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Key Points:

e Three types of whistler mode waves are observed during conjunction events between Van
Allen Probes and POES/MetOp.

e These whistler mode waves include plume whistler mode waves, plasmaspheric hiss, and
exohiss.

e Plume whistler mode waves are very effective in producing energetic electron
precipitation (from 10s to 100s keV).
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Abstract

Whistler mode waves are important for precipitating energetic electrons into Earth’s upper
atmosphere, while the quantitative effect of each type of whistler mode wave on electron
precipitation is not well understood. In this letter, we evaluate energetic electron precipitation
driven by three types of whistler mode waves: plume whistler mode waves, plasmaspheric hiss,
and exohiss observed outside the plasmapause. By quantitatively analyzing three conjunction
events between Van Allen Probes and POES/MetOp satellites, together with quasi-linear
calculation, we found that plume whistler mode waves are most effective in pitch angle
scattering loss, particularly for the electrons from 10s to 100s keV. Our new finding provides the
first direct evidence of effective pitch angle scattering driven by plume whistler mode waves and
is critical for understanding energetic electron loss process in the inner magnetosphere. We
suggest the effect of plume whistler mode waves be accurately incorporated into future radiation
belt modeling.

Plain Language Summary

Electron precipitation into Earth’s upper atmosphere is an important loss mechanism of energetic
electrons trapped in the inner magnetosphere. Although whistler mode waves are known to be
effective in producing electron precipitation through pitch angle scattering, the relative roles of
various whistler mode waves that play in electron losses are unclear. In this letter, we
quantitatively analyze conjunction events, where Van Allen Probes observed various whistler
mode waves near the equator and Low-Earth-Orbiting satellites detected electron precipitation
approximately along the same magnetic field line but at low altitudes. By combining the satellite
data analysis and quasi-linear theory, we found that whistler mode waves observed in plumes are
very effective in scattering energetic electrons, which are ultimately lost through interacting with
the neutral atmosphere. Our new finding provides the direct evidence that plume whistler mode
waves play an important role in energetic electron precipitation, which is crucial for
understanding energetic electron loss process in the Earth’s inner magnetosphere.

1 Introduction

Various types of whistler mode waves are present in the Earth’s inner magnetosphere,
including hiss observed inside the plasmasphere (e.g., Thorne et al., 1973), whistler mode waves
in plasmaspheric plumes (called plume whistler mode waves hereafter) (Chan and Holzer, 1976;
Woodroffe et al., 2017; Su et al., 2018), chorus waves observed outside the plasmapause (e.g.,
Burtis and Helliwell, 1969; Koons and Roeder, 1990), and exohiss observed in the plasmatrough
(Thorne et al., 1973; Zhu et al., 2015). Typical properties and generation mechanisms of
plasmaspheric hiss, chorus, and exohiss, as well as their scattering effects on energetic electrons
have been extensively studied over the past several decades (e.g., Thorne et al., 1973; Santolik et
al., 2003; Horne et al., 2005; Bortnik et al., 2008a; Omura et al., 2008; Li et al., 2013a; Thorne et
al., 2013; Zhu et al., 2015), while our understanding of plume whistler mode waves is rather
limited.

Plasmaspheric plumes consist of plasma being drained from the reservoir of
plasmaspheric plasma and extending into the more tenuous outer magnetosphere (Grebowsky,
1970; Chen and Wolf, 1972; Carpenter et al., 1993; Elphic et al., 1996; Weiss et al., 1997;
Goldstein et al., 2004), and are often associated with large density fluctuations (Spasojevic et al.,
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2003; Goldstein et al., 2004; Moldwin et al., 2004; Borovsky and Denton, 2008). Plasma waves
in plumes are particularly interesting, because a plume is a unique region where total plasma
density is typically high, but energetic particles (>10s keV) are accessible, thus providing
favorable conditions for various types of wave generation (Chan and Holzer, 1976; Hayakawa et
al., 1986; Usanova et al., 2013; Ma et al., 2014; Tsurutani et al., 2015; Woodroffe et al., 2017).
Recently, plume whistler mode waves are found to sometimes exhibit discrete rising tones (e.g.,
Su et al., 2018), which are somewhat similar to typical chorus waves (Santolik et al., 2003; Li et
al., 2011). This discrete feature is different from typical plasmaspheric hiss that exhibits
incoherent broadband emissions (e.g., Thorne et al., 1973; Santolik et al., 2001; Bortnik et al.,
2008a), and could potentially lead to nonlinear interactions between waves and electrons (e.g.,
Albert, 2002; Bortnik et al., 2008b; Tao et al., 2014). Moreover, Su et al. (2018) reported that
plume whistler mode waves could have an unexpectedly large amplitude (~1.5 nT) and
suggested that these waves were locally generated probably through a combination of linear and
nonlinear instabilities of hot electrons.

Plasmaspheric plumes are found to be favorable for enhancing pitch angle scattering of
radiation belt electrons, thus leading to electron precipitation into the upper atmosphere
(Summers et al., 2008; Borovsky et al., 2014; Zhang et al., 2018). Borovsky and Steinberg
(2006) found that relativistic electron dropouts at geosynchronous orbit often coincided with the
presence of plasmaspheric plumes, suggesting the potential loss of energetic electrons due to
interactions with the enhanced plasma waves in plumes. Furthermore, Summers et al. (2008)
evaluated electron precipitation loss due to plume whistler mode waves by analyzing 14
representative plumes and found that pitch angle scattering by plume whistler mode waves can
be efficient for inducing precipitation loss of radiation belt electrons with energy from 100 keV
to 1 MeV, though the loss rates are highly dependent on wave power, L shell, and electron
energy.

Despite the potential importance of plume whistler mode waves in electron scattering, the
direct evidence showing energetic electron precipitation driven by plume whistler mode waves is
still lacking. In this letter, by analyzing fortuitous conjunction events between near-equatorial
satellites (Van Allen Probes) and Low-Earth-Orbiting satellites (POES/MetOp), we
quantitatively evaluate and compare the energetic electron precipitation driven by three types of
whistler mode waves: (1) plume whistler mode waves, (2) plasmaspheric hiss, and (3) exobhiss.
Moreover, using quasi-linear theory we estimate electron precipitations caused by these three
types of whistler mode waves based on the observed wave and plasma properties, and compare
them with the POES/MetOp measurements.

2 Overview of Conjunction Events Between Van Allen Probes and POES/MetOp

Figures 1-3 show an overview of conjunction events between the twin Van Allen Probes
orbiting near the equator (Mauk et al., 2013) and POES/MetOp orbiting at a low altitude of ~800
km approximately along the same magnetic field line (Evans and Greer, 2004). This event
occurred during a relatively quiet period (2 September 2013), when Sym-H remained above -30
nT over the preceding 2 days, but there was a modest substorm over 16-20 UT with a minimum
AL index of ~-400 nT (not shown). Figure 1 shows the total electron density and wave
observation from Van Allen Probe A (left) and B (right) measured by the EMFISIS Waves
instrument (Kletzing et al., 2013) onboard Van Allen Probes. Total electron density (Figures la
and 1h) was inferred from the upper hybrid resonance line (Kurth et al., 2015), and was used to
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identify various regions: (1) plume (magenta); (2) plasmasphere (blue); and (3) plasmatrough
(green). A plasmapause location (indicated by the vertical black line in Figure 1) is defined as
the innermost steep density gradient; more specifically, a factor of ~5 drop within 0.5 L
(Moldwin et al., 2002). After a plasmapause is identified, a plume is defined in a region outside
the plasmapause, where plasma density is considerably larger than the plasmatrough density at
lower L shells. Based on the plasma density and wave polarization properties (Figures 1d, le, 1k
and 11), five different types of plasma waves were identified (see the detailed criteria in Table S1
in Supporting Information) with the wave flag shown in Figures 1f and Im; namely,
plasmaspheric hiss (yellow), exohiss (green), plume whistler mode wave (orange), chorus (cyan),
and magnetosonic waves (red). Over 15:30-20:30 UT, Van Allen Probe A (Figures 1b—1f) first
observed magnetosonic waves and weak exohiss in the plasmatrough (15:30-16:00 UT), strong
whistler mode waves in plasmaspheric plumes (16:00-18:30 UT), magnetosonic waves in the
plasmatrough again (18:30-19:00 UT), and hiss inside the plasmasphere (after ~19 UT).
Simultaneously, Van Allen Probe B (Figures li—1m) detected hiss inside the plasmasphere
(before ~16:30 UT), as well as weak exohiss below 1 kHz and very weak chorus waves with
frequencies near 0.5 f.. in the plasmatrough region (~16:30-19:00 UT), without detecting any
plumes. Since exohiss is suggested to be formed due to the leakage of plasmaspheric hiss
(Thorne et al., 1973; Zhu et al.,, 2015), its amplitude is typically weaker than that of
plasmaspheric hiss. After ~19 UT quasi-parallel chorus waves with modest wave amplitudes
(from ~16 to ~42 pT) were detected at L shells above ~6.2. It is worthwhile to note that we
adopted the L shell based on the TO1 magnetic field model (Tsyganenko, 2002), since the in situ
magnetic field measurements from Van Allen Probes were closest to the magnetic field values
from the TO1 magnetic field model among all available Tsyganenko magnetic field models.
Figure 2 illustrates the trajectories of Van Allen Probe A and B over 15:30-20:30 UT on 2
September 2013 color coded for the different regions. The structure of the plasmasphere and
plume regions is depicted based on the plasma density observation from Van Allen Probes. It is
important to note that Van Allen Probe B, which did not detect any plume features, was
travelling in an earlier magnetic local time (over 13—18 MLT) than Van Allen Probe A (over
~18-22 MLT), which clearly detected a plume. Interestingly, the observed plume whistler mode
waves (Figures 1b and 1c) were intense (~120 pT) and exhibited strong modulation, probably
due to the modulating plasma density (e.g., Chen et al., 2012). High resolution waveform data
were available for the observed plume whistler mode waves during several short intervals (6
seconds) over the period of 16:00-18:30 UT, and they all exhibited broadband hiss-like
emissions rather than discrete rising or falling tone elements (not shown). It is also worth noting
that electromagnetic ion cyclotron (EMIC) waves, which are sometimes observed in plumes
(e.g., Usanova et al., 2013), were not detected by Van Allen Probe A or B over the entire time
period of 15:30-20:30 UT (Figures 1g and 1n).

Around Times 1, 2, and 3, as marked by the vertical lines in Figure 1, POES/MetOp
satellites passed through the magnetically conjugate region at a low altitude (~800 km). Figure 3
shows the electron flux observation from POES/MetOp around the conjunction Times 1, 2, and
3. The particle detector onboard POES/MetOp has two telescopes with the 0° (90°) telescope
measuring precipitating (trapped or quasi-trapped) electrons at various energies of >~30 keV,
>~100 keV, and >~300 keV (Evans and Greer, 2004; Green, 2013). A proton channel (>~6.9
MeV) mainly detects electrons above >~700 keV, and thus can be used to monitor highly
relativistic electrons (Rodger et al., 2010; Yando et al.,, 2011; Green, 2013). Proton
contamination at >~30 keV, >~100 keV, and >~300 keV channels was removed using the
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method described in Peck et al. (2015). During Time 1 (~18:07 UT, Figures 3a—3b), MetOp-01
traversed through ~20.8 MLT, and detected strong electron precipitation in energy channels of
>~30 keV, >~100 keV, and ~>~300 keV over L shells of 6.8-7.5 (6.1-6.6) based on the TO1
(IGRF) magnetic field model, where the precipitating electron flux was close to the trapped
value. The gray-shaded region in Figure 3b, also marked with the gray star symbol in Figure 2, is
roughly in the conjugate location with the region where plume whistler mode waves were
detected by Van Allen Probe A (marked with the black star symbol in Figure 2). During Time 2
(~19:47 UT, Figures 3¢—3d), ~100 minutes after Time 1, MetOp-01 passed through the same L
shell range at ~20.8 MLT again. In particular, near the conjunction region (gray-shaded region in
Figure 3d) with Van Allen Probe A, MetOp-01 detected modest electron precipitation at >~30
keV and >~100 keV. The strong electron precipitation at >~30 keV and >~100 keV at L(TO01) >
7.9 and L(IGRF) > 6.9 in Figure 3d at ~19:46 UT might still be caused by the plume whistler
mode waves, which may have lasted for at least a few hours, although the conjugate wave
measurements near the equator were not available to verify it. This feature of long-lasting plume
whistler mode waves is also supported by the fact that NOAA-16 also observed very similar
electron precipitation (not shown) to that by MetOp-01 (Figure 3b) but at ~18:52 UT, which
occurred between Time 1 and Time 2 at a slightly earlier MLT (~20.4). During Time 3 (~18:23
UT, Figures 3e-3f), NOAA-15 passed through the L shell from 9 to 4 at ~17 MLT. Near the
conjugate region (gray shaded region in Figure 3f) with Van Allen Probe B, which observed very
weak exohiss, NOAA-15 detected little electron precipitation at all energy channels (>~30 keV,
>~100 keV, >~300 keV, and >~700 keV). The relatively strong electron precipitation near
L(TO1) ~ 6.6 and L(TO01) ~ 7.2 (magenta dotted vertical lines) might be caused by chorus waves,
since modest chorus waves were present at L(T01) > 6, as observed by Van Allen Probe B, but
after ~19:30 UT (~1 hour later). It is worth noting that there was no clear correlation between the
observed electron and proton precipitation at Times 1, 2, and 3 (not shown), supporting that the
observed electron precipitations near conjunction were not caused by EMIC waves. The electron
observations at Times 1, 2, and 3 indicate that the relatively strong plume whistler mode waves
led to the observed strong electron precipitation at Time 1, the modest plasmaspheric hiss drove
the modest electron precipitation at Time 2, and the weak exohiss caused little electron
precipitation at Time 3. The quantitative calculation of electron precipitation driven by the above
three types of whistler mode waves is discussed in Section 3.

3 Calculation of Electron Precipitation Based on Quasi-Linear Theory

We used quasi-linear theory to calculate the electron precipitation driven by plume
whistler mode waves, plasmaspheric hiss, and exohiss. The Full Diffusion Code (Ni et al., 2008)
is used to calculate bounce-averaged pitch angle diffusion coefficients of three types of whistler
mode waves based on the observed wave and plasma properties, as listed in Table S2 in
Supporting Information. We adopted the observed wave frequency spectra for each type of
whistler mode waves to calculate diffusion coefficients by including Landau resonance and
cyclotron resonances with resonance harmonics from -10 to +10. Wave normal angles of plume
whistler mode waves, plasmaspheric hiss, and exohiss are assumed to be quasi-parallel near the
equator, which is consistent with the in situ Van Allen Probes observation (Figures le and 11),
and become more oblique with increasing magnetic latitudes (Ni et al., 2013).

Figure 4 (top) shows the bounce-averaged pitch angle diffusion coefficients for the plume
whistler mode waves observed at Time 1, plasmaspheric hiss detected at Time 2, and exohiss
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measured at Time 3. The amplitude of the plume whistler mode wave is the strongest (120 pT),
plasmaspheric hiss is modestly strong (74 pT), but exohiss is very weak (9 pT). As a
consequence, pitch angle diffusion coefficients of plume whistler mode waves are largest on a
timescale down to ~10 minutes at ~10 keV, whereas pitch angle diffusion coefficients of exohiss
are extremely small on a timescale of tens of hours at ~10 keV. The ratio between the plasma
frequency and electron cyclotron frequency (fye/fcc) 1s largest for plume whistler mode waves
(28.1), modest for plasmaspheric hiss (~19.7), and smallest for exohiss (~8.8). As a consequence,
the energy of electrons (Figures 4a—4c), which are subject to strongest pitch angle scattering near
the loss cone, tends to increase with decreasing fye/fc. (<10 keV for plume whistler mode waves,
~25 keV for plasmaspheirc hiss, and ~100 keV for exohiss). Figures 4d—4f show the direct
comparison between pitch angle diffusion coefficients near the loss cone (DyolLc) and strong
diffusion limit (Dsp) (Summers and Thorne, 2003) for three types of whistler mode waves
respectively. Dgqlic 18 closest to Dsp for plume whistler mode waves (particularly at a few tens
of keV), while Dyqlc is more than an (two) order(s) of magnitude smaller than Dgp for
plasmaspheric hiss (exohiss). Moreover, we use the pitch angle diffusion coefficients to infer the
electron pitch angle distributions in a quasi-equilibrium state (Kennel and Petschek, 1966;
Theodoridis and Paolini, 1967; Li et al., 2013b; Ni et al., 2014). This approach is reasonable to
estimate wave-driven electron precipitations, since these whistler mode waves typically last
longer than several minutes (as an example shown in Figure 1) and the 1D Fokker-Planck
simulation result (not shown) indicates that electron pitch angle distribution near the loss cone
(equatorial pitch angles over 0-10°) reaches a quasi-steady state within a few minutes after
interacting with these whistler mode waves. The bottom panels in Figure 4 show the normalized
electron flux (to the flux value at 90° pitch angle) as a function of equatorial pitch angle color
coded for various energies. Among three types of whistler mode waves, the loss cone is most
filled for the plume whistler mode waves, modestly filled for the plasmaspheric hiss, but mostly
empty for the exohiss. The trend shown in Figures 4d—4i is consistent with the POES/MetOp
observation, where the ratio of precipitating-to-trapped electrons is highest for plume whistler
mode waves, modest for plasmaspheric hiss, and lowest for exohiss.

4 Summary and Discussion

In this letter, we report fortuitous conjunction events between Van Allen Probes and
POES/MetOp satellites, and quantitatively evaluate and directly compare energetic electron
precipitation driven by plume whistler mode waves, plasmaspheric hiss, and exohiss. Most
importantly, we provide the first direct evidence of efficient electron precipitation from 10s to
100s keV driven by plume whistler mode waves. The principal findings of this study are
summarized below.

1. During a modest substorm activity, a plasmaspheric plume was present over the dusk-to-
premidnight sector. Van Allen Probe A, which traversed the post-dusk sector, observed
whistler mode waves in plumes and hiss inside the plasmasphere, whereas Van Allen Probe
B, which traveled through the pre-dusk sector, observed exohiss outside the plasmapause and
chorus at high L shells (>6.2) without detecting any plume features.

2. In these conjunction events, plume whistler mode waves were strongest (~120 pT),
plasmaspheric hiss was modestly strong (~74 pT), and exohiss was very weak (~9 pT). The
wave normal angles of all three types of whistler mode waves were quasi-parallel near the
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equator. Moreover, during the entire conjunction interval EMIC waves were not detected by
Van Allen Probes.

3. In the conjugate location at low altitudes, POES/MetOp detected strongest electron
precipitation at >~30 keV, >~100 keV, and >~300 keV in association with the plume whistler
mode waves, modest electron precipitation at >~30 keV and >~100 keV in association with
the plasmaspheric hiss, but little electron precipitation corresponding to the exohiss.

4. The trend of the estimated electron precipitation using quasi-linear theory based on the
observed wave and plasma parameters is consistent with the POES/MetOp observation,
clearly indicating that plume whistler mode waves are most effective in producing energetic
electron precipitation from 10s to 100s keV compared to the plasmaspheric hiss and the
exohiss in this event.

This letter presents a pilot study showing the direct evidence of efficient pitch angle
scattering driven by plume whistler mode waves through analyzing fortuitous conjunction
events, where plume whistler mode waves were observed to be strong (~120 pT) in association
with a modest substorm activity and exhibit hiss-like emissions. A recent study by Shi et al.
(2019) analyzed several years of Van Allen Probes wave data and found that plume whistler
mode waves are typically stronger (up to a few hundred pT) than plasmaspheric hiss, and their
occurrence rate could be up to a few tens of %, particularly during geomagnetically active
periods. However, the detailed emission structures were not analyzed systematically in Shi et al.
(2019), since they used the survey-mode wave data. Moreover, Su et al. (2018) reported plume
whistler mode waves with very large amplitudes (~1.5 nT) and rising tone elements embedded
on top of hiss-like emissions. It would be very interesting to understand how the detailed
emission structures of plume whistler mode waves (rising/falling tones or hiss-like emissions)
vary under various geomagnetic activities. A more systematic study through analyzing a
sufficient number of high resolution waveform data for plume whistler mode waves, although
beyond the scope of the present pilot study, is needed to address this interesting question and is
left for future investigations.

Our new findings on the efficient pitch angle scattering caused by plume whistler mode
waves, together with their relatively strong wave amplitudes compared to plasmaspheric hiss
from the statistical results by Shi et al. (2019), indicate their potential importance in the loss
process of energetic electrons in the Earth’s inner magnetosphere. It is worthwhile to note that
plume whistler mode waves are typically observed in the region with relatively high values of
Joelfee, thus are particularly effective in driving pitch angle scattering loss of electrons with lower
energy compared to plasmaspheric hiss and exohiss. Summers et al. (2008) found that hundreds
of keV seed electron population, which can be further accelerated to MeV electrons (Horne et al.,
2005; Thorne et al., 2013), is subject to rapid precipitation loss due to scattering by plume
whistler mode waves, thus reducing the effect of MeV electron acceleration. In addition, plume
whistler mode waves are found to be capable of causing losses of energetic electrons with pitch
angles closer to 90° (e.g., Li et al., 2007), which is a core population of energetic electrons in the
radiation belts but is difficult to be scattered towards the loss cone by EMIC waves alone
(Kersten et al., 2014; Usanova et al., 2014). In spite of the importance of plume whistler mode
waves, it is crucial to note that the effects of plume whistler mode waves have not been
accurately incorporated into most global radiation belt modeling yet (e.g., Albert et al., 2009;
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Glauert et al., 2014; Tu et al., 2014; Li et al., 2016; Ma et al., 2018). Therefore, we suggest that
future radiation belt modeling efforts address the quantitative effects of plume whistler mode
waves, as well as their combined scattering effects due to coexisting other types of
magnetospheric waves, on the global evolution of energetic electron dynamics in the Earth’s
outer radiation belt.
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Figure 1. Overview of the observation from Van Allen Probe A and B on 2 September 2013. (a)
Total electron density inferred from the upper hybrid resonance line, where the magenta, blue,
and green lines represent the regions of plume, plasmasphere, and plasmatrough respectively. (b)
Frequency-time spectrogram of electric spectral density, (c) magnetic spectral density, (d)
ellipticity, (e¢) wave normal angle (WNA), and (f) wave flag color-coded for different types of
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magnetospheric waves. In panels (b)—(f), the magenta (white) dashed line represents 0.5 fe.
(fLur), where fce (fLur) is electron cyclotron frequency (lower hybrid resonance frequency). (g)
Frequency-time spectrogram of magnetic spectral density from the magnetometer data, where the
solid, dashed, and dotted lines indicate proton, helium, and oxygen cyclotron frequency. (h)—(n)
Similar to panels (a)—(g) but observed by Van Allen Probe B over the same time period. The
black dotted vertical lines at ~19 UT on the left panels and ~16:30 UT on the right panels
represent the plasmapause crossing. The magenta (Time 1), blue (Time 2) and green vertical
lines (Time 3) indicate the conjunction time with POES/MetOp.

Figure 2. A cartoon illustrating the trajectories of Van Allen Probes and NOAA/MetOp satellites
over 15:30-20:30 UT on 2 September 2013. The gray-shaded region represents the plasmasphere
and plume with the black solid line indicating the boundary. The color-coded curves along the
Van Allen Probes trajectory indicate plasmasphere (blue), plasmatrough (green), and plume
(magenta). The light red lines represent the trajectories of NOAA-15 and MetOp-01. The gray
(black) star symbol indicates the location of POES/MetOp (Van Allen Probes) when the
conjunction occurred at Time 1, Time 2, and Time 3.

Figure 3. POES/MetOp observation of energetic electron precipitation during the three
conjunction intervals (Time 1: plume whistler mode waves; Time 2: plasmaspheric hiss; Time 3:
exohiss). (a) L shells of MetOp-01 based on the TO1 (black) and IGRF (blue) magnetic field
model during Time 1. (b) Precipitating (solid lines) and trapped or quasi-trapped (dotted lines)
electron fluxes at >~30 keV (black), >~100 keV (blue), >~300 keV (green), and >~700 keV
(red). In panel (b), the gray-shaded region represents the L shell range of the rough conjunction
with Van Allen Probe A, and the magenta dotted vertical lines indicate the precipitation
boundaries, where the corresponding L shell from the TOl1 (IGRF) magnetic field model is
indicated with the black (blue) text. (c) and (d) Similar to (a) and (b), but at ~19:47 UT (~100
minutes later) observed by MetOp-01. (e) and (f) Similar to (a) and (b), but at ~18:23 UT
observed by NOAA-15.

Figure 4. Calculated electron precipitation based on quasi-linear theory driven by plume whistler
mode waves (left), plasmaspheric hiss (middle), and exohiss (right). Bounce-averaged pitch
angle diffusion coefficients as a function of equatorial pitch angle and energy due to plume
whistler mode waves (Figure 4a), plasmaspheric hiss (Figure 4b), and exohiss (Figure 4c). The
comparison between pitch angle diffusion coefficients near the loss cone (red lines) and strong
diffusion limit (blue lines) at the location where plume whistler mode waves (Figure 4d),
plasmaspheric hiss (Figure 4e), and exohiss (Figure 4f) were observed. Normalized electron flux
to the 90° value as a function of equatorial pitch angle color-coded for various energies from ~30
keV to 5.2 MeV driven by plume whistler mode waves (Figure 4g), plasmaspheric hiss (Figure
4h), and exohiss (Figure 41). The black vertical dashed lines on the bottom panels represent the
corresponding equatorial bounce loss cone.
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