

1 **Properties of whistler mode waves in Earth's
2 plasmasphere and plumes**

3 Run Shi¹, Wen Li¹, Qianli Ma^{2,1}, Alex Green¹, Craig A. Kletzing³, William S. Kurth³,

4 George B. Hospodarsky³, Seth G. Claudepierre⁴, Harlan E. Spence⁵, and Geoff D. Reeves⁶

5

6 ¹Center for Space Physics, Boston University, Boston, Massachusetts, USA.

7 ²Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles,

8 Los Angeles, California, USA.

9 ³Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa, USA.

10 ⁴Space Sciences Department, The Aerospace Corporation, El Segundo, California, USA.

11 ⁵Institute for the Study of Earth, Oceans, and Space, University of New Hampshire,

12 Durham, New Hampshire, USA.

13 ⁶Space Science and Applications Group, Los Alamos National Laboratory, Los Alamos,

14 New Mexico, USA.

15

16

17 Corresponding author:

18 Wen Li

19 Center for Space Physics, Boston University, Boston, Massachusetts, USA

20 luckymoon761@gmail.com

21 **Key points**

22 1. Whistler mode waves are statistically analyzed both inside the plasmasphere and in the
23 plumes based on Van Allen Probes observations.

24 2. The occurrence rate and amplitudes of whistler mode waves inside the plasmasphere and
25 plumes show dependence on L , MLT and geomagnetic activity.

26 3. The majority of whistler mode waves in plumes are suggested to be locally amplified
27 due to energetic electron injection.

28 **Abstract**

29 Whistler mode wave properties inside the plasmasphere and plumes are systematically
30 investigated using five-year data from Van Allen Probes. The occurrence and intensity of
31 whistler mode waves in the plasmasphere and plumes exhibit dependences on magnetic
32 local time (MLT), L and AE . Based on the dependence of the wave normal angle and
33 Poynting flux direction on L shell and normalized wave frequency to electron cyclotron
34 frequency (f_{ce}), whistler mode waves are categorized into four types. Type I: $\sim 0.5 f_{ce}$ with
35 oblique wave normal angles mostly in plumes; Type II: $0.01\text{--}0.5 f_{ce}$ with small wave
36 normal angles in the outer plasmasphere or inside plumes; Type III: $< 0.01 f_{ce}$ with oblique
37 wave normal angles mostly within the plasmasphere or plumes; Type IV: $0.05\text{--}0.5 f_{ce}$ with
38 oblique wave normal angles deep inside the plasmasphere. The Poynting fluxes of Type I
39 and II waves are mostly directed away from the equator, suggesting local amplification,
40 whereas the Poynting fluxes of Type III and IV are directed either away from or towards
41 the equator, and may originate from other source regions. Whistler mode waves in plumes
42 have relatively small wave normal angles with Poynting flux mostly directed away from
43 the equator, and are associated with high electron fluxes from ~ 30 keV to 100s keV, all of
44 which support local amplification. Whistler mode wave amplitudes in plumes can be
45 stronger than typical plasmaspheric hiss, particularly during active times. Our results
46 provide critical insights into understanding whistler mode wave generation inside the
47 plasmasphere and plumes.

48

49 **1. Introduction**

50 Plasmaspheric hiss is an electromagnetic whistler mode wave that exists inside the
51 plasmasphere or high-density plumes in the inner magnetosphere (*Thorne et al.*, 1973;
52 *Summers et al.*, 2008), and plays a vital role in the loss of energetic electrons within these
53 regions (*Lyons et al.*, 1972; *Lyons and Thorne*, 1973; *Albert*, 2005; *Summers et al.*, 2008;
54 *Ni et al.*, 2013; *Breneman et al.*, 2015; *Li et al.*, 2015a; *Ma et al.*, 2016). Plasmaspheric
55 hiss waves are believed to be incoherent and unstructured. However, recent studies have
56 shown that hiss intensification can be modulated by the variation of plasma density (*Chen*
57 *et al.*, 2012b) or the variation of electron flux (*Shi et al.*, 2018) and whistler mode waves
58 in the plume region exhibit a high level of coherency (*Tsurutani et al.*, 2015; *Su et al.*,
59 2018). These studies (*Tsurutani et al.*, 2015; *Shi et al.*, 2018; *Su et al.*, 2018) indicate that
60 the observed hiss emissions are locally amplified through wave-particle interaction with
61 anisotropic electron populations (*Kennel and Petschek*, 1966; *Thorne et al.*, 1979). The
62 external origin of hiss emissions from whistler mode chorus, which is excited in the
63 plasmatrough region outside the plasmasphere (*Bortnik et al.*, 2008, 2009), is another
64 possible generation mechanism of hiss emissions. Chorus waves are typically observed as
65 a series of coherent bursts of wave power in the frequency range spanning 0.1-0.8 f_{ce} with
66 a gap at 0.5 f_{ce} (*Burtis and Helliwell*, 1969; *Tsurutani and Smith*, 1974; *Koons and Roeder*,
67 1990), where f_{ce} is electron cyclotron frequency. *Li et al.* (2015b) provided direct evidence
68 that hiss originates from chorus with a remarkable correlation between the chorus observed
69 outside the plasmasphere and the hiss emissions inside the plasmasphere. Results of a

70 statistical study based on multiple satellites (*Meredith et al.*, 2013) and ray tracing
71 simulations (*Chen et al.*, 2012a) also support chorus as the origin of plasmaspheric hiss.
72 Lightning generated waves from low altitudes (*Green et al.*, 2005) can also be a possible
73 source of hiss emissions, although the geographic distribution of lightning is inconsistent
74 with that of hiss wave intensity in the major frequency range, which is below 2 kHz.

75 Properties of plasmaspheric hiss emissions have been extensively studied (*Meredith et*
76 *al.*, 2004, 2013; *Li et al.*, 2015a; *Spasojevic et al.*, 2015; *Tsurutani et al.*, 2015; *Malaspina*
77 *et al.*, 2016; *Hartley et al.*, 2018). *Meredith et al.* (2004) illustrated a pronounced
78 dependence of the plasmaspheric hiss wave intensity on geomagnetic activity, *L* shell, MLT
79 and MLAT. The hiss amplitudes show a clear day-night asymmetry and have higher values
80 during high levels of geomagnetic activity. Comparisons between the distribution of
81 energetic electrons and the observed hiss emissions suggested a possible local excitation
82 of hiss in the outer plasmasphere due to electrons with energies from tens to hundreds of
83 keV (*Meredith et al.*, 2004). *Li et al.* (2015a) analyzed the dependence of hiss on frequency
84 and suggested that low frequency (below 100 Hz) hiss, which was missing in the previous
85 radiation belt models, should be included in modeling hiss-driven electron dynamics. The
86 importance of the relative location with respect to the plasmapause of hiss emissions was
87 raised by *Malaspina et al.* (2016), which revealed important features of the frequency-
88 dependent spatial distribution of hiss power. Most of the above statistical studies mainly
89 focus on the wave power and its dependence on frequency, spatial location and
90 geomagnetic activity. However, other wave properties, such as wave normal angle (WNA)

91 and direction of Poynting flux, also provide important information, especially regarding
92 the generation mechanisms of hiss emissions. In the present study, we thoroughly analyze
93 and evaluate these wave properties.

94 Moreover, the whistler mode waves in plasmaspheric plumes have not been
95 systematically evaluated, although their properties are important to understand the
96 generation of plasmaspheric hiss. *Laakso et al.* (2015) presented an observation of hiss
97 emissions, suggesting that the waves are generated in the equatorial region of the
98 plasmaspheric plumes in the dusk sector. The hiss emissions propagate poleward in the
99 plasmaspheric plume, whereas in the plasmasphere, the waves propagate toward the
100 equator in both hemispheres. Therefore, it was proposed that the plasmaspheric hiss inside
101 the plasmasphere partly originates from the plume region (*Laakso et al.* 2015; *Tsurutani et*
102 *al.*, 2015). *Su et al.* (2018) provided clear evidence of local generation of hiss emissions in
103 the plume region. They observed intense hiss emissions in association with electron
104 injections at tens of keV. The plume hiss emissions exhibited rising tones in frequency-
105 time spectrograms at frequencies around $0.5 f_{ce}$. The WNA and the direction of Poynting
106 flux of these waves also support the scenario of local generation caused by wave-particle
107 interactions with anisotropic injected electrons (*Su et al.*, 2018).

108 The present study systematically investigates the wave properties of whistler mode
109 waves, including wave power, WNA and direction of Poynting flux, both inside the
110 plasmasphere and in the plasmaspheric plumes. The dataset and criteria of identifying
111 whistler mode waves are described in Section 2. Two typical observations of whistler mode

112 waves in the plume and inside the plasmasphere are analyzed in Section 3. The statistical
113 results of wave properties are presented in Section 4, followed by a summary and
114 discussion in Section 5.

115

116 **2. Data and Methodology**

117 The data from the twin Van Allen Probes (RBSP-A and B), with an altitude of \sim 600
118 km at perigee and geocentric distance of \sim 5.8 RE at apogee (*Mauk et al.*, 2012), are used
119 for the present study. The wave amplitude and spectra are provided by the Waves waveform
120 receiver (WFR) on the Electric and Magnetic Field Instrument Suite and Integrated Science
121 (EMFISIS), which measures wave power spectral density from 10 Hz to 12 kHz at 6 s time
122 resolution (*Kletzing et al.*, 2013). The WFR also provides continuous-burst waveforms with
123 a 35 kHz sampling rate. Wave properties (e.g., wave normal angles, planarity of
124 polarization, ellipticity and direction of Poynting flux) calculated using the Singular Value
125 Decomposition method (*Santolik et al.*, 2003) are routinely available. Plasma density can
126 be derived based on the high-frequency receiver (HFR) data (*Kurth et al.*, 2015) or be
127 inferred from the spacecraft potential measured by the Electric Field and Waves (EFW)
128 instrument (*Wygant et al.*, 2013). High resolution electron flux measurements over the
129 energy range of \sim 30 keV to 4 MeV are provided by the Magnetic Electron Ion Spectrometer
130 (MagEIS) instrument (*Blake et al.*, 2013; *Spence et al.*, 2013). We utilize the level 3
131 MagEIS dataset which includes particle pitch angle distribution to calculate the linear
132 growth rate of the whistler mode waves.

133 The location of plasmapause is determined when the density increases (decreases) by
134 more than a factor of 5 within $0.5 L$ from lower (higher) to higher (lower) L shells
135 (*Malaspina et al.*, 2016). If there are multiple density structures satisfying the definition in
136 one leg of the orbit (either inbound or outbound), the one closest to the Earth is chosen to
137 be the plasmapause. If there is no plasmapause crossing in one leg, the whole leg is
138 considered to be inside the plasmasphere. The plume region is identified after the
139 plasmapause is determined. More specifically, between the apogee and the plasmapause
140 crossing, the plume region is defined when $N > 1.2 \times \min(N_{\text{lower } L})$ and $N > 2.5 \times \min(N_{\text{lower } L})$
141 $\times L_{\text{n6}}/L_6$. Here $\min(N_{\text{lower } L})$ is the minimum density between the plasmapause crossing and the
142 satellite location (outside the plasmapause) where the density is N , and L_{n} is the L shell where
143 the minimum density ($N_{\text{lower } L}$) is recorded. We utilized the data from the EMFISIS Waves
144 instrument for the density profile. We further validated the identified plume regions through
145 visual inspection to ensure that the selected plume regions are reasonable. Whistler mode
146 waves are identified by selecting waves with planarity larger than 0.3 and ellipticity larger
147 than 0.7 with wave frequency between 20 Hz and 7 kHz. We collected all the selected
148 waves inside the plasmasphere and in the plumes separately. Each data point (with 6 s
149 resolution) is regarded as a sample and a sample satisfying the above criteria is identified
150 as a whistler mode wave event.

151

152 **3. Event Study**

153 Figure 1 presents a typical example of whistler mode wave emissions in the
154 plasmaspheric plume (Case I) observed by Van Allen Probe B on Nov 6, 2012. The satellite
155 was located in the dawn sector (MLT over 4.7 – 7.7) from 12:00 UT to 18:00 UT. The AE
156 index (black) and AE^* (blue) are shown in Figure 1a, where AE^* is the maximum of AE
157 index in the preceding 3 hours. Figure 1b shows the HFR spectra. The density profile is
158 shown in Figure 1c, where the identified plume regions are highlighted with magenta lines.
159 The vertical black lines at 14:42 UT and 18:40 UT correspond to the plasmapause crossings
160 ($L = 5.93$ and $L = 4.12$). The whistler mode emissions are observed from 30 Hz up to $0.5 f_{ce}$
161 (magenta dashed line) in the plume region (Figures 1d and 1e) in association with the
162 enhancement of anisotropic electron flux at tens of keV (Figure 1i). Figure 1f shows a flag
163 indicating plasmaspheric hiss inside the plasmasphere (yellow), whistler mode waves in
164 the plumes (orange), whistler mode chorus in the low-density plasmatrough (cyan), and
165 magnetosonic waves (red). It is worthwhile to note that there exist whistler mode waves
166 with frequencies larger than $0.5 f_{ce}$ in the plumes, albeit with a much weaker intensity. The
167 whistler mode waves in plumes have Poynting fluxes directed antiparallel to the ambient
168 magnetic field (Figure 1h). Considering that Van Allen Probe B was in the southern
169 hemisphere ($MLAT < 0^\circ$), the Poynting flux of the whistler mode emissions was directed
170 away from the magnetic equator. Just below $0.5 f_{ce}$, a portion of the whistler mode waves
171 propagates obliquely (Figure 1g) in the plumes, which is similar to the property of oblique
172 chorus waves in the low-density plasmatrough region (e.g., *Santolik et al.*, 2009; *Agapitov*
173 *et al.*, 2016; *Li et al.*, 2016). At lower frequencies, the whistler mode waves in the plumes

174 propagate quasi-parallel to the ambient magnetic field. The continuous-burst waveforms
175 are shown on the bottom of Figure 1 for three occasions at 14:13 UT (Figures 1j-1k) inside
176 the plasmasphere, 16:06 UT (Figures 1l-1m) in the plume and 17:42 UT (Figures 1n-1o)
177 outside the plasmasphere in the plasmatrough region ($N < 10 \text{ cm}^{-3}$). Inside the plasmasphere,
178 the hiss emissions appear to be unstructured (Figure 1j-1k). In contrast, clear rising tone
179 structures are embedded in broadband waves in the plume (Figure 1l-1m), where the
180 plasma density is around 40 cm^{-3} . The rising tones sweep from 100 Hz up to more than 1
181 kHz just below $0.5 f_{ce}$ and propagate quasi-parallel to the background magnetic field
182 (Figure 1m). These are direct evidence indicating that the nonlinear wave-particle
183 interaction process was operating in the plasmaspheric plume. Figures 1n-1o show typical
184 rising tone chorus waves in the low-density region. Compared to the typical chorus
185 elements (Figure 1n-1o), interestingly, the duration of rising tones in plumes is longer
186 (Figure 1l-1m).

187 Figure 2 shows a typical event of hiss emissions inside the plasmasphere (Case II)
188 observed by Van Allen Probe B on November 23, 2013. The satellite was in the afternoon
189 sector (MLT over 13.4-18.7) from 8:00 UT to 14:00 UT. The intensification of the observed
190 hiss emissions is associated with injected anisotropic electrons (Figures 2f and 2g) probably
191 due to local amplification (*Shi et al.*, 2017) at higher L shells ($L > 5.5$). The anisotropy is
192 calculated following equation (2) of *Chen et al.* (1999). However, at lower L shells ($L <$
193 5.5) the calculated linear growth rate based on *Summers et al.* (2009) (Figure 2k) becomes
194 inconsistent with the observed wave power spectrum (Figures 2c and 2d) at low frequency

195 (circled by orange dashed lines). This discrepancy can be explained if we take into account
196 the direction of Poynting flux (Figure 2i) and the WNA (Figure 2j). The black curve in
197 Figure 2i roughly depicts the frequency boundary which separates the Poynting flux
198 directed away from the equator (anti-parallel to the magnetic field) from that towards the
199 equator (quasi-parallel to the magnetic field). Note that the satellite was in the southern
200 hemisphere during this period (MLAT < -9°). The frequency boundary, which is drawn
201 with a black line in Figures 2c-2e and 2j-2k, is estimated by the empirical function $f_{\text{est}} =$
202 $(47/L_7)$ kHz. Above this frequency, the Poynting flux is directed mostly away from the
203 equator, which is consistent with the scenario of local amplification. However, below this
204 frequency the Poynting flux was directed mostly towards the equator, suggesting that the
205 waves originate from other source regions. The calculated linear growth rate (Figure 2k),
206 based on *Summers et al.* (2009), is consistent with the wave emissions that have a Poynting
207 flux away from the equator (above f_{est}). The minimum resonant energy corresponding to
208 the estimated frequency boundary is shown in Figures 2f and 2g as black curves, which
209 agrees very well with the upper energy of injected energetic electrons, especially over L
210 shells of 4.5–6.5. Note that due to the limited energy coverage of the MagEIS instrument
211 ($>\sim 30$ keV), the linear growth rates above several hundred Hz are not shown in Figure 2k.
212 However, since the minimum resonant energy for the estimated frequency boundary (f_{est})
213 of the observed hiss is above ~ 30 keV (black line in Figure 2f), MagEIS contains the crucial
214 electron data to calculate the linear growth rates of hiss near the estimated frequency
215 boundary. It is also important to note that the linear growth rate was calculated based on

216 the local pitch angle distributions of electrons, thus may have underestimated the growth
217 rate compared to the calculation using the equatorial electron distributions.

218 We discussed two examples of whistler mode wave emissions both in the plume
219 region (Figure 1) and inside the plasmasphere (Figure 2) above. The observed whistler
220 mode emissions in plumes are likely due to local amplification, whereas inside the
221 plasmasphere the observed hiss waves may be locally amplified at higher frequency above
222 a critical frequency. This critical frequency is related to the energies of injected electrons
223 through the wave-particle resonance condition and is dependent on L shell, with higher
224 values at a lower L shells. The following section will focus on the statistical features of
225 whistler mode wave properties inside the plasmasphere and in the plumes separately.

226

227 **4. Statistical Results**

228 The number of samples inside the plasmasphere, regardless of existence of hiss, is
229 plotted in the L -MLT domain (Figure 3a) for three different levels of AE^* . The number of
230 hiss wave events and the occurrence rate of hiss (the ratio between the number of hiss
231 events and the number of samples), are shown in Figures 3b and 3c, respectively. There is
232 a clear day-night asymmetry of the occurrence rate, with a minimum on the night-side.
233 With increasing of AE^* , the occurrence rate decreases on the night side, and the dawn-dusk
234 asymmetry of occurrence rate becomes evident, with a higher occurrence rate on the dawn
235 side during more active times. Figure 3d shows the root mean square (RMS) of the
236 magnetic wave power from 30 Hz to 7 kHz. The wave power exhibits a clear day-night

237 asymmetry and is dependent on geomagnetic activity, which is consistent with the previous
238 studies (*Meredith et al.*, 2004; *Li et al.*, 2015a). It is worthwhile to note that the EMFISIS
239 data were collected near the equatorial inner magnetosphere mostly within 20° of the
240 magnetic equator, while *Meredith et al.* (2004) investigated the global distributions of hiss
241 emissions in the equatorial and mid-latitude (up to 30°) region using the CRRES data.

242 Figure 4 shows the statistical distribution of whistler mode waves in plumes in the L -
243 MLT domain. The occurrence rate of the plumes (Figure 4b), which is the ratio between
244 the number of samples in the plumes and the total number of samples outside the
245 plasmapause regardless of plumes (Figure 4a), highly depends on L , MLT, and AE^* . The
246 plumes are more frequently observed in the dusk sector (MLT over 15–21) during active
247 geomagnetic times ($AE^* > 500$ nT). During moderate times ($200 < AE^* < 500$ nT), the
248 plumes are often observed from 17 to 23 MLT. However, the occurrence rate of plumes
249 decreases with increasing AE^* on the dawn-side. This statistical distribution of the plume
250 occurrence, particularly at relatively large L shells ($>\sim 5$), is overall consistent with the
251 previous statistical results (*Chappell et al.*, 1974; *Lee et al.*, 2016), where the occurrence
252 rate of plumes is typically high from the afternoon to the dusk sector during moderate-to-
253 disturbed geomagnetic activity. This statistical result also agrees with the physical picture
254 of the formation and evolution of plumes due to the combined effect of the corotation
255 electric field and the convection electric field during moderate-to-disturbed activities
256 (*Chappell et al.*, 1974). The occurrence rate of whistler mode waves in plumes (Figure 4d),
257 which is the ratio between the number of the whistler mode wave events (Figure 4c) and

258 the total number of samples outside of the plasmapause (Figure 4a), has a similar spatial
259 distribution as the occurrence of plumes. The amplitudes of whistler mode waves (Figure
260 4e) increase with increasing AE^* , particularly from the noon to the dusk sector.
261 Interestingly, from the midnight to the dawn sector, although the occurrence rate of the
262 whistler mode waves is low (Figure 4d), the wave amplitude is intense at larger L shells ($>$
263 5), probably due to the larger flux of energetic electrons on the nightside, which provide a
264 source of free energy for whistler mode wave excitation (e.g. *Li et al.*, 2010).

265 For comparison, Figure 5 illustrates the statistical distribution in the ΔL -MLT domain,
266 where ΔL is the distance between the wave and the plasmapause. The negative ΔL
267 corresponds to the region inside the plasmasphere while the positive value corresponds to
268 the plume region. Figure 5a shows the distribution of the number of the samples inside the
269 plasmapause and in plumes. The occurrence of the whistler mode waves inside the
270 plasmapause or in plumes (Figure 5c) is defined as the ratio between the number of whistler
271 mode wave events (Figure 5b) and the number of samples inside the plasmasphere or in
272 plumes (Figure 5a). During modest-to-strong activity ($200 < AE^* < 500$ nT and $AE^* > 500$
273 nT), the occurrence rates of whistler mode waves in the plumes are typically large ($> \sim 0.7$)
274 from the afternoon to the dusk sector. This value is in a similar range as the occurrence
275 inside the plasmasphere on the dayside. It is important to note that the hiss occurrence rate
276 is much higher just inside the plasmasphere ($\Delta L > \sim -2$), compared to that well inside the
277 plasmasphere ($\Delta L < \sim -2$). Although the occurrence rates of whistler mode waves in plumes
278 appear to be large during quiet times (Figure 5c), the RMS wave amplitudes are relatively

279 weak. Interestingly, the whistler mode waves in plumes are more intense (particularly from
280 the noon to the dusk sector and on the nightside), compared to the plasmaspheric hiss wave
281 intensity.

282 Since the whistler mode waves in plumes are suggested to be locally generated due to
283 wave-particle interaction, we show in Figure 6 the averaged electron flux as a function of
284 L shell and electron kinetic energy in the plume region. The electron flux associated with
285 strong wave intensity ($\text{RMS}(B_w) > 30 \text{ pT}$) is clearly larger at L shells over 4–6 (Figure 6a)
286 compared to the electron flux when the wave intensity is weaker ($\text{RMS}(B_w) < 30 \text{ pT}$)
287 (Figure 6b). The black lines in Figures 6a and 6b show the number of wave events as a
288 function of L shell. The ratio between the electron flux with strong wave intensity (Figure
289 6a) and that with weak wave intensity (Figure 6b) is shown in Figure 6c. The peak ratio
290 resides at $L \sim 5$ from several tens of keV to ~ 200 keV. It is interesting to note that the
291 energy of peak ratio decreases with increasing L shell. The large ratio (>1) supports the
292 local amplification scenario with more intense anisotropic electron fluxes leading to
293 stronger whistler mode waves.

294 Figure 7 illustrates the frequency dependence of the whistler mode wave properties
295 inside the plasmasphere and plumes. Figure 7a shows the distribution of the number of
296 whistler mode wave events as a function of ΔL and normalized frequency (f/f_{ce}). The
297 vertical dashed lines represent the location of the plasmapause. Inside the plasmasphere,
298 the normalized frequency of peak number of events decreases with increasing distance
299 from the plasmapause. The accumulative magnetic wave spectral density (Figure 7b) inside

300 the plasmasphere shows a similar trend, which is consistent with *Malaspina et al.* (2016)
301 where the absolute frequency of peak number almost remains constant as a function of L
302 inside the plumes. The accumulative magnetic wave spectral density is calculated by
303 the summation of the magnetic spectral density of all whistler mode wave events. The wave
304 power is strongest just inside the plumes. The normalized wave frequency of the
305 peak number of event and peak accumulative wave power (Figure 7b) remains almost
306 constant inside the plumes, where both the number of wave events and the accumulative
307 wave power are much lower than those inside the plasmasphere. However, the average
308 electric spectral density and magnetic spectral density in the plume (Figure 7c and 7d),
309 when there exist whistler mode wave emissions, are stronger than those inside the
310 plasmasphere.

311 Figures 7e and 7f show the distribution of median wave normal angle and direction of
312 Poynting flux power-weighted by the wave magnetic intensity, respectively. The higher
313 value (~ 1) in Figure 7f means that the Poynting flux of the waves is directed away from
314 the equator while the lower value (~ 0) indicates that the Poynting flux is directed towards
315 the equator. Four types of whistler mode waves with different properties (WNA and
316 Poynting direction) are identified. Type I waves, around $0.5 f_{ce}$, circled by the yellow lines
317 (Figures 7e and 7f), propagate in a relatively oblique direction to the ambient magnetic
318 field, and the Poynting flux of the waves is directed away from the equator. These features
319 are similar to the oblique chorus waves that are locally generated in the low-density
320 plasmatrough region. Type II waves, below $0.5 f_{ce}$ (surrounded by magenta box), propagate

321 quasi-parallel to the ambient magnetic field with the Poynting flux directed away from the
322 equator. Case I and II (Figure 1 and Figure 2) indicate that this part of waves can be locally
323 generated (or amplified) in association with the anisotropic injected electrons. It is
324 important to note that the lower frequency boundary of Type II is dependent on the L value,
325 with a higher value at a lower L shell inside the plasmasphere. Type III waves have a higher
326 WNA ($\sim 40^\circ$) and their Poynting flux is directed towards or away from the equator with a
327 slight preference towards the equator (grey box). These waves are likely to propagate from
328 other source regions. The last type (Type IV) is at the frequency from $\sim 0.05 f_{ce}$ to $0.5 f_{ce}$
329 and at lower L shells (blue box), where the waves propagate obliquely and the Poynting
330 flux is directed towards or away from the equator. These waves might originate from
331 lightning generated whistlers due to their high frequency and low L shell locations (e.g.,
332 *Green et al.*, 2005). In the plumes, the majority of the whistler mode waves belong to Type
333 II, considering the distribution of the number of events (Figure 7a) and the accumulative
334 wave power (Figure 7b). Only a small amount of wave power for Type I exists around 0.5
335 f_{ce} (Figures 7a and 7b). The median WNA of Type I is larger in the plumes ($\sim 40^\circ$) than
336 that inside the plasmasphere ($\sim 15^\circ$). The Type III waves are also a minor part in the plumes,
337 existing over the ΔL between 0 and ~ 2 below $\sim 0.01 f_{ce}$. Therefore, the majority of the
338 whistler mode waves in plumes (Type I and Type II) may be locally amplified through
339 cyclotron resonance with anisotropic electrons. Inside the plasmasphere, the majority of
340 the hiss waves belongs to Type II and Type III, with Type II dominates at higher frequency
341 while Type III dominates at lower frequency. Inside the plasmasphere, the accumulative

342 wave power of Type III is relatively higher than that of Type II (Figure 7b), although the
343 number of events appears to be similar (Figure 7a). It is also important to note that just
344 inside the plasmapause, the waves with Poynting flux away from the equator extend to a
345 lower frequency ($\sim 0.01 f_{ce}$) (Figure 7f) and the wave power is also strong (Figure 7b). It is
346 consistent with the scenario that whistler mode emissions are preferentially locally
347 amplified just inside the plasmapause where the injected electrons can access lower L shells
348 due to the dynamics of the plasmapause (Li *et al.*, 2013; Tsurutani *et al.*, 2015). The
349 representative fractions of the sum of all magnetic spectral density for each type are 0.24%
350 for Type I, 43.98% for Type II, 55.75% for Type III and 0.04% for Type IV, clearly
351 indicating the dominant magnetic wave power of Type II and Type III.

352 Figure 8 shows the distribution of median wave normal angle and the Poynting flux
353 direction in different L and frequency domains. Figures 8a and 8b show these properties in
354 a $\Delta L - f/f_{ce}$ domain, exactly the same as Figure 7e and Figure 7f. Figures 8c and 8d show
355 the distribution in the plume region in the $L - f/f_{ce}$ domain. Most of the whistler mode waves
356 in plumes propagate quasi-parallel to the magnetic field in the frequency range from 0.04
357 f_{ce} to 0.4 f_{ce} , which is almost independent of L shell. Figures 8e and 8f show the wave
358 distribution inside the plasmasphere in the $L - f$ domain. The magenta curves in Figures 8e
359 and 8f depict the estimated frequency boundary used in Figures 2j and 2k ($f_{est} = (47/L_7)$ kHz).
360 Above this frequency, the waves have a Poynting flux mainly away from the equator, and
361 propagate quasi-parallel to the magnetic field (WNA $< 10^\circ$) except for the kHz waves
362 (corresponding to the waves around 0.5 f_{ce} in Figure 8a).

363 The WNA dependence of the number of hiss events and accumulative electric spectral
364 density is shown in Figure 9 for whistler mode waves in plumes (Figures 9a and 9c) and
365 inside the plasmasphere (Figures 9b and 9d). The black solid and the black dashed lines
366 represent the resonance cone angle ($\theta_{\text{res}} = \cos^{-1}(f/f_{ce})$) and the Gendrin angle ($\theta_g = \cos^{-1}$
367 $(2f/f_{ce})$), respectively. The majority of the waves reside in the low WNA ($< 20^\circ$) at
368 frequencies from $0.01 f_{ce}$ to $0.5 f_{ce}$, both inside the plasmasphere and in the plume region,
369 consistent with *Hartley et al.* (2018), while whistler mode waves in plumes tend to be more
370 quasi-parallel to the ambient magnetic field line compared to the waves inside the
371 plasmasphere. It is worthwhile to note that there exists a minor peak at wave normal angles
372 between the resonance cone angle and the Gendrin angle (Figures 9a–9d), which are similar
373 to the distribution of the oblique lower band chorus (*Li et al.*, 2016).

374

375 **5. Summary and Discussion**

376 In the present study, we have systematically evaluated the properties of whistler mode
377 waves inside the plasmasphere and in plumes separately through focusing on the wave
378 normal angles and the Poynting flux, based on the extensive data collected by Van Allen
379 Probes from September 2012 to June 2017. The principle findings of this study are
380 summarized as follows:

381 1. An interesting event observed by Van Allen Probes shows that rising tone structures
382 can exist in the main frequency range (100 Hz – 1 kHz) of whistler mode waves in plumes,
383 which suggests local generation of the observed emissions. These rising tone structures are

384 distinct from the unstructured plasmaspheric hiss, and each rising tone element lasts longer
385 than the typical chorus waves observed outside the plasmapause.

386 2. The occurrence rates and wave amplitudes of whistler mode waves in plumes show
387 a clear dependence on MLT and geomagnetic activity. The whistler mode waves in plumes
388 occur in a broad range of L and MLT, while the occurrence rate peaks near the dusk sector
389 during active times. The whistler mode waves in plumes intensify with increasing AE index,
390 similar to the hiss waves inside the plasmasphere. However, the wave amplitudes of
391 whistler mode waves in plumes are often stronger than those of the hiss inside the
392 plasmasphere, particularly during active times.

393 3. The intensification of whistler mode waves in plumes are associated with higher
394 electron flux from ~ 30 keV to a few hundred keV, supporting the local amplification of
395 these waves due to injected energetic electrons.

396 4. Based on the distinct wave properties (WNA and direction of Poynting flux), the
397 whistler mode waves inside the plasmasphere and in plumes can mainly be categorized into
398 four types. Type I waves, around $0.5 f_{ce}$ mostly in plumes, are similar to the oblique chorus
399 waves. Type II waves over 0.01 – $0.5 f_{ce}$ propagate quasi-parallel to the magnetic field and
400 the Poynting flux is directed away from equator. These two types of waves are likely to be
401 locally generated or amplified. Type III waves at lower frequency (below the critical wave
402 frequency which increases with decreasing L shells) have oblique WNA and propagate
403 either away from or towards the equator. These waves may propagate from other source

404 regions. The last type (Type IV) of waves is distributed at lower L shells ($<\sim 3$) with higher
405 frequencies (>100 Hz), and may originate from lightning generated whistlers.

406 5. The wave normal distribution of whistler mode waves both inside the plasmasphere
407 and in plumes exhibit two peaks, with a major peak in the quasi-parallel direction and a
408 minor peak close to the resonance cone. The wave normal angles of whistler mode waves
409 in plumes are typically smaller than those inside the plasmasphere.

410 The investigation of whistler mode waves based on Cluster observations (*Laakso et*
411 *al.*, 2015) showed that almost all hiss emissions propagate away from the magnetic equator
412 in plumes. Our statistical results based on the Van Allen Probes, which operate mainly
413 close to the equatorial plane, demonstrate a similar trend showing that most of the whistler
414 mode waves in plumes propagate away from the equator. Moreover, the whistler mode
415 wave intensifications in plumes were associated with the injection of the energetic electrons
416 at tens of keV (Figure 1i and Figure 6). *Woodroffe et al.* (2017) investigated whistler mode
417 waves in plumes observed by Van Allen Probes, which exhibit rising tone structures,
418 indicating the potential presence of nonlinear wave growth mechanism. Furthermore, a
419 recent study (*Su et al.*, 2018) provided clear evidence of internal excitation of plume hiss
420 by a combination of linear and nonlinear instability of hot electrons. Different from the
421 observation shown in *Su et al.* (2018) where the rising tones exist at frequencies around 0.5
422 f_{ce} (1 kHz), the whistler mode waves in plumes in the present study (Case I) exhibited a
423 series of rising tones in the main frequency range from 100 Hz to more than 1 kHz.
424 Moreover, the wave coherency of whistler mode waves detected in plumes was shown to

425 be quite high (*Tsurutani et al.*, 2015), also supporting the local generation of whistler mode
426 waves in plumes. Our statistical results of Poynting flux of whistler mode waves in plumes
427 and their association with energetic electron flux increase suggest that the whistler mode
428 waves in plumes are likely locally amplified and might serve as one possible source of hiss
429 waves observed inside the plasmasphere.

430 *Li et al.* (2013) provided evidence that low-frequency hiss emissions were excited by
431 local amplification through the cyclotron resonance instability due to the injection of
432 plasma sheet electrons into the plasmasphere in the prenoon sector. In their study, however,
433 the calculated linear growth rate was inconsistent with the observed hiss intensity at lower
434 L shells. When the Poynting flux (away from equator) is taken into account, the discrepancy
435 can be well explained (local growth can only account for the wave amplification at higher
436 frequency at $L < \sim 4.5$), which is similar to our Case II shown in Figure 2. The ray tracing
437 of low frequency hiss by *Chen et al.* (2014) supported local wave amplification and
438 demonstrated that cyclic amplification due to wave propagation could account for
439 sufficient net wave gain (> 40 dB) to excite low frequency hiss emissions from the thermal
440 noise to the observable level. The systematic evaluation of low frequency hiss also
441 supported the scenario of local amplification of hiss waves (*Shi et al.*, 2017). However, in
442 the present study we provide credible evidence through a systematic statistical analysis that
443 the hiss waves at higher frequency can also be generated or amplified through the same
444 local amplification processes by interacting with energetic electrons. This is due to the fact
445 that the frequency of the waves in resonance with electrons at a fixed energy increases with

446 decreasing L shell due to the decreasing ratio (between the plasma and electron cyclotron
447 frequency) with decreasing L shell inside the plasmasphere (*Sheeley et al.*, 2001). At lower
448 frequencies, which cannot be explained by local amplification, the hiss waves may
449 propagate from other sources. These sources may include the seed wave signals from the
450 whistler mode chorus waves outside the plasmasphere, the whistler mode waves in the
451 plumes or the hiss emissions inside the plasmasphere at higher L shells. Over the main
452 frequency range (50-1000 Hz), the Poynting flux of the hiss waves inside the plasmasphere
453 propagates away from the magnetic equator at higher L shells, while they propagate either
454 away or towards the equator at lower L shells, which is consistent with *Kletzing et al.*
455 (2014).

456 Our statistical results provide critical insights into understanding the generation of
457 whistler mode waves at various frequencies inside the plasmasphere and plumes separately.
458 It is important to note that whistler mode waves are extensively present inside the plumes,
459 often with even higher wave intensity than that inside the plasmasphere. Since whistler
460 mode waves in plumes could be very effective in electron scattering loss (*Summers et al.*,
461 2008; *Zhang et al.*, 2018), we suggest that the effect of whistler mode waves in plumes
462 should be properly incorporated into radiation belt modeling.

463

464 **Acknowledgments**

465 The work at Boston University is supported by the NASA grants NNX15AI96G,
466 NNX17AG07G, and NNX17AD15G, NSF grant AGS-1847818, and the Alfred P. Sloan

467 Research Fellowship FG-2018-10936. We acknowledge the RBSP-ECT and EMFISIS
468 funding provided by JHU/APL contract No. 967399 and 921647 under NASA's prime
469 contract No. NAS5-01072. We would like to acknowledge the EMFISIS data obtained
470 from <http://emfisis.physics.uiowa.edu>, the MagEIS data obtained from <http://www.rbsp-ect.lanl.gov/science/DataDirectories.php>, and the EFW data obtained from
471 <http://rbsp.space.umn.edu/data/rbsp/>. We also thank the World Data Center for
472 Geomagnetism, Kyoto for providing AE index used in this study.
473

474 References

475 Agapitov, O. V., D. Mourenas, A. V. Artemyev, and F. S. Mozer (2016), Exclusion
476 principle for very oblique and parallel lower band chorus waves, *Geophys. Res. Lett.*, 43,
477 11,112–11,120, doi:10.1002/2016GL071250.

478 Albert, J. M. (2005), Evaluation of quasi-linear diffusion coefficients for whistler mode
479 waves in a plasma with arbitrary density ratio, *J. Geophys. Res.*, 110, A03218,
480 doi:10.1029/2004JA010844.

481 Blake, J. B., et al. (2013), The Magnetic Electron Ion Spectrometer (MagEIS) Instruments
482 Aboard the Radiation Belt Storm Probes (RBSP) spacecraft, *Space. Sci. Rev.*,
483 doi:10.1007/s11214-013-9991-8.

484 Bortnik, J., R. M. Thorne, and N. P. Meredith (2008), The unexpected origin of
485 plasmaspheric hiss from discrete chorus emissions, *Nature*, 452, 62–66,
486 doi:10.1038/nature06741.

487 Bortnik, J., W. Li, R. M. Thorne, V. Angelopoulos, C. Cully, J. Bonnell, O. Le Contel, and
488 A. Roux (2009), An Observation linking the origin of plasmaspheric hiss to discrete chorus
489 emissions, *Science*, 324, 775–778, doi:10.1126/science.1171273.

490 Breneman, A. W., et al. (2015), Global-scale coherence modulation of radiation-belt
491 electron loss from plasmaspheric hiss, *Nature*, 523, 193–195, doi:10.1038/nature14515.

492 Burtis, W. J., and R. A. Helliwell (1969), Banded chorus—A new type of VLF radiation
493 observed in the magnetosphere by OGO 1 and OGO 3, *J. Geophys. Res.*, 74(11), 3002–
494 3010, doi:10.1029/JA074i011p03002.

495 Chappell, C. R. (1974), Detached plasma regions in the magnetosphere, *J. Geophys. Res.*, 79(13), 1861–1870, doi: 10.1029/JA079i013p01861.

496

497 Chen, M. W., J. L. Roeder, J. F. Fennell, L. R. Lyons, R. L. Lambour, and M. Schulz (1999),

498 Proton ring current pitch angle distributions: Comparison of simulations with CRRES

499 observations, *J. Geophys. Res.*, 104(A8), 17,379–17,389.

500 Chen, L., J. Bortnik, W. Li, R. M. Thorne, and R. B. Horne (2012a), Modeling the

501 properties of plasmaspheric hiss: 1. Dependence on chorus wave emission, *J. Geophys. Res.*,

502 117, A05201, doi:10.1029/2011JA017201.

503 Chen, L., R. M. Thorne, W. Li, J. Bortnik, D. Turner, and V. Angelopoulos

504 (2012b), Modulation of plasmaspheric hiss intensity by thermal plasma density

505 structure, *Geophys. Res. Lett.*, 39, L14103, doi: 10.1029/2012GL052308.

506 Green, J. L., S. Boardsen, L. Garcia, W. W. L. Taylor, S. F. Fung, and B. W. Reinisch

507 (2005), On the origin of whistler mode radiation in the plasmasphere, *J. Geophys. Res.*,

508 110, A03201, doi:10.1029/2004JA010495.

509 Hartley, D. P., Kletzing, C. A., Santolík, O., Chen, L., & Horne, R. B. (2018). Statistical

510 properties of plasmaspheric hiss from Van Allen Probes observations. *Journal of*

511 *Geophysical Research: Space Physics*, 123, 2605–

512 2619. <https://doi.org/10.1002/2017JA024593>

513 Kennel, C. F., and H. E. Petschek (1966), Limit on stably trapped particle fluxes, *J.*

514 *Geophys. Res.*, 71(1), 1–28, doi:10.1029/JZ071i001p00001.

515 Kletzing, C. A., et al. (2013), The Electric and Magnetic Field Instrument Suite and
516 Integrated Science (EMFISIS) on RBSP, *Space Sci. Rev.*, 179, 127–181,
517 doi:10.1007/s11214-013-9993-6.

518 Kletzing, C., Kurth, W. S., Bounds, S. R., Hospodarsky, G. B., Santolik, O., Wygant, J.
519 R., ... Summers, D. (2014). Evidence for significant local generation of plasmaspheric hiss.
520 Abstract SM14A-09 Presented at the 2014 AGU Fall Meeting, San Francisco, CA,
521 December 15–19.

522 Koons, H. C., and J. L. Roeder (1990), A survey of equatorial magnetospheric wave activity
523 between 5 and 8 RE, *Planet. Space Sci.*, 38(10), 1335–1341, doi:10.1016/0032-
524 0633(90)90136-E.

525 Kurth, W. S., De Pascuale, S., Faden, J. B., Kletzing, C. A., Hospodarsky, G. B., Thaller,
526 S. and Wygant, J. R. (2015), Electron densities inferred from plasma wave spectra
527 obtained by the Waves instrument on Van Allen Probes. *J. Geophys. Res. Space
528 Physics*, 120: 904–914. doi: 10.1002/2014JA020857.

541 Laakso, H., O. Santolik, R. Horne, I. Kolmasová, P. Escoubet, A. Masson, and M. Taylor
542 (2015), Identifying the source region of plasmaspheric hiss, *Geophys. Res. Lett.*, 42, 3141–
543 3149, doi:10.1002/2015GL063755.

544 Lee, S. H., H. Zhang, Q.-G. Zong, A. Otto, H. Rème, and E. Liebert (2016), A statistical
545 study of plasmaspheric plumes and ionospheric outflows observed at the dayside
546 magnetopause, *J. Geophys. Res. Space Physics*, 121, 492–506,
547 doi: 10.1002/2015JA021540.

548 Li, W., et al. (2010), THEMIS analysis of observed equatorial electron distributions
549 responsible for the chorus excitation, *J. Geophys. Res.*, 115, A00F11,
550 doi: 10.1029/2009JA014845.

551 Li, W., et al. (2013), An unusual enhancement of low-frequency plasmaspheric hiss in the
552 outer plasmasphere associated with substorm-injected electrons, *Geophys. Res. Lett.*, 40,
553 3798–3803, doi:10.1002/grl.50787.

554 Li, W., Q. Ma, R. M. Thorne, J. Bortnik, C. A. Kletzing, W. S. Kurth, G. B. Hospodarsky,
555 and Y. Nishimura (2015a), Statistical properties of plasmaspheric hiss derived from Van
556 Allen Probes data and their effects on radiation belt electron dynamics. *J. Geophys. Res.*
557 *Space Physics*, 120, 3393–3405. doi: 10.1002/2015JA021048.

558 Li, W., L. Chen, J. Bortnik, R. M. Thorne, V. Angelopoulos, C. A. Kletzing, W. S. Kurth,
559 and G. B. Hospodarsky (2015b), First evidence for chorus at a large geocentric distance as
560 a source of plasmaspheric hiss: Coordinated THEMIS and Van Allen Probes observation,
561 *Geophys. Res. Lett.*, 42, 241–248, doi:10.1002/2014GL062832.

562 Li, W., O. Santolik, J. Bortnik, R. M. Thorne, C. A. Kletzing, W. S. Kurth, and G. B.
563 Hospodarsky (2016), New chorus wave properties near the equator from Van Allen Probes
564 wave observations, *Geophys. Res. Lett.*, 43, 4725–4735, doi: 10.1002/2016GL068780.

565 Lyons, L. R., R. M. Thorne, and C. F. Kennel (1972), Pitch-angle diffusion of radiation
566 belt electrons within the plasmasphere, *J. Geophys. Res.*, 77(19), 3455–3474,
567 doi:10.1029/JA077i019p03455.

568 Lyons, L. R., and R. M. Thorne (1973), Equilibrium structure of radiation belt electrons, *J.*
569 *Geophys. Res.*, 78(13), 2142–2149, doi:10.1029/JA078i013p02142.

570 Ma, Q., et al. (2016), Characteristic energy range of electron scattering due to
571 plasmaspheric hiss, *J. Geophys. Res. Space Physics*, 121, 11,737–11,749,
572 doi:10.1002/2016JA023311.

573 Malaspina, D. M., A. N. Jaynes, C. Boul, J. Bortnik, S. A. Thaller, R. E. Ergun, C. A.
574 Kletzing, and J. R. Wygant (2016), The Distribution of Plasmaspheric Hiss Wave Power
575 with Respect to Plasmapause Location, *Geophys. Res. Lett.*, 43, 7878–7886,
576 doi:10.1002/2016GL069982.

577 Mauk, B. H., N. J. Fox, S. G. Kanekal, R. L. Kessel, D. G. Sibeck, and A. Ukhorskiy (2012),
578 Science Objectives and Rationale for the Radiation Belt Storm Probes Mission, *Space Sci.*
579 *Rev.*, 1–15, doi:10.1007/s11214-012-9908-y.

580 Meredith, N. P., R. B. Horne, R. M. Thorne, D. Summers, and R. R. Anderson (2004),
581 Substorm dependence of plasmaspheric hiss, *J. Geophys. Res.*, 109, A06209,
582 doi:10.1029/2004JA010387.

583 Meredith, N. P., R. B. Horne, J. Bortnik, R. M. Thorne, L. Chen, W. Li, and A. Sicard-
584 Piet (2013), Global statistical evidence for chorus as the embryonic source of
585 plasmaspheric hiss, *Geophys. Res. Lett.*, 40, 2891–2896, doi:10.1002/grl.50593.

586 Ni, B., J. Bortnik, R. M. Thorne, Q. Ma, and L. Chen (2013), Resonant scattering and
587 resultant pitch angle evolution of relativistic electrons by plasmaspheric hiss, *J. Geophys.*
588 *Res. Space Physics*, 118, 7740–7751, doi:10.1002/2013JA019260.

589 Santolík, O., M. Parrot, and F. Lefevre (2003), Singular value decomposition methods for
590 wave propagation analysis, *Radio Sci.*, 38, 1010, doi:10.1029/2000RS002523, 1.

591 Santolík, O., D. A. Gurnett, J. S. Pickett, J. Chum, and N. Cornilleau - Wehrlin
592 (2009), Oblique propagation of whistler mode waves in the chorus source region, *J.*
593 *Geophys. Res.*, 114, A00F03, doi:10.1029/2009JA014586.

594 Sheeley, B. W., Moldwin, M. B., Rassoul, H. K., & Anderson, R. R. (2001). An empirical
595 plasmasphere and trough density model: CRRES observations. *Journal of Geophysical*
596 *Research*, 106, 25,631–25,642. <https://doi.org/10.1029/2000JA000286>

597 Shi, R., Li, W., Ma, Q., Reeves, G. D., Kletzing, C. A., Kurth, W. S., ... Claudepierre, S.
598 G. (2017). Systematic evaluation of low-frequency hiss and energetic electron
599 injections. *Journal of Geophysical Research: Space Physics*, 122, 10,263–
600 10,274. <https://doi.org/10.1002/2017JA024571>.

601 Shi, R., Li, W., Ma, Q., Claudepierre, S. G., Kletzing, C. A., Kurth, W. S., Hospodarsky,
602 G. B., Spence, H. E., Reeves, G. D., Fennell, J. F., Blake, J. B., Thaller, S. A., and Wygant,
603 J. R. (2018), Van Allen Probes observation of plasmaspheric hiss modulated by injected
604 energetic electrons, *Ann. Geophys.*, 36, 781-791, <https://doi.org/10.5194/angeo-36-781-2018>.

605 Spasojevic, M., Y. Y. Shprits, and K. Orlova (2015), Global empirical models of
606 plasmaspheric hiss using Van Allen Probes, *J. Geophys. Res. Space Physics*, 120, 10,370–
608 10,383, doi:10.1002/2015JA021803.

609 Spence, H. E., et al. (2013), Science Goals and Overview of the Energetic Particle,
610 Composition, and Thermal Plasma (ECT) Suite on NASA's Radiation Belt Storm Probes
611 (RBSP) Mission, *Space Sci. Rev.*, doi:10.1007/s11214-013-0007-5.

684 Su, Z., Liu, N., Zheng, H., Wang, Y., & Wang, S. (2018). Large-amplitude extremely low
685 frequency hiss waves in plasmaspheric plumes. *Geophysical Research Letters*, 45, 565–
686 577. <https://doi.org/10.1002/2017GL076754>

687 Summers, D., B. Ni, N. P. Meredith, R. B. Horne, R. M. Thorne, M. B. Moldwin, and R.
688 R. Anderson (2008), Electron scattering by whistler-mode ELF hiss in plasmaspheric
689 plumes, *J. Geophys. Res.*, 113, A04219, doi:10.1029/2007JA012678.

690 Summers, D., R. Tang, and R. M. Thorne (2009), Limit on stably trapped particle fluxes in
691 planetary magnetospheres, *J. Geophys. Res.*, 114, A10210, doi:10.1029/2009JA014428.

692 Thorne, R. M., E. J. Smith, R. K. Burton, and R. E. Holzer (1973), Plasmaspheric hiss, *J.*
693 *Geophys. Res.*, 78(10), 1581–1596, doi:10.1029/JA078i010p01581.

694 Thorne, R. M., S. R. Church, and D. J. Gorney (1979), On the origin of plasmaspheric
695 hiss—The importance of wave propagation and the plasmapause, *J. Geophys. Res.*, 84,
696 5241–5247, doi:10.1029/JA084iA09p05241.

697 Tsurutani, B. T., and E. J. Smith (1974), Postmidnight chorus: A substorm phenomenon, *J.*
698 *Geophys. Res.*, 79(1), 118–127, doi:10.1029/JA079i001p00118.

699 Tsurutani, B. T., B. J. Falkowski, J. S. Pickett, O. Santolik, and G. S. Lakhina (2015),
700 Plasmaspheric hiss properties: Observations from Polar, *J. Geophys. Res. Space Physics*,
701 120, 414–431, doi:10.1002/2014JA020518.

702 Woodroffe, J. R., V. K. Jordanova, H. O. Funsten, A. V. Streltsov, M. T. Bengtson, C. A.
703 Kletzing, J. R. Wygant, S. A. Thaller, and A. W. Breneman (2017), Van Allen Probes
704 observations of structured whistler mode activity and coincident electron Landau
705 acceleration inside a remnant plasmaspheric plume, *J. Geophys. Res. Space Physics*, 122,
706 3073-3086, doi: 10.1002/2015JA022219.

707 Wygant, J., Bonnell, J., Goetz, K., Ergun, R., Mozer, F., Bale, S., Tao, J. (2013). The
708 electric field and waves instruments on the Radiation Belt Storm Probes mission. *Space
709 Science Reviews*, 179(1–4), 183–220. <https://doi.org/10.1007/s11214-013-0013-7>

710 Zhang, W., Fu, S., Gu, X., Ni, B., Xiang, Z., Summers, D., et al. (2018). Electron
711 scattering by plasmaspheric hiss in a nightside plume. *Geophysical Research Letters*, 45,
712 4618–4627. <https://doi.org/10.1029/2018GL077212>

713 **Figure Captions**

714 **Figure 1.** An example of whistler mode waves in plumes in association with electron
715 injection. (a) AE index (black) and AE^* (blue), which is the maximum AE in the preceding
716 3 hours; (b) frequency-time spectrogram for the HFR channel; (c) plasma density, where
717 the magenta line corresponds to the density in plume regions. (d) Frequency-time
718 spectrogram of wave electric field and (e) wave magnetic field spectral density in the WFR
719 channel; (f) identification of the observed plasma waves: hiss waves inside the
720 plasmasphere (yellow), whistler mode waves inside plumes (orange), chorus waves (cyan)
721 and magnetosonic waves (red); (g) wave normal angle of whistler mode waves; (h) angle
722 between the Poynting vector and the background magnetic field for whistler mode waves;
723 (i) energy spectrum of spin-averaged electron flux measured by MagEIS. The bottom
724 panels show the waveform data including magnetic field spectra and the WNA of
725 plasmaspheric hiss (j-k); whistler mode waves in the plume region (l-m), and typical chorus
726 waves in low-density plasmatrough (n-o). The vertical red dashed lines correspond to these
727 three occasions.

728 **Figure 2.** An example of hiss waves inside the plasmasphere in association with electron
729 injection. (a) AE index (black); (b) frequency-time spectrogram for the HFR channel; (c)
730 frequency-time spectrogram of wave electric field and (d) wave magnetic field in the WFR
731 channel, where the two magenta lines represent f_{ce} (solid) and $0.5 f_{ce}$ (dashed). (e)
732 Identification of the observed plasmaspheric hiss; (f) energy spectrum of spin-averaged
733 electron flux measured by MagEIS; (g) electron anisotropy; (h) plasma density, where the

734 black dashed line corresponds to a density of 100 cm⁻³. (i) Angles between the Poynting
735 vector and the background magnetic field; (j) wave normal angles; (k) convective linear
736 wave growth rates calculated for various frequencies. The black lines in Figures 2c-2e and
737 2i-2k are the estimated frequency boundary of waves ($f_{\text{est}} = (4\gamma/L_7)$ kHz) separating
738 Poynting flux directed away from the equator from that towards the equator. The orange
739 circles in Figures 2c, 2d, 2i, 2j, and 2k represent the regime where the calculated linear
740 growth rates are inconsistent with the observed hiss intensification.

741 **Figure 3.** Global distribution of hiss inside the plasmasphere in the *L*-MLT domain. (a)
742 Number of data samples, (b) number of hiss events, (c) occurrence rate of hiss, and (d) root
743 mean square (RMS) of hiss magnetic wave amplitude, during quiet ($AE^* < 200$ nT),
744 modestly disturbed ($200 < AE^* < 500$ nT), and active times ($AE^* > 500$ nT).

745 **Figure 4.** Global distribution of whistler mode waves in plumes in the *L*-MLT domain. (a)
746 Number of data samples outside the plasmasphere (including the plasma trough and plume
747 regions), (b) occurrence of plumes outside the plasmapause, (c) number of whistler mode
748 wave events in plumes, (d) occurrence of whistler mode waves in plumes (the ratios
749 between the values in Figure 4c and those in Figure 4a), and (e) RMS wave amplitudes of
750 whistler mode waves in plumes.

751 **Figure 5.** Global distribution of whistler mode waves inside the plasmasphere and plumes
752 categorized by the distance to the plasmapause. (a) Number of data samples inside the
753 plasmasphere and plumes, (b) number of whistler mode wave events, (c) occurrence rate
754 of whistler mode waves, and (d) RMS magnetic wave amplitude of whistler mode waves,

755 during quiet ($AE^* < 200$ nT), modestly disturbed ($200 < AE^* < 500$ nT), and active times
756 ($AE^* > 500$ nT).

757 **Figure 6.** Averaged electron fluxes measured by MagEIS when the magnetic amplitude of
758 the whistler mode waves in plumes is (a) greater than 30 pT and (b) less than 30 pT. (c)
759 The ratio between the averaged electron flux when the magnetic amplitude greater than 30
760 pT and less than 30 pT. The black line in Figure 6a (Figure 6b) represents the number of
761 whistler mode wave events with wave amplitudes larger (smaller) than 30 pT as a function
762 of L shell.

763 **Figure 7.** Whistler mode wave properties in the $\Delta L-f/f_{ce}$ domain. (a) Number of wave
764 events, (b) accumulative magnetic spectral density (summation of the magnetic spectral
765 density of whistler mode waves), (c) mean value of wave electric spectral density, (d) wave
766 magnetic spectral density, (e) median WNA, and (f) direction of Poynting flux weighted
767 by wave magnetic power. The vertical dashed lines represent the location of the
768 plasmapause. Four types of whistler mode waves are highlighted by four different colors
769 in Figures 7e and 7f.

770 **Figure 8.** Whistler mode wave properties in the $\Delta L-f/f_{ce}$ domain or $L-f/f_{ce}$ domain. (a) and
771 (b) are the same as Figures 7e and 7f. (c) Median WNA and (d) direction of Poynting flux
772 of whistler mode waves in plumes in the $L-f/f_{ce}$ domain. (e) Median WNA and (f) direction
773 of Poynting flux of hiss waves inside the plasmasphere in the $L-f$ domain, where the
774 magenta dashed line is the estimated frequency boundary of waves ($f_{est} = (47/L_7)$ kHz)
775 separating Poynting flux directed away from the equator from that towards the equator.

776 **Figure 9.** Wave properties as a function of WNA and f/f_{ce} inside plumes and the
777 plasmasphere separately. (a) Number of whistler mode wave events in plumes, (b) number
778 of hiss events inside the plasmasphere. (c) Accumulative wave electric spectral density of
779 whistler mode waves in plumes and (d) hiss waves inside the plasmasphere. The black solid
780 and the black dashed lines represent the resonance cone angle ($\theta_{res} = \cos^{-1}(f/f_{ce})$) and the
781 Gendrin angle ($\theta_g = \cos^{-1}(2f/f_{ce})$), respectively.