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Ride-Sharing Networks with Mixed Autonomy

Qinshuang Wei, Jorge Alberto Rodriguez, Ramtin Pedarsani and Samuel Coogan

Abstract— We consider ride-sharing networks served by
human-driven vehicles and autonomous vehicles. First, we
propose a novel model for ride-sharing in this mixed autonomy
setting for a multi-location network in which the platform
sets prices for riders, compensation for drivers, and operates
autonomous vehicles for a fixed price. Then we study the
possible benefits, in the form of increased profits, to the ride-
sharing platform that are possible by introducing autonomous
vehicles. We first establish a nonconvex optimization problem
characterizing the optimal profits for a network operating
at a steady-state equilibrium and then propose a convex
problem with the same optimal profits that allows for efficient
computation. Next, we study the relative mix of autonomous and
human-driven vehicles that results at equilibrium for various
costs of operation for autonomous vehicles. In particular, we
show that there is a regime for which the platform will choose
to mix autonomous and human-driven vehicles in order to
optimize profits. Our results provide insights into how such
ride-sharing platforms might choose to integrate autonomous
vehicles into their fleet.

I. INTRODUCTION

Ride-sharing platforms, also known as transportation net-
work companies, match passengers or riders with drivers
using websites or mobile apps and have become ubiquitous in
major cities across the world [1], [2]. The rise of ride-sharing
platforms coincides with a decline in private car ownership
due to high costs, lack of parking, and persistent traffic
congestion [1], [3]-[5]. Traditionally, rides are provided by
drivers who use their own personal vehicle to provide service.

However, ride-sharing platforms have indicated that they
intend to incorporate autonomous vehicles (AVs) into their
fleet in the near future [6]. AVs managed by the ride-sharing
platform can be directed to specific locations as needed.
However, owning and managing an AV fleet can be costly
for the ride-sharing platform, and significant technological
hurdles remain before these platforms could transition to
100% autonomous fleets. For these reasons, it is likely
that ride-sharing platforms will, at least initially, adopt a
hybrid or mixed framework in which AVs operate along-
side conventional, human-driven vehicles [7]. For example,
the ride-sharing platform Lyft has partnered with Aptiv, a
manufacturer of autonomous cars, to serve some of its ride
requests in Las Vegas, Nevada with AVs [8]. In this setting,
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the AVs can be deployed to serve, for instance, locations
with abnormally high demand.

Research in ride-sharing platforms has largely focused on
two ends of the autonomy spectrum. On one end, models
of rider and driver behavior in conventional ride-sharing
markets with no AVs have only appeared in the literature
relatively recently [9]-[12]. A common approach in these
works is to conside ride-sharing as a two-sided market with
passengers willing to pay for rides and drivers willing to
provide rides for compensation. On the other end, futuristic
mobility-on-demand systems consisting of only AVs have
also been proposed and studied [13]-[16]. These works focus
on controlling the movement of AVs to achieve objectives
such as maximum throughput.

In this paper, we consider the transition from tradi-
tional ride-sharing networks to totally automated mobility-
on-demand systems. We propose and study a model for this
mixed autonomy setting with both AVs and human-driven
vehicles that is an extension of the model for traditional ride-
sharing recently introduced in [9]. In the proposed model,
the network consists of multiple equidistant locations, and at
each time-step, potential riders arrive at these locations with
desired destinations. The ride-sharing platform sets prices for
riders and compensation to drivers in order to incentivize
both riders and drivers to use the platform. In addition, the
platform has the option to use AVs for a fixed cost. If human
drivers and AVs are both present at a location when a rider
requests a ride, in this work, we make the assumption that the
platform exhausts the human drivers before using AVs. This
assumption is motivated by the fact that, all else equal, the
platform prefers to favor human drivers in order to encourage
their continued engagement in the platform.

Here, as in [9], we focus on the equilibrium conditions
that arise in the resulting mixed autonomy network when
the platform seeks to maximize profits, and we pose these
conditions as a nonconvex optimization problem. We then
provide an alternative convex problem from which an optimal
solution to the original problem can be recovered. Next,
we study the relative mix of autonomous and human-driven
vehicles that results at equilibrium for various costs of
operation for AVs. Our results support the intuition that,
when the cost of operating AVs is high, the platform will not
utilize them in its fleet, and when the cost is low, the platform
will use only AVs. Perhaps surprisingly, we also show that
there is a regime for which the platform will choose to mix
autonomous and human-driven vehicles in order to maximize
profits, thus providing insights into how such ride-sharing
platforms might choose to integrate AVs into their fleet.

The remainder of this paper is organized as follows.
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Section II provides the model definition, and Section III
poses the problem of profit maximization as a nonconvex
optimization problem. Section IV provides an alternative
convex optimization problem that provides the same optimal
profits. In Section V, we investigate a particular class of
networks and provide a theoretical upper bound on the
ratio of driver’s compensation to the cost of AVs above
which no AVs are used at the profit-maximizing equilibrium.
Section VI provides a numerical study further illuminating
the implications of the proposed model, and concluding
remarks are in Section VIL

II. PROBLEM FORMULATION

We consider an infinite horizon discrete time model of
a ride-sharing network that extends the model recently pro-
posed in [9] to accommodate a mixed autonomy setting with
AVs and human-driven vehicles. The network is assumed to
consist of n locations that have the same distance between
each other. The network operator or platform determines
prices for rides and compensations to drivers within the
network. We briefly summarize some of the key features
and findings of the model introduced in [9] before providing
the mathematical details of our extended model for mixed
autonomy.

1) Drivers decide whether, when, and where to provide
service so as to maximize their expected lifetime earn-
ings. In particular, drivers have an outside option with
known earnings and only participate in the platform
if compensations are such that in expectation their
equilibrium lifetime earnings are at least this outside
option.

2) The demand pattern of riders is stationary. As such, the
analysis focuses on the equilibrium outcome determined
by the platform’s prices. This is reasonable for ride-
sharing systems that involve a large number of drivers
and riders.

3) The price of a ride may differ among locations, but does
not depend on the desired destination of each rider. This
is reasonable when all locations are equidistant, as is the
case here.

With these considerations in mind, we are interested in
studying the potential benefits of adding AVs to the network
to maximize the profit potential for the platform.

A. Model Definition

We now formalize the mixed autonomous ride-sharing
network described above.
The model consists of the following parameters:

« n, number of equidistant locations

o 6;, mass of potential riders that arrive at location ¢ in
each period of time

e «yj, fraction of riders at location ¢+ who wish to go to
location j satisfying -, ojj = 1 for all i. We assume
ay; = 0 for all ¢ and construct the n-by-n adjacency
matrix A as [A];; = a;; where [A];; denotes the ij-th
entry of A.

e (1 — ), probability that a driver exits the platform
after completing a ride, where 5 € (0, 1). Thus, drivers
remain in the network and provide service for a finite
amount of time, and a driver’s expected lifetime in the
network is (1 — 3)~*.

e w, outside option earnings for the driver’s lifetime.
Drivers only participate if the compensations c¢; pro-
vided by the platform are such that in expectation their
equilibrium lifetime earnings are at least w.

¢ 5, the cost to the platform of operating an AV for the
equivalent time of a driver’s expected lifetime.

o k= 2, the ratio of the cost of operating an AV for the
equivalent time of a driver’s expected lifetime to the
outside option earnings.

With these parameters, we then introduce:

« p;, the price set by the platform for a ride from location
i.

e ¢, the corresponding compensation for the driver for
providing a ride at location .

e F(-), the continuous cumulative distribution of the
riders” willingness to pay with the support [0, p]. When
confronted with a price p for a ride, a fraction 1 — F'(p)
of riders will accept this price, and the remaining F'(p)
fraction will balk and leave the network without taking
a ride. Note that 6;(1 — F'(p;)) is the effective demand
for rides at location %.

In addition, we make the following assumption throughout
the paper.

Assumption 1:

o The networks demand pattern is stationary with 6; > 0

forall s € {1,...,n}, ie., (A,#0) is fixed for all time.

o The directed graph defined by adjacency matrix A is

strongly connected.

In summary, the system consists of a platform that sets
prices, riders that request rides among locations, drivers who
seek to maximize their compensation within the system, and
AVs managed by the platform alongside the drivers.

B. Equilibrium Definition

Next, we characterize the equilibrium conditions that
are induced by the stationary demand as characterized in
Assumption 1 and by fixed prices and compensations set
by the platform. An equilibrium for the system is a time-
invariant distribution of the mass of riders, drivers, and AVs
at each location, as formalized below.

Let x; denote the mass of drivers at location 7. If there are
fewer riders than drivers at a location, drivers can relocate to
another location to provide service in the next time period.
For each j,k € {1,...,n}, let y;; denote the drivers who do
not get a ride at location j and choose to relocate to location
k for the next period. It follows that

> ik = max {z; — 0;(1 — F(p;),0}. (1)

k=1

Moreover, Y ; Yji 1s the mass of drivers who do not get a
ride to any other location and choose to relocate to 7. Further,



let §; denote the mass of new drivers who choose to enter
the platform and provide service at location ¢ at each time
step. At equilibrium, it must hold that

Fpi)} + > vsi| + 6.

j=1

)
In (2), observe that min{z;,6;(1 — F(p;))} is the total
demand the platform serves with human-driven cars at loca-
tion j, and therefore Y7, avj; min {x;,0;(1 — F(p;))} is
the mass of drivers who find themselves located at ¢ after
completing a ride. Recall that a fraction /3 of drivers choose
to stay in the network after each time step.

When the demand min {x;,0;(1 — F(p;))} at location i
exceeds the mass of available drivers z;, the platform can
choose to use AVs to meet this extra demand. Let z; denote
the mass of AVs at location 7, and for each j, k € {1,...,n},
let 7, denote the AVs which do not get a ride at j and are
relocated to location k. Then

2 = Z aj; min {z;, max {6;(1 — F(p;)) — z;,0}}

J=1

+ Z T 3)

In (3), observe that min {z;, max {6;(1 — F(p;)) — z;,0}}
is the total demand that the platform
serves  with  AVs at  location j so that
> i—y agimin {z;, max {0;(1 — F(p;)) — z;,0}} is the
mass of AVs which are located at ¢ after completing a ride.
Moreover, Z?:l 74 1s the mass of AVs which do not get a
ride to any other location and are relocated to location ¢,
and it follows that

erk = max {z; — max{0;(1 — F(p;)) — z;,0},0}.

k=1
“)
Here, we assume that AVs are in continual use and
do not leave the platform. Furthermore, as discussed in
the Introduction, we assume human-drivers have priority in
serving demand so that AVs are only used to meet demand
that exceeds the mass of drivers. This is because, in a
mixed autonomy setting, we assume the platform prefers to
favor human drivers in order to encourage their continued
engagement in the platform.
Let V; denote the expected earnings for a driver at location
1 so that

v, = min{w, 1} (ci + iaikﬁvl@)
o k=1

+ (1 —min{w’

i

Z Qi min {.”L'j, 93(1
j=1

1}) BmaxV;. (5)
J

Since drivers will only enter the platform if V; > w, i.e.,
the expected earnings exceed the drivers’ outside option, the
platform will choose compensation such that V; = w.

Definition 1: For some prices and compensations

. n .
{pi, i}, the collection {51',171',%3',21',7’1'3'}1-_3-:1 is an

equilibrium under {p;,c;}?"_, if (1)~(4) is satisfied and
Vi=wforalli=1,..,n

III. PROFIT-MAXIMIZATION OPTIMIZATION PROBLEM

We now consider the problem of maximizing profits at
equilibrium. Maximizing the aggregate profit rate across the
n locations subject to the systems equilibrium constraints
yields the following optimization problem:

n

max

[min {z; + 2;,0;(1 —
{pi,citi_,

i=1
—min {a;, 6;(1 —

F(pi))} - pi

F(pi))}-ci— 28]
s.t. {8, Ti, Yij, Zi,’rij}?jzl is an equilibrium
under {p;, c;}1 ;. 6)

Next, we propose an equivalent optimization problem, fol-
lowed by a lemma establishing the equivalence. To this end,
consider

Son

i=1
- F(pi))

s.t. d; —91(
> ajimin{z;,di} + > yi| + 6

J=1 Jj=1

Zyw =max{z; —d;,0}
n
zi = Z o max {d; —x;,0} + Z Tji
=1 Jj=1
n

E Tij =% — Max {dz

j=1

F(p;) —wZ& —sZzl

{ZD1 0; Il ’yw Zi, TzJ

—ZCZ,O}

Piy0iy Ziy Tiy Yig, Tig > 0 Vi, j. (7N

Lemma 1: Consider optimization problem (7).

1) The optimal value computed from (7) is an upper bound
on the optimal profits computed via (6); thus it provides
an upper bound on the profits generated by the platform
with prices depending on the origin of a ride.

2) If {pz,dl,xl,yw,zur”} is a feasible solution for
(7) such that d; > 0 for all i, z e., some riders are served
at all locations, then there exist compensations {c;};-_;
such that the tuple {él,xl,yu,zl,r”} _, constitutes
an equilibrium under {p;, ¢;}._,. Furthermore the cost
incurred by the platform under these compensations per
period is equal to w >\ | §;

3) If, in addition, ( 1 — B)w < p, any optimal solution
{pz,éz, x},yy;, 20y} for (7), is such that d > 0 for
all i. Conversely, if (1 — 8)w > p, any optlmal solution
for (7) is such that 67 = d} = 27 =0 for all <.

Proof: The proof of the lemma closely follows that of
[9, Lemma 1], where we adjust the claim and the proof so
that it applies to the mixed-autonomy setting here.

For the first part of the lemma, we need to show that

any solution for (6) satisfies d; = 0;,(1 — F(p;)) < x; + 2.



By contradiction, suppose d; > x; + z;, so that increasing
the price p; by a small amount (and thus decreasing 6;(1 —
F(p;))) will improve the value of the objective function.
Therefore, d; < x; + z; at optimality. Hence we can write
the first summation of (6) as

Zmin{xi—i-zi,ei(l F(pl))} = 291(1
i=1 1=1
(®)

The term w Zl d; is the cost rate for drivers of the platform,
which is a lower bound for the platform’s cost on human-
driven vehicles at equilibrium. Moreover, the constraints
in (7) correspond to the equilibrium constraints in (6).
Therefore, the optimal value of (7) is an upper bound for
that of (6).

Next, we’ll see that the upper bound can be reached by the
optimal solution supported by some compensations {c;};_,
under equilibrium.

To prove the second part of the lemma, we construct a
compensation {cl-}?zl so that V; = w Vi. To that end, let

F e =) ifd <a
“T {w(l _ﬁ) if d; > x;. ©)

Since we assumed that d; > 0 for all 4, then ¢; < oo for all
¢ and thus the compensation is well-defined. Moreover, the
probability that any driver at location 1 is assigned to a ride
is % when d; < xz; and is 1 when d; > x; since the driver
takes the priority when drivers and AVs both exist in the
platform. Therefore, the expected earnings for a single time
period for a driver at location ¢ are equal to w(1 — ). Thus,
the expected lifetime earnings are V; = ZOO Blw(l-B) = w.
Hence, the solution {p“cSl,xZ,y”,zz,r”}Z ._, is supported
as an equilibrium using the compensatlons we constructed
above.

Moreover, the cost incurred by the platform under these
compensations per period is

i min {z;, 0;(1 —
i=1

We construct

F(pi))} e = Zmln {zi,di} - ¢
a partition for the locations so that
1 = {i:d;<a;} and Iy {i:d; > x;}. Therefore
Zi min {z;,d;}-c; = Ziell dici+2iel2 TiCi = Ziell di-
S0(l - ) + Yy aw(l — B) = S aw(l— B) =
Z?:l 0;w. The last equality follows from the fact that
S mi(1—pB) = >, & since, at equilibrium, the mass
drivers entering the platform is equal to the mass of drivers
that are leaving.

The third part of the lemma follows directly from the
second part of [9, Lemma 1] since z; > 0 only if d; > 0 in
our scenario. ]

From Lemma 1, we conclude that it is without loss of
generality for us to focus on the optimization problem (7)
for the rest of the paper.

Moreover, while the objective function of (7) is not
concave in general, it is concave for distributions for which
the first summation ., p;0;(1 — F(p;)), the revenue of

the platform, is concave. This is true, for example, for the
case that F'(-) is the uniform distribution and some other
distributions. Throughout the rest of the paper, we focus on
the case where the rider’s willingness to pay is such that the
objective function of (7) is concave.

IV. ALTERNATIVE OPTIMIZATION PROBLEM

Even when (7) possesses a concave objective function,
the constraints are non-convex so that solving (7) remains
difficult. This section introduces an alternative optimization
problem of the mixed-autonomy model for which the optimal
profits will be the same as that of (7). While the optimal
profits are the same, the optimal solutions of these two
problems are not exactly the same. However, given the
optimal solution of one of the optimization problems, we
show that we are able to compute an optimal solution
for the other problem with identical profit. In particular,
the alternative optimization problem becomes a quadratic
optimization problem with linear constraints when F'(-) is
a uniform distribution.

Consider the optimization problem

F(p:)) —WZ&- - sZzi
i=1 i=1

max i0i (1 —
{pu&'umwz'url]} Zp

n
Xr; = ﬁZajixj + 51

j=1
a=y agildy —x;) + Yy
j=1 j=1
Zﬁ'j =z — (d; — x;)
j=1
pi,éi,xi,zi,rij Z 0 VZ,] (10)
In the following, we regard (7) as the original optimization
problem and (10) as the alternative optimization problem.
Theorem 1 below states that (7) and (10) have the same
optimal profits for any /3, k and adjacency matrix A. More-
over, given one optimal solution for (7) or (10), it is possible
to compute an optimal solution for the other.
Theorem 1: Consider the original optimization problem
(7) and alternative optimization problem (10). Let

OTZ* OTZ* OTZ* OTl* OTl* OTZ* OTZ* n
{p 05 Ty Yig 5Ty }i i=1 an
.

be an optimal solution for (7) and

n
alt* :{ altx 5alt* aliﬁ*7 glt*, ;ljlt*} i

12)

be an optimal solution for (10). Then the following holds:

o The original optimization problem and the alternative
problem obtain the same optimal profits for all possible
choices of 3, k and adjacency matrix A.

o The optimal solutions satisfy z°""* = galt* zorix —
Zalt*, pori* — palt* and §°7* = 5alt>~<.

o If 0;(1 — F(p¢m™*)) < x¢™™ for all 4 in the original
optimization problem, then z¢"* = 0 for all i and



setting r““* = yo”* for all 7, j constitutes an optimal

solution for the alternatlve problem.

o If 0,(1 — F(p2'**)) < 28 for all i in the alternative
optimization problem, then z#'* = 0 for all i and
setting y"”* = 7’“7”* constitutes an optimal solution for
the orlgmal optimization problem.

Proof: Let ¢°"* and ¢*** represent the optimal profits
of the two problems (7) and (10), respectively, and let
d?ri* — 91(1 _ F(pgm'*)) and d;zlt* — 91(1 _ F(p;—llt*)).

To prove that the optimal profits of the two problems are
equal, we first show that ¢°"™* < ¢%** and then ¢°""* >
(balt*.

We consider three cases to prove ¢°"* < ¢@t*,

Case 1: d9""* > 9" Vi. Then u** will be feasible
for alternative problem because they lead to the same opti-
mization problem in this case. Therefore ¢ < p@!t*

Case 2: d9"* < x¢"*  Vi. Then the AVs are not needed
in any location and z; = 0,7;; = 0 Vi, j. Then the original
optimization problem becomes

max Zpl [ pl _WZ5

{pi:disTiyyijszi,mij}
s.t. di = 91(1 — F(pz))
Z oid; + Z Yii | + 0
j=1 j=1

n
Zyij =x; —d;
J=1

Di, 04, Ti, Yis > 0

z; =3

Vi, . (13)

Let z" = 0 and y{/* = 0 Vi,j. Then the alternative
problem becomes exactly the same problem as (13) when
we substitute r;; with y;;, which proves the claim.

Case 3: There exists some location 4 such that z¢"* >
d?"* and some location j such that :c"”* do"™. In this
case, if there is no ¢ such that :v"”* = d?”*, then let

{i + 2o > d9"*} and let I, = {i : 29" <
df”*}. We can then consider an aggregated network with
locations 1 and 2 representing the combined locations in
I; and I, respectively. Hence, in this aggregated network,
@11 = agg > 0; a2 > 0 and aigg > 0 by our assumption that
the directed graph defined by adjacency matrix A is strongly
connected. Since d§"™* < z¢"*, then 2{"™* = 0. But 2{""* =
max {d(lari* _ x(l)ri*7 O} aq1 + max {dori* _ ori*, O} a9y +
Z;’l_:l T‘_(jjlm* — (dgm* _xgrz*)a21 +Z] L _(;IN*_SiHCG dgm* _
9" > 0 and d{"™* — 2¢"* < 0. Hence z{""* > 0 which
leads to a contradiction. Therefore if there is no ¢ such that
"™ = 49T, then either z¢"* > d¢"™*  for all i or
T < d9™* for all 4.

If there exists 7 such that x¢"* = d9"%*, define I; and I as
above and introduce I3 = {i : z¢""* = d¢""*}. Similar to the
above argument, we show that 27 = 2§"™* = 0. Since
Zf”* — _Z?—l a1 max{d"”* _ om* 0} 4 ZJ ) 3)1"1*
while d3™* — :cg”* > 0, then agl = 0. Similarly, we
must have as3 = 0. Therefore, we have asy = 1 since

orik

Z?Zl o;; = 1. However, ass = 1 means that some
components in the graph are not strongly connected with the
others, which contradicts our assumption. Hence this mixed
situation cannot be an optimal solution for the problem. Thus,
up to now, we have shown that (b"”* < (b““*. Next we show
that (bori* > ¢alt*‘

Case 1: If d¢'** > 28" for all 4, then u®®* will be
feasible for the original problem because they lead to the
same problem in this case. Therefore ¢ > p®!t*,

Case 2: If d2!* < x2* Vi, suppose Ji s.t. 2™ > 0.
Thgn Sy 201 > 0. Recall z; = Y0 7ij + (di — x;) =
>oi—1 @gi(dj — ) + >0y in the alternative problem,
thus 3j,k s.t. rf™* > 0 and rgl* > 0. Since r;; is not af-
fected by any other equations, if both i row and i column
are greater than 0, we produce the same result by adding a
small amount € to 7%**, reduce the same amount from rfj“*
and r{i™* and add e to r{i*. After this transformation, the
other variables are not changed and the new r will produce
the same profit as before while r; > 0. However, from
KKT conditions (18) and (19) that are discussed in detail in
Section V, if z; > 0, then r;; > 0 will not produce an optimal
result (notice that (18) and (19) hold at optimality even
without Assumption 2). Therefore z; = 0 Vi in this case.
Hence uom — {pom _ p;zlt* 507“1' 6alt* 1OM — O xori —

a”*,y%” = it 2Tt = O} =1 will produce the same
profit in the original optimization problem by the same
justification as in case 2 of this proof. Thus ¢°7%* > ¢@**,

Case 3: If there exist 5 and k such that the optimal solution
ut* does not satisfy the two situations above, which means
there exist locations such that d¢** > 2¢/** for some i and
d?”* < x?”* for some j at the same time. Also there may
exist some locations k such that d¢'** = z¢!**. By combining
the locations having the same relation between d and x,
we can reduce the problem to a three location problem
where lezlt* > dzlzlt*’ xglt* < dglt* and xglt* — dglt*‘
Therefore, in Table I, we list and compare the constraints
between the original optimization problem and the alternative
one (knowing the objective functions are the same for both
cases).

Let {Zfri ?:1 = {Zglt*}? 1 {xf”}?:l = {Ialt*} =1’

{507"1}1 L = {5alt*}?:1 and {pom}r L = {palt*}Z .
(which indicates {do”} = {da”*} 1)- This guarantees
the profit of the original problem to be the same as the
optimal profit of the alternatlve problem. Moreover, there
exist {y‘)”}w_:l and {rori}” i1 SO that u°"* will be a
feasible solution for the original problem. To keep the
succinctness of our formula, let A = (x1 —dy) > 0.
OéllA OélgA algA

Let y°" =| 0 0 0 and ro" =
0 0 0
T‘ﬁt* — OéllA T‘%t* — OélgA Tllllt — algA

Then the constraints for the original problem are all satis-
fied while the profit remains unchanged. Therefore ¢°7** >

(balt*.



Similarly, if there’s no location that z¢"* = d¢!**, then
by setting ;3 = a3; = 0 for all 7, we will obtain the same
result.

TABLE I
THE LIST OF CONSTRAINTS

Original
1 =61 + ﬁ[azlm + asiTs
tonidi + 35 yjl]

Yy =21—d1
z1=a21(d2 —x2) +>; T

Alternative

x1 =01 + ﬁ[azlm + as1Ts
+a111‘1]
z1 = az1(d2 —x2) + ;71
+ai1(di —z1)
>yry =21 — (di —z1)
T2 =02+ 8 [amm + a22z2

2T =21
T2 =02 + 3 [a12d1 + 2272
+agars + 35 ij]

225 =0
z2 = aga(d2 — @2) + 37, 752

+a321‘3]

z2 = agza(d2 — ®2) + 32, 752
+ai2(di —z1)
272 =22 — (d2 — x2)

r3 =03+ [a13x1 + 32

2o T2j =22 — (d2 — x2)
r3 =03+ [Oz13d1 + 232

tasszs + 32 yj3] +a33r3]
Zj Y35 = 0
z3 = az3(d2 — x2) z3 = a3 (d2 — x2)
+>, 73 taas(di — 1) + 35, 153
er3j223 Zy-ng:ZS

Dis 04, Tiy Yij, 2i,Ti5 > 0 Vi, 5 | iy i, X4y Yig, 20,755 > 0 Vi, 5

Moreover, since we know that this u®™* will fall into the
third case and is not optimal for the original problem, while
¢°T* < ¢ then case 3 is not optimal for the alternative
problem.

Therefore, ¢°7"* > ¢®** and thus ¢°""* = pt*. [ |

Definition 2: We refer to the original problem (7) or its
alternation (10) as the mixed autonomy system. We refer to
(7) with the additional constraint that z; = 0 for all i as the
human-only system.

Corollary 1 below can be derived from part of the proof
process above.

Corollary 1: The optimal profit for the mixed-autonomy
network will be no less than the one for the human-only
network, i.e., a network for which z; = 0 for all <.

Proof: The mixed-autonomy optimization problem can
be transformed into (13) by setting z = 0 and r = 0. Fur-
thermore, (13) is exactly the optimization problem for the
system without any AVs. Therefore, by letting z = 0 and
r = 0 and the other variables equal to the optimal solution
for the optimization problem for the system without AV, we
obtain a feasible solution for the mixed-autonomy system.
Therefore the optimal profit for the mixed-autonomy system
will be no less than that of the system without autonomous
system. |

V. WHEN ARE AVS BENEFICIAL?

We now turn our attention to studying properties of
the equilibria that result from the model and optimization
problems proposed above. We particularly seek to understand
when the platform stands to benefit from introducing AVs

in its fleets. We thus are especially interested in comparing
the solution to the above profit-maximizing optimization
problem with mixed autonomy to the solution with no AVs.
To that end, we have the following.

In this section we first define a family of star-to-complete
networks introduced in [9]. Then we establish an upper
bound on k for which the profit of the network with AVs
will be greater than the human-only network only if k& is
greater than this bound. We first compute the Lagrangian
of the alternative optimization problem (10) since it has the
same optimal profits as the mixed-autonomy network. Then,
a lemma establishes when the optimal profits of the mixed-
autonomy system and the human-only will diverge, followed
by a proposition that gives an upper bound of k for the
diversion.

Definition 3: The class of demand patterns (A€, 1) with
n>3,¢€[0,1], and

0 L 1 1

n—1 n—1 n—1
C1 0 Co Co
A= |a1 ¢ 0 - cz || (14)
C1 C2 C2 0
§ §
1 n_1+( £), C2= =7 (15)

is the family of star-to-complete networks. It is a star
network when ¢ = 0 for which we write A® = A® and a
complete network when ¢ = 1 for which we write A¢ = A
Therefore the general adjacency matrix of a star-to-complete
network can be written as AS = A + (1 — €)AS,

In addition, we make the following assumption throughout
the rest of paper.

Assumption 2: All locations have the same mass of poten-
tial riders, which we normalize to one, i.e., § = 1. Also, the
rider’s willingness to pay is uniformly distributed in [0, 1] so
that F'(p) = p for p € [0,1].

Define

L(p,r,x,(s, A) - pT(]- - p)—WIT5 — S]_TZ
+ A7 [AT(I—p—X)—i—rTl—z}
+y"1-p—x+r1—z]+p" [BATx+6—%].

That is, L is the Lagrangian function associated with the
optimization problem (10) under Assumption 2.

By the KKT conditions [17], we obtain the following
properties that must hold at optimality:

oL

o5, wtmis0 (16)

gfl = i(ﬁﬂj —Aj)aij =i — i <0 (17)
=

gi=—s—ki—7i§0 (18)

;’Z =X +7 <0 (19)



If 6;, x;, z; or ry; is strictly greater than zero, then the
equality of the corresponding differential equation must hold.

The next Lemma establishes that, for a star-to-complete
network, if it is optimal for the platform to use AVs at some
location, then it is optimal to use AVs at all locations.

Lemma 2: If, in some star-to-complete network, the opti-
mal profit of the mixed-autonomy system is strictly greater
than that of the human-only system, then the optimal solution
of the mixed-autonomy system satisfies z; > 0 for all 4.

Proof: Recall the adjacency matrix A¢ for a star-
to-complete network. Assume the optimal profit of the
mixed-autonomy system is greater than that of the orig-
inal system. Then there must exist k£ such that zp >
0 and hence dp — xr > 0. Moreover, for any i #
k, Zi = Z?:l Q5 Max {dj — Ty, O} + Z?:l Tji =
> i max {d; — x5,0} + agi(dy — xp) + D20, i >
agi(d — z) > 0 because ayg; > 0 if & > 0. Therefore, if
£ >0, then z; >0 for all 3.

Further, if £ = 0, then ay; = ﬁ and aj; =1 Vj >
1 while all of the other elements in A% are 0. If & = 1,
then z; = 2o (dy — z1) + diyrji > 0 forall i # 1. 1f
k > 1, then z; = Z?:l max {dj — Ij,O} + Z?:l ri1 =
> max {d; —x;,0} + (dy, — k) + X7 rj1 > 0 and
thus z; > 0 for all i.

Therefore the optimal profit of the mixed-autonomy sys-
tem is greater than that of the original system only if z; > 0
for all 4. [ ]

Next, we establish a necessary condition required for the
platform to find it beneficial to introduce AVs in the network.

Proposition 1: Consider a star-to-complete network, if the
optimal profit of the mixed-autonomy system is strictly
greater than that of the human-only system, then £ < 1 — f.

Proof: The optimal profit of the mixed autonomy
system will always be no less than that of the human-
only system. Therefore, if there is a difference between the
two optimal profits, then the optimal profit of the mixed-
autonomy system will be strictly greater than that of the
human-only system. Hence by Lemma 2, z; > 0 for all ¢
under the situation.

Therefore \; + v; = —s for all i. From (17), we have

1 = 1 <
B 2 A m <0, Q0
j=2 Jj=2
and, for all 7 # 1,
c1(Bpr— M) +e2 > (B —Aj) = — i 0. (21
J#L,i
Therefore combining (20) and (21) gives
1 = I <
(n—1)car mﬁZuj - mz)\j —N—m
Jj=2 Jj=2
+D B =)+ > Buy—A) —vi—mi| <0
i=1

J#LL

and after recombination of the variables, we have

n n

—can—1M+m)—[a+ - 2)02]2:%' - Z’Yj

tean—1)(B- D+ e+ (n—2)c2B -1 p
i=2
<0.

Knowing that ¢; + (n — 2)ce = 1 and p; < w for all ¢ from
(16), we then have

c1(n—1)s+(n—1)s
<—am=DE-Dm—B-13 u

< (1 + D(n - (1 - B

(+De-1D1-5
@+Dm-1n 7P

Notice that the fraction 5 is k. Therefore, for all star-to-
complete networks, the profit of the mixed-autonomy system
will be strictly greater than that of the human-only system
only if k <1-— 5. |

Proposition 1 establishes that £ < 1 — (3 is a necessary
condition for the platform to decide to introduce AVs into
its fleet, however, it is not a sufficient condition. In the
numerical study of the next section, we observe that the
platform will find it beneficial to have no AVs, some AVs,
or all AVs for certain regimes of k for each fixed [.

=
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VI. NUMERICAL STUDY

We now provide a case study that illustrates the results
developed above and illuminates the potential benefits of
mixed-autonomy in ride-sharing.

We consider a simple 3-location star-network satisfying
Assumption 2 with location 1 connected to locations 2 and
3, and locations 2 and 3 are only connected to location
1. We see below that even this simple network exhibits
interesting properties in the mixed autonomy setting. We take
the adjacency matrix to be

0 5 3
A=1[1 0 0 (22)
1 0 0

so that riders originating at location 1 have locations 2 and
3 as their destination with equal probability, while riders at
locations 2 and 3 are all traveling to location 1; for example,
location 1 is a city center. Furthermore, we assume without
loss of generality that the driver’s outside option is w = 1.
The alternative optimization problem 10 and the restriction to
only human drivers 13 are implemented in CVX, a Matlab-
based convex optimization software package.

We compute the optimal profits and resulting equilibria
for a range of values of 5 and k. In Table II, the first
column lists several values of §. The fourth column gives
ky = 1 — (3, the corresponding theoretical upper bound
established in Proposition 1 such that for & > k, it is optimal



for the platform to use humans only. Next, we introduce
two particular values of k£ obtained numerically for which
the optimal solution changes qualitatively. The number in
the second column, labeled k,, is the value below which no
human drivers are present at optimality. That is, for k£ < k,,
x; = 0 for all ¢ at optimality and all rides are served by AVs.
The third column, labeled k;, is the value of k£ for which the
optimal mass of AVs becomes zero; that is, for k < ki,
the optimal profit for the mixed autonomy system is strictly
greater than the human-only system.

From the numerical study , we observe that the optimal
profit for the network with AVs is the same as that of the
human-only network when k is small, but exceeds the latter
when k increases. In addition, as established by Proposition
1, ks < k; for all 3.

TABLE 11
THEORETICAL AND OBSERVED VALUES OF k VS. 3

ka, it is optimal to | ks, it is optimal to ke=1-0,
B have only AVs have some AVs upper bound
for k < kq for k < ks from Proposition 1

0.5 0.4383 0.4992 0.5
0.55 0.3916 0.4417 0.45
0.6 0.3458 0.3856 0.4
0.65 0.3008 0.3312 0.35
0.7 0.2564 0.2786 0.3
0.75 0.2187 0.2256 0.25
0.8 0.1799 0.18 0.2
0.85 0.1387 0.1388 0.15
0.9 0.0947 0.095 0.1
0.95 0.0486 0.0487 0.05

Moreover, we make a few additional observations: k, is
always strictly less than the theoretical upper bound k; = 1—
(. The appearance of human-drivers and the disappearance
of the AVs is not concurrent. That is, k, < ks so that, for
ko < k < kg, both human drivers and AVs are needed to
obtain the optimal profit for the mixed-autonomy platform.

VII. CONCLUSIONS

We proposed a model for ride-sharing systems with mixed-
autonomy and showed that equilibrium conditions can be
computed efficiently by converting the original problem into
an alternative convex program. We found that the optimal
profit for the ride-sharing platform if AVs are introduced
into the fleet will be the same as that of the human-only
network when k is small, i.e., the ratio of outside option
earnings for drivers’ lifetime to the cost for operating an AV
for the equivalent time of drivers’ lifetime is relatively low.
In particular, in Proposition 1, we showed that if the cost
of operating an AV exceeds the expected compensation to a
driver in the system, the platform will find it optimal to not
use AVs, an intuitively appealing result.

Surprisingly, the case study illustrates that the platform
may not necessarily find it optimal to use AVs even when
the cost of operating an AV is less than the expected
compensation to a driver in the system. Our future research
will seek to fully characterize these numerical observations.

In addition, the model proposed and studied here includes
a number of simplifying assumptions. For example, in reality,

destinations are not equidistant and ride costs might then
depend on destination. While these simplifying assumptions
are important for illuminating fundamental properties of
ride-sharing in a mixed autonomy setting, future work will
consider relaxing these assumptions.
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