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Abstract— We derive an algorithm to compute satisfiability
bounds for arbitrary w-regular properties in an Interval-valued
Markov Chain (IMC) interpreted in the adversarial sense. IMCs
generalize regular Markov Chains by assigning a range of
possible values to the transition probabilities between states. In
particular, we expand the automata-based theory of w-regular
property verification in Markov Chains to apply it to IMCs.
Any w-regular property can be represented by a Deterministic
Rabin Automata (DRA) with acceptance conditions expressed
by Rabin pairs. Previous works on Markov Chains have shown
that computing the probability of satisfying a given w-regular
property reduces to a reachability problem in the product
between the Markov Chain and the corresponding DRA. We
similarly define the notion of a product between an IMC and
a DRA. Then, we show that in a product IMC, there exists a
particular assignment of the transition values that generates a
largest set of non-accepting states. Subsequently, we prove that
a lower bound is found by solving a reachability problem in
that refined version of the original product IMC. We derive
a similar approach for computing a satisfiability upper bound
in a product IMC with one Rabin pair. For product IMCs
with more than one Rabin pair, we establish that computing
a satisfiability upper bound is equivalent to lower-bounding
the satisfiability of the complement of the original property.
A search algorithm for finding the largest accepting and non-
accepting sets of states in a product IMC is proposed. Finally,
we demonstrate our findings in a case study.

I. INTRODUCTION

Markov Chains have been extensively used as an intuitive
yet powerful mathematical tool for modeling systems evolv-
ing through time in a stochastic fashion. They allow us to
answer critical questions about the behavior of the underlying
systems, often specified in terms of symbolic temporal logics,
and derive appropriate control strategies [1] [2]. As a superset
of Linear Temporal Logic (LTL), w-regular properties are of
particular interest to us due to their expressiveness. One can
easily translate natural language inquiries such as “Will the
system never reach a bad state and visit a good state infinitely
often?” into well-defined regular expressions. A method
for computing the probability of fulfilling any w-regular
property in Markov Chains is described in [3]. However, this
derivation assumes that the probabilities of transition from
state to state are known exactly.

Accessing the true probabilities of transitions might be
impossible in practice and their values may only be ap-
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proximated, e.g. from collected data. Furthermore, there
has been a growing interest in abstractions of stochastic
hybrid systems [4] [5], and the discretization of a stochastic
continuous state space might sometimes result in a finite
abstraction where the transitions between states cannot be
expressed as a single number [6]. To account for this, Markov
Chains are augmented into Interval-valued Markov Chains
(IMC) where the probabilities of transition from state to
state are given to lie within some interval [7] [8]. A direct
consequence of this characteristic is that the probability of
satisfying temporal properties in an IMC has to be formulated
as an interval as well for all initial states.

Depending on the context in which they are utilized, IMCs
give rise to two different semantic interpretations. One may
view an IMC as an imperfect representation of a unique
underlying Markov Chain whose transition bounds are not
known exactly; this is called the Uncertain Markov Chain
(UMCO) interpretation of IMCs. On the other hand, IMCs can
be interpreted in an adversarial sense where a new probability
distribution consistent with the transition bounds is non-
deterministically selected each time a state is visited. We
refer to this as an Interval Markov Decision Process (IMDP).

In [9], the authors discuss the feasibility of the model-
checking problem in both interpretations of IMCs and its
computational complexity for @-regular properties. Nev-
ertheless, efficient algorithms for computing satisfiability
bounds are not provided. Such bounds prove valuable in cer-
tain applications, such as the targeted state-space refinement
of hybrid systems where IMCs naturally arise.

Satisfiability bounds were calculated in [10] for the Prob-
abilistic Computation Tree Logic (PCTL) in IMDPs, but
PCTL cannot express useful specifications such as liveness
properties, i.e. the infinitely repeated occurence of an event.
An automaton-based stochastic technique that asymptotically
converges to lower and upper bounds for LTL formulas in
UMCs was developed in [11]. To the best of our knowledge,
a deterministic algorithm capable of finding satisfiability
bounds for arbitrary @-regular properties in IMDPs has not
been presented in the literature and is the main contribution
of this paper.

Our objective is to extend the automaton-based procedure
in [3] to accommodate IMCs interpreted as IMDPs. All w-
regular properties can be converted into Deterministic Rabin
Automata (DRA) whose acceptance conditions are described
by sets of states grouped in pairs called Rabin Pairs [3].
Constructing the Cartesian product of a Markov Chain with
a DRA enables to compute the probability that the stochastic
evolution of the Markov Chain’s state fulfills the property



encoded in the DRA. In particular, it was shown that this
probability is equal to that of reaching special sets of states
called accepting Bottom Strongly Connected Components
(BSCC) in the product Markov Chain. Unfortunately, such
a straightforward procedure does not work in general for
IMCs. Although a similar definition of the Cartesian product
between an IMC and a DRA can be established, we observe
that the set of accepting BSCCs depends on the assumed
transition values in the resulting product IMC. The structure
of a product IMC is indeed specifically determined by tran-
sitions which can either create or eliminate a path between
two states, i.e. transitions with a zero probability lower bound
and a non-zero upper bound.

Nonetheless, we first show that a particular instantiation
on the transition values yields a largest set of so-called non-
accepting states. Then, we show that computing a lower
bound on the satisfiability of the property expressed by the
DRA reduces to a reachability problem on the non-accepting
states in the refined product IMC. If the underlying DRA
only has one Rabin pair, we conversely prove that an upper
bound is found by solving a reachability problem for a
particular refinement of the product IMC that generates the
most accepting states. In the case where the DRA possesses
more than one Rabin pair, we show that an upper bound
is calculated by lower-bounding the satisfiability for the
complement property of the DRA. Furthermore, we describe
an algorithm for finding the largest sets of non-accepting and
accepting states in a product IMC. Lastly, we illustrate our
algorithm in a case study.

In Section I, we introduce important concepts; in Section
II, we formulate the problem; in Section III, we derive the
main concepts used for bounding the satisfiability of ®-
regular properties in IMCs and we present an algorithm for
finding the largest sets of accepting and non-accepting states;
finally, we present a case study in Section IV. Proofs and
additional comments are omitted due to space constraints

and are available in the extended version!.

II. PRELIMINARIES

An Interval-Valued Markov Chain (IMC) [6] is a 5-tuple
= (Q,T,T,H,L) where:

¢ Q is a finite set of states,

T:0x0— [0,1) maps pairs of states to a lower

transition bound so that T‘Qj_,Q{, =T(0 j,Qy) denotes

the lower bound of the transition probability from state

Q; to state Qy, and

e« T:0xQ —[0,1] maps _pairs of states to an upper
transition bound so that TQ 0, = T(QPQZ) denotes
the upper bound of the transition probability from state
Q; to state Qy,

o IT is a finite set of atomic propositions,

o L:Q — 2" is a labeling function that assigns a subset
of IT to each state Q,

'The extended version can be found here:

https://arxiv.org/abs/1809.06352

and T and T satisfy T(Q;,00) <
and

T(Q;,0) forall 0,0, € O

< Y T(0,,00) (1)
QfGQ

Z T Q]aQ[
QreQ

for all Q; € Q.

A Markov Chain # = (Q,T,I1,L) is similarly defined
with the difference that the transition probability function
T:0xQ — [0,1] satisfies 0 < T(Q;,0¢) < 1 for all
Q0,00 € Q and Y,c0T(Qj,0¢) = 1 for all Q; € Q.
At each discrete time step, a Markov Chain transitions
from its current state Q; to a state Q; according to the
probability distribution set by T'. For any sequence of states
T=qoq1q2...in ./, with q; € O, qq is called an initial state.

A Markov Chain .# is said to be induced by IMC .# if
for all Q;,0¢ € O,

T(0;,00) <T(Q},00) <T(Q},00) - 2)

An IMC .#, with transition functions T2 and T2 is said to
be induced by IMC .#] with transition functions T 1 and T1
if both .#; and .%, have the same Q, Il and L, and, for all

0;,0,€0,

T1(0;,00) < T2(0;,00) < 12(0;,0) < T1(Q;,Qr) - (3)
Any Markov Chain induced by .#, is also induced by .#.

An IMC .7 is said to be interpreted as an Interval Markov
Decision Process (IMDP) if, at each time step k, the external
environment non-deterministically chooses a Markov chain
My induced by .# and the next transition occurs according
to .#y. A mapping v from any finite path T = gq; ...qx in
# to a Markov Chain .#; is called an adversary. The set
of all possible adversaries of .# is denoted by v 4.

An IMC .7 is said to be interpreted as an Uncertain
Markov Chain (UMC) if the external environment non-
deterministically chooses a single Markov chain .# at k=0
and the sequence of states T = goq1qz ... is determined by
the transition probabilities in ..

A Deterministic Rabin Automaton (DRA) [3] is a 5-tuple
o = (S,%,8,s0,Acc) where:

e S 1is a finite set of states,

« X is an alphabet,

e 0:0 %X — S is a transition function

e §o 1s an initial state

o Acc C25x25. Anelement (E;,F;) € Acc, with E;, F; C S,

is called a Rabin Pair.

The probability of satisfying w-regular property ¢ starting
from initial state Q; in IMC .# under adversary v is denoted
by & 41v)(Qi = ¢). The greatest lower bound and the least
upper bound probabilities of satisfying property ¢ starting
from initial state Q; in IMC .# are denoted by 7 (0= 0)
and yy 0; E ¢) respectively. 2 ,(Q; = QU) for U C Q
denotes the probability of eventually reaching set U from
initial state Q; in Markov Chain ./Z.



III. PROBLEM FORMULATION

Let .# be an IMC interpreted as an IMDP with a set
of atomic propositions I1, and let ¢ be an w-regular prop-
erty over alphabet IT (for formal definitions of w-regular
properties and alphabet, see [3]). Our goal is to find a
method for calculating non-trivial bounds > 7(0i =¢) and
P y(Q, = ¢) where, for any adversary v € vz,

PQENSP(QEN<P,(0F). @

Our approach extends the work in [3] for the verification
of regular Markov chains against w-regular properties using
automata-based methods. First, we generate a DRA o that
recognizes the language induced by property ¢. Such a DRA
always exists and several algorithms can accomplish this
task efficiently for a large subset of w-regular expressions
[12] [13]. Then, we construct the product .¥ ® <7.

Definition 1: Let & = (Q,T,f,H,L) be an Interval-
valued Markov Chain and o7 = (S,2',§,59,Acc) be a De-
terministic Rabin Automaton. The product ¥ ® of = (Q x

S, T, T, Acc,L/ ) is an Interval-valued Markov Chain where:

e O xS is a set of states,

R 7\"// — f/Q_j—>Q/;7 if S/:6(S,L(Q(g)>
(0j5)(Qe-s) 0, otherwise

0 otherwise

o Acc = {E] JEy B LB, 7Fk} is a set of atomic
propositions, where E; and F; are the sets in the Rabin
pairs of Acc,

o L': QxS — 24 such that H € L'({Qj,s)) if and only
if s € H, for all H € Acc’ and for all j.

)

Pl >_{f/QﬁQ[, if ' = 8(s,L(Qr))
Qj Oy, -

A Markov Chain . ® <7 induced by .# ® o7 is called a
product Markov Chain.

The probability of satisfying ¢ from initial state Q; in a
Markov Chain equals that of reaching an accepting Bottom
Strongly Connected Component (BSCC) from initial state
(Qi,s0) in the product Markov Chain with 7 [3].

Definition 2: Given a Markov Chain .# with states Q, a
subset B C Q is called a Bottom Strongly Connected Compo-
nent (BSCC) of .# if it satisfies the following conditions:

¢ B is strongly connected, that is, for each pair of states
(g,t) in B, there exists a path fragment gogq . ..¢, such
that T(q;,qi+1) >0 for i=0,1,...,n—1, and ¢; € B
for 0 <i<n with go =¢q and g, =1,

« no proper superset of B is strongly connected,

e VsEB, EIGBT(S,Z‘) =1.

Definition 3: A Bottom Strongly Connected Component B
of a product Markov Chain .# ® 7 is said to be accepting

O==

Fig. 1. Examples of two posmble product Markov Chains .# ® </ and
My ® </ induced by the product IMC .# ® o7. The sets of accepting states
UA are shown in green whereas the sets of non-accepting states U N appear
inred. In .4 ®/, U ={q0,91,q2} and UN = {q3}; in #r @7/, UA = {0}
and UN = {g3}.

if:

O@
)
i

di: < 3(Qj,s¢) €B.F,eL'({(Q).s51)) >

A (V(Qj,sﬁGB.EigL’(<Qj,sz>)>. (5)

In words, every state in a BSCC B is reachable from any
state in B, and every state in B only transitions to another
state in B. Moreover, B is accepting when at least one of
its states maps to the accepting set of a Rabin pair, while
no state in B maps to the non-accepting set of that same pair.

Definition 4: A state of .# ® < is accepting if it belongs
to an accepting BSCC. The set of accepting states in
M ® o/ is denoted by Urf}ﬂ&d; a state is non-accepting
if it belongs to a BSCC that is not accepting. The set of
non-accepting states in .# ® </ is denoted by U;mm We
omit the subscripts when they are obvious from the context.

Each product Markov Chain .# ® </ induced by .# ® &/
simulates the behavior of .# under some adversary v € v 4.
For any two states Q; and Q, in .# and some states s,s’,s”
and s in &/, we allow T< ) (00) and T<Q Y5005
to assume different values 1n M ® o/, which means that
the transition probability between Q; and Qy is permitted to
change depending on the history of the path in .#.

Fact 1: [3] For any adversary V € vy in Z, it holds
that 2 ,11(Qi E ¢) = P(wew),((Qiss0) | QUA), where
(A @ ) denotes the product Markov Chain induced by
J ® o/ corresponding to adversary V.

It was shown in [14] that the IMDP and UMC inter-
pretations yield identical results for reachability problems.
Consequently, computing & ,(Q; = ¢) and 2 7(0i = 9)
amounts to finding the product Markov Chains induced
by £ ® of that respectively minimize and maximize the
probability of reaching an accepting state. Such reachability



problems in IMCs have been solved when the destination
states are fixed for all induced Markov Chains [9] [10].
However, the set of accepting and non-accepting states may
not be fixed in product IMCs and varies as a function of the
assumed values for each transition. Specifically, U4 and UV
are determined by transitions whose lower bound is zero and
upper bound non-zero, as in the example in Fig. 1.

Problem statement: “Given an IMC .#, an o-regular
property ¢, and the DRA &/ corresponding to ¢, find non-
trivial bounds on the probability of reaching an accepting
state from any initial state (Q;,s0) in .# @ <7, and thereby
find bounds on the probability of satisfying ¢ for any
adversary v in .# and for any initial state Q;.”

We emphasize that this problem is non-trivial due the
dependence of the set of accepting states on the assumed
values for the transitions that can be “on* or “off*.

IV. BOUNDING THE SATISFIABILITY OF
®-REGULAR PROPERTIES IN AN IMC

In [9], the authors discussed an algorithm for computing
the probability bounds of reaching any fixed set of states
in an IMC. We remarked in the previous section that, in
general, the set of accepting and non-accepting states in a
product IMC may depend on the assumed transition values.
This is however not always the case.

Definition 5: A product IMC ¥ ® &/ is an Accepting-
Static Interval-Valued Markov Chain (ASIMC) if for any
two product Markov Chains .#] ® </ and .#, ® </ induced
by £ ® &7, it holds that (UA){///I(&Q{ = (UA)///ZQM/.

Definition 6: A product IMC ¥ ® &/ is an Non-
Accepting-Static Interval-Valued Markov Chain (NASIMC)
if for any two product Markov Chains .# ® o/ and .#, ® o/
induced by .¥ ® &, it holds that (U") 4,00 = (UN).sew.

In ASIMCs (NASIMCs), the set of accepting (non-accepting)
states remains the same for all induced product Markov
Chains. Therefore, we can apply the standard reachability
techniques in [9] to compute bounds on & s, . ((Q;,s0) |E
OUA) or 2 y5.7({0i,50) = OUY) in such product IMCs.
Notice that any product IMC . ® &/ induces at most
(10| -|S!2HSI combinations of “on” and “off” transitions. A
computationally inefficient technique is to bound the satisfi-
ability of ¢ for every such combinations. In this section, we
develop a more efficient method for solving this problem.
First, we prove that all product IMCs induce a worst-case
NASIMCs containing the largest set of non-accepting states
and in which the probability of reaching an accepting BSCC
is minimized from any initial state. Then, we show that the
converse best-case ASIMCs are always induced by product
IMCs with one Rabin pair, and the probability of reaching
an accepting BSCC is maximized from any initial state in
those ASIMCs. If the DRA for ¢ possesses more than one
Rabin pair, we determine an upper bound by computing a
lower bound on the satisfiability for the complement of ¢.

Finally, we suggest a search algorithm for efficiently finding
the largest sets of accepting and non-accepting states.

A. Lower Bound Computation

Lemma 1: [3] For any infinite sequence of states
T = qoq1q92-.. in a Markov Chain, there exists an index
i > 0 such that g; belongs to a BSCC.

Lemma 2: Let .# ® </ be a product IMC. Let (¥ ® &),
and (¥ ® <), be two product NASIMCs induced by .# ® <7
with sets of non-accepting states U{V and Uév respectively.
There exists an NASIMC (. ® /)3 induced by ¥ ® o
with non-accepting states U} and such that (U} UUY) CUY.

Corollary 1: Let .# ® o/ be a product IMC. There exists
a NASIMC induced by .# ® o/ with a set of non-accepting
states UY and such that UY C U), where U} is the set
of non-accepting states for any product Markov Chain
(M ® < ); induced by & @ .

Remark 1: Let [.# @ «/]Y be the set of all NASIMCs
induced by ¥ ® &/ producing non-accepting states Uév
from Corollary 1. We denote the transition bounds functions
of S @/ by T and T. There exists a non-empty set
of NASIMCs [ ® #/]) C [# @ &/]V such that, for
all (4 ® o), €[4 @ /]) with transition functions T

and j:[, TZ( <Qi7st> <ijs/> ) = T( <Q17 z> <Qj7sj> )
and Tp( <Qiasi>7<QJ7Sj> = (Qi,si) <Q]asj> for all
(Qi,si) ¢ U} and all <QJ, > Q x S.

Lemma 3: Let ¥ ® o/ be a product IMC. Consider two
sets of non-accepting states va and Uév which can be in-
duced by .# ® & and such that UY C U}¥. For any NASIMC
(£ ® o), with non-accepting states UL induced by .¥ ® <7,
there exists a NASIMC (.# ® &) with non-accepting states
UY induced by .# ® o such that, for any initial state (Q;, o),

P ety ((Qirs0) E OUY) = P 00, ({Qirs0) = OUS)

(6)

Lemma 4: Let .# ® o/ be a product IMC. Let [.¥ ® o/|¥

and [.¥ @ ]} be the sets as defined in Remark 1. For any

NASIMC (£ ®.o7) €[.# ®.2/]", any NASIMC (.5 @ /), €
[# ® /]) and any initial state <Qi,so>,

gz/@xz/ ((Qi,50) ':<>UZ ) > ¢®Q/ ({Qi50) |:<>Ué) .

Theorem 1: Let .# be an IMC and &/ be a DRA corre-
sponding o the w-regular property ¢. Let (¥ ® &), and
(4 @ /) be any two NASIMCs from the set (7 @A)
defined in Remark 1. It holds that 27, (row),((Qis0) F
oUN)y =2 (S0 /({Qi,50) = OUY) and, for any state Q; €
j?

P50 9) = 1= P yue),(Qivs0) EOUY) . (D
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Fig. 2. Example where the analogous version of Lemma 2 for accepting
states does not hold. Setting the blue transition to 1 and the red transition
to 0 makes go and g; accepting. Conversely, setting the blue transition to
1 and the red transition to O renders ¢g; and ¢, accepting. Nonetheless, no
assignment makes ¢qo, g; and g» accepting at the same time.

B. Upper Bound Computation

Due to the acceptance condition of a DRA, the analogous
version of Lemma 2 for accepting states does not always
hold true, as in Fig. 2. We thus treat IMCs with one Rabin
pair and those with more than one Rabin pair separately.

1) Product IMC with one Rabin pair:

We denote by U/ the largest set of accepting states
induced by .# ® «7. We define the set of best case ASIMCs
[.# ® 2/]% analogously to the set [.¥ ® /] for NASIMCs.

Theorem 2: Let .# be an IMC and ./ be a DRA with
one Rabin pair corresponding to the w-regular property ¢.
Let (£ ® ), and (F ®.</) be be any two ASIMCs from the
set [.7 ® /2. Tt holds that 2, (o), ((Qis) E OUL) =

2 1({Qi,50) = OUA) and, for any state Q; € .7,
Do, (Qisso) EOUL) . (8)

(o)

gZ/(Ql':(P)

2) Product IMC with more than one Rabin pairs:

We observed that product IMCs with more than one
Rabin pair don’t necessarily induce a unique largest set of
accepting states. Instead, we exploit the fact that @-regular
expressions are closed under complementation [15].

Theorem 3: Let .# be an IMC and </ be a DRA corre-
sponding to —¢, the complement of the w-regular property
0. (F @), is defined analogously as in Theorem 1. For
any state Q; € .Z,

P (0= 9) =Py, ((Qis0) EOUY) . (9)

C. Search Algorithm

We design a search algorithm for finding U[N and U2 in a
product IMC .¥ ® o7

« Generate a directed graph G(V, E) with a vertex for each
state in . ® /. An edge links two states (Q;,s;) and
<Q” l> lf T > <Q;Y:> > 0

o Find all strongly connected components (SCC) in G, e.g
using Kosaraju’s algorithm [16], and list them in C.

o For all SCC CJ € C, check whether it contains a
leaky state: a state <Q,,s,> € C/ is leaky if, for
some state (Ql,s.) & C/, T< )= (Qhsl) > 0 or if
Z<Q?J,§>€CjT<Qi7siH$ /1) <1 (that is, (Q;,s;) has a non-
zero probability of transitioning outside of C; for all
refinement of . ® 7).

Algorithm 1: Probability bounds computation for ®-
regular properties in IMCs

Input

: Interval-valued Markov Chain ., @-regular
property ¢.

Output: Lower and upper bound probabilities of

satisfying ¢ in ., 2 ,(Q; = ¢) and
Z4(0i = ¢), for all initial states Q;.

Construct a DRA o/ corresponding to ¢;
Generate the product .¥ ® o7;

Find the largest set of non-accepting states Uév in
J @ o/ according to our search algorithm;
Compute Kz 7(Qi E ¢) for all Q; using (8) and
the reachability algorithm in [9];

if |Acc| =1 then

Find the largest set of non-accepting states U2 in
J ® 4/ according to our search algorithm;
Compute & 4(Q; = ¢) for all Q; using (9) and
the reachability algorithm in [9];

else

Construct a DRA o7 corresponding to ¢, the
complement of ¢;

Generate the product . QA

Find the largest set of non-accepting states Uév in
J ® .4/ according to our search algorithm;
Compute & 4(Q; = ¢) for all Q; using (10) and
the reachability algorithm in [9];

end

return 7 ,(Q; = ¢), ﬁi(Qi =¢)

If a state (Q;,s;) € C/ is leaky, it cannot belong to a
BSCC. Find all states in C/ whose transition to a leaky
state cannot be “turned off” as above. These states are
also leaky. Repeat for all leaky states in C/.

In the subgraph G/ induced by C/, remove all edges
from non-leaky to leaky states. Find all SCCs in G/
and add them to C.

If C/ has no leaky state, C/ is a BSCC. For all states
in C/, check if it maps to some accepting set F;. If not,
C/ is a non-accepting BSCC. Otherwise, we treat two
different cases for U and UA.

Search for UIN : For all such F;’s, check whether some
state in C/ maps to the corresponding non-accepting set
E;. If this is the case for all such F’s, C’ is a non-
accepting BSCC. Otherwise, the unmatched F; states
cannot belong to a non-accepting BSCC. Treat them
as leaky and follow the same procedure as before for
eliminating leaky states. Add the new SCCs to C.
Search for UZ: Check whether some state in C/ maps
to E;. If not, C/ is accepting and is U,f. Otherwise,
treat the states mapping to E; as leaky and follow the
same procedure as before for eliminating leaky states.
Add the new SCCs to C.
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Fig. 3. A grid representation of the 6 states the agent can be in.

A, Ay R G

Fig. 4. A state diagram for automata .2#; and . corresponding to properties
¢ and ¢, respectively. While their set of states and transition function
are identical, they display different acceptance conditions: for <7, Acc =

{({so},{s1})} whereas for @4, Acc ={(0,{s1}), ({s0,s1},{s2})}

40 q 92 | 93 | 94 4qs
Lower bound for ¢; 0 0 0 0 0 0
Upper bound for ¢, 0 0 000 0
Lower bound for ¢ | 0.274 | 0.368 1 0 1 0.684
Upper bound for ¢, 0.7 1 1 0 1 1

TABLE 1
BOUNDS FOR THE SATISFIABILITY OF ¢y AND ¢»

For any state belonging to these sets, the reachability prob-
abilities are trivially 1. For all other states, the maximum
probabilities of reaching U4 or UZN can be computed using
the algorithm in [9] since these sets are now fixed. Algo-
rithm 1 summarizes the entire procedure for bounding the
satisfiability of @-regular properties in IMCs.

V. CASE STUDY

Our system of interest is an agent moving stochastically on
a grid shown in Fig. 3. The grid is divided into 6 different
states the agent can visit. The system evolves in discrete-
time: at each time ¢, the agent makes a transition from its
current state to a new state according to some probability
distribution. The latter depends only on the current state of
the agent, i.e. the system satisfies the Markov property.

However, the transition probabilities are not known exactly
and an IMC representation of the system is constructed:

Tla a 92 B 94
qo || 0 02 0 03 02
q 0 0.05 025 0.1
alo o 0 1
0
0
0

S

@ 0o 0 0
@ 0 1 0
gs 03 02 0.2

co—oo
coo oo

T g @ g 9 qi g
q0 05 03 06 05
a 08 06 08 07 0.
9@ 0o 0
&) 0o 0
G4 0 1
g 0.5 05

Each state is labeled as follows: L(qo) = L(g2) = L(q4) =
{W}, L(q1) = {G} and L(g3) = L(gs) = {R}. We aim to
bound the probability of satisfying w-regular properties ¢
and ¢,, represented by automata 7] and <% in Fig. 4, from
every initial state g. In natural language, these properties
respectively translate to “The agent visits a green state
infinitely many times while visiting a red state finitely many
times.” and “The agent shall visit a red state infinitely many
times only if it visits a green state infinitely many times.”
Note that .o/5 has 2 Rabin pairs. According to Theorem 3,
we thus have to construct the automata for the complement
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of ¢. ¢ is expressed in LTL as ¢, =IOG v LW which,
when complemented, becomes —¢, = OLIG AJOW. Then,
we convert ~¢, to a DRA with one of the existing LTL-to-
w-automata translation tools [17]. Bounds for ¢; and ¢, are
computed using Algorithm 1 and are shown in Table 1.

VI. CONCLUSIONS

We derived an automaton-based technique for bounding
the probability of satisfying any w-regular property in an
IMC viewed as an IMDP. We demonstrated its application
through a case study. In future works, we will seek to
exploit the mechanisms unveiled in this paper and apply
them to Bounded-parameter Markov Decision Processes,
the controllable counterparts of IMCs, e.g. to minimize or
maximize the probability of satisfying some specification.
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