
plasmaspheric hiss is modestly strong (74 pT), but exohiss is very weak (9 pT). As a 204 
consequence, pitch angle diffusion coefficients of plume whistler mode waves are largest on a 205 
timescale down to ~10 minutes at ~10 keV, whereas pitch angle diffusion coefficients of exohiss 206 
are extremely small on a timescale of tens of hours at ~10 keV. The ratio between the plasma 207 
frequency and electron cyclotron frequency (fpe/fce) is largest for plume whistler mode waves 208 
(28.1), modest for plasmaspheric hiss (~19.7), and smallest for exohiss (~8.8). As a consequence, 209 
the energy of electrons (Figures 4a–4c), which are subject to strongest pitch angle scattering near 210 
the loss cone, tends to increase with decreasing fpe/fce (<10 keV for plume whistler mode waves, 211 
~25 keV for plasmaspheirc hiss, and ~100 keV for exohiss). Figures 4d–4f show the direct 212 
comparison between pitch angle diffusion coefficients near the loss cone (D|LC) and strong 213 
diffusion limit (DSD) (Summers and Thorne, 2003) for three types of whistler mode waves 214 
respectively. D|LC is closest to DSD for plume whistler mode waves (particularly at a few tens 215 
of keV), while D|LC is more than an (two) order(s) of magnitude smaller than DSD for 216 
plasmaspheric hiss (exohiss). Moreover, we use the pitch angle diffusion coefficients to infer the 217 
electron pitch angle distributions in a quasi-equilibrium state (Kennel and Petschek, 1966; 218 
Theodoridis and Paolini, 1967; Li et al., 2013b; Ni et al., 2014). This approach is reasonable to 219 
estimate wave-driven electron precipitations, since these whistler mode waves typically last 220 
longer than several minutes (as an example shown in Figure 1) and the 1D Fokker-Planck 221 
simulation result (not shown) indicates that electron pitch angle distribution near the loss cone 222 
(equatorial pitch angles over 0–10°) reaches a quasi-steady state within a few minutes after 223 
interacting with these whistler mode waves. The bottom panels in Figure 4 show the normalized 224 
electron flux (to the flux value at 90° pitch angle) as a function of equatorial pitch angle color 225 
coded for various energies. Among three types of whistler mode waves, the loss cone is most 226 
filled for the plume whistler mode waves, modestly filled for the plasmaspheric hiss, but mostly 227 
empty for the exohiss. The trend shown in Figures 4d–4i is consistent with the POES/MetOp 228 
observation, where the ratio of precipitating-to-trapped electrons is highest for plume whistler 229 
mode waves, modest for plasmaspheric hiss, and lowest for exohiss. 230 

4 Summary and Discussion 231 

In this letter, we report fortuitous conjunction events between Van Allen Probes and 232 
POES/MetOp satellites, and quantitatively evaluate and directly compare energetic electron 233 
precipitation driven by plume whistler mode waves, plasmaspheric hiss, and exohiss. Most 234 
importantly, we provide the first direct evidence of efficient electron precipitation from 10s to 235 
100s keV driven by plume whistler mode waves. The principal findings of this study are 236 
summarized below. 237 

1. During a modest substorm activity, a plasmaspheric plume was present over the dusk-to-238 
premidnight sector. Van Allen Probe A, which traversed the post-dusk sector, observed 239 
whistler mode waves in plumes and hiss inside the plasmasphere, whereas Van Allen Probe 240 
B, which traveled through the pre-dusk sector, observed exohiss outside the plasmapause and 241 
chorus at high L shells (>6.2) without detecting any plume features. 242 

2. In these conjunction events, plume whistler mode waves were strongest (~120 pT), 243 
plasmaspheric hiss was modestly strong (~74 pT), and exohiss was very weak (~9 pT). The 244 
wave normal angles of all three types of whistler mode waves were quasi-parallel near the 245 
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equator. Moreover, during the entire conjunction interval EMIC waves were not detected by 246 
Van Allen Probes. 247 

3. In the conjugate location at low altitudes, POES/MetOp detected strongest electron 248 
precipitation at >~30 keV, >~100 keV, and >~300 keV in association with the plume whistler 249 
mode waves, modest electron precipitation at >~30 keV and >~100 keV in association with 250 
the plasmaspheric hiss, but little electron precipitation corresponding to the exohiss. 251 

4. The trend of the estimated electron precipitation using quasi-linear theory based on the 252 
observed wave and plasma parameters is consistent with the POES/MetOp observation, 253 
clearly indicating that plume whistler mode waves are most effective in producing energetic 254 
electron precipitation from 10s to 100s keV compared to the plasmaspheric hiss and the 255 
exohiss in this event. 256 

This letter presents a pilot study showing the direct evidence of efficient pitch angle 257 
scattering driven by plume whistler mode waves through analyzing fortuitous conjunction 258 
events, where plume whistler mode waves were observed to be strong (~120 pT) in association 259 
with a modest substorm activity and exhibit hiss-like emissions. A recent study by Shi et al. 260 
(2019) analyzed several years of Van Allen Probes wave data and found that plume whistler 261 
mode waves are typically stronger (up to a few hundred pT) than plasmaspheric hiss, and their 262 
occurrence rate could be up to a few tens of %, particularly during geomagnetically active 263 
periods. However, the detailed emission structures were not analyzed systematically in Shi et al. 264 
(2019), since they used the survey-mode wave data. Moreover, Su et al. (2018) reported plume 265 
whistler mode waves with very large amplitudes (~1.5 nT) and rising tone elements embedded 266 
on top of hiss-like emissions. It would be very interesting to understand how the detailed 267 
emission structures of plume whistler mode waves (rising/falling tones or hiss-like emissions) 268 
vary under various geomagnetic activities. A more systematic study through analyzing a 269 
sufficient number of high resolution waveform data for plume whistler mode waves, although 270 
beyond the scope of the present pilot study, is needed to address this interesting question and is 271 
left for future investigations. 272 

Our new findings on the efficient pitch angle scattering caused by plume whistler mode 273 
waves, together with their relatively strong wave amplitudes compared to plasmaspheric hiss 274 
from the statistical results by Shi et al. (2019), indicate their potential importance in the loss 275 
process of energetic electrons in the Earth’s inner magnetosphere. It is worthwhile to note that 276 
plume whistler mode waves are typically observed in the region with relatively high values of 277 
fpe/fce, thus are particularly effective in driving pitch angle scattering loss of electrons with lower 278 
energy compared to plasmaspheric hiss and exohiss. Summers et al. (2008) found that hundreds 279 
of keV seed electron population, which can be further accelerated to MeV electrons (Horne et al., 280 
2005; Thorne et al., 2013), is subject to rapid precipitation loss due to scattering by plume 281 
whistler mode waves, thus reducing the effect of MeV electron acceleration. In addition, plume 282 
whistler mode waves are found to be capable of causing losses of energetic electrons with pitch 283 
angles closer to 90° (e.g., Li et al., 2007), which is a core population of energetic electrons in the 284 
radiation belts but is difficult to be scattered towards the loss cone by EMIC waves alone 285 
(Kersten et al., 2014; Usanova et al., 2014). In spite of the importance of plume whistler mode 286 
waves, it is crucial to note that the effects of plume whistler mode waves have not been 287 
accurately incorporated into most global radiation belt modeling yet (e.g., Albert et al., 2009; 288 
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Glauert et al., 2014; Tu et al., 2014; Li et al., 2016; Ma et al., 2018). Therefore, we suggest that 289 
future radiation belt modeling efforts address the quantitative effects of plume whistler mode 290 
waves, as well as their combined scattering effects due to coexisting other types of 291 
magnetospheric waves, on the global evolution of energetic electron dynamics in the Earth’s 292 
outer radiation belt.  293 
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 490 

Figure 1. Overview of the observation from Van Allen Probe A and B on 2 September 2013. (a) 491 
Total electron density inferred from the upper hybrid resonance line, where the magenta, blue, 492 
and green lines represent the regions of plume, plasmasphere, and plasmatrough respectively. (b) 493 
Frequency-time spectrogram of electric spectral density, (c) magnetic spectral density, (d) 494 
ellipticity, (e) wave normal angle (WNA), and (f) wave flag color-coded for different types of 495 
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magnetospheric waves. In panels (b)–(f), the magenta (white) dashed line represents 0.5 fce 496 
(fLHR), where fce (fLHR) is electron cyclotron frequency (lower hybrid resonance frequency). (g) 497 
Frequency-time spectrogram of magnetic spectral density from the magnetometer data, where the 498 
solid, dashed, and dotted lines indicate proton, helium, and oxygen cyclotron frequency. (h)–(n) 499 
Similar to panels (a)–(g) but observed by Van Allen Probe B over the same time period. The 500 
black dotted vertical lines at ~19 UT on the left panels and ~16:30 UT on the right panels 501 
represent the plasmapause crossing. The magenta (Time 1), blue (Time 2) and green vertical 502 
lines (Time 3) indicate the conjunction time with POES/MetOp. 503 

Figure 2. A cartoon illustrating the trajectories of Van Allen Probes and NOAA/MetOp satellites 504 
over 15:30–20:30 UT on 2 September 2013. The gray-shaded region represents the plasmasphere 505 
and plume with the black solid line indicating the boundary. The color-coded curves along the 506 
Van Allen Probes trajectory indicate plasmasphere (blue), plasmatrough (green), and plume 507 
(magenta). The light red lines represent the trajectories of NOAA-15 and MetOp-01. The gray 508 
(black) star symbol indicates the location of POES/MetOp (Van Allen Probes) when the 509 
conjunction occurred at Time 1, Time 2, and Time 3. 510 

Figure 3. POES/MetOp observation of energetic electron precipitation during the three 511 
conjunction intervals (Time 1: plume whistler mode waves; Time 2: plasmaspheric hiss; Time 3: 512 
exohiss). (a) L shells of MetOp-01 based on the T01 (black) and IGRF (blue) magnetic field 513 
model during Time 1. (b) Precipitating (solid lines) and trapped or quasi-trapped (dotted lines) 514 
electron fluxes at >~30 keV (black), >~100 keV (blue), >~300 keV (green), and >~700 keV 515 
(red). In panel (b), the gray-shaded region represents the L shell range of the rough conjunction 516 
with Van Allen Probe A, and the magenta dotted vertical lines indicate the precipitation 517 
boundaries, where the corresponding L shell from the T01 (IGRF) magnetic field model is 518 
indicated with the black (blue) text. (c) and (d) Similar to (a) and (b), but at ~19:47 UT (~100 519 
minutes later) observed by MetOp-01. (e) and (f) Similar to (a) and (b), but at ~18:23 UT 520 
observed by NOAA-15.  521 

Figure 4. Calculated electron precipitation based on quasi-linear theory driven by plume whistler 522 
mode waves (left), plasmaspheric hiss (middle), and exohiss (right). Bounce-averaged pitch 523 
angle diffusion coefficients as a function of equatorial pitch angle and energy due to plume 524 
whistler mode waves (Figure 4a), plasmaspheric hiss (Figure 4b), and exohiss (Figure 4c). The 525 
comparison between pitch angle diffusion coefficients near the loss cone (red lines) and strong 526 
diffusion limit (blue lines) at the location where plume whistler mode waves (Figure 4d), 527 
plasmaspheric hiss (Figure 4e), and exohiss (Figure 4f) were observed. Normalized electron flux 528 
to the 90° value as a function of equatorial pitch angle color-coded for various energies from ~30 529 
keV to 5.2 MeV driven by plume whistler mode waves (Figure 4g), plasmaspheric hiss (Figure 530 
4h), and exohiss (Figure 4i). The black vertical dashed lines on the bottom panels represent the 531 
corresponding equatorial bounce loss cone. 532 
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